
1

Syllabus
S.Y.B.Sc (Information Technology)

Sem - IV, Paper - V
Embedded Systems

Unit - I Introduction : Embedded Systems and general purpose
computer systems, history, classifications, applications
and purpose of embedded systems.

Core of Embedded Systems : Microprocessors and
microcontrollers, RISC and CISC controllers, Big endian
and Little endian processors, Application specific ICs,
Programmable logic devices, COTS, sensors and
actuators, communication interface, embedded firmware,
other system components, PCB and passive
components.

Unit - II Characteristics and quality attributes of embedded
systems : Characteristics, Operational and non-
operational quality attributes, application specific
embedded system - washing machine, domain specific -
automotive.

Unit - III Programming Embedded Systems : Structure of
embedded program, infinite loop, compiling, linking and
locating, downloading and debugging.

Unit - IV Embedded hardware : Memory map, i/o map, interrupt
map, processor family, external peripherals, memory -
RAM, ROM, types of RAM and ROM, memory testing,
CRC, Flash memory.

Unit - V Peripherals : Control and Status Registers, Device
Driver, Timer Driver-Watchdog Timers, Embedded
Operating System, Real-Time Characteristics, Selection
Process.

Unit - VI Design and Development : Embedded System
development environment - IDE, Types of file generated
on cross compilation, disassembler / decompiler,
simulator, emulator and debugging, embedded product
development life-cycle, trends in embedded industry.

Books :

Programming Embedded Systems in C and C++, First Edition
January, Michael Barr, O’ Reilly Introduction to embedded systems,
Shibu K V Tata McGraw-Hill.

2

References :

Embedded Systems, Rajkamal, TataMcGraw-Hill

Term Work :
Assignments : Should contain at least 6 assignments (one per
unit) covering the Syllabus.

Tutorial : At least three tutorials based on above syllabus must be
conducted.

Practical List :

1) Configure timer control registers of 8051 and develop a
program to generate given time delay.

2) Port I / O : Use one of the four ports of 8051 for O / P
interfaced to eight LED’s. Simulate binary counter (8 bit) on
LED’s.

3) Serial I / O : Configure 8051 serial port for asynchronous serial
communication with serial port of PC exchange text messages
to PC and display on PC screen. Signify end of message by
carriage return.

4) Interface 8051 with D/A converter and generate square wave
of given frequency on oscilloscope.

5) Interface 8051 with D/A converter and generate triangular
wave of given frequency on oscilloscope.

6) Using D/A converter generate sine wave on oscilloscope with
the help of lookup table stored in data area of 8051.

7) Interface Stepper motor with 8051 and write a program to
move the motor through a given angle in clock wise or counter
clock wise direction.

8) Generate traffic signal.
9) Temperature controller.
10) Elevator control.

3

1
EMBEDDED SYSTEM :
 AN INTRODUCTION

Unit Structure
1.0 Objectives
1.1 Introduction
1.2 Definition of Embedded System
1.3History of Embedded System
1.4Embedded System & General purpose computer
1.5Classification of Embedded System
1.6Application of Embedded System
1.7Purpose of Embedded System
1.8Review Questions
1.9References & Further Reading

1.0 OBJECTIVES

 To understand what is an Embedded System and then define it
 Look at embedded systems from a historical point of view
 Classify embedded systems
 Look at certain applications & purposes of embedded systems

1.1 INTRODUCTION

This chapter introduces the reader to the world of embedded
systems. Everything that we look around us today is electronic. The
days are gone where almost everything was manual. Now even the
food that we eat is cooked with the assistance of a microchip (oven)
and the ease at which we wash our clothes is due to the washing
machine. This world of electronic items is made up of embedded
system. In this chapter we will understand the basics of embedded
system right from its definition.

1.2 DEFINITION OF AN EMBEDDED SYSTEM

• An embedded system is a combination of 3 things:
a. Hardware
b. Software
c. Mechanical Components

And it is supposed to do one specific task only.

4

• Example 1: Washing Machine
A washing machine from an embedded systems point of
view has:
a. Hardware: Buttons, Display & buzzer, electronic circuitry.
b. Software: It has a chip on the circuit that holds the

software which drives controls & monitors the various
operations possible.

c. Mechanical Components: the internals of a washing
machine which actually wash the clothes control the input
and output of water, the chassis itself.

• Example 2: Air Conditioner
An Air Conditioner from an embedded systems point of view
has:
a. Hardware: Remote, Display & buzzer, Infrared Sensors,

electronic circuitry.
b. Software: It has a chip on the circuit that holds the

software which drives controls & monitors the various
operations possible. The software monitors the external
temperature through the sensors and then releases the
coolant or suppresses it.

c. Mechanical Components: the internals of an air
conditioner the motor, the chassis, the outlet, etc

• An embedded system is designed to do a specific job only.
Example: a washing machine can only wash clothes, an air
conditioner can control the temperature in the room in which it is
placed.

• The hardware & mechanical components will consist all the
physically visible things that are used for input, output, etc.

• An embedded system will always have a chip (either
microprocessor or microcontroller) that has the code or software
which drives the system.

1.3 HISTORY OF EMBEDDED SYSTEM

• The first recognised embedded system is the Apollo
Guidance Computer(AGC) developed by MIT lab.

• AGC was designed on 4K words of ROM & 256 words of
RAM.

• The clock frequency of first microchip used in AGC was
1.024 MHz.

• The computing unit of AGC consists of 11 instructions and
16 bit word logic.

5

• It used 5000 ICs.
• The UI of AGC is known DSKY(display/keyboard) which

resembles a calculator type keypad with array of numerals.
• The first mass-produced embedded system was guidance

computer for the Minuteman-I missile in 1961.
• In the year 1971 Intel introduced the world's first

microprocessor chip called the 4004, was designed for use
in business calculators. It was produced by the Japanese
company Busicom.

1.4 EMBEDDED SYSTEM & GENERAL PURPOSE
COMPUTER

The Embedded System and the General purpose computer
are at two extremes. The embedded system is designed to perform
a specific task whereas as per definition the general purpose
computer is meant for general use. It can be used for playing
games, watching movies, creating software, work on documents or
spreadsheets etc.

Following are certain specific points of difference between
embedded systems and general purpose computers:

Criteria General Purpose
Computer

Embedded system

Contents It is combination of
generic hardware and a
general purpose OS for
executing a variety of
applications.

It is combination of special
purpose hardware and
embedded OS for executing
specific set of applications

Operating
System

It contains general
purpose operating system

It may or may not contain
operating system.

Alterations Applications are alterable
by the user.

Applications are non-alterable
by the user.

Key factor Performance” is key
factor.

Application specific
requirements are key factors.

Power
Consumpti
on

More Less

Response
Time

Not Critical Critical for some
applications

6

1.5 CLASSIFICATION OF EMBEDDED SYSTEM

The classification of embedded system is based on following
criteria's:
 On generation
 On complexity & performance
 On deterministic behaviour
 On triggering

1.5.1 On generation
1. First generation(1G):
 Built around 8bit microprocessor & microcontroller.
 Simple in hardware circuit & firmware developed.
 Examples: Digital telephone keypads.

2. Second generation(2G):
 Built around 16-bit µp & 8-bit µc.
 They are more complex & powerful than 1G µp & µc.
 Examples: SCADA systems

3. Third generation(3G):
 Built around 32-bit µp & 16-bit µc.
 Concepts like Digital Signal Processors(DSPs),

Application Specific Integrated Circuits(ASICs) evolved.
 Examples: Robotics, Media, etc.

4. Fourth generation:
 Built around 64-bit µp & 32-bit µc.
 The concept of System on Chips (SoC), Multicore

Processors evolved.
 Highly complex & very powerful.
 Examples: Smart Phones.

1.5.2 On complexity & performance
1. Small-scale:
 Simple in application need
 Performance not time-critical.
 Built around low performance & low cost 8 or 16 bit

µp/µc.
 Example: an electronic toy

2. Medium-scale:
 Slightly complex in hardware & firmware requirement.
 Built around medium performance & low cost 16 or 32 bit

µp/µc.
 Usually contain operating system.
 Examples: Industrial machines.

7

3. Large-scale:
 Highly complex hardware & firmware.
 Built around 32 or 64 bit RISC µp/µc or PLDs or Multicore

Processors.
 Response is time-critical.
 Examples: Mission critical applications.

1.5.3 On deterministic behaviour

 This classification is applicable for “Real Time” systems.
 The task execution behaviour for an embedded system

may be deterministic or non-deterministic.
 Based on execution behaviour Real Time embedded

systems are divided into Hard and Soft.

1.5.4 On triggering
 Embedded systems which are “Reactive” in nature can

be based on triggering.
 Reactive systems can be:

 Event triggered
 Time triggered

1.6 APPLICATION OF EMBEDDED SYSTEM

The application areas and the products in the embedded domain
are countless.

1. Consumer Electronics: Camcorders, Cameras.
2. Household appliances: Washing machine, Refrigerator.
3. Automotive industry: Anti-lock breaking system(ABS), engine

control.
4. Home automation & security systems: Air conditioners,

sprinklers, fire alarms.
5. Telecom: Cellular phones, telephone switches.
6. Computer peripherals: Printers, scanners.
7. Computer networking systems: Network routers and

switches.
8. Healthcare: EEG, ECG machines.
9. Banking & Retail: Automatic teller machines, point of sales.
10.Card Readers: Barcode, smart card readers.

1.7 PURPOSE OF EMBEDDED SYSTEM

1. Data Collection/Storage/Representation
 Embedded system designed for the purpose of data collection

performs acquisition of data from the external world.
 Data collection is usually done for storage,analysis,

manipulation and transmission.
 Data can be analog or digital.

8

 Embedded systems with analog data capturing techniques
collect data directly in the form of analog signal whereas
embedded systems with digital data collection mechanism
converts the analog signal to the digital signal using analog to
digital converters.
 If the data is digital it can be directly captured by digital

embedded system.
 A digital camera is a typical example of an embedded
 System with data collection/storage/representation of data.
 Images are captured and the captured image may be stored

within the memory of the camera. The captured image can
also be presented to the user through a graphic LCD unit.

2. Data communication
 Embedded data communication systems are deployed in

applications from complex satellite communication to simple
home networking systems.
 The transmission of data is achieved either by a wire-line

medium or by a wire-less medium.
 Data can either be transmitted by analog means or by digital

means.
 Wireless modules-Bluetooth, Wi-Fi.
 Wire-line modules-USB, TCP/IP.
 Network hubs, routers, switches are examples of dedicated

data transmission embedded systems.

3. Data signal processing
 Embedded systems with signal processing functionalities are

employed in applications demanding signal processing like
speech coding, audio video codec, transmission applications
etc.
 A digital hearing aid is a typical example of an embedded

system employing data processing.
 Digital hearing aid improves the hearing capacity of hearing

impaired person

4. Monitoring
 All embedded products coming under the medical domain are

with monitoring functions.
 Electro cardiogram machine is intended to do the monitoring

of the heartbeat of a patient but it cannot impose control over
the heartbeat.
 Other examples with monitoring function are digital CRO,

digital multi-meters, and logic analyzers.

5. Control
 A system with control functionality contains both sensors and

actuators.

9

 Sensors are connected to the input port for capturing the
changes in environmental variable and the actuators
connected to the output port are controlled according to the
changes in the input variable.

 Air conditioner system used to control the room temperature
to a specified limit is a typical example for CONTROL
purpose.

6. Application specific user interface
 Buttons, switches, keypad, lights, bells, display units etc are

application specific user interfaces.
 Mobile phone is an example of application specific user

interface.
 In mobile phone the user interface is provided through the

keypad, system speaker, vibration alert etc.

1.8 REVIEW QUESTIONS

1. Define Embedded System with the help of Microwave Owen
as an example

2. Differentiate between general purpose computers &
embedded systems

3. Give a classification of embedded systems
4. List some applications of embedded systems
5. Explain the various possible purposes of using and

embedded system.

1.9 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

10

2

ELEMENTS OF EMBEDDED SYSTEMS

Unit Structure
3.0 Objectives
3.1 Introduction
3.2 Elements of Embedded Systems.
3.3Case studies (examples)

3.3.1 Washing machine
3.3.2 Microwave owen
3.3.3 Automotive Embedded System (AES)

3.4Review questions
3.5References & further reading

3.0 OBJECTIVES

After learning this chapter you will be able to:
1. Define and describe the elements of an embedded system
2. Understand how embedded system works with the help of two

case studies:
i. Washing Machine
ii. Microwave Owen

3.1 INTRODUCTION

The previous chapter was an introduction to the world of
embedded systems and helped us define what is an embedded
system.

This chapter introduces us to the elements of an embedded
system and explains how embedded system works with the help of
two case studies.

3.2 ELEMENTS OF EMBEDDED SYSTEMS.

• As defined earlier, an embedded system is a combination of 3
things:

d. Hardware
e. Software
f. Mechanical Components

And it is supposed to do one specific task only.

11

Diagrammatically an embedded system can be represented as
follows:

Figure 2.0 : Elements of an Embedded System

• Embedded systems are basically designed to regulate a
physical variable (such Microwave Oven) or to manipulate the
state of some devices by sending some signals to the actuators
or devices connected to the output port system (such as
temperature in Air Conditioner), in response to the input signal
provided by the end users or sensors which are connected to
the input ports.

• Hence the embedded systems can be viewed as a reactive
system.

• Examples of common user interface input devices are
keyboards, push button, switches, etc.

• The memory of the system is responsible for holding the code
(control algorithm and other important configuration details).

• An embedded system without code (i.e. the control algorithm)
implemented memory has all the peripherals but is not capable
of making decisions depending on the situational as well as real
world changes.

• Memory for implementing the code may be present on the
processor or may be implemented as a separate chip interfacing
the processor In a controller based embedded system, the
controller may contain internal memory for storing code

• Such controllers are called Micro-controllers with on-chip ROM,
eg. Atmel AT89C51.

12

2.3 CASE STUDIES (EXAMPLES)

Here are some case studies on some commonly used
embedded systems that will help to better understand the
concept.

2.3.1 Washing Machine
Let us see the important parts of the washing machine; this will
also help us understand the working of the washing machine:

1) Water inlet control valve: Near the water inlet point of the
washing there is water inlet control valve. When you load the
clothes in washing machine, this valve gets opened
automatically and it closes automatically depending on the total
quantity of the water required. The water control valve is
actually the solenoid valve.

2) Water pump: The water pump circulates water through the
washing machine. It works in two directions, re-circulating the
water during wash cycle and draining the water during the spin
cycle.

Figure 2.1 : Parts of a Washing Machine

13

3) Tub: There are two types of tubs in the washing washing
machine: inner and outer. The clothes are loaded in the inner
tub, where the clothes are washed, rinsed and dried. The inner
tub has small holes for draining the water. The external tub
covers theinner tub and supports it during various cycles of
clothes washing.

4) Agitator or rotating disc: The agitator is located inside the tub
of the washing machine. It is the important part of the washing
machine that actually performs the cleaning operation of the
clothes. During the wash cycle the agitator rotates continuously
and produces strong rotating currents within the water due to
which the clothes also rotate inside the tub. The rotation of the
clothes within water containing the detergent enables the
removal of the dirt particles from the fabric of the clothes. Thus
the agitator produces most important function of rubbing the
clothes with each other as well as with water.

In some washing machines, instead of the long agitator, there is
a disc that contains blades on its upper side. The rotation of the
disc and the blades produce strong currents within the water
and the rubbing of clothes that helps in removing the dirt from
clothes.

