2015 (I)
 ENGINEERING SCIENCES TEST BOOKLET

SUBJECT CODE BOOKLET CODE

Time : 3:00 Hours
Maximum Marks: 200

INSTRUCTIONS

1. This Test Booklet contains one hundred and fifteen (20 Part' A ' +25 Part ' B ' +70 Part 'C') Multiple Choice Questions (MCQs). You are required to answer a maximum of 15 , 20 and 20 questions from part ' A ' ' B ' and ' C ' respectively. If more than required number of questions are answered, only first 15, 20, 20 questions in Parts ' A ' ' B ' and ' C ' respectively, will be taken up for evaluation.
2. OMR answer sheet has been provided separately. Before you start filling up your particulars, please ensure that the booklet contains requisite number of pages and that these are not torn or mutilated. If it is so, you may request the Invigilator to change the booklet of the same code. Likewise, check the OMR answer sheet also. Sheets for rough work have been appended to the test booklet.
3. Write your Roll No., Name and Serial Number of this Test Booklet on the OMR answer sheet in the space provided. Also put your signatures in the space earmarked.
4. You must darken the appropriate circles with a black ball pen related to Roll Number, Subject Code, Booklet Code and Centre Code on the OMR answer sheet. It is the sole responsibility of the candidate to meticulously follow the instructions given on the Answer Sheet, failing which, the computer shall not be able to decipher the correct details which may ultimately result in loss, including rejection of the OMR answer sheet.
5. Each question in Part ' A ' carries 2 marks, Part ' B ' 3.5 marks and Part ' C ' 5 marks respectively. There will be negative marking @ 25% for each wrong answer.
6. Below each question in Part ' A ', ' B ' and ' C ' four alternatives or responses are given. Only one of these alternatives is the "correct" option to the question. You have to find, for each question, the correct or the best answer.
7. Candidates found copying or resorting to any unfair means are liable to be disqualified from this and future examinations.
8. Candidate should not write anything anywhere except on answer sheet or sheets for rough work.
9. Use of scientific calculator without data connectivity is permitted.
10. After the test is over, at the perforation point, tear the OMR answer sheet, hand over the original OMR answer sheet to the invigilator and retain the carbonless copy for your record.
11. Candidates who sit for the entire duration of the exam will only be permitted to carry their Test booklet.

I have verified all the information filled in by the candidate.
Name \qquad

ROUGH WORK

PART 'A'

1. Each of the following pairs of words
hides a number, based on which you can arrange them in ascending order.
Pick the correct answer:
I. Cloth reel
J. Silent wonder
K. Good tone
L. Bronze rod
2. L, K, J, I
3. I, J, K, L
4. K, L, J, I
5. K, J, I, L
6. Which of the following values is same as $2^{2^{2^{2}}}$?
7. 2^{6}
8. 2^{8}
9. 2^{16}
10. 2^{222}
11. A $12 \mathrm{~m} \times 4 \mathrm{~m}$ rectangular roof is resting on four 4 m tall thin poles. Sunlight falls on the roof at an angle of 45° from the east, creating a shadow on the ground. What will be the area of the shadow?
12. $24 \mathrm{~m}^{2}$
13. $36 \mathrm{~m}^{2}$
14. $48 \mathrm{~m}^{2}$
15. $60 \mathrm{~m}^{2}$
16. If

Here a, b, c and d are digits.
Then $\mathrm{a}+\mathrm{b}=$

1. 4
2. 9
3. 11
4. 16
5. The maximum number of points formed by intersection of all pairs of diagonals of convex octagon is
6. 70
7. 400
8. 120
9. 190
10. Find the height of a box of base area 24 $\mathrm{cm} \times 48 \mathrm{~cm}$, in which the longest stick that can be kept is 56 cm long.
11. 8 cm
12. 32 cm
13. 37.5 cm
14. 16 cm
15. The product of the perimeter of a triangle, the radius of its in-circle, and a number gives the area of the triangle. The number is
16. $1 / 4$
17. $1 / 3$
18. $1 / 2$
19. 1
20. An infinite row of boxes is arranged. Each box has half the volume of the previous box. If the largest box has a volume of 20 cc , what is the total volume of all the boxes'?
21. Infinite
22. 400 cc
23. 40 cc
24. 80 cc
25. Find the missing element based on the given pattern
A. σ
B.
C. \bigcirc
A. \square
B. \square
C. ?
1.2.
3.4.
26. By reading the accompanying graph, determine the INCORRECT statement out of the following.

