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Preface

This book has culminated into its title as an outgrowth of series of undergradu-
ate and graduate level courses on ordinary differential equations (ODE), taught
by the author for the past several years. It is our aim to present a unified and
comprehensive treatment to ODE based on widely used abstract formulations in
the underlying spaces. The emphasis is more on qualitative analysis of solvabil-
ity of ODE than the actual methodology of computing the closed form solution.
In our presentation we presume only the basic knowledge of linear algebra and
advanced calculus of the undergraduate level. Hence the text is suitable for
graduate students of mathematics and other branches of science and engineer-
ing requiring a broad perspective of ODE. The contents have been class tested
for several years in a regular course on ODE in the Department of Mathematics
at IIT Bombay.

With this approach in mind, we have divided the text into eight chapters. Chap-
ter 1 introduces ODE with several examples drawn from applied areas. These
examples are continuously tracked at appropriate places in later chapters for
illustrating the theory.

Chapter 2 is devoted to the development of mathematical structure required to
deal with linear and nonlinear operators in function spaces. These operators
will arise while discussing various facets of ODE.

Chapter 3 gives basic existence and uniqueness theory needed for initial value
problems, the starting point for any discussion of ODE. The subsequent analysis
rests heavily on the concept of transition matrix. It is, therefore, dealt with in
detail in Chapter 4. While in Chapter 5, we use the properties of transition
matrix in the study of stability theory of both linear and nonlinear systems.

Chapter 6 lays emphasis on the clasical theory of series solution for ODE. We
focus on Legendre, Hermite and Bessel equations. Boundary value problems
are investigated in Chapter 7 through the methods of Green’s function and
eigenfunction expansion. We give rather an elongated description on Green’s
function in view of its inherent importance.

The closing Chapter 8 is a fitting finale, giving interesting glimpse of vast ap-
plicability potential of ODE to control theory - a fertile inter-disciplinary area
involving of science and engineering.



Acknowledgements

This book could not have been written without direct and indirect assistance
from various institutional bodies within IIT Bombay. Firstly, we would like to
acknowledge the financial support received from the Curriculum Development
Program of the Institute. Secondly, we thank the Department of Mathematics
and Industrial Mathematics Group for providing the necessary secretarial and
computational help throughout the preparation of the manuscript while it went
through the number of iterations. Several colleagues and students helped us
from time to time in many ways giving correct references, proof-reading the
manuscript etc. In this connection, we would like to acknowlege the help rendred
by Amiya K Pani, M K Ramaprasad and Soumya Mohanty. Our special thanks
to Asmit Pany for type setting the manuscript in LATEX.
Finally, this author would like to thank his wife for patiently supporting him in
implementing the project.

Mohan C. Joshi
Powai, Mumbai



Contents

1 Introduction To Ordinary Differential Equations 1
1.1 First Order Ordinary Differential Equations . . . . . . . . . . . . 1
1.2 Classification of ODE . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Higher Order ODE . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Techniques for Solving First Order Equations . . . . . . . . . . . 26
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Mathematical Preliminaries 37
2.1 Finite and Infinite Dimensional Spaces . . . . . . . . . . . . . . . 37
2.2 Linear and Nonlinear Operators . . . . . . . . . . . . . . . . . . . 47
2.3 Lipschitz Continuity and Differentiability . . . . . . . . . . . . . 57
2.4 Fixed Point Theorems and Monotone Operators . . . . . . . . . 63
2.5 Dirac-Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Initial Value Problems 79
3.1 Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . 79
3.2 The Maximal Interval of Existence . . . . . . . . . . . . . . . . . 89
3.3 Dependence on Initial Condition . . . . . . . . . . . . . . . . . 93
3.4 Cauchy-Peano Existence Theorem . . . . . . . . . . . . . . . . . 96
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Linear System And Transition Matrix 101
4.1 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Periodic Linear System . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Computation of Transition Matrix . . . . . . . . . . . . . . . . . 118
4.5 Euler’s Linear System . . . . . . . . . . . . . . . . . . . . . . . . 131
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