5) Motor of the washing machine: The motor is coupled to the
agitator or the disc and produces it rotator motion. These are
multispeed motors, whose speed can be changed as per the
requirement. In the fully automatic washing machine the speed
of the motor i.e. the agitator changes automatically as per the
load on the washing machine.

6) Timer: The timer helps setting the wash time for the clothes
manually. In the automatic mode the time is set automatically
depending upon the number of clothes inside the washing
machine.

7) Printed circuit board (PCB): The PCB comprises of the various
electronic components and circuits, which are programmed to
perform in unique ways depending on the load conditions (the
condition and the amount of clothes loaded in the washing
machine). They are sort of artificial intelligence devices that
sense the various external conditions and take the decisions
accordingly. These are also called as fuzzy logic systems. Thus
the PCB will calculate the total weight of the clothes, and find
out the quantity of water and detergent required, and the total
time required for washing the clothes. Then they will decide the
time required for washing and rinsing. The entire processing is
done on a kind of processor which may be a microprocessor or
microcontroller.

14

8) Drain pipe: The drain pipe enables removing the dirty water
from the washing that has been used for the washing purpose.

2.3.2 Microwave Owen
Let us see the important parts of the microwave oven; this will
also help us understand the working of the washing machine:

Figure 2.3 : Parts of a Microwave Owen

A microwave oven consists of:
1. A high voltage transformer, which passes energy to the

magnetron
2. A cavity magnetron,
3. A Control circuit with a microcontroller,
4. A waveguide, and
5. A cooking chamber

1. A Transformer transfers electrical energy through a circuit by
magnetic coupling without using motion between parts. These
are used for supplying power to the magnetron.

2. A Cavity magnetron is a microwave antenna placed in a
vacuum tube and oscillated in an electromagnetic field in order
to produce high GHz microwaves. Magnetrons are used in
microwave ovens and radar systems.

3. A control circuit with a microcontroller is integrated on a circuit
board. The microcontroller controls the waveguide and the
entire unit so the microwaves are emitted at a constant rate.

4. A Waveguide is any linear structure that guides
electromagnetic waves for the purpose of transmitting power or

15

signals. Generally constructed of a hollow metal pipe. Placing a
waveguide into a vacuum causes radio waves to scatter.

5. A Cooking Chamber is a microwave safe container the
prevents microwaves from escaping. The door has a microwave
proof mesh with holes that are just small enough that
microwaves can't pass through but lightwaves can. The cooking
chamber itself is a Faraday cage enclosure which prevents the
microwaves from escaping into the environment. The oven door
is usually a glass panel for easy viewing, but has a layer of
conductive mesh to maintain the shielding.

2.3.3 Automotive Embedded System (AES)
• The Automotive industry is one of the major application

domains of embedded systems.

• Automotive embedded systems are the one where

electronics take control over the mechanical system. Ex.

Simple viper control.

• The number of embedded controllers in a normal vehicle

varies somewhere between 20 to 40 and can easily be

between 75 to 100 for more sophisticated vehicles.

• One of the first and very popular use of embedded system in

automotive industry was microprocessor based fuel injection.

• Some of the other uses of embedded controllers in a vehicle

are listed below:

a. Air Conditioner

b. Engine Control

c. Fan Control

d. Headlamp Control

e. Automatic break system control

f. Wiper control

g. Air bag control

h. Power Windows

• AES are normally built around microcontrollers or DSPs or a

hybrid of the two and are generally known as Electronic

Control Units (ECUs).

16

• Types Of Electronic Control Units(ECU)
1. High-speed Electronic Control Units (HECUs):

a. HECUs are deployed in critical control units

requiring fast response.

b. They Include fuel injection systems, antilock brake

systems, engine control, electronic throttle,

steering controls, transmission control and central

control units.

2. Low Speed Electronic Control Units (LECUs):-
a. They are deployed in applications where

response time is not so critical.

b. They are built around low cost microprocessors

and microcontrollers and digital signal processors.

c. Audio controller, passenger and driver door locks,

door glass control etc.

• Automotive Communication Buses
Embedded system used inside an automobile

communicate with each other using serial buses. This

reduces the wiring required.

Following are the different types of serial Interfaces used

in automotive embedded applications:

a. Controller Area Network (CAN):-
 CAN bus was originally proposed by Robert Bosch.

 It supports medium speed and high speed data

transfer

 CAN is an event driven protocol interface with support

for error handling in data transmission.

b. Local Interconnect Network (LIN):-

• LIN bus is single master multiple slave
communication interface with support for data rates
up to 20 Kbps and is used for sensor/actuator
interfacing

17

• LIN bus follows the master communication triggering
to eliminate the bus arbitration problem

• LIN bus applications are mirror controls , fan controls
, seat positioning controls

c. Media-Oriented System Transport(MOST):-

• MOST is targeted for automotive audio/video

equipment interfacing

• A MOST bus is a multimedia fiber optics point–to-

point network implemented in a star , ring or daisy

chained topology over optical fiber cables.

• MOST bus specifications define the physical as well

as application layer , network layer and media access

control.

2.4 REVIEW QUESTIONS

1. What is an embedded system? What are the working
elements of an embedded system?

2. Explain the working of embedded system with respect to:
B. Washing Machine
C. MICROWAVE Owen

3. Conduct case studies for working of embedded systems for
the following topics:
A. Air Conditioner
B. Automobile

2.5 REFERENCES & FURTHER READING

Books:
1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

Websites:
1. Washing Machine: http://www.brighthubengineering.com
2. Microwave Owen : http://globalmicrowave.org/microwaves.php

http://www.brighthubengineering.com
http://globalmicrowave.org/microwaves.php

18

3
CORE THE OF EMBEDDED SYSTEM

Unit Structure
6.0 Objectives
6.1 Introduction
6.2Core of embedded systems

6.2.1 General purpose and domain specific processor.
6.2.1.1 Microprocessors
6.2.1.2 Microcontrollers.
6.2.1.3 Digital signal processors

6.2.2 Application Specific Integrated Circuits. (ASIC)
6.2.3 Programmable logic devices(PLD’s)
6.2.4 Commercial off-the-shelf components(COTs)

6.3Sensors & Actuators
6.4Communication Interface
6.5Review Questions
6.6References & Further Reading

3.0 OBJECTIVES

After reading this chapter you will be able to:
 Understand the different types of core i.e processor
 Understand difference between microprocessor &

microcontroller
 Understand the classification of processors based on Bus

Architecture, Instruction set Architecture and Endianness.
 Have an overview of processors from most simple and

cheap to most expensive and complex, powerful
 Understand what are sensors and actuators, communication

interfaces

3.1 INTRODUCTION

 The first two chapters attempted on explain what an
embedded system is about and what the working parts are. This
chapter attempts to go deeper and explain the core of embedded
system along with other related topics.

19

3.2 CORE OF EMBEDDED SYSTEMS

Embedded systems are domain and application specific
and are built around a central core. The core of the embedded
system falls into any of the following categories:

1. General purpose and Domain Specific Processors
1.1. Microprocessors
1.2. Microcontrollers
1.3. Digital Signal Processors

2. Application Specific Integrated Circuits. (ASIC)
3. Programmable logic devices(PLD’s)
4. Commercial off-the-shelf components (COTs)

3.2.1 GENERAL PURPOSE AND DOMAIN SPECIFIC
PROCESSOR.

• Almost 80% of the embedded systems are processor/
controller based.

• The processor may be microprocessor or a microcontroller
or digital signal processor, depending on the domain and
application.

3.2.1.1 MICROPROCESSORS
• A microprocessor is a silicon chip representing a central

processing unit.

• A microprocessor is a dependent unit and it requires the
combination of other hardware like memory, timer unit, and
interrupt controller, etc. for proper functioning.

• Developers of microprocessors.
o Intel – Intel 4004 – November 1971(4-bit).
o Intel – Intel 4040.
o Intel – Intel 8008 – April 1972.
o Intel – Intel 8080 – April 1974(8-bit).
o Motorola – Motorola 6800.
o Intel – Intel 8085 – 1976.
o Zilog - Z80 – July 1976.

• Architectures used for processor design are Harvard or Von-
Neumann.

20

Harvard architecture Von-Neumann architecture
 It has separate buses for

instruction as well as data
fetching.

 Easier to pipeline, so high
performance can be achieve.

 Comparatively high cost.
 Since data memory and

program memory are stored
physically in different locations,
no chances exist for accidental
corruption of program memory.

 It shares single common bus
for instruction and data
fetching.

 Low performance as
compared to Harvard
architecture.

 It is cheaper.
 Accidental corruption of

program memory may occur if
data memory and program
memory are stored physically
in the same chip,

• RISC and CISC are the two common Instruction Set
Architectures (ISA) available for processor design.

RISC CISC
 Reduced Instruction Set

Computing
 It contains lesser number of

instructions.
 Instruction pipelining and

increased execution speed.
 Orthogonal instruction

set(allows each instruction to
operate on any register and
use any addressing mode.

 Operations are performed on
registers only, only memory
operations are load and store.

 A larger number of registers
are available.

 Programmer needs to write
more code to execute a task
since instructions are simpler
ones.

 It is single, fixed length
instruction.

 Complex Instruction Set
Computing

 It contains greater number of
instructions.

 Instruction pipelining feature
does not exist.

 Non-orthogonal set(all
instructions are not allowed to
operate on any register and
use any addressing mode.

 Operations are performed
either on registers or memory
depending on instruction.

 The number of general
purpose registers are very
limited.

 Instructions are like
macros in C language. A
programmer can achieve the
desired functionality with a
single instruction which in turn
provides the effect of using
more simpler single
instruction in RISC.

 It is variable length
instruction.

21

 Less silicon usage and pin
count.

 With Harvard Architecture.

 More silicon usage since
more additional decoder logic
is required to implement the
complex instruction decoding.

 Can be Harvard or Von-
Neumann Architecture.

• Endiannes
o Endianness specifies the order which the data is stored in

the memory by processor operations in a multi byte system.

o Based on Endiannes processors can be of two types:
1. Little Endian Processors
2. Big Endian Processors

1. Little-endian means lower order data byte is stored in memory
at the lowest address and the higher order data byte at the
highest address. For e.g, 4 byte long integer Byte3, Byte2,
Byte1, Byte0 will be store in the memory as follows:

Base address+0 Byte 0

Base address+1 Byte 1

Base address+2 Byte 2

Base address+3 Byte 3

(Base address)

(Base address+1)

(Base address+2)

(Base address+3)

2. Big-endian means the higher order data byte is stored in
memory at the lowest and the lower order data byte at the
highest address. For e.g. a 4 byte integer Byte3, Byte2, Byte1,
Byte0 will be stored in the memory as follows:

22

Base address+0 Byte 3

Base address+1 Byte 2

Base address+2 Byte 1

Base address+3 Byte 0

(Base address)

(Base address+1)

(Base address+2)

(Base address+3)

3.2.1.2 MICROCONTROLLERS.

• A microcontroller is a highly integrated chip that contains a
CPU, scratch pad RAM, special and general purpose
register arrays,on chip ROM/FLASH memory for program
storage , timer and interrupt control units and dedicated I/O
ports.

• Texas Instrument’s TMS 1000 Is considered as the world’s
first microcontroller.

• Some embedded system application require only 8 bit
controllers whereas some requiring superior performance
and computational needs demand 16/32 bit controllers.

• The instruction set of a microcontroller can be RISC or
CISC.

• Microcontrollers are designed for either general purpose
application requirement or domain specific application
requirement.

3.2.1.3 Digital Signal Processors

• DSP are powerful special purpose 8/16/32 bit
microprocessor designed to meet the computational
demands and power constraints of today’s embedded
audio, video and communication applications.

• DSP are 2 to 3 times faster than general purpose
microprocessors in signal processing applications. This is
because of the architectural difference between DSP and
general purpose microprocessors.

23

• DSPs implement algorithms in hardware which speeds
up the execution whereas general purpose processor
implement the algorithm in software and the speed of
execution depends primarily on the clock for the
processors.

• DSP includes following key units:
i. Program memory: It is a memory for storing the program

required by DSP to process the data.

ii. Data memory: It is a working memory for storing
temporary variables and data/signal to be processed.

iii. Computational engine: It performs the signal processing
in accordance with the stored program memory
computational engine incorporated many specialized
arithmetic units and each of them operates simultaneously
to increase the execution speed. It also includes multiple
hardware shifters for shifting operands and saves
execution time.

iv. I/O unit: It acts as an interface between the outside world
and DSP. It is responsible for capturing signals to be
processed and delivering the processed signals.

• Examples: Audio video signal processing,
telecommunication and multimedia applications.

• SOP(Sum of Products) calculation, convolution,
FFT(Fast Fourier Transform), DFT(Discrete Fourier
Transform), etc are some of the operation performed by
DSP.

3.2.2 Application Specific Integrated Circuits. (ASIC)
• ASICs is a microchip design to perform a specific and

unique applications.

• Because of using single chip for integrates several
functions there by reduces the system development cost.

• Most of the ASICs are proprietary (which having some
trade name) products, it is referred as Application
Specific Standard Products(ASSP).

• As a single chip ASIC consumes a very small area in the
total system. Thereby helps in the design of smaller
system with high capabilities or functionalities.

24

• The developers of such chips may not be interested in
revealing the internal detail of it .

3.2.3 Programmable logic devices(PLD’s)
• A PLD is an electronic component. It used to build digital

circuits which are reconfigurable.

• A logic gate has a fixed function but a PLD does not have a
defined function at the time of manufacture.

• PLDs offer customers a wide range of logic capacity,
features, speed, voltage characteristics.

• PLDs can be reconfigured to perform any number of
functions at any time.

• A variety of tools are available for the designers of PLDs
which are inexpensive and help to develop, simulate and
test the designs.

• PLDs having following two major types.

1) CPLD(Complex Programmable Logic Device):
CPLDs offer much smaller amount of logic up to 1000
gates.

2) FPGAs(Field Programmable Gate Arrays):
It offers highest amount of performance as well as
highest logic density, the most features.

• Advantages of PLDs :-
1) PLDs offer customer much more flexibility during the

design cycle.

2) PLDs do not require long lead times for prototypes or
production parts because PLDs are already on a
distributors shelf and ready for shipment.

3) PLDs can be reprogrammed even after a piece of
equipment is shipped to a customer

3.2.4 Commercial off-the-shelf components(COTs)
1) A Commercial off the Shelf product is one which is used 'as-

is'.

2) The COTS components itself may be develop around a
general purpose or domain specific processor or an ASICs
or a PLDs.

25

3) The major advantage of using COTS is that they are readily
available in the market, are chip and a developer can cut
down his/her development time to a great extent

4) The major drawback of using COTS components in
embedded design is that the manufacturer of the COTS
component may withdraw the product or discontinue the
production of the COTS at any time if rapid change in
technology occurs.

5) Advantages of COTS:
1) Ready to use
2) Easy to integrate
3) Reduces development time

6) Disadvantages of COTS:
1) No operational or manufacturing standard (all

proprietary)

2) Vendor or manufacturer may discontinue production
of a particular COTS product

3.3 SENSORS & ACTUATORS

• Sensor
• A Sensor is used for taking Input
• It is a transducer that converts energy from one form to

another for any measurement or control purpose
• Ex. A Temperature sensor

• Actuator
• Actuator is used for output.
• It is a transducer that may be either mechanical or electrical

which converts signals to corresponding physical actions.
• Ex. LED (Light Emitting Diode)
• LED is a p-n junction diode and contains a CATHODE and

ANODE
• For functioning the anode is connected to +ve end of power

supply and cathode is connected to –ve end of power
supply.

