F.E. E. Sem I (Rev.) All branches.

Applied Maths-I
$11 / 12 \mid 08$.
[REVISED COURSE]
RC-5582
(3 Hours)
[Total Marks : 100
N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.

1. (a) Separate into real and imaginary parts $\sqrt{i} \sqrt{i}$.
(b) Prove that the following series is convergent -

$$
\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+\ldots \ldots
$$

(c) If $f(x)$ and $g(x)$ are respectively e^{x} and e^{-x}, prove that c of Cauchy's mean value theorem is the arithmetic mean of a and b .

(d) Solve $x^{4}+i=0$.
2. (a) Find the unit normal to the surface $x y^{3} z^{2}=4$ at $(-1,-1,2)$.
(b) If $y=x^{n} \log x$, prove that $y_{n+1}=\frac{n!}{x}$.
(c) Solve (i) $7 \cosh x+8 \sinh x=1$ for real values of x.
(ii) $\tanh x=\frac{1}{2}$.
3. (a) Examine the function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ for extreme values.
(b) Prove that $\sec ^{2} x=1+x^{2}+\frac{2 x^{4}}{3}+\ldots$.
(c) Show that for real values of a and b,

$$
e^{2 a i \cot ^{-1} b}\left[\frac{b i-1}{b i+1}\right]^{-a}=1
$$

4. (a) If $f(x, y)=\left(50-x^{2}-y^{2}\right)^{1 / 2}$, find the approximate value of $[f(3,4)-f(3 \cdot 1,3 \cdot 9)]$
(b) If $x=\cos \theta+i \sin \theta, y=\cos \phi+i \sin \phi$ prove that -

$$
\frac{x-y}{x+y}=i \tan \left(\frac{\theta-\phi}{2}\right)
$$

(c) Prove that $\nabla \cdot\left\{\frac{f(r)}{r} \bar{r}\right\}=\frac{1}{r^{2}} \frac{d}{d r}\left[r^{2} f(r)\right]$

Hence, or otherwise prove that $\operatorname{div}\left(r^{n} \bar{r}\right)=(n+3) r^{n}$.

Con. 3736-RC-5582-08.
\lim
5. (a) Evaluate $x \rightarrow 0 \quad \log _{\tan x} \tan 2 x$.
(b) If $\alpha-i \beta=\frac{1}{a-i b}$, prove that $\left(\alpha^{2}+\beta^{2}\right)\left(a^{2}+b^{2}\right)=1$
(c) Verify Euler's Theorem for $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$ and also prove that

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

6. (a) If $u=f\left(e^{y-z}, e^{z-x}, e^{x-y}\right)$, then prove that

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0
$$

(b) If $y=\cos \left(m \sin ^{-1} x\right)$,

Prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
(c) If w is a 7th root of unity prove that

$$
s=1+w^{n}+w^{2 n}+w^{3 n}+w^{4 n}+w^{5 n}+w^{6 n}=7 \text { if } n \text { is a multiple of } 7 \text { and is equal }
$$ to zero otherwise.

7. (a) Prove that $\log (1+x)=\frac{x}{1+\theta x}$, where $0<\theta<1$ and hence deduce that

$$
\frac{x}{1+x}<\log (1+x)<x, \quad x>0
$$

(b) Prove that if the sum and product of two complex numbers are real then the two numbers must be either real or conjugate.
(c) Prove that $e^{\cos ^{-1} x}=e^{\pi / 2}\left[1-x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\ldots.\right]$