CONTENTS

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Stability Analysis 137
5.1 Asymptotic Behaviour of Linear System . . . . . . . . . . . . . . 137
5.2 Stability Analysis - Formal Approach . . . . . . . . . . . . . . . . 149
5.3 Phase Portrait Analysis . . . . . . . . . . . . . . . . . . . . . . . 154
5.4 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 Series Solution 175
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2 Linear System with Analytic Coefficients . . . . . . . . . . . . . . 181
6.3 Linear System with Regular Singularities . . . . . . . . . . . . . 188
6.4 Properties of Legendre, Hermite and Bessel Functions . . . . . . 196
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7 Boundary Value Problems 207
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2 Adjoint of a Differential Operator . . . . . . . . . . . . . . . . . . 209
7.3 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.4 Construction of Green’s Function and Modified Green’s Function 221
7.5 Eigenfunction Expansion - Sturm-Liouville System . . . . . . . . 233
7.6 Nonlinear Boundary Value Problem . . . . . . . . . . . . . . . . 237
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8 Control Theory Of Linear Systems 243
8.1 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.3 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



Chapter 1

Introduction To Ordinary

Differential Equations

In this chapter we begin by introducing the concept of solvability of initial value
problems (IVP) corresponding to first order differential equations (ODE) in <n.

We also give, along with appropriate examples of practical importance, all re-
lated notions like orbit or trajectory, direction field, isocline and solution curve
of IVP.

The reader is also familiarized with difference equations and numerical solutions
of ODE through the process of discretization. An interesting concept of neural
solution of ODE is also touched upon. Towards the end, we recall standard
methods of solving some classes of first order ODE.

1.1 First Order Ordinary Differential Equations

Let Ω ⊂ <n be open and let f : Ω → <n be a mapping ( not necessarily linear)
given by

f(x1, x2, xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . xn), . . . , fn(x1, x2, . . . , xn))

We shall refer to f as vector field on Ω. A vector field may also depend on an
additional parameter t, that is, f = f(t, x).

The main thrust of our study is the following differential equation

dx̄

dt
= f(t, x) (1.1.1)

where f : I × Ω → <n, I a subinterval of <.
The value x(t) ∈ Ω ⊂ <n is sometimes referred as the state of the system

described by the ordinary differential equation (ODE) - Eq.(1.1.1). The set Ω
is then called the state space or phase space.

1
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Definition 1.1.1 The Initial Value Problem (IVP) corresponding to Eq. (1.1.1)
is given by

dx

dt
= f(t, x(t)) (1.1.1(a))

x(t0) = x0 (1.1.1(b))

Definition 1.1.2 A function x(t) is said to be a solution of the IVP - Eq.
(1.1.1), if there exists an interval J ⊂ I, containing t0 such that x(t) is differ-
entiable on J with x(t) ∈ Ω for all t ∈ J and x̄(t) satisfies Eq. (1.1.1).

As x(t) needs to satisfy Eq. (1.1.1) only on J, this solution is sometimes referred
as a local solution. If t→ f(t, .) is defined on the entire line < and x̄(t) satisfies
Eq. (1.1.1) on <, then x̄(t) is said to be a global solution of the IVP. In Chapter
3, we shall discuss the local and global solvability of IVP in detail.

At times, it is desirable to indicate the dependence of the solution x(t) on
its initial value x0. Then we use the notation x(t, t0, x0) for x(t).

Definition 1.1.3 The orbit or the trajectory of the ODE- Eq.(1.1.1), is the set
{x(t, t0, x̄0) : t ∈ J} in the state space Ω. Whereas the solution curve is the set
{(t, x(t, t0, x̄0)) : t ∈ J} ⊂ I × Ω.

Definition 1.1.4 The direction field of ODE - Eq. (1.1.1), is the vector field
(1, f(t, x)).