• The maximum current flowing through the LED is limited by
connecting a RESISTOR in series between the power supply
and LED as shown in the figure below

26

• There are two ways to interface an LED to a
microprocessor/microcontroller:

1. The Anode of LED is connected to the port pin and
cathode to Ground : In this approach the port pin sources
the current to the LED when it is at logic high(ie. 1).

2. The Cathode of LED is connected to the port pin and
Anode to Vcc : In this approach the port pin sources the
current to the LED when it is at logic high (ie. 1). Here
the port pin sinks the current and the LED is turned ON
when the port pin is at Logic low (ie. 0)

3.4 COMMUNICATION INTERFACES

For any embedded system, the communication interfaces can
broadly classified into:

1. Onboard Communication Interfaces
• These are used for internal communication of the embedded

system i.e: communication between different components
present on the system.

• Common examples of onboard interfaces are:
• Inter Integrated Circuit (I2C)
• Serial Peripheral Interface (SPI)
• Universal Asynchronous Receiver Transmitter (UART)
• 1-Wire Interface
• Parallel Interface

• Example :Inter Integrated Circuit (I2C)
• It is synchronous
• Bi-directional, half duplex , two wire serial interface bus
• Developed by Phillips semiconductors in 1980

27

• It comprises of two buses :
1. Serial clock –SCL
2. Serial Data – SDA

• SCL generates synchronization clock pulses
• SDA transmits data serially across devices
• I2C is a shared bus system to which many devices can

be connected
• Devices connected by I2C can act as either master or

slave
• The master device is responsible for controlling

communication by initiating/ terminating data transfer.
• Devices acting as slave wait for commands from the

master and respond to those commands.

Figure: I2C Bus Interfacing

2. External or Peripheral Communication Interfaces
• These are used for external communication of the

embedded system i.e: communication of different
components present on the system with external or
peripheral components/devices.

• Common examples of external interfaces are:
• RS-232 C & RS-485
• Universal Serial Bus (USB)
• IEEE 1394 (Firewire)
• Infrared (IrDA)
• Bluetooth
• Wi-Fi
• Zig Bee
• General Packet Radio Service (GPRS)
• Example: RS-232 C & RS-485

28

• It is wired, asynchronous, serial, full duplex
communication

• RS 232 interface was developed by EIA (Electronic
Industries Associates) In early 1960s

• RS 232 is the extension to UART for external
communications

• RS-232 logic levels use:
• +3 to +25 volts to signify a "Space" (Logic 0) and
• -3 to -25 volts to signify a "Mark" (logic 1).
• RS 232 supports two different types of connectors :
• DB 9 and DB 25 as shown in figure below

• RS 232 interface is a point to point communication
interface and the devices involved are called as Data
Terminating Equipment (DTE) And Data Communications
Terminating Equipment (DCE)

• Embedded devices contain UART for serial transmission
and generate signal levels as per TTL/CMOS logic.

• A level translator IC (like Max 232) is used for converting
the signal lines from UART to RS 232 signal lines for
communication.

• The vice versa is performed on the receiving side.
• Converter chips contain converters for both transmitters

and receivers
• RS 232 is used only for point to point connections
• It is susceptible to noise and hence is limited to short

distances only
• RS 422 is another serial interface from EIA.
• It supports multipoint connections with 1 transmitter and

10 receivers.
• It supports data rates up to 100Kbps and distance up to

400 ft
• RS 485 is enhanced version of RS 422 and supports up

to 32 transmitters and 32 receivers

3.5 REVIEW QUESTIONS

1. What do you mean by core of the embedded system? What is
its significance? What are the possible options that can be used
as a core?

2. Distinguish between Microprocessor & Microcontroller

29

3. Explain the different types of processors according to their
system bus architecture

4. Explain the different types of processors according to Instruction
set Architecture

5. Explain the different types of processors according to
Endianness

6. Write short note on :
i. DSP
ii. PLD
iii. ASIC
iv. COTS

7. Explain Communication Interfaces with respect to embedded
system

8. Explain the following with example:
1. Onboard communication interface
2. Peripheral communication interface

9. Find out information and write case studies on the following
communication interfaces:

i. Infrared
ii. WiFi
iii. Zigbee
iv. UART

3.6 REFERENCES & FURTHER READING

2. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

30

4
CHARACTERISTICS & QUALITY

ATTRIBUTES OF EMBEDDED SYSTEMS

Unit Structure
10.0 Objectives
10.1 Introduction
10.2 Characteristics of Embedded System
10.3 Quality Attributes of Embedded System

10.3.1 Operational Attributes
10.3.2 Non Operational Attributes

10.4 Review Questions
10.5 References & Further Reading

4.0 OBJECTIVES

After reading this chapter you will:
1. Understand the characteristics of Embedded system
2. Understand the attributes related to quality of embedded

system.

4.1 INTRODUCTION

The characteristics of embedded system are different from
those of a general purpose computer and so are its Quality metrics.
This chapter gives a brief introduction on the characteristics of an
embedded system and the attributes that are associated with its
quality.

4.2 CHARACTERISTICS OF EMBEDDED SYSTEM

Following are some of the characteristics of an
embedded system that make it different from a general purpose
computer:

1. Application and Domain specific
• An embedded system is designed for a specific purpose

only. It will not do any other task.
• Ex. A washing machine can only wash, it cannot cook
• Certain embedded systems are specific to a domain: ex. A

hearing aid is an application that belongs to the domain of
signal processing.

31

2. Reactive and Real time
• Certain Embedded systems are designed to react to the

events that occur in the nearby environment. These events
also occur real-time.

• Ex. An air conditioner adjusts its mechanical parts as soon
as it gets a signal from its sensors to increase or decrease
the temperature when the user operates it using a remote
control.

• An embedded system uses Sensors to take inputs and has
actuators to bring out the required functionality.

3. Operation in harsh environment
• Certain embedded systems are designed to operate in harsh

environments like very high temperature of the deserts or
very low temperature of the mountains or extreme rains.

• These embedded systems have to be capable of sustaining
the environmental conditions it is designed to operate in.

4. Distributed
• Certain embedded systems are part of a larger system and

thus form components of a distributed system.

• These components are independent of each other but have
to work together for the larger system to function properly.

• Ex. A car has many embedded systems controlled to its
dash board. Each one is an independent embedded system
yet the entire car can be said to function properly only if all
the systems work together.

5. Small size and weight
• An embedded system that is compact in size and has light

weight will be desirable or more popular than one that is
bulky and heavy.

• Ex. Currently available cell phones. The cell phones that
have the maximum features are popular but also their size
and weight is an important characteristic.

• For convenience users prefer mobile phones than phablets.
(phone + tablet pc)

6. Power concerns
• It is desirable that the power utilization and heat dissipation

of any embedded system be low.

32

• If more heat is dissipated then additional units like heat sinks
or cooling fans need to be added to the circuit.

• If more power is required then a battery of higher power or
more batteries need to be accommodated in the embedded
system.

4.3 QUALITY ATTRIBUTES OF EMBEDDED
SYSTEM

These are the attributes that together form the deciding
factor about the quality of an embedded system.

There are two types of quality attributes are:-

1. Operational Quality Attributes.
• These are attributes related to operation or functioning of an

embedded system. The way an embedded system operates
affects its overall quality.

2. Non-Operational Quality Attributes.
• These are attributes not related to operation or functioning

of an embedded system. The way an embedded system
operates affects its overall quality.

• These are the attributes that are associated with the
embedded system before it can be put in operation.

4.3.1 Operational Attributes
a) Response

• Response is a measure of quickness of the system.
• It gives you an idea about how fast your system is

tracking the input variables.
• Most of the embedded system demand fast response

which should be real-time.

b) Throughput
• Throughput deals with the efficiency of system.
• It can be defined as rate of production or process of a

defined process over a stated period of time.
• In case of card reader like the ones used in buses,

throughput means how much transaction the reader can
perform in a minute or hour or day.

c) Reliability
• Reliability is a measure of how much percentage you rely

upon the proper functioning of the system .

33

• Mean Time between failures and Mean Time To Repair
are terms used in defining system reliability.

• Mean Time between failures can be defined as the
average time the system is functioning before a failure
occurs.

• Mean time to repair can be defined as the average time
the system has spent in repairs.

d) Maintainability
• Maintainability deals with support and maintenance to the

end user or a client in case of technical issues and
product failures or on the basis of a routine system
checkup

• It can be classified into two types :-

1. Scheduled or Periodic Maintenance
o This is the maintenance that is required

regularly after a periodic time interval.
o Example :

 Periodic Cleaning of Air Conditioners
 Refilling of printer cartridges.

2. Maintenance to unexpected failure
• This involves the maintenance due to a sudden

breakdown in the functioning of the system.
• Example:

1. Air conditioner not powering on
2. Printer not taking paper in spite of a full

paper stack

e) Security
• Confidentiality, Integrity and Availability are three corner

stones of information security.
• Confidentiality deals with protection data from unauthorized

disclosure.
• Integrity gives protection from unauthorized modification.
• Availability gives protection from unauthorized user
• Certain Embedded systems have to make sure they conform

to the security measures. Ex. An Electronic Safety Deposit
Locker can be used only with a pin number like a password.

f) Safety
• Safety deals with the possible damage that can happen to

the operating person and environment due to the breakdown
of an embedded system or due to the emission of hazardous
materials from the embedded products.

• A safety analysis is a must in product engineering to
evaluate the anticipated damage and determine the best

34

course of action to bring down the consequence of damages
to an acceptable level.

4.3.2 Non Operational Attributes

a) Testability and Debug-ability
• It deals with how easily one can test his/her design,

application and by which mean he/she can test it.
• In hardware testing the peripherals and total hardware

function in designed manner
• Firmware testing is functioning in expected way
• Debug-ability is means of debugging the product as such for

figuring out the probable sources that create unexpected
behavior in the total system

b) Evolvability
• For embedded system, the qualitative attribute “Evolvability”

refer to ease with which the embedded product can be
modified to take advantage of new firmware or hardware
technology.

c) Portability
• Portability is measured of “system Independence”.
• An embedded product can be called portable if it is capable

of performing its operation as it is intended to do in various
environments irrespective of different processor and or
controller and embedded operating systems.

d) Time to prototype and market
• Time to Market is the time elapsed between the

conceptualization of a product and time at which the product
is ready for selling or use

• Product prototyping help in reducing time to market.
• Prototyping is an informal kind of rapid product development

in which important feature of the under consider are develop.
• In order to shorten the time to prototype, make use of all

possible option like use of reuse, off the self component etc.

e) Per unit and total cost
• Cost is an important factor which needs to be carefully

monitored. Proper market study and cost benefit analysis
should be carried out before taking decision on the per unit
cost of the embedded product.

• When the product is introduced in the market, for the initial
period the sales and revenue will be low

• There won’t be much competition when the product sales
and revenue increase.

35

• During the maturing phase, the growth will be steady and
revenue reaches highest point and at retirement time there
will be a drop in sales volume.

4.4 REVIEW QUESTIONS

1. Explain the characteristics of an embedded system
2. Explain the Operational Quality Attributes of an

embedded system
3. Explain the non quality attributes of an embedded

system

4.5 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

36

5
PROGRAM FOR EMBEDDED SYSTEMS

AND BUILD PROCESS

Unit Structure
15.0 Objectives
15.1 Introduction
15.2 Starting with Embedded Programming
15.3 “Hello World” For embedded systems
15.4 Blinking LED Program and Infinite loop
15.5 Build Process in Embedded System
15.6 Review Questions
15.7 References & Further Reading

5.0 OBJECTIVES

After reading this chapter you will be able to:
 Know the difficulties involved in programming embedded

systems
 Reasons for not implementing Hello World as a first program
 Write a generic code for Blinking LED
 Infinite loop
 Build Process in embedded system

5.1 INTRODUCTION

This chapter gives a head start into programming the
embedded system. The embedded code is just like any other code
but there are several restrictions. For Example: the code that runs
on a computer makes certain assumptions about the available
memory while in embedded system there is no scope for
assumptions. The Embedded System Programmer has to know the
hardware before he can even attempt to write any code.

This chapter introduces to the readers the Blinking LED
program as a first program in embedded systems and explains why
the hello world would be rather a difficult program.

Then an essential necessity of the code is explained: the
infinite loop.

37

5.2 STARTING WITH EMBEDDED PROGRAMMING

• Programmers for Embedded systems must be self-reliant. The
usual built in functions (i.e. standard library routines like cin and
cout) may not be available to them.

• Further, programmers for embedded systems have to know
beforehand what hardware is involved.

Example: They should know which processor will be used, how
much memory is available and what the memory offsets are. All
this information will change if the underlying hardware changes.

• Embedded system programming has no scope for assumption.

Example: Memory is a very limited hence precious resource in
an embedded system. A large amount of memory for code as
well as processing data would mean adding more memory to
the circuit in the form of additional memory. A simple variable
declaration like an integer (usually 2 bytes or 4 bytes) should be
thought carefully before declaring it. Declaring the same
variable as unsigned integer (1 byte) will suffice the purpose
as well as save memory location.

• Not many programmers are available for programming of
embedded systems.

5.3 “HELLO WORLD” FOR EMBEDDED SYSTEMS

• Every book on programming language begins with the example
that prints "Hello, World!" on the output screen. The hello world
is a simple program that does not involve any logic and can be
implemented by a no-brainer (beginner).

• However, in embedded systems, the hello world program would
be a bad choice to be implemented as a first program. In case
of any programming language the hello world program is
executed on a general purpose computer where we have
requirements like CPU, input and output devices and interaction
between them taken care by the software and the operating
system.

• In case of embedded system there may be no operating system
at all. Certain embedded systems may not even have an output
device like a monitor. Embedded systems usually have LED
Displays. To incorporate a display device in an embedded
system the programmer would involve writing a piece of code

38

called a device driver which otherwise is taken care by the
operating system in case of a general purpose computer.

• Writing a code for a device driver is not an easy job at
beginner’s level. Hence hello world is a difficult program to
begin with while learning to program embedded system.

5.4 BLINKING LED PROGRAM AND INFINITE LOOP

• The substitute for hello world program could be a program that
blinks an LED. LEDs are used in almost every embedded
system. Also the code used to program an LED would be very
small.

• To blink an LED we would require the following hardware:
o LED
o A microcontroller or microprocessor

• The LED can be connected to any available port i.e P1, P2, P3,
P4 on the microprocessor. Assuming the LED is connected to
port 2, i.e. P2 its state is controlled by a bit in a register called
the Port 2 I/O Latch Register, also known the P2LTCH.

• The structure of the program would be like this:

void main()
{
 while (1)
 {
 toggle(LED_1); /* Change the
state of the LED. */
 delay(500); /* Pause for 500
milliseconds. */
 }
}

• The above piece of code is hardware independent hence
can be implemented for any circuit.

• It contains two functions namely : toggle() & delay()
o toggle(): This function is used to toggle the state of

the LED.
o delay(): This function is used to introduce a delay of

500 ms every time the LED is toggled
• The implementation of toggle() and delay() is hardware

specific.
• Infinite Loop

39

o The code for every embedded program is written in an
infinite loop. This is because the embedded system is
supposed to run every time it is turned on till the time its
power goes off or it stops functioning.

o The code for blinking LED is also enclosed in an infinite
loop. The functions toggle() and delay() run infinite
number of times.

o An application of an embedded system has an infinite
loop around its code. It’s just like the program you did to
implement switch case where the program has to run
continuously until the user selects to exit.