27. Melting point increases with pressure
28. Melting point decreases with pressure
29. Boiling point increases with pressure
30. Solid, liquid and gas can co-exist at the same pressure and temperature
31. If you change only one observation from a set of 10 observations, which of the following will definitely change?
32. Mean
33. Median
34. Mode
35. Standard deviation
36. A man starts his journey at 0100 Hrs local time to reach another country at 0900 Hrs local time on the same date. He starts a return journey on the same night at 2100 Hrs local time to his original place, taking the same time to travel back. If the time zone of his country of visit lags by 10 hours, the duration for which the man was away from his place is
37. 48 hours
38. 20 hours
39. 25 hours
40. 36 hours
41. Let r be a positive number satisfying

$$
r^{(1 / 1234)}+r^{(-1 / 1234)}=2
$$

Then

$$
r^{4321}+r^{-4321}=?
$$

1. 2
2. $2^{(4321 / 1234)}$
3. 2^{3087}
4. 2^{1234}
5. A float is drifting in a river, 10 m downstream of a boat that can be rowed at a speed of $10 \mathrm{~m} /$ minute in still water. If the boat is rowed downstream, the time taken to catch up with the float
6. will be 1 minute
7. will be more than 1 min
8. will be less than 1 min
9. can be determined only if the speed of the river is known
10. $A B C$ is a right angled triangle inscribed in a semicircle. Smaller semicircles are drawn on sides BC and AC. If the area of the triangle is a, what is the total area of the shaded lumes?

11. a
12. πa
13. a / π
14. $a / 2 \pi$
15. An ant can lift another ant of its size whereas an elephant cannot lift another elephant of its size, because
16. ant muscle fibres are stronger than elephant muscle fibres.
17. ant has proportionately thicker legs than elephant
18. strength scales as the square of the size while weight scales as cube of the size
19. ants work cooperatively, whereas elephants work as individuals
20. Consider a series of letters placed in the following way:

$$
\mathrm{U} _\mathrm{G} _ \text {_C_C_S_I_R}
$$

Each letter moves one step to its right and the extreme right letter takes the first position, completing one operation. After which of the following numbers of operations do the Cs not sit side by side?

1. 3
2. 10
3. 19
4. 25
5. An inclined plane rests against a horizontal cylinder of radius R. If the plane makes an angle of 30° with the ground, the point of contact of the plane with the cylinder is at a height of
6. $1.500 R$
7. $1.866 R$
8. $1.414 R$
9. $1.000 R$
10. What is the maximum number of parallel, non-overlapping cricket pitches (length 24 m , width 3 m) that can be laid in a field of diameter 140 m , if the boundary is required to be at least 60 m from the centre of any pitch?
11. 6
12. 7
13. 12
14. 4
15. In a fast moving car with open windows, the driver feels a continuous incoming breeze. The pressure inside the car, however, does not keep increasing because,
16. air coming in from the front window goes out from the rear.
17. air comes in as well as goes out through every window but the driver only feels the incoming one.
18. no air actually comes in and the feeling of breeze is an illusion.
19. cool air reduces the temperature therefore the pressure does not increase.

PART 'B'

