2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
3rd July 2018, 04:38 PM
Unregistered
Guest
 
Re: Lovely Professional University Engineering

Can you provide me the syllabus for Lovely Professional University National Entrance and Scholarship Test (LPUNEST) for admission in B Tech Program in Lovely Professional University?
  #3  
3rd July 2018, 04:40 PM
Super Moderator
 
Join Date: Aug 2012
Re: Lovely Professional University Engineering

The syllabus for Lovely Professional University National Entrance and Scholarship Test (LPUNEST) for admission in B Tech Program in Lovely Professional University is as follows:

Chemistry

UNIT 1: Atomic Structure, States of Matter & Thermodynamics

Some basic concepts in chemistry: Matter and its nature, Daltons atomic theory; Concept of atom, molecule, element and compound; Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.
States of matter: Classification of matter into solid, liquid and gaseous states.
Gaseous State: Measurable properties of gases; Gas laws - Boyles law, Charles law, Grahams law of diffusion, Avogadros law, Daltons law of partial pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases; Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation, liquefaction of gases, critical constants.
Liquid State: Properties of liquids - vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).
Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Braggs Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids; Electrical, magnetic and dielectric properties.
Atomic structure: Discovery of sub-atomic particles (electron, proton and neutron), Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom - its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohrs model; Dual nature of matter, de-Broglies relationship, Heisenberg uncertainty principle. Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, concept of atomic orbitals as one electron wave functions; Variation of Ψ and Ψ2 , with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s, p and d - orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals aufbau principle, Paulis exclusion principle and Hunds rule, electronic configuration of elements, extra stability of half- filled and completely filled orbitals.
Chemical bonding and molecular structure: Kossel - Lewis approach to chemical bond formation, concept of ionic and covalent bonds. Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity, Fajans rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.
Quantum mechanical approach to covalent bonding: Valence bond theory - Its important features, concept of hybridization involving s, p and d orbitals; Resonance.
Molecular Orbital Theory: Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy. Elementary idea of metallic bonding. Hydrogen bonding and its applications
Chemical thermodynamics:Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.
First law of thermodynamics:Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hesss law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution.
Second law of thermodynamics: Spontaneity of processes; ∆S of the universe and ∆G of the system as criteria for spontaneity, ∆G0 (Standard Gibbs energy change) and equilibrium constant.
UNIT 2: Solutions, Chemical Kinetics & Surface Chemistry

Solutions: Different methods for expressing concentration of solution - molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoults Law Ideal and non-ideal solutions, vapour pressure - composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions - relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, vant Hoff factor and its significance.
Equilibrium: Meaning of equilibrium, concept of dynamic equilibrium.
Equilibria involving physical processes: Solid -liquid, liquid - gas and solid gas equilibria, Henrys law, general characteristics of equilibrium involving physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, significance of ∆G and ∆Go in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le Chateliers principle.
Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted - Lowry and Lewis) and their ionization, acid base equilibria (including multistage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.
Redox reactions and Electrochemistry: Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions. Electrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrauschs law and its applications.
Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half - cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell potential and Gibbs energy change; Dry cell and lead accumulator; Fuel cells; Corroison and its prevention.
Chemical Kinetics: Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half - lives, effect of temperature on rate of reactions Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).
Surface chemistry: Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids - Freundlich and Langmuir adsorption isotherms, adsorption from solutions. Catalysis- Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism
Colloidal State - distinction among true solutions, colloids and suspensions, classification of colloids-lyophilic, lyophobic; multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids - Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.
UNIT 3: Hydrogen & s - Block Element

Classification of elements and periodicity in properties: Modern periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
General principles and processes of isolation of metals: Modes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals - concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn & Fe; Thermodynamics and electrochemical principles involved in the extraction of metals.
Hydrogen: Position of hydrogen in periodic table, isotopes, preparation, properties & uses of hydrogen; Physical & Chemical properties of water & Heavy Water; Structure, preparation, reactions & uses of hydrogen peroxide; Classification of hydrides - ionic, covalent and interstitial, Hydrogen as a fuel.
s - Block elements (alkali and alkaline earth metals) Group - 1 and 2 Elements: General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships. Preparation and properties of some important compounds - sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.
UNIT 4: p, d & f block Elements and Environmental Chemistry