5.5 BUILD PROCESS IN EMBEDDED SYSTEM

• Definition: The process which converts source code to
executable code is called as the build process.

• The build process for embedded systems is different. This is
because the code to be run on an embedded system is written
one platform i.e. general purpose computer and executed on
another platform i.e. the target hardware.

• An Embedded system would also use tools such as a Compiler,
Linker, Locater and Debugger to perform the entire build
process. These tools would be a part of a larger IDE.

• A compiler which produces the executable code to be run on a
different platform is called a cross-compiler; else it is called a
native compiler.

• Ex. Turbo C++ is a native compiler. The compiler in case of
embedded systems development is a cross compiler.

• The build process involves three steps:
1. Compiling
2. Linking
3. Locating

40

Figure: Build Process in Embedded System

• Compiling
o The process of compiling is done by the compiler.
o The compiler takes input as source code files and gives

output as multiple object files.
o Compilers for embedded systems are essentially cross-

compilers. For example while compiling the programmer has
to select the target processor for which the code has to be
generated.

o The contents of the object files depend on its format. Two
commonly used formats are: 1. Common Object file format
(COFF)

 2. Extended file format (ELF)
o Object files generally have the following structure:

header It describes the sections that will be
contained in the object file.

text It contains all code blocks

data It contains all initialized global variables
and their values

bss It contains all initialized global variables.

• Linking
o The process of linking is carried out by the linker
o The linker takes input as multiple object files and gives

output as a single object file which is also called as the
relocatable code.

41

o The output of compiler is multiple object files. These files are
incomplete in the sense that they may contain reference to
variables and functions across multiple object files which
need to be resolved.

o The job of the linker is to combine these multiple object files
and resolve the unresolved symbols.

o The Linker does this by merging the various sections like
text, data, and bss of the individual object files. The output of
the linker will be a single file which contains all of the
machine language code from all of the input object files that
will be in the text section of this new file, and all of the
initialized and uninitialized variables will reside in the new
data section and bss section respectively.

• Locating
o The process of relocating is carried out by the relocater.
o The relocater takes input as the relocatable code produced

by the linker and gives output as the final executable code.
o This output is a binary executable file which is called hex

code.
o The locator needs to be given information about the memory

available on the target processor.
o The locator will use this information to assign physical

memory addresses to each of the code and data sections
within the relocatable program code. Finally it produces an
output file that contains a binary memory image that can be
loaded into the target processors ROM.

5.6 REVIEW QUESTIONS

1. What are the difficulties involved in programming embedded
systems?

2. Why can’t a simple program like printing “hello world” on the
screen be used as a starting program in embedded system?

3. Explain the Blinking LED program structure for embedded
system

4. Explain the build process for embedded system
5. Write a short note on Infinite Loop.

5.7 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael
Barr

2. Introduction to Embedded systems – Shibu K. V

42

6
DEBUGGING ON EMBEDDED SYSTEMS

Unit Structure
21.0 Objectives
21.1 Introduction
21.2 Downloading the embedded code
21.3 Debugging the embedded software

21.3.1 Remote Debuggers
21.3.2 Emulators
21.3.3 Simulators

21.4 Other Tools
21.5 Review Questions
21.6 References & Further Reading

6.0 OBJECTIVES

• After reading this chapter you will understand:
• Concept of downloading the embedded code
• Debugging the embedded software
• Different possible tools available for debugging
• Difference between Remote Debugger, Emulator &

Simulator

6.1 INTRODUCTION

In the previous chapter we saw how the code or software to
be executed on the embedded system (target board) is written on a
computer. The resulting code created after subjecting it to be build
process is called the binary executable image or simply hex code.

This chapter explains how the hex code is put on the target
board which is referred as downloading and what are the various
possible ways of debugging a code meant to run on a embedded
system.

43

6.2 DOWNLOADING THE EMBEDDED CODE

The code to be run on the target embedded system is
always developed on the host computer. This code is called the
binary executable image or simply hex code.

The process of putting this code in the memory chip of the
target embedded system is called Downloading.

There are two ways of downloading the binary image on the
embedded system:

1. Using a Device Programmer
A device programmer is a piece of hardware that works in

two steps.

Step 1 Once the binary image is ready on the computer, the
device programmer is connected to the computer and the binary
image is transferred to the device programmer.

Step 2 The microcontroller/microprocessor or memory chip, usually
the ROM which is supposed to contain the binary image is placed
on the proper socket on the device programmer. The device
programmer contains a software interface through which the user
selects the target microprocessor for which the binary image has to
be downloaded. The Device programmer then transfers the binary
image bit by bit to the chip.

2. Using In System Programmer(ISP)
Certain Target embedded platforms contain a piece of

hardware called ISP that have a hardware interface to both the
computer as well the chip where the code is to be downloaded.

The user through the ISP’s software interface sends the
binary image to the target board.

This avoids the requirement of frequently removing the
microprocessor / microcontroller or ROM for downloading the code
if a device programmer had to be used.

6.3 DEBUGGING THE EMBEDDED SOFTWARE

• Debugging is the process of eliminating the bugs/errors in
software.

• The software written to run on embedded systems may contain
errors and hence needs debugging.

• However, the difficulty in case of embedded systems is to find
out the bug/ error itself. This is because the binary image you
downloaded on the target board was free of syntax errors but

44

still if the embedded system does not function the way it was
supposed to be then it can be either because of a hardware
problem or a software problem. Assuming that the hardware is
perfect all that remains to check is the software.

• The difficult part here is that once the embedded system starts
functioning there is no way for the user or programmer to know
the internal state of the components on the target board.

• The most primitive method of debugging is using LEDs. This is
similar to using a printf or a cout statement in c/c++ programs to
test if the control enters the loop or not. Similarly an LED blind
or a pattern of LED blinks can be used to check if the control
enters a particular piece of code.

• There are other advanced debugging tools like;
a. Remote debugger
b. Emulator
c. Simulator

6.3.1 Remote Debuggers
 Remote Debugger is a tool that can be commonly used for:
 Downloading
 Executing and
 Debugging embedded software

 A Remote Debugger contains a hardware interface between the
host computer and the target embedded system.

 HOST TARGET EMBEDDED SYSTEM

 COMMUNICATION LINK

Figure: Remote Debugger

45

 The Software interface of the remote debugger has GUI-based
main window and several smaller windows for the source code,
register contents and other information about the executing
program.

 It contains two pieces of software :
 Frontend remote debugger

• It runs on the host computer.
• It provides the human interface.

 Backend remote debugger
 Backend remote debugger runs on the target processor.
 It communicates with the frontend over a

communications link of some sort.
 It provides for low-level control of the target processor

and is usually called the debug monitor.

 Debug monitor is a piece of software that has been
designed specifically for use as a debugging tool for
processors and chips.

 It is automatically started whenever the processor is
reset.

 It monitors the communication link to the host computer
and responds to requests from the remote debugger
running there.

 One such debugger is the GNU.
 It was originally designed for native debugger.
 It performs cross-debugging.
 Communication between the GDB frontend and debug

monitor is byte-oriented and designed for transmission
over a serial connection.

6.3.2 Emulators
 A Remote debugger is helpful for monitoring and controlling the

state of embedded software prior to downloading it only.

 An Emulator allows you to examine the state of the processor
on which that program is actually running. It is itself an
embedded system, with its own copy of the target processor,
RAM, ROM, and its own embedded software

 An Emulator takes the place of-or emulates-the processor on
the target board.

 Emulator uses a remote debugger for its human interface.

 Emulator supports such powerful debugging features such as
hardware breakpoints and real-time tracing. Hardware
breakpoints allow you to stop execution in response to a wide

46

variety of events. These events include instruction fetches,
memory and I/O reads and writes and interrupts. Real Time
tracing allows you to see the exact order in which events
occurred, so it can help you answer questions related to specific
errors.

 ROM Emulator
• It is a device that emulates a read only memory device like

ICE (in-circuit emulator).
• It connects to the target embedded system and

communicates with the host.
• When a target connection is via a ROM socket to embedded

system it looks like any other read only memory. But when it
is to the remote debugger it looks like a debug monitor.

 Advantages:
 There is no need to port the debug monitor code to particular

target hardware.
 The ROM emulator supplies its own serial or network

connection to the host
 The ROM emulator is a true replacement for the original

ROM, so none of the target’s memory is used up by the
debug monitor code

6.3.3 Simulators
 A simulator is a completely host-based program that

simulates the functionality and instructions set of the target
processor.

 Advantage: A Simulator can be quite valuable in the earlier
stage of a project when there has not yet been any actual
hardware implementation for the programmers to experiment
with.

 Disadvantage: One of the disadvantages of simulator is that
it only simulates the processors.

6.4 OTHER TOOLS

Logic Analyzers and Oscilloscopes are very important debugging
tools.

 Logic Analyzers
 It is a piece of laboratory equipment that is designed

especially for troubleshooting digital hardware.

 It can have multiple inputs (up to 100 even), each capable of
detecting whether the electrical signal it is attached to is
currently at logic level 1 or 0

47

 An oscilloscope is another pieces of laboratory equipment of
hardware debugging. But this one is used to examine any
electrical signal, analog or digital, on any piece of hardware

 Oscilloscopes
 An oscilloscope is another pieces of laboratory equipment of

hardware debugging. But this one is used to examine any
electrical signal, analog or digital, on any piece of hardware

 Oscilloscope are sometimes useful for quickly observing the
voltage on the particular pin or, in the absence of a logic
analyzer, for something ,more complex

6.5 REVIEW QUESTIONS

1. Explain the process of Downloading embedded software
code

2. Write short note on debugging the embedded software
code

3. Explain the working of Remote Debugger
4. Explain the working of Emulator
5. Explain the use of Simulators, Logic analyzers and

Oscilloscopes in debugging embedded systems.

6.6 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. 2. Introduction to Embedded systems – Shibu K. V

48

7

EMBEDDED HARDWARE FROM
SOFTWARE PROGRAMMERS

PERSPECTIVE

Unit Structure
28.0 Objectives
28.1 Introduction
28.2 Components on an embedded system
28.3 Memory Map
28.4 I/O Map
28.5 Interrupt Map
28.6 Review Questions
28.7 References & Further Reading

7.0 OBJECTIVES

After reading this chapter you will be able to:
• Understand in general the difference in programming software

for general purpose computers and embedded systems
• The way in which processor communicates with components of

embedded system
• Memory Map, I/O Map & Interrupt Map

7.1 INTRODUCTION

The software programmer must know the hardware involved
in an embedded system before he can even attempt to write code
for its functioning.

Programming for embedded systems is different than
programming on computers. Embedded systems have certain strict
assumptions to be followed. Until the programmer does not know
what hardware components are involved and what are the
assumptions and rules related to those components, the program
or code cannot be written.

This chapter introduces the reader with the hardware of
embedded system from a software perspective. It is this where the

49

reader shall understand where the code fits in an embedded
system.

7.2 COMPONENTS ON AN EMBEDDED SYSTEM

• Before the programmer can start to code anything, he has to
invest some time in understand the functioning of the embedded
system.

• He is expected to understand the following things:
a. Functioning or purpose of the embedded system
b. Individual components involved
c. The way data flows through the components of an

embedded system.

• Consider an example of an embedded system intended to
be used as a printer-sharing device. This device is attached to a
printer and allows access to two computers through serial interface
and one printer through a parallel interface.

• The diagram below describes the way the devices are
connected to each other. Data to be printed is accepted from either
serial port, held in RAM until the printer is ready for more data, and
delivered to the printer via the parallel port. The software that
makes all of this happen is stored in ROM.

• The working or execution of the code is brought about by the
processor. The processor knows two types of components: memory
and peripherals.

• Memories are for data and code storage and retrieval. Ex.
RAM & ROM

• Peripherals are specialized hardware devices that either
coordinate interaction with the outside world (I/O) or perform a
specific hardware function. Ex. Serial Port

50

Figure: Components involved in an printer sharing device

• Certain processors like intel communicate with these
memories and peripherals with two distinct address spaces.

• The first address space is called the memory space and is
intended mainly for memory devices; the second is reserved
exclusively for peripherals and is called the I/O space.

• When peripherals are located in I/O space they are called
I/O Mapped peripheral else when peripherals are located in
memory space they are called Memory Mapped peripherals or
memory mapped I/O.

• If given a choice, Memory mapped peripherals are better
because it has advantages for both the hardware and software
developers. It is attractive to the hardware developer because he
might be able to eliminate the I/O space, and some of its
associated wires, altogether. It is attractive to the software
developer who is able to use pointers, data structures, and unions
to interact with the peripherals more easily and efficiently.

51

7.3 MEMORY MAP

• A Memory Map is the processor's "address book." It shows
what these devices look like to the processor. The memory
map contains one entry for each of the memories and
peripherals that are accessible from the processor's memory
space.

• All processors store their programs and data in memory.

• These chips are located in the processor's memory space,
and the processor communicates with them by way of two
sets of electrical wires called the address bus and the data
bus. To read or write a particular location in memory, the
processor first writes the desired address onto the address
bus. The data is then transferred over the data bus.

• A memory map is a table that shows the name and address
range of each memory device and peripheral that is located
in the memory space.

• Organize the table such that the lowest address is at the
bottom and the highest address is at the top. Each time a
new device is added, add it to the memory map, place it in
its approximate location in memory and label the starting and
ending addresses, in hexadecimal. After inserting all of the
devices into the memory map, be sure to label any unused
memory regions as such.

• The block diagram of the Printer sharing device shown
above contains three devices attached to the address and
data buses. These devices are the RAM and ROM and a
Serial Controller.

• Let us assume that the RAM is located at the bottom of
memory and extends upward for the first 128 KB of the
memory space.

• The ROM is located at the top of memory and extends
downward for 256 KB. But considering the ROM contains
two ROMs-an EPROM and a Flash memory device-each of
size 128 KB.

• The third device, the Serial Controller, is a memory-mapped
peripheral whose registers are accessible between the
addresses say 70000h and 72000h.

52

• The diagram below shows the memory map for the printer
sharing device.

FFFFFh
EPROM
(128K)

E0000h

FLASH
MEMORY

(128K) C0000h

UNUSED 72000h

SERIAL
CONTROLLER 7000h

UNUSED 20000h

RAM (128K) 00000h

• For every embedded system, a header file should be created
that describes these important features and provides an abstract
interface to the hardware. It allows the programmer to refer to the
various devices on the board by name, rather than by address.

• The part of the header file below describes the memory map

#define RAM_BASE (void *) 0x00000000
#define SC_BASE (void *) 0x70000000
#define SC_INTACK (void *) 0x70001000
#define FLASH_BASE (void *) 0xC0000000
#define EPROM_BASE (void *) 0xE0000000

7.4 I/O MAP

• The I/O map contains one entry for each of the peripheral.

• An I/O map has to be created if a separate I/O space is present.
It is done by repeating the steps performed to create memory
map.

• To create an I/O map, simply create a table of peripheral names
and address ranges, organized in such a way that the lowest
addresses are at the bottom.

• The diagram below shows the I/O map for the printer sharing
device

53

FFFFhPeripheral
Control
Block

FF00h

Unused FE00h
Parallel

Port FD00h
Debugger

Port FC00h

Unused 0000h

• It includes three devices: the peripheral control block (PCB),
parallel port, and debugger port. The PCB is a set of registers
within the processor that are used to control the on-chip
peripherals. The chips that control the parallel port and debugger
port reside outside of the processor. These ports are used to
communicate with the printer and a host-based debugger,
respectively.