MATHEMATIC

21. Let $A=\left(\begin{array}{cccc}1 & 2 & -3 & 4 \\ 2 & 5 & -2 & 1 \\ 5 & 12 & -7 & 6\end{array}\right)$. Consider
the system of equations $A\left(\begin{array}{l}x \\ y \\ z \\ t\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 7\end{array}\right)$.
Then the rank of A is
22. 3 and the above system has a solution
23. 3 and the above system has NO solution
24. 2 and the above system has a solution
25. 2 and the above system has NO solution
26. Let $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & -5 \\ 0 & \alpha & -2\end{array}\right)$ for some $\alpha \in \mathbb{R}$. Suppose there exists a 3×3 matrix P such that
$P^{-1} A P=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3\end{array}\right)$. Then the value of α is
27. -1
28. 0
29. 1
30. 3
31. Let $a_{1}=1$ and $a_{n+1}=a_{n}+3$ for $n \geq$ 1. Then the series
$\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}+3\right)\left(a_{n+1}+3\right)}$ converges to
32. 3
33. $\frac{1}{3}$
34. 12
35. $\frac{1}{12}$
36. Consider the following improper integrals
$I_{1}=\int_{1}^{\infty} \frac{e^{t}}{t^{2}} d t$ and $I_{2}=\int_{1}^{\infty} \frac{e^{-t}}{t} d t$.
Then
37. I_{1} converges but NOT I_{2}
38. I_{2} converges but NOT I_{1}
39. both I_{1} and I_{2} converge
40. neither I_{1} nor I_{2} converges
41. Let $f(x, y)=y^{2}+2 x^{2} y$ for all
$(x, y) \in \mathbb{R}^{2}$. Then f has a local minimum
42. at $(0,0)$ but NOT at $(1,0)$
43. at $(1,0)$ but NOT at $(0,0)$
44. at both $(0,0)$ and $(1,0)$
45. neither at $(0,0)$ nor at $(1,0)$
46. Let C be the boundary of the region $\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+y^{2} \leq 1\right\}$. Then the value of the line integral

$$
\begin{gathered}
\oint_{C}\left(3 x^{2} y+\sin ^{2} x\right) d x+\left(x^{3}+2 x\right. \\
\left.+\cos ^{2} y\right) d y
\end{gathered}
$$

along the counter-clockwise direction is

1. π
2. 2π
3. 3π
4. 4π
5. Let Γ be a circle centred at zero on $\mathbb{C} \backslash\{0\}$. The value of
$\int_{\Gamma}\left(\sin \frac{1}{z}+\sin ^{2} \frac{1}{z}\right) d z$ is equal to
6. 0
7. πi
8. $2 \pi i$
9. $4 \pi i$
10. Consider the initial value problem $y^{\prime}+\left(\frac{y}{x}\right)^{2}-\frac{y}{x}=0$ on $[1, \infty)$ with the initial condition $y(1)=\frac{1}{\ln 2}$. If x_{0} satisfies $y\left(x_{0}\right)=x_{0}$ then x_{0} is
11. e
12. $\frac{e}{2}$
13. $e-1$
14. $e+1$
15. Consider the initial value problem $y^{\prime \prime}+4 y^{\prime}+4 y=0$ with the initial conditions $y(0)=1$ and $y^{\prime}(0)=-1$. The value of $\frac{y(\ln 2)}{1+\ln 2}$ is
16. $\frac{1}{4}$
17. 4
18. e^{-4}
19. 1
20. A fair coin is flipped five times. The probability of occurrence of 2 or 3 heads is
21. $\frac{3}{8}$
22. $\frac{1}{2}$
23. $\frac{1}{4}$
24. $\frac{5}{8}$