It is clear from the above definitions that the orbit of the ODE - Eq. (1.1.1) is
tangent to the vector field whereas the solution curve is tangent to the direction
field at any point.

The following proposition gives the equivalence of solvability of IVP - Eq.
(1.1.1) with the solvability of the corresponding integral equation.

Proposition 1.1.1 Assume that f : I × Ω → <n is continuous. x̄(t) is a
solution the IVP - Eq. (1.1.1) iff x̄(t) is the solution of the integral equation

x̄(t) = x̄0 +

∫ t

t0

f(s, x̄(s))ds, t ∈ J (1.1.2)

Proof : If x̄(t) is a solution of Eq.(1.1.1), by direct integration on the interval
[t0, t] for a fixed t, we get

∫ t

t0

(

dx̄

ds

)

ds =

∫ t

t0

f(s, x̄(s))ds

This gives

x̄(t) − x̄(t0) =

∫ t

t0

f(s, x̄(s))ds

and hence we have Eq. (1.1.2).
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Conversely, if Eq.(1.1.2) holds, x̄(t) given by Eq. (1.1.2) is differentiable and
differentiating this equation we get

dx̄

dt
=

d

dt

[∫ t

t0

f(s, x̄(s))ds

]

= f(t, x(t))

Also we have x̄(t0) = x̄0.

Definition 1.1.5 The set of points in Ω where f(t, x̄) = 0, is called the set of
equilibrium points of ODE - Eq. (1.1.1). It is clear that at these points the orbit
or trajectory is a singleton.

Example 1.1.1 (Population Dynamics Model)
We investigate the variation of the population N(t) of a species in a fixed time
span. An important index of such investigation is growth rate per unit time,
denoted by

R(t) =

[

1

N(t)

]

dN

dt
(1.1.3)

If we only assume that the population of species changes due to birth and death,
then growth rate is constant and is given by,

R(t) = R(t0) = b− d

where b and d are birth and death rates, respectively.
If the initial population N(t0) = N0, we get the following initial value prob-

lem
dN

dt
= R(t0)N (1.1.3(a))

N(t0) = N0 (1.1.3(b))

The solution of the above IVP is given by

N(t) = N0 exp(R(t− t0)), t ∈ <

Although the above model may predict the population N(t) in the initial stages,
we realise that no population can grow exponentially for ever. In fact, as pop-
ulation grows sufficiently large, it begins to interact with its environment and
also other species and consequently growth rate R(t) diminishes. If we assume
the form of R(N) as equal to a− cN(a, c positive constant), we get the following
IVP

dN

dt
= N(a− cN) (1.1.4a)

N(t0) = N0 (1.1.4b)

This is known as logistic equation with a as the growth rate without environ-
mental influences and c representing the effect of increase population density.



4CHAPTER 1. INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

The equilibrium points are 0 and a/c, C = a/c is called the carrying capacity of
the environment.

One can easily solve the above ODE by the method of separation of variables
and get

N(t) =

a

c


1 +

(a

c
−N0

)

N0
exp(−a(t− t0))





It follows from the above representation that limt→∞N(t) = a/c = C (carrying
capacity). So the above solution has the representation

N(t) =
C

[

1 +
(C −N0)

N0
exp(−a(t− t0))

] (1.1.5)

The solution curve of the above population model is as under.

2 4 6 8 10
t

2

4

6

8

No

C=a\c

Nt

Figure 1.1.1: Growth of population N(t)

The parameters a and C are usually not known but can be estimated by min-
imising the mean square deviation φ(a, C) between the known discrete population
data Nd(tm) and theoretical data N(tm) :

φ(a, C) =
M
∑

m=1

[N(tm) −Nd(tm)]2 (1.1.6)

By using one of the algorithms of the unconstrained optimization techniques
(refer Algorith 2.3.1), we can actually carry out the computation of a and C
from the given data.
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Example 1.1.2 Consider the following ODE

dx

dt
= −tx (1.1.7)

A general solution of the above ODE is given by

x(t) = ae−
1
2 t2 , a is any constant

The solution passing through (t0, x0) in (t, x) plane is given by

x(t) = x0e
− 1

2 (t2−t20) (1.1.8)

The following graphics demonstrates the solution curve and the direction field
of the above ODE.