• The part of the header file below describes the I/O map

#define SVIEW_BASE 0xFC00
#define PIO_BASE 0xFD00
#define PCB_BASE 0xFF00

7.5 INTERRUPT MAP

• There are two techniques which can be used by the
processor to communicate with memories or peripheral devices.
These are:

a. Polling: In this technique the processor polls the device
(asks question) repeatedly at regular intervals to check if the device
has completed the given task or has any new task to execute.

b. Interrupt:
• An interrupt is a signal sent from a peripheral to the
processor. A peripheral may send an interrupt signal to a processor
when it has some job to perform which requires the processors
intervention.

54

• Upon receiving an interrupt signal the Processor does the
job by issuing certain commands and waits for another interrupt to
signal the completion of the job.

• While the processor is waiting for the interrupt to arrive, it is
free to continue working on other things.

• When a fresh interrupt signal is received, the processor
temporarily sets aside its current work and executes a small piece
of software called the interrupt service routine (ISR). When the ISR
completes, the processor returns to the work that was interrupted.

• The programmer must write the ISR himself and enable it so
that it will be executed when the relevant interrupt occurs.

• Interrupt Map
• Embedded systems usually have only a handful of interrupts.
Associated with each of these are an interrupt pin which is present
on the outside of the processor chip and an ISR.

• In order for the processor to execute the correct ISR, a
mapping must exist between interrupt pins and ISRs. This mapping
usually takes the form of an interrupt vector table.

• The vector table is usually just an array of pointers to
functions, located at some known memory address. The processor
uses the interrupt type (a unique number associated with each
interrupt pin) as its index into this array. The value stored at that
location in the vector table is usually just the address of the ISR to
be executed.

• An Interrupt Map is a step taken in this process. The
Interrupt Map is a table that contains a list of interrupt types and the
devices to which they refer.

• The diagram below shows the Interrupt map for the printer
sharing device

Interrupt Type Generating Device
8 Timer/Counter #0

17 Serial Controller
18 Timer/Counter #1
19 Timer/Counter #2
20 Serial Port Receive
21 Serial Port Transmit

55

• Once the I/O map is created the header file should be
appended with the following information:

#define SCC_INT 17 /*Serial Controller*/

#define TIMER0_INT 8 /* On-Chip Timer/Counters*/
#define TIMER1_INT 18
#define TIMER2_INT 19

#define RX_INT 20 /* On-Chip Serial Ports */
#define TX_INT 21

7.6 REVIEW QUESTIONS

1. Explain the Components involved in a printer sharing device
2. Explain Memory Map for a printer sharing device
3. Explain I/O Map for a printer sharing device
4. Explain interrupt Map for a printer sharing device

7.7 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

56

8
EMBEDDED SYSTEMS: MEMORY

Unit Structure

36.0 Objectives
36.1 Introduction
36.2 Types of Memory
36.3 Types of RAM

36.3.1 SRAM
36.3.2 DRAM

36.4 Types of ROM
36.4.1 MASKED
36.4.2 PROM
36.4.3 EPROM

36.5 Types of Hybrid Memory
36.5.1 NVRAM
36.5.2 FLASH
36.5.3 EEPROM

36.6 DIRECT MEMORY ACCESS (DMA)
36.7 Review Questions
36.8 References & Further Reading

37.0 OBJECTIVES

After reading this chapter you will understand:
 Different types of memory available
 Types of RAM
 Types of ROM
 Types of Hybrid Memory

8.1 INTRODUCTION

There are different types of memories available to be used in
computers as well as embedded system.

This chapter guides the reader through the different types of
memories that are available and can be used and tries to explain
their differences in simple words.

57

8.2 TYPES OF MEMORY

• There are three main types of memories, they are

a) RAM (Random Access Memory)
• It is read write memory.
• Data at any memory location can be read or written.
• It is volatile memory, i.e. retains the contents as long as

electricity is supplied.
• Data access to RAM is very fast

b) ROM (Read Only Memory)
• It is read only memory.
• Data at any memory location can be only read.
• It is non-volatile memory, i.e. the contents are retained

even after electricity is switched off and available after it
is switched on.

• Data access to ROM is slow compared to RAM

c) HYBRID
• It is combination of RAM as well as ROM
• It has certain features of RAM and some of ROM
• Like RAM the contents to hybrid memory can be read

and written
• Like ROM the contents of hybrid memory are non volatile

• The following figure gives a classification of different types of
memory

DRAM SRAM NVRAM Flash EEPROM EPROM PROM Masked

M e m o ry

R A M H yb rid R O M

Figure: Types of Memory

58

8.3 TYPES OF RAM

• There are 2 important memory device in the RAM family.
a) SRAM (Static RAM)
b) DRAM (Dynamic RAM)

8.3.1 SRAM (Static RAM)
c) It retains the content as long as the power is applied to the

chip.
d) If the power is turned off then its contents will be lost forever.

8.3.2 DRAM (Dynamic RAM)
a) DRAM has extremely short Data lifetime(usually less than a

quarter of second). This is true even when power is applied
constantly.

b) A DRAM controller is used to make DRAM behave more like
SRAM.

c) The DRAM controller periodically refreshes the data stored
in the DRAM. By refreshing the data several times a second,
the DRAM controller keeps the contents of memory alive for
a long time.

8.4 TYPES OF ROM

There are three types of ROM described as follows:

8.4.1 Masked ROM
a. These are hardwired memory devices found on system.
b. It contains pre-programmed set of instruction and data

and it cannot be modified or appended in any way. (it is
just like an Audio CD that contains songs pre-written on it
and does not allow to write any other data)

c. The main advantage of masked ROM is low cost of
production.

8.4.2 PROM (PROGRAMMABLE ROM)
a) This memory device comes in an un-programmed state

i.e. at the time of purchased it is in an un-programmed
state and it allows the user to write his/her own program
or code into this ROM.

b) In the un-programmed state the data is entirely made up
of 1’s.

c) PROMs are also known as one-time-programmable
(OTP) device because any data can be written on it only
once. If the data on the chip has some error and needs to
be modified this memory chip has to be discarded and
the modified data has to be written to another new
PROM.

59

8.4.3 EPROM (ERASABLE-AND-PROGRAMABLE ROM)
a) It is same as PROM and is programmed in same manner

as a PROM.
b) It can be erased and reprogrammed repeatedly as the

name suggests.
c) The erase operation in case of an EPROM is performed by

exposing the chip to a source of ultraviolet light.
d) The reprogramming ability makes EPROM as essential

part of software development and testing process.

8.5 TYPES OF HYBRID MEMORY

There are three types of Hybrid memory devices:

8.5.1 EEPROMs
a. EEPROMs stand for Electrically Erasable and

Programmable ROM.
b. It is same as EPROM, but the erase operation is

performed electrically.
c. Any byte in EEPROM can be erased and rewritten as

desired

8.5.2 Flash
a. Flash memory is the most recent advancement in

memory technology.
b. Flash memory devices are high density, low cost,

nonvolatile, fast (to read, but not to write), and electrically
reprogrammable.

c. Flash is much more popular than EEPROM and is rapidly
displacing many of the ROM devices.

d. Flash devices can be erased only one sector at a time,
not byte by byte.

8.5.3 NVRAM
a. NVRAM is usually just a SRAM with battery backup.
b. When power is turned on, the NVRAM operates just like

any other SRAM but when power is off, the NVRAM
draws enough electrical power from the battery to retain
its content.

c. NVRAM is fairly common in embedded systems.
d. It is more expensive than SRAM.

8.6 DIRECT MEMORY ACCESS (DMA)

 DMA is a technique for transferring blocks of data directly
between two hardware devices.

60

 In the absence of DMA the processor must read the data
from one device and write it to the other one byte or word at
a time.

 DMA Absence Disadvantage: If the amount of data to be
transferred is large or frequency of transfer is high the rest of
the software might never get a chance to run.

 DMA Presence Advantage: The DMA Controller performs
entire transfer with little help from the Processor.

 Working of DMA
 The Processor provides the DMA Controller with

source and destination address & total number of
bytes of the block of data which needs transfer.

 After copying each byte each address is incremented
& remaining bytes are reduced by one.

 When number of bytes reaches zeros the block
transfer ends & DMA Controller sends an Interrupt to
Processor.

Figure: Direct Memory Access

61

8.7 REVIEW QUESTIONS

1. What are the different types of Memory?
2. What are the different types of RAM?
3. What are the different types of ROM?
4. What are the different types of Hybrid Memory?

8.8 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

62

9
EMBEDDED SYSTEMS: MEMORY

TESTING
Unit Structure
46.0 Objectives
46.1 Introduction
46.2 Memory Testing and its purpose
46.3 Common Memory Problems
46.4 A strategy for memory testing

46.4.1 Data Bus Test
46.4.2 Address Bus Test
46.4.3 Device Test

46.5 Review Questions
46.6 References & Further Reading

9.0 OBJECTIVES

After reading this chapter you will be able to understand:
 What is memory testing?
 What are the common memory related problems?
 What are the different types of test to detect memory related

problems and a general idea about the working of these tests

9.1 INTRODUCTION

The previous chapter dealt with the different types of
memory. This chapter will focus on the concept of testing memory
devices, its purpose and different methods available.

9.2 MEMORY TESTING AND ITS PURPOSE

• The purpose of a memory test is to confirm that each
storage location in a memory device is working.

• Memory Testing is performed when prototype hardware is
ready and the designer needs to verify that address and data
lines are correctly wired and memory chips are working
properly.

• Basic idea implement in testing can be understood by this
simple task:

63

 Write some set of Data values to each Address in
Memory and Read it back to verify.

 Ex. If number ’50’ is stored at a particular Address it is
expected to be there unless rewritten or erased.

 If all values are verified by reading back then Memory
device passes the test.

• Only through careful selection of data values can make sure
passing result to be meaningful.

• Difficulties involved in memory testing:
 It can be difficult to detect all memory problems with a

simple test.
 Many Embedded Systems include Memory Tests only

to detect catastrophic memory failures which might not
even notice memory chips removal.

9.3 COMMON MEMORY PROBLEMS

 Memory Problems rarely occur with the chip itself, but due to
a variety of post production tests to check quality this
possibility is ruled out.

 Catastrophic Failure is a memory problem that occurs due to
physical and electrical damage, it is uncommon and easily
detectable.

 A common source of memory problems is associated with
the circuit board. Typical circuit board problems are:
1. Circuit board wiring between Processor & Memory

device.
2. Missing Memory chip.
3. Improperly inserted Memory chip.

1. Circuit board wiring between Processor & Memory device.
 These are usually caused by,

i. An error in design
ii. An error in production of the board
iii. Any damage after manufacture

 Wires that connect the memory are:-
i. Address line :- select the memory location
ii. Data line :- transfer the data
iii. Control line :- read or write operation
 Two wiring problems are shown below

1. Connected to another wire on the board
- May be caused by a bit of solder splash

2. Not connected to anything
- Caused by broken trace

64

Figure: a. wiring problems: two wires shorted
 b. wiring problems: one wire open

• When Address line has a wiring problem
o memory locations overlap
o i.e. memory device to see an address different from the one

selected by the processor.
o Problem is with a data line
o several data bits “stuck together”
o i.e. two or more bits always contains same value

• When the problem is with a Data line
o several data bits “stuck together”
o i.e. two or more bits always contains same value
o When Control lines is shorted or open

• When Control lines is shorted or open
o The operation of many control lines is specific to the

processor or memory architecture.
o the memory will probably not work at all.

2. Missing Memory chip.
o A missing memory chip is clearly a problem that should be

detected
o Unfortunately, because of the capacitive nature of

unconnected electrical wires, some memory tests will not
detect.

65

o For e.g. suppose you decided to use the following test
algorithm
 write the value 1 to the first location in memory, verify the

value by reading it back
 write 2 to the second location, verify the value
 write 3 to the third location, verify, etc.

o Because each read occurs immediately after the
corresponding write, it is possible that the data read back
represents nothing more than the voltage remaining on the
data bus from the previous write.

o If the data is read back too quickly, it will appear that the data
has been correctly stored in memory-even though there is no
memory chip at the other end of the bus!

o To detect a missing memory chip the previous algorithm for
test must be altered.

o For example,
 write the value 1 to the first location,
 2 to the second location,
 And 3 to the third location,

o Then verify the data at the first location, the second location,
etc. If the data values are unique (as they are in the test just
described), the missing chip will be detected

3. Improperly inserted Memory chip.
 Caused by pins on the memory chip

o Will either not be connected to the socket at all
o Will be connected at the wrong place

 Symptoms :-
o System behaves same as though there is a wiring

problem or a missing chip.

 How to detect :-
o Detected by any test

9.4 A STRATEGY FOR MEMORY TESTING

• For memory testing the strategy adopted should be effective
and efficient. Ideally there should be multiple small tests instead
of one large test.

• It would be best to have three individual memory tests:
1. A data bus test: Checks electrical wiring problems

66

2. An address bus test: Checks improperly inserted chips
3. A device test: Checks to detect missing chips and

catastrophic failures and problems with the control bus
wiring

• These tests have to be executed in a proper order which is: data
bus test first, followed by the address bus test, and then the
device test. That's because the address bus test assumes a
working data bus, and the device test results are meaningless
unless both the address and data buses are known to be good.

9.4.1 Data Bus Test
• It is used to check data bus wiring.
• In this test we need to confirm that the received data is same

as the data sent by processor

• Implementation:
 Here we write all possible data values and verify that the

memory device stores each one successfully.
 In short to test the bus one bit at a time.

• Walking 1's test
 This test is used to independently test every bit.
 A single data bit is set to 1 and “walked” through the

entire data word.
 If the data bus is working properly, the function will return

0.
 Otherwise it will return the data value for which the test

failed.
 Because we are testing only the data bus at this point, all

of the data values can be written to the same address.
Any address within the memory device will do

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Figure: Consecutive data values for walking 1's test

67

9.4.2 Address Bus Test
• Address bus problems lead to overlapping memory locations.

• In the Address Bus test we need to confirm that each of the
address pins can be set to 0 and 1 without affecting any of the
others.

• The smallest set of address that will cover all possible
combinations is the set of “power of two” addresses.

• After writing one of the addresses, we must check none of the
others has been overwritten.

9.4.3 Device Test
• It is used to test if the memory device is working properly. It is

necessary to test the integrity of the memory device itself.

• The thing to test is that every bit in the device is capable of
holding both 0 and 1.

• For a thorough and complete device test every memory location
has to be visited twice.

• A simple test implemented is the Increment test as shown in
the table below
 The first column represents the memory location
 The second column represents the data that is written at the

memory location indicated in column 1 in incremental
fashion.

 The third column represents the data of column 2 in inverted
format.

Figure: Data Bus Test – Increment Test

68

• During the first pass the data in column 1 is verified and during
second pass the data in column 2 is verified.

9.5 REVIEW QUESTIONS

1. What is Memory Testing? Why is it required?
2. What are common memory problems in embedded system?
3. Describe a test strategy for performing memory testing on

embedded system. Is there a specific order to perform these
tests? if yes, why?