ENGINEERING APTITUDE

31. A Carnot engine operates between two reservoirs at $500^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. It rejects $250 \mathrm{~kJ} /$ cycle. The work developed/cycle is
32. 268 kJ
33. 518 kJ
34. 1000 kJ
35. 1250 kJ
36. Following statements are made for an ideal Otto cycle
(a) All the processes are internally reversible.
(b) Efficiency increases with the maximum temperature
(c) Efficiency does not depend on the type of gas executing the cycle
(d) The gas temperature becomes maximum after compression.
37. (a) and (b) are true
38. (a) and (c) are true
39. (a) and (d) are true
40. (c) and (d) are true
41. Water is sprayed in air with a relative humidity of 50% in an adiabatic constant pressure process. Indicate the correct statement.
42. Dry bulb temperature decreases but wet bulb temperature increases.
43. Dry bulb temperature decreases but wet bulb temperature remains constant.
44. Dry bulb temperature decreases but relative humidity remains constant.
45. Both dry bulb temperature and dew point temperature decreases.
46. The energy gap of GaAs is $\mathrm{E}_{\mathrm{g}}=1.42 \mathrm{eV}$ and experimental values for the effective densities of states at the bottom of conduction band $\left(E_{C}\right)$ and the top of valance band $\left(E_{V}\right)$, at room temperature, respectively, are $N_{C}=4.7 \times 10^{17} \mathrm{~cm}^{-3}$ and $N_{V}=4.7 \times 10^{18} \mathrm{~cm}^{-3}$. The thermal voltage at room temperature is
$V_{T}=\frac{K T}{q}=26 \mathrm{mV}$. Concerning the position of Fermi level $\left(E_{F}\right)$ of intrinsic GaAs at room temperature, which one of the following statements is true?
47. $E_{F}-E_{V}=0.710 \mathrm{eV}$
48. $E_{C}-E_{F}=0.675 \mathrm{eV}$
49. $E_{F}-E_{V}=0.675 \mathrm{eV}$
50. $E_{C}-E_{F}=0.745 \mathrm{eV}$
51. For the oscillator circuit shown, the OPAMP supply voltage is $\pm 20 \mathrm{~V}, R=$ $400 \mathrm{k} \Omega$ and $\mathrm{C}=100 \mathrm{pF}$. The zener diode has a breakdown voltage of 6.8 V and a forward voltage drop of 0.7 V . The frequency and amplitude of output voltage (v_{0}) are

52. 1.625 kHz and 7.5 V
53. $\quad 3.980 \mathrm{kHz}$ and 13.6 V
54. 10.210 kHz and 7.5 V
55. 25 kHz and 13.6 V
56. The Miller indices of the plane OLMN shown in the adjacent figure is

57. (012)
58. $\left(\begin{array}{lll}0 & 1 & \overline{2})\end{array}\right.$
59. $(0 \overline{1} 2)$
60. $\left(\begin{array}{lll}0 & 2 & \overline{1})\end{array}\right.$
61. Match the following
(a) Stress 'inverse
(i) Basquìn square root of crack length'
(b) S-N curve
(c) Crack growth rate curve
(d) Stress 'inverse square root of
(ii) Paris equation
(iii) Griffith equation
(iv) Hall-petchequation grain size'
62. (a) - (i), (b) - (ii), (c) - (iii), (d) - (iv)
63. (b) - (i), (c) - (ii), (d) - (iv), (a) - (iii)
64. (c) - (i), (d) - (ii), (a) - (iii), (b) - (iv)
65. (d) - (iv), (a) - (i), (b) - (iii), (c) - (ii)
66. In a linear and isotropic medium, the current density J is proportional to $2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$. The magnetic flux density B is given by $\left(x+C_{1} z\right) \hat{\imath}+(x-3 z) \hat{\jmath}+$ $\left(x+C_{2} y+C_{3} z\right) \hat{k}$, where $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are constants. Assuming no time varying electric fields, the value of these constants are
67. $C_{1}=1 \quad C_{2}=1 \quad C_{3}=-0$
68. $C_{1}=-2 \quad C_{2}=-1 \quad C_{3}=-1$
69. $C_{1}=4 \quad C_{2}=5 \quad C_{3}=-1$
70. $C_{1}=1 \quad C_{2}=1 \quad C_{3}=-1$
71. The standing wave ratio on a lossless 50 Ω transmission line terminated in an unknown load impedance is found to be 4. The distance between successive voltage minima is 25 cm and the first minima is located 10 cm from the load. The load impedance is
72. $13.74+\mathrm{j} 15.15$
73. $18.48+\mathrm{j} 33.01$
74. $32.29+\mathrm{j} 57.66$
75. $82.13+\mathrm{j} 90.58$
76. A positive point charge Q is located at a distance d from the centre of a grounded conducting sphere of radius a as shown in the figure. The force on Q caused by the charges induced on the sphere is

77. 0
78. $\frac{Q^{2}}{4 \pi \epsilon_{0}} \frac{d}{\left(d^{2}-a^{2}\right)^{3 / 2}}$ towards the sphere
79. $\frac{Q^{2}}{4 \pi \epsilon_{0}} \frac{a d}{\left(d^{2}-a^{2}\right)^{2}}$ towards the sphere
80. $\frac{Q^{2}}{4 \pi \epsilon_{0}} \frac{a d^{2}}{\left(d^{2}-a^{2}\right)^{2}}$ towards the sphere
81. A simply supported beam is loaded as shown in the figure. Find the magnitude of bending moment (BM) and shear force (SF) at the mid-span.