p - Block elements
Group 13 to Group 18 Elements: General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group. GroupWise study of the p block elements.
Group 13: Preparation, properties and uses of boron and aluminium; structure, properties and uses of borax, boric acid, diborane, boron tri- fluoride, aluminium chloride and alums.
Group 14: Tendency for catenation; Structure, properties & uses of allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.
Group 15: Properties & uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structures and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of nitrogen and phosphorus.
Group 16: Preparation, properties, structures & uses of dioxygen and ozone; Allotropic forms of sulphur; Preparations, properties, structures & uses of sulphur dioxide, sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Group - 17: Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of interhalogen compounds and oxides & oxoacids of halogens.
Group 18: Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.
d and f Block elements: Transition Elements: General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first row transition elements - physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4 .
Inner Transition Elements: Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction. Actinoids - Electronic configuration and oxidation states.
Co-ordination Compounds: Introduction to Co-ordination compounds, Werners theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co- ordination compounds, isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).
Environmental chemistry: Environmental pollution- Atmospheric, water and soil.
Tropospheric pollutants Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Greenhouse effect and Global warming; Acid rain; Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.
Stratospheric pollution: Formation and breakdown of ozone, depletion of ozone layer -its mechanism and effects. Water Pollution - Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention. Soil pollution - Major pollutants such as: Pesticides (insecticides, Herbicides and fungicides), their harmful effects and prevention. Strategies to control environmental pollution
UNIT 5: Basic Concepts of Organic Chemistry

Purification and characterization of organic compounds: Purification: Crystallization, sublimation, distillation, differential extraction and chromatography - principles and their applications.
Qualitative analysis: Detection of nitrogen, sulphur, phosphorus and halogens.
Quantitative analysis (Basic Principles only): Estimation of carbon, hydrogen, nitrogen,halogens, sulphur, phosphorus. Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis
Some basic principles of organic chemistry: Tetravalency of carbon; Shapes of simple molecules - hybridization (s and p); Classification of organic compounds based on functional groups: - C = C - , - C ≡ C and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism - structural and stereoisomerism
Nomenclature (Trivial and IUPAC) Covalent bond fission: Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.
Electronic displacement in a covalent bond - Inductive effect, electromeric effect, resonance and hyperconjugation Hydrocarbons: Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties & reactions.
Common types of organic reactions- Substitution, addition, elimination and rearrangement
Alkanes - Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenations of Alkanes.
Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoffs and peroxide effect); Ozonolysis, oxidation and polymerization.
Alkynes - Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.
Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity; Mechanism of electrophilic substitution: halogenations, nitration, Friedel Crafts alkylation and acylation, directive influence of functional group in mono- substituted benzene.
Organic compounds containing halogens: General methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions. Uses; Environmental effects of chloroform & iodoform, freons and DDT
UNIT 6: Oxygen, Nitrogen, Polymers & Bio molecules

Organic compounds containing Oxygen: General methods of preparation, properties, reactions and uses.
Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.
Phenols: Acidic nature, electrophilic substitution reactions: halogenations, nitration and sulphonation, Reimer - Tiemann reaction.
Ethers: Structure.
Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity of - hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.
Carboxylic acids: Acidic strength and factors affecting it.
Organic compounds containing Nitrogen: General methods of preparation, properties, reactions and uses.
Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.
Diazonium Salts: Importance in synthetic organic chemistry.
Polymers: General introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization; Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their monomers and uses - polythene, nylon, polyester and bakelite.
Biomolecules: General introduction and importance of biomolecules.
Carbohydrates: Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosacchorides (sucrose, lactose and maltose) and polysaccharides (starch, cellulose, glycogen).
Proteins: Elementary Idea of amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
Vitamins: Classification and functions.
Nucleic acids: Chemical constitution of DNA and RNA. Biological functions of nucleic acids
Chemistry in everyday life: Chemicals in medicines Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids antihistamines-their meaning & common example.
Chemicals in food - Preservatives, artificial sweetening agents - common examples
Cleansing agents - Soaps and detergents, cleansing action
Attached Files
File Type: doc Syllabus LPUNEST for admission in B Tech Program.doc (52.0 KB, 79 views)


Quick Reply
Your Username: Click here to log in

Message:
Options

Thread Tools Search this Thread



All times are GMT +5. The time now is 10:36 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4