SOLUTIONS \& ANSWERS FOR KERALA MEDICAL ENTRANCE EXAMINATION-2012 - PAPER I VERSION - A1

[CHEMISTRY \& PHYSICS]

1. Ans: 2.24

Sol: $\quad \mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$10 \mathrm{~g} \quad \rightarrow \quad 2.24 \mathrm{~L}$
2. Ans: 0.1 g of silver

Sol: $\quad(A)=0.4 \mathrm{~g}$
(B) $=2.8 \mathrm{~g}$
(C) $=0.1 \mathrm{~g}$
(D) $=3.2 \mathrm{~g}$
$(\mathrm{E})=1.0 \mathrm{~g}$
3. Ans: 2-methylpropene

Sol:

(2-methylpropene)

4. Ans: C_{2} molecule has bond order 2 and is diamagnetic

Sol:
$\mathrm{C}_{2}=\sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \pi 2 p_{\mathrm{x}}^{2}$,
$\pi 2 p_{y}^{2}$
B. $O=\frac{1}{2} \times 4=2$
5. Ans: n । m s
$2 \quad 21+\frac{1}{2}$
Sol: When $\mathrm{n}=2$
Possible values of I are 0 and 1
6. Ans: ortho nitrophenol
Sol:

7. Ans: tetrahedral

Sol:

8. Ans: 4 and 6

Sol: $\quad n_{\mathrm{O}_{2}}=2$
$\mathrm{n}_{\mathrm{Ne}}=3$
$\mathrm{P}_{\mathrm{O}_{2}}=\frac{2}{5} \times 10=4$ bar
9. Ans: Surface tension of a liquid increases with increase of temperature

Sol: The correct statement is surface tension of a liquid decreases with increase of temperature
10. Ans: 32%

Sol: \quad P.F for $B C C=68 \%$
\therefore V.F $=32 \%$
11. Ans: Pent-2-ene, β-elimination

Sol:

Br

12. Ans: neon

Sol: Electron gain enthalpy is positive for inert gases
13. Ans: $\mathrm{CO}+\mathrm{H}_{2}$

Sol: Syngas is a mixture of $\mathrm{CO} \& \mathrm{H}_{2}$
14. Ans: 34

Sol: Weight $(\mathrm{g} / \mathrm{L})=\frac{\mathrm{V}}{5.6} \times 17$

$$
=34
$$

15. Ans: Magnetite

Sol: Magnetite is $\mathrm{Fe}_{3} \mathrm{O}_{4}$
16. Ans: Bi

Sol: $\quad \mathrm{Bi}_{2} \mathrm{O}_{3}$ is predominantly basic
17. Ans: zone refining

Sol: High purity Ge, Si, B, Ga, In etc are prepared by zone refining
18. Ans: $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

Sol: Plaster of Paris is $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
19. Ans: $\mathrm{H}_{3} \mathrm{BO}_{3}$ and H_{2}

Sol: $\quad \mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow 2 \mathrm{~B}(\mathrm{OH})_{3(\mathrm{aq})}+6 \mathrm{H}_{2(\mathrm{~g})}$
20. Ans: 7.01

Sol: $\quad \mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right]$

$$
=\frac{1}{2}[14+4.77-4.75]
$$

$$
=7.01
$$

21. Ans: 0.5

Sol: $\quad \mathrm{K}_{\mathrm{c}}=\frac{1 \times 10^{-4} \times 4.5 \times 10^{-4}}{\left(3 \times 10^{-4}\right)^{2}}$
$=0.5$
22. Ans: lead

Sol: Lead does not exhibit catenation
23. Ans: $2 \mathrm{HI}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$

Sol: Pressure has no effect on the equilibrium, when $\Delta \mathrm{n}_{\mathrm{g}}=0$
24. Ans: ethyne

Sol: Hydrogen atoms attached to sp hybridised carbon atoms are acidic
25. Ans: Staggered $>$ gauche $>$ eclipsed