-2 -1 1 2
t

0.5

1

1.5

2

2.5

3

3.5

xt

Figure 1.1.2: Solution curves x(t)
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Figure 1.1.3: Direction field of the ODE

If IVP corresponding to Eq. (1.1.1) has a unique solution x(t, t0, x0) pass-
ing through (t0, x0), no two solution curves of the IVP can intersect. Thus
the uniqueness theorem, to be dealt with in the Chapter 3, will be of utmost
importance to us.
As we have seen through Example 1.1.2, the direction field for a given differential
equation can be an effective way to obtain qualitative information about the
behaviour of the system and hence it would be more appropriate to expand on
this concept.
To sketch the direction field for a given ODE in 1-dimension, a device called
isocline can be used.

Definition 1.1.6 Isocline is a curve in t − x plane through the direction field
along which p = f(t, x) is constant. The family of isoclines is then the family
of curves f(t, x) = p in t− x plane.

Example 1.1.3 We wish to find the direction field of the following ODE

1 +
dx

dt

1 − dx

dt

= 2
√
t+ x

Solving for
dx

dt
, we get

dx

dt
(1 + 2

√
t+ x) = 2

√
t+ x− 1

which gives
dx

dt
=

2
√
t+ x− 1

2
√
t+ x+ 1

= p
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So iscolines are given by
2
√
t+ x− 1

2
√
t+ x+ 1

= p

That is

t+ x =
1

2

[

1 + p

1 − p

]2

,−1 ≤ p < 1 (1.1.9)

Thus isoclines are all lines of slope -1 with −1 ≤ p < 1. So we get the following
graphics. The solution of the ODE passing through (t0, x0) is given by

(x− t) +
√
t+ x = (x0 − t0) +

√
t0 + x0 (1.1.10)

1 2 3 4
t

-3

-2

-1

1

2

3

4
xt

p=-1 p=0

p=0.2

p=0.33

p=0.5

Figure 1.1.4: Isoclines with solution curves

1.2 Classification of ODE

The ODE
dx

dt
= f(t, x) (1.2.1)

is called linear if f has the form

f(t, x) = A(t)x + b(t) (1.2.2)

where A(t) ∈ <n×n and b(t) ∈ <n for all t. A linear ODE is called homogeneous
if b(t) ≡ 0 and if A(t) = A (constant matrix), then we call it a linear ODE with
constant coefficients. Linear ODE will be discussed in detail in Chapter 4.
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The ODE - Eq. (1.2.1) is called autonomous if f does not depend on t. That is
ODE has the form

dx

dt
= f(x) (1.2.3)

For autonomous ODE we have the following proposition (refer Mattheij and
Molenaar [9]).

Proposition 1.2.1 If x(t) is a solution of Eq. (1.2.3) on the interval I =
(a, b), then for any s ∈ <, x(t + s) is a solution of Eq. (1.2.3) on the interval
(a − s, b − s). Hence the trajectory x(t) of Eq. (1.2.3) satisfies the following
property

x(t, t0, x0) = x(t− t0, 0, x0) for all t0 ∈ I

This implies that the solution is completely determined by the initial state x̄0 at
t = 0.

A non-autonomous ODE - (1.2.1) is called periodic if

f(t+ T, x) = f(t, x) for some T > 0 (1.2.4)

The smallest of such T is called its period. From Eq. (1.2.4), it follows that
the form of the solution is not affected if we shift t0 to t0 ± nT, n ∈ ℵ (set of
natural numbers). That is

x (t± nT, t0 ± nT, x0) = x(t, t0, x0)

It is not necessary that a solution of periodic ODE is periodic as we see in the
following example.