82. $\mathrm{BM}=\frac{P L}{12} ; S F=\frac{P}{2}$
83. $\mathrm{BM}=\frac{P L}{12} ; S F=\frac{2 P}{3}$
84. $\mathrm{BM}=0 ; S F=\frac{2 P}{3}$
85. $\mathrm{BM}=0 ; S F=\frac{P}{3}$
86. For the system shown, what is the natural frequency for small amplitudes of oscillations? The rod is uniform and has mass m.

87. $\sqrt{\frac{9 k}{2 m}-\frac{3 g}{2 L}}$
88. $\sqrt{\frac{9 k}{2 m}+\frac{3 g}{2 L}}$
89. $\sqrt{\frac{3 g}{2 L}-\frac{9 k}{2 m}}$
90. $2 \sqrt{\frac{9 k}{2 m}-\frac{3 g}{2 L}}$
91. Considering the case of both the blocks shown slide together on the surface C , find the smallest value of the weight D that will cause the loss of static friction. Assume the coefficient of static friction between block A and B is 0.6 and the block B and the surface C as 0.4 . Assume that block B does not slide over surface C..

92. 26.2 kg
93. 7.2 kg
94. 5.8 kg
95. 18 kg
96. A turbulent flow is highly random and chaotic. Description for a typical
turbulent velocity signal refers to one of the following true statements.
97. The turbulent velocity signal is deterministic and repeatable.
98. The mean and variance of the turbulent velocity signal is deterministic and is repeatable.
99. The turbulent flow is purely sinusoidal.
100. The turbulent velocity signal is statistically non-deterministic.
101. Consider the velocity field $\vec{V}=A x \hat{\imath}-A y \hat{\jmath}$, where $\mathrm{A}=0.1 \mathrm{~s}^{-1}$ and the coordinates are measured in meters. A square element is marked in the fluid at initial time. With the evolution of time, the square element will become
102. Rectangle with x -dimension greater than y-dimension.
103. Parallelogram with non-orthogonal edges.
104. Rectangle with x -dimension less than y dimension.
105. Rectangular hyperbola.

PART 'C'

COMPUTER SCIENCE

46. What is printed by the following program?
\#include <stdio. h>
void check();
int $\mathrm{a}=5$;
int main()
$\{\mathrm{a}+=4$;
check();
return 0 ;
\}
void check()

$$
\{++\mathrm{a} ;
$$

$$
\operatorname{printf}(" \mathrm{a}=\% \mathrm{~d} ", \mathrm{a}) \text {; }
$$

$$
\}
$$

1. $\mathrm{a}=5$
2. $a=9$
3. $\mathrm{a}=6$
4. $\mathrm{a}=10$
5. A node of a rooted binary tree is said to have preorder number i, if the node occurs in the $i^{\text {th }}$ position in the preorder traversal sequence. The notions of postorder number and inorder number are defined in a similar manner. We use the notations $\operatorname{PRE}(X), \operatorname{POST}(X)$ and $I N$ (X) to denote the preorder number, postorder number and Inorder number of a node X respectively. Consider the following tree:

For the tree given above, which of the following is TRUE.