Sol: Staggered conformation of ethane is more stable than other conformations.
26. Ans: 3-ethyl-2-methylheptane

Sol:

27. Ans: differential extraction

Sol: When an organic compound is present in an aqueous medium, it is separated by shaking it with an organic solvent in which it is more soluble. It is known as differential extraction
28. Ans: $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$

Sol: $\begin{aligned} & \mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2} \\ & \mathrm{sp}^{2} \mathrm{sp} \mathrm{sp}^{2}\end{aligned}$
29. Ans: Both Li and Mg form solid hydrogen carbonates

Sol: Bicarbonates of Li and Mg do not exist in solid state
30. Ans: Zantac

Sol: Zantac (or ranitidine) is an antihistamine
31. Ans: Glycerol

Sol: Laundry soaps contain fillers like sodium silicate, sodium rosinate, borax and sodium carbonate
32. Ans: 5.6

Sol: pH of rain water is 5.6
33. Ans: $\mathrm{C}_{1}-\mathrm{C}_{4} \alpha$-linkage

Sol: $\quad C_{1}-C_{4} \alpha$-linkage is present in amylose
34. Ans: B_{12}

Sol: Anaemia is caused by the deficiency of vitamin B_{12}
35. Ans: retention

Sol:

36. Ans:

Sol: All the given options are neutral amino acids
37. Ans: Dimethylamine

Sol: Dimethylamine is a 2° amine
38. Ans: $-\mathrm{NO}_{2}$

Sol: - NO_{2} group is meta directing and deactivating group.
39. Ans: free radical substitution

Sol: Photochemical halogenation of alkane is free radical substitution reaction
40. Ans: Freon

Sol: Freon is used as refrigerant
41. Ans: $\mathrm{CF}_{3} \mathrm{COOH}>\mathrm{CHCl}_{2} \mathrm{COOH}>\mathrm{HCOOH}>$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}$

Sol: $\quad \mathrm{CF}_{3} \mathrm{COOH}$ is the strongest acid and $\mathrm{CH}_{3} \mathrm{COOH}$ is the weakest among the given acids
42. Ans: Lucas test

Sol: Lucas reagent is used to distinguish $1^{\circ}, 2^{\circ}$ and 3° alcohols
43. Ans: PdCl_{2}

Sol:

44. Ans: tert-butyl chloride

Sol: Boiling points of alkyl halides increase with increase in molecular weight. Among isomeric alkyl halides, boiling point decreases with branching
45. Ans: LiAlH_{4}

Sol: LiAlH_{4} will reduce aldehydes to primary alcohols
46. Ans: Reduction of isonitriles

Sol: Reduction of isocyanides (isonitriles) give 2° amines
47. Ans: 28

Sol: \% of N
$=\frac{1.4 \times \mathrm{M} \times 2\left(\mathrm{~V}-\mathrm{V}_{1} / 2\right)}{\mathrm{m}}$
$=\frac{1.4 \times 0.5 \times 2(50-80 / 2)}{0.5}$
$=28 \%$
48. Ans: benzenamine

Sol: Benzenamine (aniline) is the weakest base due to decolalisation of the lone pair of electrons on nitrogen with the benzene ring
49. Ans: Rate $=k[A]^{0}[B]^{2}$

Sol: From (1) and (2), $[A]$ has no effect on rate. From (1) and (3), on doubling the [B] rate becomes 4 times
\therefore Rate $=\mathrm{k}[\mathrm{A}]^{0}[\mathrm{~B}]^{2}$
50. Ans: 25

Sol: For a $1^{\text {st }}$ order reaction,
$\mathbf{A}_{\mathbf{0}} \xrightarrow{3 \mathrm{t} 1 / 2} \frac{\mathrm{~A}_{0}}{8}$
$t 1 / 2=25$ minutes
51. Ans: 166