4. Describe the different types of memory testing techniques
available.

9.6 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

69

10
EMBEDDED SYSTEMS: PERIPHERALS

Chapter Structure
56.0 Objectives
56.1 Introduction
56.2 Testing Non Volatile Memory Devices
56.3 Control and Status Registers
56.4 Device Driver
56.5 Watchdog timer
56.6 Review Questions
56.7 References & Further Reading

10.0 OBJECTIVES

After reading this chapter you will learn:
 Concept of testing non –volatile memory devices using

Checksum and CRC
 Control and Status Registers
 Device Driver
 Watch Dog Timer

10.1 INTRODUCTION

This chapter initially continues the part of memory testing
from last chapter. Here testing of Non Volatile memory devices is
studied.

Then we study how peripheral devices are incorporated in
Embedded System. Control and Status Registers, Device Drivers
and Watch Dog Timers are explained in the subsequent sections.

10.2 TESTING NON VOLATILE (ROM AND HYBRID)
MEMORY DEVICES

• The testing techniques described previously cannot help to
test ROM and hybrid devices since ROM devices cannot be
written at all, and hybrid devices usually contain data or
programs that cannot be overwritten.

70

• However ROM or hybrid memory device face the same
problems as missing memory chip, improperly inserted
memory chip, damaged memory chip or wiring problem with
the memory chip.

• Two Techniques Checksums and CRC can be used to test
non volatile memory devices.

• Checksum
 Checksums basically deals with the question whether the

data stored in a memory device is valid or not?
 To do this the checksum of the data in the memory

device is computed and stored along with the data. The
moment when we have to confirm the validity of the data,
we just have to recalculate the checksum and compare it
with previous checksum. If the two checksums match, the
data is assumed to be valid.

 The simplest checksum algorithm is to add up all the data
bytes discarding carries.

 A Checksum is usually stored at some fixed location in
memory. This makes it easy to compute and store the
check sum for the very first time and later on to compare
the recomputed checksum with the original one.

 Disadvantage: A simple sum-of-data checksum cannot
detect many of the most common data errors.

• CRC – Cyclic Redundancy Check

 A Cyclic Redundancy Check is a specific checksum
algorithm designed to detect the most common data
errors.

 CRC’s are frequently used in Embedded Applications
that requires the storage or transmission of large blocks
of data.

 The CRC works as follows:
 The message is composed of a long string of 0’s

and 1’s
 A division operation occurs between the message

at numerator and the generator polynomial at
denominator. The generator polynomial is a fixed
smaller length binary string.

 The remainder of the division operation is the CRC
Checksum

71

10.3 CONTROL AND STATUS REGISTERS

 Control and status registers are the basic interface between
and embedded processor and peripheral device.

 These registers are a part of peripheral hardware and their
location size and individual meanings are feature of the
peripheral.

 For example, The registers vary from device to device:
example the registers within a serial controller are very
different from those in a timer.

 Depending upon the design of the processor and target
board , peripheral devices are located either in the
processor’s memory space or within the I/O space.

 It is common for Embedded Systems to include some
peripherals of each type. These are called Memory-Mapped
and I/O-mapped peripherals.

 Of the two types, memory-mapped peripherals are generally
easier to work with and are increasingly popular.

 Memory-mapped control and status registers can be used
just like ordinary variables.

10.4 DEVICE DRIVER

 The goal of designing a device driver is to hide the hardware
completely.

 Attempts to hide the hardware completely are difficult.
 For example all Flash memory devices share the concept of

sectors. An erase operation can be performed only on an entire
sector. Once erased individual bites or words can be rewritten.

 Device drivers for embedded systems are quite different from
the workstation counter parts. In modern computers workstation
device drivers are most often concerned with satisfying the
requirement of the operating system.

 There are three benefits of good device driver:

i. Modularization, it makes the structure of the overall software
is easier to understand.

ii. There exists only one module that interacts directly with the
peripheral’s registers making communication easier.

iii. Software changes that result from hardware changes are
localized to the device driver.

72

 Components of a Device Driver
A device driver can be implemented (as components) in the

following steps:
1. A data structure that overlays the memory-mapped

control and status registers of the device:
 This basic step involves creating a C style structure that

is actually a map of the registers present in the device.
These registers can be found out by referring to the data
sheet for the device.

 A table is created which maps the control register to their
relative offsets.

 An example is shown below for a timer counter data
structure.

struct TimerCounter
{

unsigned short count; // Current Count, offset 0x00
unsigned short maxCountA;// Maximum Count, offset 0x02
unsigned short _reserved; // Unused Space, offset 0x04
unsigned short control; // Control Bits, offset 0x06

};

 To make the bits within the control register easier to read
and write individually, we define the following bitmasks:

#define TIMER_ENABLE 0xC000 // Enable the
timer.
#define TIMER_DISABLE 0x4000 // Disable
the timer.
#define TIMER_INTERRUPT 0x2000 // Enable
timer interrupts.
#define TIMER_MAXCOUNT 0x0020 // Timer
complete?
#define TIMER_PERIODIC 0x0001 // Periodic
timer?

2. A set of variables to track the current state of the
hardware and device driver: It involves listing out the
required variables needed to keep track of the state of the
hardware and device driver

3. Initialize the hardware: Once the variables to be used are
known the next step in device driver programming is to
initialize the hardware. Next functions can be written to
control the device.

4. A set of routines that provide an API for users of the
device driver
This involves writing different functions that will implement
the various tasks listed to be performed by the device.

73

5. Interrupt service routines
Once the required functions and routines are coded the thing
remaining to be done is to identify and write routines for
servicing the interrupts.

10.5 WATCHDOG TIMER

 It is hardware equipment.
 It is special purpose hardware that protects the system from

software hangs.
 Watchdog timer always counts down from some large

number to zero
 This process takes a few seconds to reset, in the meantime,

it is possible for embedded software to “kick” the watchdog
timer, to reset its counter to the original large number.

 If the timer expires i.e. counter reaches zero, the watchdog
timer will assume that the system has entered a state of
software hang, then resets the embedded processor and
restarts the software

 It is a common way to recover from unexpected software
hangs

 The figure below diagrammatically represents the working of
the watchdog timer

Figure: Watchdog Timer

74

10.6 REVIEW QUESTIONS

1. Explain testing for non-volatile memory devices
2. Write short note on Control and status registers
3. What is a device driver?
4. What are the components of a device driver?
5. Write short note on Watch Dog Timer

10.7 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

75

11
EMBEDDED OPERATING SYSTEM

Chapter Structure
67.0 Objectives
67.1 Introduction
67.2 Basics

67.2.1 Tasks
67.2.2 Task States

67.3 Scheduler
67.3.1 Scheduling Points
67.3.2 Ready List
67.3.3 Idle task

67.4 Context Switch
67.5 Task Synchronization
67.6 Real Time Characteristic
67.7 Selection Process
67.8 Review Questions
67.9 References & Further Reading

11.0 OBJECTIVES

After reading this chapter you will learn:
 The basics of embedded Operating system with respect to

1. Tasks
2. Task States

 Scheduler with respect to:
1. Scheduling Points
2. Ready List
3. Idle task

 Concept of Context Switch and Task Synchronization
 Real Time Characteristic of embedded operating system.

11.1 INTRODUCTION

This chapter introduces the readers to the embedded
operating system. Any operating system has a set of programs
which are implemented through a set of tasks.

Every embedded system may not require an operating
system. The requirement and complexity on an operating system
depends on the functionality to be implemented by the embedded
system.

76

11.2 BASICS

11.2.1 Tasks
 Task is a piece of code or program that is separate from

another task and can be executed independently of the other
tasks.

 In embedded systems, the operating system has to deal with
a limited number of tasks depending on the functionality to
be implemented in the embedded system.

 Multiple tasks are not executed at the same time instead
they are executed in pseudo parallel i.e. the tasks execute in
turns as the use the processor.

 From a multitasking point of view, executing multiple tasks is
like a single book being read by multiple people, at a time
only one person can read it and then take turns to read it.
Different bookmarks may be used to help a reader identify
where to resume reading next time.

 An Operating System decides which task to execute in case
there are multiple tasks to be executed. The operating
system maintains information about every task and
information about the state of each task.

 The information about a task is recorded in a data structure
called the task context. When a task is executing, it uses
the processor and the registers available for all sorts of
processing. When a task leaves the processor for another
task to execute before it has finished its own, it should
resume at a later time from where it stopped and not from
the first instruction. This requires the information about the
task with respect to the registers of the processor to be
stored somewhere. This information is recorded in the task
context.

 A C++ version of a Task that holds all information needed by
operating system is as follows:

class Task
{

public:
Task(void (*function)(), Priority p, int
stackSize);

TaskId id;
Context context;
TaskState state;
Priority priority;

77

int * pStack;
Task * pNext;

void (*entryPoint)();

private:
static TaskId nextId;

};
11.2.2 Task States

 In an operation system there are always multiple tasks.
At a time only one task can be executed. This means that
there are other tasks which are waiting their turn to be
executed.

 Depending upon execution or not a task may be
classified into the following three states:

 Running state - Only one task can actually be using
the processor at a given time that task is said to be
the “running” task and its state is “running state”. No
other task can be in that same state at the same time

 Ready state - Tasks that are are not currently using
the processor but are ready to run are in the “ready”
state. There may be a queue of tasks in the ready
state.

 Waiting state - Tasks that are neither in running nor
ready state but that are waiting for some event
external to themselves to occur before the can go for
execution on are in the “waiting” state.

Figure: Task States

 A transition of state between the ready and running state
occurs whenever the operating system selects a new
task to run.

 The task that was previously in running state becomes
ready and the new task is promoted to running state.

78

 A task will leave running state only if it needs to wait for
some event external to itself to occur before continuing.

 A task's state can be defined as follows:
enum TaskState { Ready, Running, Waiting };

11.3 SCHEDULER

• The heart and soul of any operating system is its scheduler.
• This is the piece of the operating system that decides which

of the ready tasks has the right to use the processor at a
given time.

• It simple checks to see if the running task is the highest
priority ready task.

• Some of the more common scheduling algorithms:

1. First-in-first-out
 First-in-first-out (FIFO) scheduling describes an operating

system which is not a multitasking operating system.

 Each task runs until it is finished, and only after that is the
next task started on a first come first served basis.

2. Shortest job first
 Shortest job first scheduling uses algorithms that will select

always select a task that will require the least amount of
processor time to complete.

3. Round robin.
 Round robin scheduling uses algorithms that allow every

task to execute for a fixed amount to time.

 A running task is interrupted an put to a waiting state if its
execution time expires.

11.3.1 Scheduling Points
 The scheduling points are the set of operating system events

that result in an invocation of the scheduler.

 There are three such events: task creation and task
deletion. During each of these events a method is called to
select the next task to be run.

 A third scheduling point called the clock tick is a periodic
event that is triggered by a timer interrupt. When a timer
expires, all of the tasks that are waiting for it to complete are
changed from the waiting state to the ready state.

79

11.3.2 Ready List
 The scheduler uses a data structure called the ready list to

track the tasks that are in the ready state.

 The ready list is implemented as an ordinary linked list,
ordered by priority.

 So the head of this list is always the highest priority task that
is ready to run.

11.3.3 Idle task
 If there are no tasks in the ready state when the scheduler is

called, the idle task will be executed.

 The idle task looks the same in every operating system.

 The idle task is always considered to be in the ready state.

11.4 CONTEXT SWITCH

 The actual process of changing from one task to another is
called Context Switch.

 Since contexts are processor-specific, so is the code that
implements the context switches, hence, it must always be
written in assembly language.

11.5 TASK SYNCHRONIZATION

 All the tasks in the multitasking operating systems work
together to solve a larger problem and to synchronize their
activities, they occasionally communicate with one another.

 For example, in the printer sharing device the printer task
doesn’t have any work to do until new data is supplied to it
by one of the computer tasks.

 So the printer and the computer tasks must communicate
with one another to coordinate their access to common data
buffers.

 One way to do this is to use a data structure called a
mutex.

 Mutexes are mechanisms provided by many operating
systems to assist with task synchronization.

80

 A mutex is a multitasking-aware binary flag. It is because
the processes of setting and clearing the binary flag are
atomic (i.e. these operations cannot be interrupted).

 When this binary flag is set, the shared data buffer is
assumed to be in use by one of the tasks. All other tasks
must wait until that flag is cleared before reading or writing
any of the data within that buffer.

 The atomicity of the mutex set and clear operations is
enforced by the operating system, which disables interrupts
before reading or modifying the state of the binary flag.

11.6 REAL TIME CHARACTERISTIC

An Operating system is called “Real-Time Operating System”
(RTOS) only if it has following characteristics:

i. Deterministic
 An OS is said to be deterministic if the worst case

execution time of each of the system calls is calculable.

 The data sheet of an OS should publish the real-time
behavior of its RTOS provides average, minimum and
maximum number of clock cycles required by each
system call.

ii. Interrupt Latency
 Interrupt Latency is the total length of time from an

interrupt signal’s arrival at the processor to the start of
the associated interrupt service routine.

iii.Context Switch
 Context Switch is important because it represents

overhead across your entire system.

11.7 SELECTION PROCESS

The process of selecting the best commercial operating system
that best fits the needs of one’s project depends on various factors.

 Commercial operating systems form a continuum of
functionality, performance and price.

 Operating Systems that offer only a basic scheduler and
a few other system calls are inexpensive and come with
the source code that one can modify and do not require
payment of royalties.

81

 While on the other hand operating systems that include a
lot of useful functionality beyond just the scheduler are
quite expensive and royalties due on every copy shipped
in ROM and they might also make a stronger guarantees
about real-time performance.

Two important points to be considered while selecting an
operating system :-

 Put your processor, real time performance and
budgetary requirements first.

 Contact all of the vendors of the remaining operating
systems for more detailed technical information.

11.8 REVIEW QUESTIONS

1. Explain the embedded Operating system with respect to
i) Tasks
ii) Task States

2. Explain Scheduler with respect to:
i) Scheduling Points
ii) Ready List
iii) Idle task

3. Write a short note on Context Switch and Task Synchronization
4. Explain the Real Time Characteristic of embedded operating

system.

11.9 REFERENCES & FURTHER READING

1. Programming Embedded systems in C++ by Michael Barr
2. Introduction to Embedded systems – Shibu K. V

82

12
EMBEDDED SYSTEMS: INTEGRATED

DEVELOPMENT ENVIRONMENT

Chapter Structure
79.0 Objectives
79.1 Introduction
79.2 Embedded IDE
79.3 Types of file generated on cross compilation
79.4 DISASSEMBLER/ DECOMIPILER
79.5 SIMULATOR
79.6 FirmWare Debugging
79.7 Review Questions
79.8 References & Further Reading

12.0 OBJECTIVES

After reading this chapter you will understand:
 Embedded IDE
 Types of file involved
 Disassembler/ Decomipiler
 Simulator
 Firmware Debugging and Emulator

12.1 INTRODUCTION

This chapter explains the IDE used for embedded systems. It then
explains the different types of files that are generated on cross
compilation. Then it gives an account of utility tools like Disassembler/
Decomipiler, Simulator and then FirmWare Debugging.

12.2 EMBEDDED IDE

• Integrated Development Environment with respect to
embedded system IDE stands for an Integrated Environment
for developing and debugging the target processor specific
embedded software.

• IDE is a software package which contains:
1. Text Editor(Source Code Editor)

83

2. Cross Compiler(For Cross platform development and
complier for the same platform development)

3. Linker and debugger.
• Some IDEs may provide an interface to an emulator or

device programmer.
• IDEs are used in embedded firmware development.
 IDEs may be of two types:

1. Command Line Base
• Turbo C++ IDE is an example for a generic IDE with a

Command Line Interface.
2. GUI Base
• Microsoft Visual Studio is an example of GUI base IDE.
• Others examples are NetBeans, Eclipse.