Example 1.2.1

dx

dt
=

[

0 1
−1 0

]

x+

[

0
2 cos t

]

f(t, x) = Ax + b(t), b(t) = (0, 2 cos t). f is periodic with period 2π but its
solution (to be discussed in Chapter 4) is given by

x(t) = (t− sin t, sin t+ t cos t)

However, we have the following theorem regarding the periodic solution of the
periodic ODE.

Proposition 1.2.2 If a solution of a periodic ODE is periodic. Then it has the
same period as the vector field.

Proof : Assume that f(t, x) has a period T and the solution x(t) has period
S with S 6= T. Because x̄ is periodic, its derivative ẋ(t) = f(t, x) will also be
periodic with period S as well T. That is

f(t+ S, x) = f(t, x)
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Also, T periodicity of f implies that

f(t+ S − nT, x) = f(t, x)

We choose n such that 0 < S − nT < T. It implies that f is periodic with a
period smaller than T, a contradiction. Hence T = S and the solution x̄(t) has
the same period as the vector field.

Example 1.2.2 (Predator-Prey Model)

Predator-prey model represents the interaction between two species in an envi-
ronment. For example, we shall focus on sharks and small fish in sea.

If the food resource of sharks (fish) is non-existent, sharks population exponen-
tially decays and is increased with the existence of fish. So, the growth rate of

sharks

(

1

S

dS

dt

)

is modelled as −k without the fish population and −k+λF with

fish population F. Thus
dS

dt
= S(−k + λF )

For the growth rate of fish, we note that it will decrease with the existence of
sharks and will flourish on small plankton (floating organism in sea) without
sharks. Thus

dF

dt
= F (a− cS)

Thus, we have, what is called the famous Lotka - Volterra model for the predator-
prey system

dF

dt
= F (a− cS) (1.2.4(a))

dS

dt
= S(−k + λF ) (1.2.4(b))

This reduces to the following autonomous system of ODE in <2

dx̄

dt
= f(x̄)

where

x = (F, S), f(x̄) = (F (a− cS), S(−k + λF ))

The equilibrium points are given by

F̂ = k/λ, Ŝ = a/c; F̂ = 0, Ŝ = 0.

We shall have the discussion of the phase-plane analysis in the Chapter 5. How-
ever, if we linearize the system given by Eq.(1.2.4) around the equilibrium point
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F̂ = k/λ, Ŝ = a/c, we get the following linear system (refer Section 2.3 for
linearization)

dx

dt
= Ax(t)

x = (F − F̂ , S − Ŝ)

A =







0 −kc
λ

aλ

c
0






(1.2.5)

The solution of the IVP corresponding to Eq. (1.2.5) is given by

S = Ŝ + S0 coswt+
aλ

cw
F0 sinwt (1.2.6a)

F = F̂ + F0 sinwt − cw

a
S0 coswt (1.2.6b)

(Refer Section 4.3 for solution analysis of this linear system).

Thus, the solution is periodic with period
2π

w
= 2π(ak)−1/2. The following graph-

ics depict the fish and shark population in t− F/S plane.

2 4 6 8 10 12
t

9.5

10

10.5

11

St

Ft

Figure 1.2.1: Fish and shark population with time

The average population of the general predator-prey system given by Eq.
(1.2.4) is obtained as follows.