Sol: Slope $=\frac{-E_{a}}{R}=-2 \times 10^{4}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =2 \times 10^{4} \times 8.3 \times 10^{-3} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& =166
\end{aligned}
$$

52. Ans: Gluconic acid

Sol: Glucose on oxidation with bromine water gives gluconic acid
53. Ans: independent of the pressure of the gas

Sol: $\log \frac{x}{m}=\log K+\frac{1}{n} \log P$
When $\frac{1}{n}=0$
$\frac{x}{m}$ remains as a constant
54. Ans: gel

Sol: Cheese is a liquid dispersed in solid phase
55. Ans: 100

Sol: $\quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{W}_{2}}{\mathrm{M}_{2}} \times \frac{1000}{\mathrm{~W}_{1}}$
$\mathrm{M}_{2}=\frac{2.5 \times 1.5 \times 1000}{0.75 \times 50}$

$$
=100 \mathrm{~g} \mathrm{~mol}^{-1}
$$

56. Ans: Carbon disulphide - Acetone

Sol: Carbon disulphide - Acetone shows positive deviation
57. Ans: 0.555

Sol: $\quad p_{A}=x_{A} \cdot K_{H}$
$x_{A}=\frac{1}{10^{5}}=10^{-5}$
10^{-5} moles of gas in one mole of water

No. of unites moles in 1 L water
$=10^{-2} \times 55.5=0.555$
58. Ans: 1148

Sol: $\quad W=2.303 n R T \log \frac{V_{2}}{V_{1}}$

$$
\begin{aligned}
& =2.303 \times 0.2 \times 8.314 \times 300 \log \frac{25}{2.5} \\
= & 1148 \mathrm{~J}
\end{aligned}
$$

59. Ans: cis-platin

Sol: cis platin inhibit the growth of tumours
60. Ans: tetrammineaquachloridocobalt(III) chloride

Sol: $\operatorname{Co}\left[\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl} \mathrm{Cl}_{2}$ is named is tetrammineaquachloridocobalt(III) chloride
61. Ans: $\mathrm{I}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CN}^{-}$

Sol: The correct order of ligands as per spectrochemical series is $\mathrm{I}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CN}^{-}$
62. Ans: Mn^{2+}

Sol: There are five unpaired electrons in Mn^{2+}
63. Ans: Sc

Sol: Scandium ($Z=23$) does not exhibit variable oxidation state
64. Ans: Peroxy disulphate

Sol: Manganese (II) salt is oxidised to MnO_{4}^{-} in aqueous solution by peroxy disulphate
65. Ans: Addition of 5 mL of 1 M HCl

Sol: When the $\left[\mathrm{H}^{+}\right]$increases, then pH decreases. Addition of an acid of higher concentration increases the $\left[\mathrm{H}^{+}\right]$
66. Ans: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$

Sol: $\quad 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
As there is a decrease in the number of moles of products, there is decrease in Entropy
67. Ans: $\Delta \mathrm{G} \quad \Delta \mathrm{H} \quad \Delta \mathrm{S}$

Sol: $\quad \Delta G=-v e$
$\Delta H=-v e$
$\Delta S=-v e$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Spontaneous at low temperatures
68. Ans: 180

Sol: For a zero order reaction, $\mathrm{t}_{1 / 2} \propto\left[\mathrm{~A}_{0}\right]$
$t_{1 / 2}=4 \times 45$
$=180$ minutes
69. Ans: 2

Sol: Quantity of electricity
$=3.86 \times 2500$
$=9650 \mathrm{C}$
Wt. of Ca deposited by $96500 \mathrm{C}=20 \mathrm{~g}$
\therefore Wt. deposited by $9650 \mathrm{C}=2 \mathrm{~g}$
70. Ans: -0.79

Sol: $\quad \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$
$E_{\text {el }}=E_{e l}^{\circ}+\frac{0.06}{2} \log \left[\mathrm{Zn}^{2+}\right]$
$=-0.76+0.03 \log 10^{-1}$
$=-0.79 \mathrm{~V}$
71. Ans: Cell constant - m