12.3 TYPES OF FILE GENERATED ON CROSS
COMPILATION

Following are some of the files generated upon cross compilation:
1. List file .lst
2. Hex file .hex
3. Preprocessor output file
4. Map file .map
5. Obj file .obj

1. List File(.lst):-
• Listing file is generated during the cross-compilation

process.
• It contains an information about the cross compilation

process like cross compiler details, formatted source
text(‘C’ code), assembly code generated from the source
file, symbol tables, errors and warnings detected during
the cross-compilation process.

• The list file contain the following sections:

1. Page Header
• It indicates the compiler version name, source file name,

Date, Page No.
• Example: C51 COMPILER V8.02 SAMPLE 05/23/2006

11:12:58 PAGE 1

2.Command Line
• It represents the entire command line that was used for

invoking the compiler.
• C51 COMPILER V8.02, COMPILATION OF MODULE

SAMPLE OBJECT MODULE PLACED IN sample.obj

84

• COMPILER INVOKED BY: C:\Keil\C51\BIN\C51.EXE
sample.c BROWSE DEBUG OBJECTTEXTEND CODE
LISTINCLUDE SYMBOLS

3.Source Code
• It contains source code along with line numbers
• Line level Source

1 //Sample.c for printing Hello World!
2 //Written by xyz
3 #include<stdio.h>
1 //Body part starts
2
3
4
5
6 //Body part end
4 void main()
5 {
6 printf(“Hello World”);
7 }
8 //Header part ends

4. Assembly listing
• It contains the asembly code generated by

compiler for even given ‘C’ code.
• ASSEMBLY LISTING OF GENERATED OBJECT

CODE;
• FUNCTION main(BEGIN)

;SOURCE LINE #5
;SOURCE LINE #6

0000 7BFF MOV R3,#0FFH
0002 7A00 R MOV

R2,#HIGH?SC_0

5. Symbol listing
• It contains symbolic information about the various

symbols present in the cross compiled source file.
• Eg: NAME, TYPE, SFR, SIZE.
•

6. Module Information
• The module information provides the size of

initialized and un-initialized memory areas defined
by the source file.

Module Information Static Overlayable
Code Size 9 -------------
Constant size 14 -------------
Bit size ------- -------------
END OF MODULE INFORMATION

85

7. Warnings and Errors
• Warnings and Errors section of list file records the errors

encountered or any statement that may create issues in
application(Warnings), during cross compilation.

• ie:- C51 COMPILATION COMPLETE, 0WARNING(S), 0
ERROR(S).

2. Preprocessor Output File
• It contains preprocessor output for preprocessor instructions

used in the source file.

• This file is used for verifying the operation of Macros and
preprocessor directive.

3. Object File(.OBJ File)
• Cross-compiling each source module converts the

Embedded C/Assembly instructions and other directives
present in the module to an object(.OBJ file)

4. Map File(.MAP)
• Also called as Linker List file. Map file contains information

about the link/locate process and is composed of a number
of sections described below:

I. Page Header
Each MAP file contains a header which indicates the
linker version number, date, time and page number.

II. Command Line
Represents the entire command line that was used for
invoking the linker.

III. CPU Details
It contains details about the target CPU and its
memory model which includes information on internal
data memory, external data memory, paged data
memory, etc.

IV. Input Modules
It includes the names of all the object files, library files
and other files that are included in the linking process.

V. Memory Map
It lists the starting address, length, relocation type and
name of each segment in the program

86

VI. Symbol Table
It contains the name, value and type for all symbols
from different input modules.

VII. Inter Module Cross Reference
It includes the section name, memory type and
module names in which it is defined and all modules
where it is accessed.
Ex.
NAME…………………….USAGE……………………..
MODULE NAMES
?CCCASE…………………CODE;……………………?
C?CCASE PRINTF
?C?CLDOPTR……………CODE;…………….…..?C?
CLDOPTR PRINTF
?C?CSTPTR………………CODE;………………….?C
?CSTPTR PRINTF

VIII. Program Size
It contains the size of various memory areas,
constants and code space for the entire application
Ex. Program Size: data=80.1 xdata=0 code 2000

IX. Warnings and Errors
It contains the warnings and errors that are generated
while linking a program. It is used in debugging link
errors

5. HEX FILE (.hex file)
1. It is a binary executable file created from the source code.
2. The file created by linker/locater is converted into processor

understandable binary code.
3. The tool used for converting and object file into a hex file is

known as object to Hex converter.
4. Hex file have specific format and it varies for different

processor and controller. Two commonly used hex file
format are:

A. Intel Hex
B. Motorola Hex.

 5. Both Intel and Motorola hex file format represent data in the
form of ASCII codes.

87

12.4 DISASSEMBLER/ DECOMIPILER

• A Disassembler/ Decomipiler is a reverse engineering tool.
• Reverse Engineering is used in embedded system to find out

the secret behind the working of a proprietary product.
• A DISASSEMBLER is a utility program which converts

machine codes into target processor specific assembly
code/instruction.

• The process of converting machine codes to assembly code
is called disassembling.

• A DECOMIPILER is a utility program for translating machine
codes into corresponding high level language instruction.

• A decompiler performs the reverse operation of a
compiler/cross-compiler.

12.5 SIMULATOR

• Simulators are used for embedded firmware debugging.
• Simulator simulates the target hardware, while the code

execution can be inspected.
• Simulators have the following characteristics which make

them very much favorable:
 Purely software based
 No need of target system (hardware)
 Support only for basic operations
 Cannot Support or lack real time behavior

• Advantages
1. Simple and straight forward.
• Simulators are a software utility with assumptions about the

underlying hardware. So it only requires concentrating on
debugging of the code, hence straight forward.

2. No Hardware
• Simulators are purely software oriented.
• The IDE simulates the target CPU. The user needs to know

only about the target specific details like memory map of
various devices.

• Since no hardware is required the code can be written and
tested even before the hardware prototype is ready thus
saving development time

3. Simulation options
• Simulators provide various simulation options like I/O

peripherals or CRO or Logic analyzers.

88

• Simulators I/O support can be used to edit values for I/O
registers.

4. Simulation of abnormal conditions
• Using simulator the code can be tested for any desired

value.
• This helps to study the code behavior in abnormal conditions

without actually testing it on the hardware.

• Disadvantages
1. Lack of real time behavior

• A simulator assumes the ideal condition for code
execution.

• Hence the developer may not be able to debug the code
under all possible combinations of input.

• The results obtained in simulation may deviate from
actual results on target hardware.

2. Lack of real timeliness
• The I/O condition in hardware is unpredictable. So the

output of simulation is usually under ideal condition and
hence lacks timeliness.

12.6 FIRMWARE DEBUGGING

• Debugging in embedded application is the process of
diagnosing the firmware execution, monitoring the target
processor’s registers and memory while the firmware is
running and checking the signals on various buses of
hardware.

• Debugging is classified into Hardware Debugging and
Firmware Debugging.

• Hardware Debugging deals with debugging the various
aspects of hardware involved in the embedded system.

• The various tools used for hard ware debugging are
Multimeter, CRO, Logic Analyzers and Function Generators.

• Firmware Debugging involves inspecting the code, its
execution flow, changes to different registers on code
execution.

• It is done to find out the bugs or errors in code which
produces unexpected behavior in the system.

• There is a wide variety of firmware debugging techniques
available that have advanced from basic to advanced.

• Some to the tools used are Simulators and Emulators.

89

• Emulators
• The terms simulators and emulators are very confusing

but their basic functionality is the same i.e. to debug the
code. There is a difference in which this is achieved by
both the tools.

• A simulator is a utility program that duplicates the target
CPU and simulates the features and instructions
supported by target CPU whereas an Emulator is a self
contained hardware device which emulates the target
CPU.

• The Emulator hardware contains the necessary
emulation logic and is connected to the debugging
application that runs on the host PC.

• The Simulator ‘simulates’ while the Emulator ‘emulates’

12.7 REVIEW QUESTIONS

1. Write a Short note on Embedded IDE
2. What is Cross- Compilation? List the files that are generated

upon cross compilation
3. Explain the contents of .MAP file.
4. Explain the contents of .LST file.
5. Write short notes on :

I. .OBJ File
II. .HEX File

III. Preprocessor Output File

12.8 REFERENCES & FURTHER READING

Introduction to Embedded systems – Shibu K. V

90

13
EMBEDDED DEVELOPMENT LIFE CYCLE

Chapter Structure
13.0 Objectives
13.1 Introduction
13.2 EDLC

13.2.1 Need For ELDC
13.2.2 Objectives

13.3 Different Phases of EDLC
13.4 ELDC Approaches
13.5 Review Questions
13.6 References & Further Reading

13.0 OBJECTIVES

After Reading this chapter you will understand
 The Embedded Development Life Cycle
 Phases Involved in the EDLC

13.1 INTRODUCTION

Just like the SDLC used in Software Development, there is
EDLC used in Embedded product development. This chapter
explains what is the EDLC, its objectives, the phases that are
involved in the EDLC.

13.2 EMBEDDED PRODUCT DEVELOPMENT LIFE
CYCLE (EDLC)

 EDLC is Embedded Product Development Life Cycle
 It is an Analysis – Design – Implementation based problem

solving approach for embedded systems development.
 There are three phases to Product development:

91

 Analysis involves understanding what product needs to be
developed

 Design involves what approach to be used to build the
product

 Implementation is developing the product by realizing the
design.

13.2.1 Need for EDLC
 EDLC is essential for understanding the scope and

complexity of the work involved in embedded systems
development

 It can be used in any developing any embedded product
 EDLC defines the interaction and activities among various

groups of a product development phase.
 Example:-project management, system design

13.2.2 Objectives of EDLC
 The ultimate aim of any embedded product in a commercial

production setup is to produce Marginal benefit
 Marginal is usually expressed in terms of Return On

Investment
 The investment for product development includes initial

investment, manpower, infrastructure investment etc.
 EDLC has three primary objectives are:

i. Ensure that high quality products are delivered to
user
 Quality in any product development is Return On

Investment achieved by the product
 The expenses incurred for developing the product the

product are:-

92

• Initial investment
• Developer recruiting
• Training
• Infrastructure requirement related

ii. Risk minimization defect prevention in product
development through project management
 In which required for product development ‘loose’ or

‘tight’ project management
 ‘project management is essential for ’ predictability

co-ordination and risk minimization
 Resource allocation is critical and it is having a direct

impact on investment
 Example:- Microsoft @ Project Tool

iii. Maximize the productivity
 Productivity is a measure of efficiency as well as

Return On Investment
 This productivity measurement is based on total

manpower efficiency
 Productivity in which when product is increased then

investment is fall down
 Saving manpower

13.3 DIFFERENT PHASES OF EDLC

The following figure depicts the different phases in EDLC:

Figure : Phases of EDLC

93

1. Need
• The need may come from an individual or from the public or

from a company.
• ‘Need’ should be articulated to initiate the Development Life

Cycle; a ‘Concept Proposal’ is prepared which is reviewed
by the senior management for approval.

• Need can be visualized in any one of the following three
needs:

1. New or Custom Product Development.
2. Product Re-engineering.
3. Product Maintenance.

2. Conceptualization
• Defines the scope of concept, performs cost benefit analysis

and feasibility study and prepare project management and
risk management plans.

• The following activities performed during this phase:
1. Feasibility Study : Examine the need and suggest

possible solutions.
2. Cost Benefit Analysis (CBA): Revealing and assessing

the total development cost and profit expected from the
product.

3. Product Scope: Deals with the activities involved in the
product to be made.

4. Planning Activities: Requires various plans to be
developed first before development like Resource
Planning & Risk management Plans.

3. Analysis
• The product is defined in detail with respect to the inputs,

processes, outputs, and interfaces at a functional level.

• The various activities performed during this phase..
• Analysis and Documentations: This activity

consolidates the business needs of the product under
development.

• Requirements that need to be addressed..
 Functional Capabilities like performance
 Operational and non-operational quality attribute
 Product external interface requirements
 Data requirements
 User manuals
 Operational requirements
 Maintenance requirements
 General assumptions

94

• Defining Test Plan and Procedures: The various type
of testing performed in a product development are:
 Unit testing – Testing Individual modules
 Integration testing – Testing a group of modules for

required functionality
 System testing- Testing functional aspects or

functional requirements of the product after
integration

 User acceptance testing- Testing the product to
meet the end user requirements.

4. Design
• The design phase identifies application environment and

creates an overall architecture for the product.
• It starts with the Preliminary Design. It establishes the top

level architecture for the product. On completion it resembles
a ‘black box’ that defines only the inputs and outputs. The
final product is called Preliminary Design Document (PDD).

• Once the PDD is accepted by the End User the next task is
to create the ‘Detailed Design’.

• It encompasses the Operations manual design, Maintenance
Manual Design and Product Training material Design and is
together called the ‘Detailed Design Document’.

5. Development and Testing
• Development phase transforms the design into a realizable

product.
• The detailed specification generated during the design

phase is translated into hardware and firmware.

95

• The Testing phase can be divided into independent testing
of firmware and hardware that is:
 Unit testing
 Integration testing
 System testing
 User acceptance testing

6. Deployment
• Deployment is the process of launching the first fully

functional model of the product in the market.
• It is also known as First Customer Shipping (FCS).
• Tasks performed during this phase are:

• Notification of Product Deployment: Tasks performed
here include:
 Deployment schedule
 Brief description about the product
 Targeted end user
 Extra features supported
 Product support information

• Execution of training plan
Proper training should be given to the end user top
get them acquainted with the new product.

• Product installation
Install the product as per the installation document to
ensure that it is fully functional.

• Product post Implementation Review
After the product launch, a post implementation
review is done to test the success of the product.

7. Support
• The support phase deals with the operational and

maintenance of the product in the production environment.
• Bugs in the product may be observed and reported.
• The support phase ensures that the product meets the user

needs and it continues functioning in the production
environment.

• Activities involved under support are
 Setting up of a dedicated support wing: Involves

providing 24 x 7 supports for the product after it is
launched.

96

 Identify Bugs and Areas of Improvement: Identify
bugs and take measures to eliminate them.

8. Upgrades
• Deals with the development of upgrades (new versions) for

the product which is already present in the market.
• Product upgrade results as an output of major bug fixes.
• During the upgrade phase the system is subject to design

modification to fix the major bugs reported.

9. Retirement/Disposal
• The retirement/disposal of the product is a gradual process.
• This phase is the final phase in a product development life

cycle where the product is declared as discontinued from the
market.

• The disposal of a product is essential due to the following
reasons
 Rapid technology advancement
 Increased user needs

13.4 ELDC APPROACHES

Following are some of the different types of approaches that can be
used to model embedded products.

1. Waterfall or Linear Model
2. Iterative/ Incremental or Fountain Model
3. Prototyping Model
4. Spiral Model

13.5 REVIEW QUESTIONS

1. What is EDLC? Why is it needed? What are its objectives?
2. Draw an neat labeled diagram of the phases of the EDLC

and explain any two phases in detail.

13.6 REFERENCES & FURTHER READING

Introduction to Embedded systems – Shibu K. V

97

14

EDLC MODELS

Chapter Structure
107.0 Objectives
107.1 Introduction
107.2 Waterfall or Linear Model
107.3 Iterative/ Incremental or Fountain Model
107.4 Prototyping Model
107.5 Spiral Model
107.6 Review Questions
107.7 References & Further Reading

14.0 OBJECTIVES

After reading this chapter you will understand:
 Some EDLC Models like:
 Waterfall or Linear Model
 Iterative/ Incremental or Fountain Model
 Prototyping Model
 Spiral Model

14.1 INTRODUCTION

The previous chapters introduced the readers to what is
meant by EDLC. This chapter is meant to explain the various
models available under the EDLC.