1. $\quad(\operatorname{PRE}(\mathrm{A}), \operatorname{POST}(\mathrm{H}), \mathrm{IN}(\mathrm{F}))=(1,4,9)$
2. $\quad(\operatorname{PRE}(\mathrm{B}), \operatorname{POST}(\mathrm{I}), \mathrm{IN}(\mathrm{D})) \quad=(2,6,1)$
3. $(\operatorname{PRE}(\mathrm{C}), \operatorname{POST}(\mathrm{D}), \mathrm{IN}(\mathrm{E}))=(10,3,6)$
4. $\quad(\operatorname{PRE}(\mathrm{J}), \operatorname{POST}(\mathrm{K}), \mathrm{IN}(\mathrm{G}))=(7,5,3)$
5. Assume that the symbols Λ, V, \neg, and \rightarrow denote logical AND, OR, NOT and implication respectively. The logical expression $\neg((p V q) \rightarrow r)$ is logically equivalent to
6. $(\mathrm{q} \Lambda \mathrm{r}) \rightarrow \neg r$
7. $(\mathrm{p} \Lambda q) \Lambda \neg r$
8. $(\mathrm{p} V \mathrm{q}) \Lambda \neg r$
9. $(\mathrm{q} V p) \rightarrow \neg r$
10. A question paper consists of 10 questions with 5 questions in Part A and 5 questions in Part B. A student must answer 7 out of these 10 questions with at least 3 selected from Part A. The number of ways in which the student can complete the examination is:
11. 70
12. $\binom{10}{7}=120$
13. 105
14. 110
15. The cost of minimum cost spanning tree of the following graph is:
16. 72
17. 73
18. 74
19. 75

20. The number of digits in the binary equivalent of $(10000000000)_{3}$ is:
21. $\left\lfloor 9 \log _{2}(3)\right\rfloor+1$
22. $\left\lfloor 10 \log _{2}(3)\right\rfloor+1$
23. $\left\lceil 10 \log _{2}(3)\right\rceil+1$
24. $\left\lfloor 9 \log _{3}(2)\right\rfloor+1$
25. SDRAM cells are arranged in 8 K rows and it takes 4 clock cycles to read each row. At a clock rate of 1.33 GHz , the refresh overhead in each $64-\mathrm{ms}$ time interval is:
26. 0.038
27. 0.0038
28. 0.00038
29. 0.000038
30. The following is a set of processes that arrive at time 0 (with the given CPU burst time):
$P_{1}: 5 \mathrm{~ms}, \mathrm{P}_{2}: 9 \mathrm{~ms}, \mathrm{P}_{3}: 7 \mathrm{~ms}$. Assume that the order in which these processes are processed is $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$.
The average waiting time of the processes if Round - Robin scheduling mechanism is used with a time quantum of 4 ms , assuming the order of processes to be $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$ is:
31. 11 ms
32. 10 ms
33. 21 ms
34. $21 / 3 \mathrm{~ms}$
35. Let $R=(A, B, C)$ \& let r_{1} \& r_{2} both be relations on schema R.

The SQL expression
Select *
From rl
Where (A,B,C) in (select * from r2)
Is equivalent to:

1. $r_{1}-r_{2}$
2. $r_{1} \cap r_{2}$
3. $r_{1} \cup r_{2}$
4. $r_{2}-r_{1}$
5. The cyclomatic complexity for a connected flow graph, with 11 flow graph edges and 8 flow graph nodes is:
6. 3
7. 5
8. 88
9. 19

ELECTRICAL SCIENCE

56. Consider the bridge rectifier with source inductance L_{s} as shown in figure. Assuming that the load current I_{d} is smooth and ripple free, the dc output voltage $\left(V_{d}\right)$ of the rectifier is
57. $\frac{V_{m}}{\pi}\left(1-\frac{\omega L_{s}}{V_{m}} I_{d}\right)$
58. $\frac{2 V_{m}}{\pi}\left(1-\frac{\omega L_{S}}{V_{m}} I_{d}\right)$
59. $\frac{V_{m}}{\pi}\left(1-\frac{\omega L_{S}}{2 V_{m}} I_{d}\right)$
60. $\frac{2 V_{m}}{\pi}\left(1-\frac{\omega L_{s}}{2 V_{m}} I_{d}\right)$

61. The current and voltage sources shown in figure are ideal. The power delivered by the 2 A current source is

62. 0 W
63. 10 W
64. 20 W
65. 40 W
66. In the figure, the voltage across the inductor is 25 V . Then peak value (Vm) of supply voltage is