Sol: Unit of cell constant $\left(\frac{\ell}{\mathrm{A}}\right)$ is m^{-1}
72. Ans: Moist paste of $\mathrm{NH}_{4} \mathrm{Cl}$ and ZnCl_{2}

Sol: The electrolyte used in dry cell (Leclanche cell) is a moist paste of $\mathrm{NH}_{4} \mathrm{Cl}$ and ZnCl_{2}
73. Ans: $\left[M^{-1} L^{3}-\mathrm{T}^{-2}\right]$

$$
\begin{aligned}
\text { Sol: } & {[\mathrm{G}]=\left(\mathrm{N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\right] } \\
& =\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

74. Ans: Parabola

$$
\text { Sol: } \begin{aligned}
& S=u t+\frac{1}{2} a t^{2} \\
& \Rightarrow \text { Parabola }
\end{aligned}
$$

75. Ans: Velocity

Sol: $\quad \tan \theta=\frac{S}{t}=v$
76. Ans: 45°

Sol: $\quad R=\frac{u^{2}}{g} \sin 2 \theta$
\Rightarrow When $\theta=45^{\circ}$,
R is maximum
77. Ans: 5

Sol: $\quad \bar{a}=\frac{d \bar{v}}{d t}=5 \hat{j}$
$\Rightarrow|\overline{\mathrm{a}}|=5 \mathrm{~m} \mathrm{~s}^{-2}$
78. Ans: Co-efficient of kinetic friction is less than the coefficient of static friction.

Sol: $\quad \mu_{\mathrm{k}}<\mu_{\mathrm{s}}$
79. Ans: 3.0

Sol: $\quad J=\Delta p$
$=m(2 u)$
$=2 \mathrm{mu}$
$=2 \times 0.15 \times 10=3 \mathrm{~N} \mathrm{~s}$
80. Ans: $K_{f}-K_{i}$

Sol: $\quad W=\Delta K E$
$=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}$
81. Ans: At right angle to each other

Sol:

82. Ans: Angular momentum

Sol: $\quad \bar{L}=\bar{r} \times \bar{p}$
$\Rightarrow|\overline{\mathrm{L}}|=\mathrm{mvr}$ is constant
83. Ans: $\left(1, \frac{4}{3}\right)$

Sol: $\quad X_{C M}=\frac{3}{3}=1 \mathrm{~m}$
$\mathrm{Y}_{\mathrm{CM}}=\frac{4}{3}=\frac{4}{3} \mathrm{~m}$
$\Rightarrow\left(1, \frac{4}{3}\right)$
84. Ans: Areas

Sol: $L=2 m \frac{d A}{d t}$
85. Ans: $\frac{R-2}{R-1}$

Sol: $\quad g_{h}=g\left[1-\frac{2}{R}\right]$
$g_{d}=g\left[1-\frac{1}{R}\right]$
$\Rightarrow \frac{g_{d}}{g_{h}}=\frac{(R-2)}{(R-1)}$
86. Ans: Young's modulus of rubber is more than that of steel

Sol: Young's modulus of steel is more than that of rubber
87. Ans: $5 \times 10^{6} \mathrm{~N}$

Sol: $\quad \mathrm{F}=\mathrm{A} \Delta \mathrm{p}$
$=0.5 \times 0.5 \times \rho g h$
$=0.5 \times 0.5 \times 10^{3} \times 10 \times 2000$
$=5 \times 10^{6} \mathrm{~N}$
88. Ans: 2 cm

Sol: $h=\frac{2 T \cos \theta}{r \rho g}$
$=\frac{2 \times 0.07 \times 1}{7 \times 10^{-4} \times 1000 \times 10}$
$=0.02 \mathrm{~m}=2 \mathrm{~cm}$
89. Ans: 50 cc