We have
1

S

dS

dt
= −k + λF

This gives

ln

[

S(t)

S(t0

]

= −k(t− t0) + λ

∫ t

t0

F (τ)dτ (1.2.7)
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In view of the information obtained from the linearized model, we can assume
that both S and F are periodic of period T = tf − f0. That is, S(tf ) = S(t0)
and F (tf ) = F (t0) and hence Eq. (1.2.7) gives

0 = −kT + λ

∫ t0+T

t0

F (τ)dτ

This implies that

1

T

[

∫ t0+T

t0

F (τ)dτ

]

= k/λ (1.2.8(a))

and similarly

1

T

[

∫ t0+T

t0

S(τ)dτ

]

= a/c (1.2.8(b))

So in predator-prey system, no matter what the solution trajectory is, the average
population remains around the equilibrium point.
It is also interesting to analyse the men’s influence on the above ecosystem if we
fish both predator and prey. Then, we have

dF

dt
= F (a− cS) − σ1F

dS

dt
= S(−k + λF ) − σ2S

This is equivalent to

dF

dt
= F (a′ − cS)

dS

dt
= S(−k′ + λF )

a′ = a− σ1, k′ = k + σ2

Hence it follows that the average population of predator is
a′

c
=
a− σ1

c
(de-

creases) and that of prey is
k′

c
=
k + σ2

c
(increases).

1.3 Higher Order ODE

Assume that x(t) is a scalar valued n−times continuously differentiable function

on an interval I ⊂ <. Let us denote the derivative
dkx

dtk
by x(k)(t).

We shall be interested in the following higher order ordinary differential equation

x(n)(t) = g(t, x(t), x(1)(t), . . . , x(n−1)(t)) (1.3.1)

where g : I ×<×<× . . .×< → < is a given mapping. We define a vector x(t)
with components xi(t), i = 1, . . . n by

xi(t) = x(i−1)(t), x1(t) = x(t); 2 ≤ i ≤ n (1.3.2)



12CHAPTER 1. INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

and the vector field f(t, x̄) by

f(t, x̄) = (x2, x3, . . . , g(t, x1, . . . , xn))

Then the higher order ODE - Eq. (1.3.1) is equivalent to the following first
order ODE

dx

dt
= f(t, x)

A linear higher order ODE has the form

x(n)(t) + an−1(t)x
(n−1)(t) + . . .+ a0(t)x(t) = b(t) (1.3.3)

where ai(t)(0 ≤ i ≤ n − 1) and b(t) are given functions. Then in view of Eq.
(1.3.2) - Eq. (1.3.3) we have

dx1

dt
= x2(t)

dx2

dt
= x3(t)

...
dxn

dt
= b(t) − a0(t)x1(t) − a1(t)x2(t) − · · · − an−1(t)xn(t)

This is equivalent to the following first order system

dx

dt
= A(t)x(t) + b(t) (1.3.4)

where

A(t) =















0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1















b(t) = (0, 0, . . . , b(t))

The matrix A(t) is called the companion matrix.

Example 1.3.1 (Mechanical Oscillations)
A particle of mass m is attached by a spring to a fixed point as given in the
following diagram.
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a
m

F(t)

x

Figure 1.3.1: Mechanical oscillations

We assume that spring obeys Hook’s law (tension is proportional to its exten-
sion) and resistance (damping) is proportional to the particle speed. The external
force applied to the particle is F (t). By equilibrium of forces we have

mF = m
d2x

dt2
+ T +mk

dx

dt

By Hook’s Law, we get T =
λx

a
and hence

F =
d2x

dt2
+

λ

ma
x+ k

dx

dt
(1.3.5)

Equivalently, we get the following second order equation modelling the spring
problem

d2x

dt2
+ k

dx

dt
+ ω2x = F (t), ω2 =

λ

ma
(1.3.6)

Case 1: No resistance and no external force (Harmonic Oscillator)

d2x

dt2
+ ω2x = 0, ω2 =

λ

ma
(1.3.7)

Eq. (1.3.7) is equivalent to the following system of first order differential equa-
tions

dx

dt
=

[

0 1

− λ

ma
0

]

x (1.3.8)

It is easy to see the solution of the above system is given by (refer Section 4.4)

x(t) = x0 cosω(t− t0) +
x0

ω
sinω(t− t0). (1.3.9)

ẋ(t) = −x0ω sinω(t− t0) + x0 cosω(t− t0) (1.3.10)
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Equivalently, we have
x(t) = α cos(ωt+ β)

This is a simple harmonic motion with period
2π

ω
and amplitude α. ω is called

its frequency.
We can easily draw plots of phase-space (normalized ω = 1) and also solution

curve of the ODE - Eq. (1.3.8).