67. 8.84 V
68. 12.5 V
69. 17.68 V
70. 25 V
71. Consider a unity negative feedback system having open loop transfer function $G(s)=\frac{K\left(s^{2}-2 s+2\right)}{(s+1)(s+2)(s+3)}$ where $\mathrm{K}>0$. The root locus for the system intersects the imaginary axis at the points
72. $\mathrm{j} 1.0,-\mathrm{j} 1.0$
73. $\mathrm{j} 1.2,-\mathrm{j} 1.2$
74. $\mathrm{j} 2.2,-\mathrm{j} 2.2$
75. $\mathrm{j} 4.6,-\mathrm{j} 4.6$
76. Consider a unity negative feedback system having open loop transfer function $\mathrm{G}(\mathrm{s})=\frac{8}{\mathrm{~s}(\mathrm{~s}+1)(2 \mathrm{~s}+1)}$. The number of clockwise encirclements of $-1+\mathrm{j} 0$ point by the Nyquist plot of the above system is
77. 0
78. 1
79. 2
80. 3
81. A 3 phase $11 \mathrm{kV}, 50 \mathrm{~Hz}$ generator feeds a load of 50 MW at unity power factor through a short transmission line of reactance 0.2 pu with respect to base of $100 \mathrm{MVA}, 11 \mathrm{kV}$. Neglecting line resistance, the amount of reactive power in MVAR injected at the load end to keep the load end voltage at 11 kV is
82. -2.506
83. 0
84. 2.506
85. 25.06
86. A $10 \mathrm{MVA}, 6.6 \mathrm{kV}$ generator has following sequence reactances $X_{1}=X_{2}=0.2 \mathrm{pu}$ and $\mathrm{X}_{0}=0.05$ pu. A L-L fault occurs between phase b and c of the generator running at no load and at rated voltage. The voltage in the healthy phase in kV is
87. 0
88. 1.904
89. 3.81
90. 6.6
91. A 3 phase transmission line has flat horizontal spacing of 2 m between adjacent conductors. The radius of each conductor is 0.5 cm . At certain instant, the charges on the center conductor and on one of the outside conductors are identical and the voltage drop between these identically charged conductors is 600 V . Neglecting the effect of ground, the value of the identical charge in $\mu \mathrm{C} / \mathrm{km}$ at the instant specified is
92. 11.34
93. $\quad 13.90$
94. 24.08
95. 30.10
96. A 220 V DC shunt motor has an armature circuit resistance of 0.2Ω and field resistance of 110Ω. At no load, the motor takes 5 A and runs at 1500 rpm . The rotational losses at no load and full load are the same. If the motor draws 52 A at rated voltage and rated load, neglecting armature reaction, approximate value of the motor speed in rpm is
97. 1400
98. 1436
99. 1470
100. 1500
101. A load of 11Ω is connected to two 1 - phase ideal transformers T_{1} and T_{2} as shown in figure. The input power to the primary is
102. 54 W
103. 891 W
104. 1100 W
105. 1500 W

MATERIALS SCIENCE

66. Silicon carbide has zinc blende structure. The atomic radii for silicon and carbon are 0.118 and 0.071 nm , respectively. The atomic weights of Si and C are 28.09 and 12.01, respectively. The atomic packing factor and the density of SiC are:
67. 0.40 and $3.21 \mathrm{~g} / \mathrm{cm}^{3}$
68. $\quad 0.62$ and $2.24 \mathrm{~g} / \mathrm{cm}^{3}$
69. 0.28 and $2.24 \mathrm{~g} / \mathrm{cm}^{3}$
70. $\quad 0.31$ and $3.21 \mathrm{~g} / \mathrm{cm}^{3}$
71. The flux of carbon atoms during its steady state diffusion while carbonizing a steel plate on one side and decarburizing it on the other side is $2 \times 10^{-10} \mathrm{~g} / \mathrm{cm}^{2}-\mathrm{s}$. The diffusion co-efficient of carbon in steel at the carburizing temperature is $2.8 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}$. If the concentration of carbon at a depth of 10 mm beneath the carburizing surface is $0.75 \mathrm{~kg} / \mathrm{m}^{3}$, the concentration of carbon at a depth of 2 mm from the surface is closest to:
72. $0.80 \mathrm{~kg} / \mathrm{m}^{3}$
73. $\quad 1.20 \mathrm{~kg} / \mathrm{m}^{3}$
74. $\quad 1.32 \mathrm{~kg} / \mathrm{m}^{3}$
75. $2.10 \mathrm{~kg} / \mathrm{m}^{3}$
76. The cooling cure of a $\mathrm{Pb}-\mathrm{Sn}$ alloy shows that the first solid nucleates at $250^{\circ} \mathrm{C}$. The isothermal line at $250^{\circ} \mathrm{C}$ touches the liquidus line corresponding to Sn content of $30 \mathrm{wt} \%$. The amount of the solid phase which is formed prior to eutectic reaction is closest to:
77. $f_{\alpha}=25 \%$
78. $f_{\alpha}=75 \%$
79. $f_{\alpha}=10 \%$
80. $f_{\alpha}=5 \%$