Sol: $\quad V_{0} \gamma_{\text {flask }} \Delta T=V_{m} \cdot \gamma_{\mathrm{Hg}} \Delta T$

$$
\Rightarrow \mathrm{V}_{0}=20 \mathrm{~V}_{\mathrm{m}}
$$

$\Rightarrow V_{m}=\frac{V_{0}}{20}=\frac{1000}{20}$
$=50 \mathrm{cc}$
90. Ans: $\frac{5}{2} R T$

$$
\begin{aligned}
\text { Sol: } & T E=f \frac{1}{2} R T \\
& =\frac{5}{2} R T
\end{aligned}
$$

91. Ans: Cyclic process $-\Delta U=0$
92. Ans: 1 m

$$
\begin{aligned}
\text { Sol: } \quad \mathrm{T} & =2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \\
\mathrm{~T} & =2 \mathrm{~s} \Rightarrow \ell=1 \mathrm{~m}
\end{aligned}
$$

93. Ans: $\frac{3 \pi}{4}$

$$
\text { Sol: } \begin{aligned}
& y_{1}=5 \sin 100 t \\
& y_{2}=4 \cos \left(100 t+\frac{\pi}{4}\right) \\
& =4 \sin \left(100 t+\frac{3 \pi}{4}\right) \\
& \Rightarrow \Delta \phi=\frac{3 \pi}{4} \mathrm{rad}
\end{aligned}
$$

94. Ans: $\frac{\pi}{6}$

Sol: $\quad \omega=12$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{12} \\
& =\frac{\pi}{6} \mathrm{~s}
\end{aligned}
$$

95. Ans: $f\left(1+\frac{\mathrm{v}_{\mathrm{s}}}{\mathrm{v}}\right)$

Sol: $\quad f_{\text {app. }}=f \frac{v}{\left(v-v_{s}\right)}$

$$
\begin{aligned}
& f \frac{1}{\left[1-\frac{v_{s}}{v}\right]} \\
= & f\left[1-\frac{v_{s}}{v}\right]^{-1}=f\left[1+\frac{v_{s}}{v}\right]
\end{aligned}
$$

96. Ans: Directly proportional to E

Sol: $\bar{P} \propto \bar{E}$
97. Ans: $\frac{1}{r}$

Sol: $E=\frac{2 \lambda}{4 \pi \varepsilon_{0} r}$

$$
\Rightarrow E \propto \frac{1}{r}
$$

98. Ans: Halved

Sol: $C=\frac{\varepsilon_{0} A}{d}$

$$
C^{\prime}=\frac{\varepsilon_{0} A}{2 d}=\frac{C}{2}
$$

99. Ans: V depends on I linearly

Sol: $\quad \frac{V}{I}=$ constant
\Rightarrow Ohm's law is valid
100.Ans: 50 cm

Sol: Error is minimized if balancing point is near centre (i.e. at 50 cm point)
101. Ans: $4.7 \mathrm{k} \Omega, 20 \%$

Sol: $\quad 4.7 \times 10^{3} \pm 20 \%$

$$
\Rightarrow 4.7 \mathrm{k} \Omega, 20 \%
$$

102.Ans: Ampere's Circuital law.

Sol: Biot-Savart's law is also known as Ampere's law.
103. Ans: $\chi_{d}<\chi_{p}<\chi_{\mathrm{f}}$

$$
\begin{array}{ll}
\text { Sol: } & \mu_{\mathrm{r}}=\chi+1 \\
& \chi_{\mathrm{d}}<\chi_{\mathrm{p}}<\chi_{\mathrm{f}}
\end{array}
$$

104.Ans: C is doubled and V remains unchanged.