14.2 WATERFALL MODEL

 Linear or waterfall model is the one adopted in most of the
olden systems.

 In this approach each phase of EDLC (Embedded
Development Product Lifecycle) is executed in sequence.

 It establishes analysis and design with highly structured
development phases.

 The execution flow is unidirectional.

98

 The output of one phase serves as the input of the next
phase

 All activities involved in each phase are well planned so that
what should be done in the next phase and how it can be
done.

 The feedback of each phase is available only after they are
executed.

 It implements extensive review systems To ensure the
process flow is going in the right direction.

 One significant feature of this model is that even if you
identify bugs in the current design the development process
proceeds with the design.

 The fixes for the bug are postponed till the support phase.
 Advantages

• Product development is rich in terms of:
 Documentation
 Easy project management
 Good control over cost & Schedule

 Drawbacks

• It assumes all the analysis can be done without doing
any design or implementation

• The risk analysis is performed only once.

• The working product is available only at the end of the
development phase

 Bug fixes and correction are performed only at the
maintenance/support phase of the life cycle.

99

Figure: Waterfall Model

14.3 ITERATIVE/ INCREMENTAL OR FOUNTAIN
MODEL

• Iterative and Incremental development is at the heart of a cyclic
software development process developed in response to the
weaknesses of the waterfall model.

• The iterative model is the repetitive process in which the
Waterfall model is repeated over and over to correct the
ambiguities observed in each iteration.

Figure: Iterative model

100

• The above figure illustrates the repetitive nature of the Iterative
model.

• The core set of functions for each group is identified in the first
cycle, it is then built, deployed and release. This release is
called as the first release.

• Bug fixes and modification for first cycle carried out in second
cycle.

• Process is repeated until all functionalities are implemented
meeting the requirements.

• Advantages
• Good development cycle feedback at each function/feature

implementation
• Data can be used as reference for similar product

development in future.
• More responsive to changing user needs.
• Provides working product model with at least minimum

features at the first cycle.
• Minimized Risk
• Project management and testing is much simpler compared

to linear model.
• Product development can be stopped at any stage with a

bare minimum working product.

• Disadvantages
• Extensive review requirement each cycle.
• Impact on operations due to new releases.
• Training requirement for each new deployment at the end of

each development cycle.
• Structured and well documented interface definition across

modules to accommodate changes

14.4 PROTOTYPING MODEL

• It is similar to iterative model and the product is developed in
multiple cycles.

• The only difference is that, Prototyping model produces a
refined prototype of the product at the end of each cycle

101

instead of functionality/feature addition in each cycle as
performed by the iterative model.

• There won’t be any commercial deployment of the prototype
of the product at each cycle’s end.

• The shortcomings of the proto-model after each cycle are
evaluated and it is fixed in the next cycle.

• After the initial requirement analysis, the design for the first
prototype is made, the development process is started.

• On finishing the prototype, it is sent to the customer for
evaluation.

• The customer evaluates the product for the set of
requirements and gives his/her feedback to the developer in
terms of shortcomings and improvements needed.

• The developer refines the product according to the
customer’s exact expectation and repeats the proto
development process.

• After a finite number of iterations, the final product is
delivered to the customer and launches in the
market/operational environment

• In this approach the product undergoes significant evolution
as a result of periodic shuttling of product information
between the customer and developer

• The prototyping model follows the approach-
• Requirement definition
• Proto-type development
• Proto-type evaluation
• Requirements refining

Figure: Prototyping Model

102

14.5 SPIRAL MODEL

• Spiral model is developed by Barry Boehm in 1988.
• The Product development starts with project definition and

traverse through all phases of EDLC(Embedded Product
Development Life Cycle).

• The activities involved are:
I. Determine objectives, alternatives, constraints
II. Evaluate alternatives, identify and resolve risks

III. Develop and test
IV. Plan

• It is a combines the concept of Linear Model and iterative
nature of Prototyping Model.

• Prototyping Model
• In prototyping after the requirement analysis the design

for the prototype is made and development process is
started.

• On finishing the prototype it is send to the customer for
evaluation ie. Judgment.

• After customer evaluation for the product the feedback is
taken from the customer in term of what improvement is
needed.

• Then developer refines the product according to the
customer expectation.

• Linear Model
• Spiral Model contains the concept of linear model, having

following type.
• Requirement
• Analysis
• Design
• Implementation

103

Figure: Spiral Model

1. Requirement:
• This process is focused specifically on embedded software,

to understand the nature of the software to be build and what
are the requirement for the software.

• And the requirement for both the system & the software is
documented & viewed to customer.

2. Analysis:
• Analysis is performed to develop a detailed functional

module under consideration.
• The product is defined in detailed with respect to the input,

processing & output.
• This phase emphasis on determining ‘what function must be

performed by the product’ & how to perform those function.

3. Design:
• Product design deals with the entire design of the product

taking the requirement into consideration.
• The design phase translates requirement into

representation.

4. Implementation:
• In this process the launching of first fully functional model of

the product in the market is done or handing over the model
to an end user/client

• In this product modifications are implemented & product is
made operational in production environment.

104

14.6 REVIEW QUESTIONS

1. Explain in detail the Waterfall or Linear Model
2. Explain in detail the Iterative/ Incremental or Fountain

Model
3. Explain in detail the Prototyping Model
4. Explain in detail the Spiral Model

14.7 REFERENCES & FURTHER READING

Introduction to Embedded systems – Shibu K. V

105

15
TRENDS IN EMBEDDED SYSTEMS

Chapter Structure
122.0 Objectives
122.1 Introduction
122.2 Processor Trends
122.3 Operating System Trends
122.4 Development Language Trends
122.5 Open Standards, Frameworks and alliances
122.6 Bottlenecks faced by Embedded Industry
122.7 Review Questions
122.8 References & Further Reading

15.0 OBJECTIVES

After reading this chapter you will understand:
 Different trends in the embedded industry related to:

• Processor Trends
• Operating System Trends
• Development Language Trends
• Open Standards, Frameworks and alliances
• Bottlenecks faced by Embedded Industry

15.1 INTRODUCTION

This concluding chapter describes the trends in the
embedded systems industry.

15.2 PROCESSOR TRENDS

• There have been tremendous advancements in the area of
processor design.

• Following are some of the points of difference between the first
generation of processor/controller and today’s processor/
controller.

106

o Number of ICs per chip: Early processors had a few
number of IC/gates per chip. Today’s processors with Very
Large Scale Integration (VLSI) technology can pack together
ten of thousands of IC/gates per processor.

o Need for individual components: Early processors need
different components like brown out circuit, timers,
DAC/ADC separately interfaced if required to be used in the
circuit. Today’s processors have all these components on
the same chip as the processor.

o Speed of Execution: Early processors were slow in terms
of number of instructions executed per second. Today’s
processor with advanced architecture support features like
instruction pipeline improving the execution speed.

o Clock frequency: Early processors could execute at a
frequency of a few MHz only. Today’s processors are
capable of achieving execution frequency in rage of GHz.

o Application specific processor: Early systems were
designed using the processors available at that time. Today
it is possible to custom create a processor according to a
product requirement.

• Following are the major trends in processor architecture in
embedded development.

A. System on Chip (SoC)
• This concept makes it possible to integrate almost all

functional systems required to build an embedded
product into a single chip.

• SoC are now available for a wide variety of diverse
applications like Set Top boxes, Media Players, PDA, etc.

• SoC integrate multiple functional components on the
same chip thereby saving board space which helps to
miniaturize the overall design.

B. Multicore Processors/ Chiplevel Multi Processor
• This concept employs multiple cores on the same

processor chip operating at the same clock frequency
and battery.

• Based on the number of cores, these processors are
known as:
o Dual Core – 2 cores

107

o Tri Core – 3 cores
o Quad Core – 4 cores

• These processors implement multiprocessing concept
where each core implements pipelining and
multithreading.

C. Reconfigurable Processors
• It is a processor with reconfigurable hardware features.

• Depending on the requirement, reconfigurable
processors can change their functionality to adapt to the
new requirement. Example: A reconfigurable processor
chip can be configured as the heart of a camera or that of
a media player.

• These processors contain an Array of Programming
Elements (PE) along with a microprocessor. The PE can
be used as a computational engine like ALU or a memory
element.

15.3 OPERATING SYSTEM TRENDS

• The advancements in processor technology have caused a
major change in the Embedded Operating System Industry.

• There are lots of options for embedded operating system to
select from which can be both commercial and proprietary or
Open Source.

• Virtualization concept is brought in picture in the embedded OS
industry which replaces the monolithic architecture with the
microkernel architecture.

• This enables only essential services to be contained in the
kernel and the rest are installed as services in the user space as
is done in Mobile phones.

• Off the shelf OS customized for specific device requirements
are now becoming a major trend.

15.4 DEVELOPMENT LANGUAGE TRENDS

There are two aspects to Development Languages with
respect to Embedded Systems Development

108

A. Embedded Firmware
• It is the application that is responsible for execution of

embedded system.

• It is the software that performs low level hardware
interaction, memory management etc on the embedded
system.

B. Embedded Software
• It is the software that runs on the host computer and is

responsible for interfacing with the embedded system.

• It is the user application that executes on top of the
embedded system on a host computer.

Early languages available for embedded systems development
were limited to C & C++ only. Now languages like Microsoft C$,
ASP.NET, VB, Java, etc are available.

A. Java
• Java is not a popular language for embedded systems

development due to its nature of execution.

• Java programs are compiled by a compiler into bytecode.
This bytecode is then converted by the JVM into processor
specific object code.

• During runtime, this interpretation of the bytecode by the
JVM makes java applications slower that other cross
compiled applications.

• This disadvantage is overcome by providing in built
hardware support for java bytecode execution.

Figure: Java based Embedded Application Development

109

• Another technique used to speed up execution of java
bytecode is using Just In Time (JIT) compiler. It speeds up
the program execution by caching all previously executed
instruction.

• Following are some of the disadvantage of Java in
Embedded Systems development:

o For real time applications java is slow
o Garbage collector of Java is non-deterministic in

behavior which makes it not suitable for hard real time
systems.

o Processors need to have a built in version of JVM
o Those processors that don’t have JVM require it to be

ported for the specific processor architecture.
o Java is limited in terms of low level hardware handling

compared to C and C++
o Runtime memory requirement of JAVA is high which

is not affordable by embedded systems.

B. .NET CF
• It stands for .NET Compact Framework.

• .NET CF is a replacement of the original .NET framework to
be used on embedded systems.

• The CF version is customized to contain all the necessary
components for application development.

• The Original version of .NET Framework is very large and
hence not a good choice for embedded development.

• The .NET Framework is a collection of precompiled libraries.

• Common Language Runtime (CLR) is the runtime
environment of .NET. It provides functions like memory
management, exception handling, etc.

• Applications written in .NET are compiled to a platform
neutral language called Common Intermediate Language
(CIL).

• For execution, the CIL is converted to target specific
machine instructions by CLR.

110

Figure: .NET based Embedded Application Development

15.5 OPEN STANDARDS, FRAMEWORKS AND
ALLIANCES

Standards are necessary for ensuring interoperability. With
diverse market it is essential to have formal specifications to ensure
interoperability.

Following are some of the popular strategic alliances, open
source standards and frameworks specific to the mobile handset
industry.

A. Open Mobile Alliance (OMA)
• It is a standard body for creating open standards for mobile

industry.
• OMA is the Leading Industry Forum for Developing Market

Driven – Interoperable Mobile Service Enablers
• OMA was formed in June 2002 by the world’s leading mobile

operators, device and network suppliers, information
technology companies and content and service providers.

• OMA delivers open specifications for creating interoperable
services that work across all geographical boundaries, on
any bearer network. OMA’s specifications support the
billions of new and existing fixed and mobile terminals
across a variety of mobile networks, including traditional
cellular operator networks and emerging networks
supporting machine-to-machine device communication.

• OMA is the focal point for the development of mobile service
enabler specifications, which support the creation of
interoperable end-to-end mobile services.

• Goals of OMA
• Deliver high quality, open technical specifications based

upon market requirements that drive modularity, extensibility,
and consistency amongst enablers to reduce industry
implementation efforts.

111

• Ensure OMA service enabler specifications provide
interoperability across different devices, geographies,
service providers, operators, and networks; facilitate
interoperability of the resulting product implementations.

• Be the catalyst for the consolidation of standards activity
within the mobile data service industry; working in
conjunction with other existing standards organizations and
industry fora to improve interoperability and decrease
operational costs for all involved.

• Provide value and benefits to members in OMA from all
parts of the value chain including content and service
providers, information technology providers, mobile
operators and wireless vendors such that they elect to
actively participate in the organization.

(Source : http://www.openmobilealliance.org)

B. Open Handset Alliance (OHA)
• The Open Handset Alliance is a group of 84 technology and

mobile companies who have come together to accelerate
innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience. Together they
have developed Android™, the first complete, open, and free
mobile platform and are committed to commercially deploy
handsets and services using the Android Platform.

• Members of OHA include mobile operators, handset
manufacturers, semiconductor companies, software
companies, and commercialization companies.
(Source : http://www.openhandsetalliance.com/)

C. Android
• Android is an operating system based on the Linux kernel,

and designed primarily for touchscreen mobile devices such
as smartphones and tablet computers.

• Initially developed by Android, Inc., which Google supported
financially and later bought in 2005, Android was unveiled in
2007 along with the founding of the Open Handset Alliance:
a consortium of hardware, software, and telecommunication
companies devoted to advancing open standards for mobile
devices.

• The first publicly-available Smartphone to run Android, the
HTC Dream, was released on October 18, 2008

Source:
http://en.wikipedia.org/wiki/Android_(28operating_system)

http://www.openmobilealliance.org
http://www.openhandsetalliance.com/

112

D. Openmoko
• Openmoko is a project to create a family of open source

mobile phones, including the hardware specification and the
operating system.

• The first sub-project is Openmoko Linux, a Linux-based
operating system designed for mobile phones, built using
free software.

• The second sub-project is developing hardware devices on
which Openmoko Linux runs.

(Source: http://en.wikipedia.org/wiki/Openmoko)

15.6 Bottlenecks faced by Embedded Industry

Following are some of the problems faced by the
embedded devices industry:

A. Memory Performance
• The rate at which processors can process may have

increased considerably but rate at which memory speed is
increasing is slower.

B. Lack of Standards/ Conformance to standards
• Standards in the embedded industry are followed only in

certain handful areas like Mobile handsets.
• There is growing trend of proprietary architecture and

design in other areas.

C. Lack of Skilled Resource
• Most important aspect in the development of embedded

system is availability of skilled labor. There may be
thousands of developers who know how to code in C, C++,
Java or .NET but very few in embedded software.

15.7 REVIEW QUESTIONS

1. Write a short note on Processor Trends in Embedded Systems
2. Explain the Embedded Operating System Trends
3. Write Short notes on Embedded Development Language Trends
4. Explain Open Standards, Frameworks and alliances
5. Write short note on Bottlenecks faced by Embedded Industry

15.8 REFERENCES & FURTHER READING

Introduction to Embedded systems – Shibu K. V

http://en.wikipedia.org/wiki/Android_
http://en.wikipedia.org/wiki/Openmoko