81. 5 g of a powder (with apparent density of $4.3 \mathrm{~g} / \mathrm{cm}^{3}$) is fed into a compaction die having 10 mm diameter. The powder is then compacted to a green density of $6.6 \mathrm{~g} / \mathrm{cm}^{3}$ using an uniaxial single action press (pressing by upper punch only). Assuming no mass loss and neglecting elastic spring back effect during compaction, the upper punch will travel by a height of:
82. 5.16 mm
83. $\quad 9.65 \mathrm{~mm}$
84. 14.81 mm
85. 15.35 mm
86. The elastic modulii of Al and SiC fibers are 69.0 GPa and 406.0 GPa , respectively, and the corresponding densities are $2.70 \mathrm{Mg} / \mathrm{m}^{3}$ and $3.05 \mathrm{Mg} / \mathrm{m}^{3}$, respectively. The specific modulus for an Al-matrix with $20 \mathrm{vol} \%$ of aligned continuous SiC fiber is:
87. $10.1 \mathrm{GPa} / \mathrm{Mg} / \mathrm{m}^{3}$
88. $\quad 3.4 \mathrm{GPa} / \mathrm{Mg} / \mathrm{m}^{3}$
89. $49.2 \mathrm{GPa} / \mathrm{Mg} / \mathrm{m}^{3}$
90. $84.4 \mathrm{GPa} / \mathrm{Mg} / \mathrm{m}^{3}$
91. At 300 K calculate the density of conduction electrons in a silicon wafer doped with $2 \times 10^{16} / \mathrm{cm}^{3}$ of Boron. (Intrinsic carrier density of Si at 300 K is $9.65 \times 10^{9} / \mathrm{cm}^{3}$)
92. $5 \times 10^{3} / \mathrm{cm}^{3}$
93. $10^{10} / \mathrm{cm}^{3}$
94. $2 \times 10^{12} / \mathrm{cm}^{3}$
95. $10^{20} / \mathrm{cm}^{3}$
96. In a super conducting wire-loop, the current flow decays following the equation
$i_{t}=i_{0} \cdot \exp \left[-\frac{R}{L} t\right]$ where, R and L represent resistance and self inductance, respectively. The self-inductance of half a meter super conductor wire-loop having wire diameter of 1.2 mm is found to be $2 \times 10^{-6} \Omega \cdot \mathrm{~s}$. The maximum resistance that this superconductor loop should possess to maintain a current flow of 1 A for 1 year with 2% decay will be:
97. $4.04 \times 10^{-8} \Omega$
98. $3.07 \times 10^{-14} \Omega$
99. $1.28 \times 10^{-15} \Omega$
100. $2.48 \times 10^{-13} \Omega$
101. The critical resolved shear stress of a metal is 2.0 MPa . During plastic deformation of a single crystal of this metal, the slip plane rotates in a manner so that the angle between the tensile axis and the slip direction changes from 45° to 30°. If the angle between the normal to the slip plane and the tensile axis remains unaltered at 60°, the tensile stress changes as follows:
102. Increased by 1.04 MPa
103. Decreased by 1.04 MPa
104. Increased by 0.16 MPa
105. Decreased by 0.16 MPa