Sol: $\quad \frac{V}{I}=\frac{B N A}{C}$
$\Rightarrow \mathrm{N} \Rightarrow 2 \mathrm{~N}, \frac{\theta}{\mathrm{I}}=$ doubles
$\frac{\theta}{\mathrm{IR}}=\frac{\mathrm{BNA}}{\mathrm{CR}}$ remains unchanged
105.Ans: 0.5

Sol: $L=\frac{E}{\left(\frac{d i}{d t}\right)}=\frac{5}{10}$
$=0.05 \mathrm{H}$
106. Ans: 1 A

$$
\text { Sol: } \begin{aligned}
& \varepsilon=\frac{\mathrm{d} \phi}{\mathrm{dt}}=8 \mathrm{t}+2 \\
& \text { At } \mathrm{t}=1 \mathrm{~s}, \varepsilon=8+2 \\
& =10 \mathrm{~V} \\
& \therefore \mathrm{i}=\frac{8}{\mathrm{R}}=\frac{10}{10}=1 \mathrm{~A}
\end{aligned}
$$

107. Ans: VIcos ϕ

Sol: Considering the instantaneous values as the measured values, which will be RMS values, average power = VI $\cos \phi$
108.Ans: $3.6 \hat{j}$

$$
\text { Sol: } \begin{aligned}
& \mathrm{E}=\mathrm{Bc} \\
& =1.28 \times 10^{-8} \times 3 \times 10^{8} \\
& =3.6 \mathrm{~V} \mathrm{~m} \\
& \overline{\mathrm{E}} \times \overline{\mathrm{B}} \text { in the direction of } \overline{\mathrm{c}} \\
& \Rightarrow \overline{\mathrm{E}}=3.6 \hat{\mathrm{j}}
\end{aligned}
$$

109. Ans: 37.5 cm

$$
\text { Sol: } \begin{aligned}
& u=-25 \mathrm{~cm} \\
& v=-75 \mathrm{~cm} \\
& f=? \\
& -\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \frac{1}{25}-\frac{1}{75}=\frac{1}{f} \\
& \Rightarrow f=+37.5 \mathrm{~cm}
\end{aligned}
$$

110. Ans: $\frac{\lambda}{d}$

Sol: $\beta=\frac{\lambda D}{d}$

$$
\theta=\frac{\beta}{D}=\frac{\lambda}{d}
$$

111. Ans: $\tan ^{-1}\left(\frac{4}{3}\right)$

Sol: $\quad \tan \phi=\frac{4}{3}$

$$
\Rightarrow \phi=\tan ^{-1}\left(\frac{4}{3}\right)
$$

112. Ans: 0.153 nm

Sol: $\quad \lambda=\frac{12.27}{\sqrt{V}} \AA$
$=\frac{12.27}{8} \AA$

$$
=1.533 \AA
$$

$$
=0.1533 \mathrm{~nm}
$$

113. Ans: $\frac{1}{16}$

Sol: $f=\left(\frac{1}{2}\right)^{\frac{t}{T}}$

$$
=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}
$$

114. Ans: 26.7 MeV

Sol: Proton-proton cycle
115. Ans: Photodiode
116. Ans: AND
117. Ans: 50

$$
\text { Sol: } \begin{aligned}
& \beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}=\frac{10^{-3}}{20 \times 10^{-6}} \\
& =50
\end{aligned}
$$

118. Ans: Telephony
119. Ans: 2010 kHz, 1990 kHz

Sol: $f_{c}=2000 \mathrm{kHz}$
$\mathrm{f}_{\mathrm{s}}=10 \mathrm{kHz}$
$\mathrm{f}_{\mathrm{sb}_{1}}=2000+10=2010 \mathrm{kHz}$
$\mathrm{f}_{\mathrm{sb}_{2}}=2000-10=1990 \mathrm{kHz}$
120. Ans: (D) $54-72 \mathrm{MHz}$
(E) $174-216 \mathrm{MHz}$

Sol: VHF Low band frequency ranges $54-216 \mathrm{MHz}$ and high band ranges $175-216 \mathrm{MHz}$