-1 -0.5 0.5 1

-2

-1

1

2

Figure 1.3.2: Phase space of the linear system
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1
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Figure 1.3.3: Solution curve of the linear system

Case 2: Solution with resistance

dx

dt
=

[

0 1
−ω2 −k

]

x(t) (1.3.11)

(i) k2 − 4ω2 < 0
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The solution curve x(t) is a damped oscillation given by (refer Section 4.4)

x(t) = exp(
−kt
2

)(A cos bt+B sin bt)

b =

√
4ω2 − k2

2

5 10 15 20 25
t

-1

-0.5

0.5

1

xt

Figure 1.3.4: Solution curve for Case2(i)

The oscillation curves for the other cases are as under.
(ii) (k2 − 4ω2) = 0

x(t) = A exp(
−kt
2

) +Bt exp(
−kt
2

)

10 20 30 40 50 60
t

-1.5

-1

-0.5

0.5

1

xt

Figure 1.3.5: Solution surve for case2(ii)



16CHAPTER 1. INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

(iii) k2 − 4ω2 > 0

x(t) = exp(
−kt
2

)
[

A1e
ct +A2e

−ct
]

c =
√

k2 − 4ω2

1 2 3 4 5 6
t

5

10

15

20

25

30

35

xt

Figure 1.3.6: Solution curve for case2(iii)

Case 3: Effect of resistance with external force

dx(t)

dt
=

[

0 1
−ω2 −k

]

x+ F (t), F (t) = (0, F (t))

The solution x(t) is given by
x = xp + xc

where xc is the solution of the homogeneous equation with F (t) = 0. We have
seen that xc → 0 as t → ∞. A particular solution (response function) xp(t) of
the above system is given by

xp(t) =
F0

D
[cos (βt− φ)]

corresponding to the external force (input function) F (t) = F0 cosβt.
The constant D is given by

D =
[

(ω2 − β2)2 + k2β2
]1/2

and

sinφ =
kβ

D
, cosφ =

ω2 − β2

D

Thus the forced oscillations have the same time period as the applied force but
with a phase change φ and modified amplitude

F0

D
=

F0

[(ω2 − β2)2 + k2β2]1/2
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Amplitude modification depends not only on the natural frequency and forcing
frequency but also on the damping coefficient k.

As k → 0 we have

xp → F0

(ω2 − β2)
→ ∞ as ω → β.

For k = 0, the response is given by

xp =
F0

2ω
t sinwt

which implies that the system resonates with the same frequency but with
rapidly increasing magnitude, as we see in the following graph.

2 4 6 8 10 12 14
t

-2

2

4

Input

Response

Figure 1.3.7: Input-Response curve

Example 1.3.2 (Satellite Problem)

A satellite can be thought of a mass orbiting around the earth under inverse
square law field.

r

θ u

m

u

2

1

Figure 1.3.8: Satellite in orbit around the Earth
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We assume that m = 1 and also the satellite has thrusting capacity with radial
thrust u1 and tangential thrust u2.

Equating forces in normal and tangential direction on the orbiting satellite, we
get

[

d2r

dt2
− r(t)(

dθ

dt2
)2
]

= − k

r2(t)
+ u1(t)

[

r
d2θ

dt2
+ 2

dθ

dt

dr

dt

]

= u2(t)

This gives a pair of second order differential equations

d2r

dt2
= r(t)(

dθ

dt
)2 − k

r2(t)
+ u1(t) (1.3.12a)

d2θ

dt2
= − 2

r(t)

dθ

dt

dr

dt
+
u2(t)

r(t)
(1.3.12b)

] If u1 = 0 = u2, then one can show that Eq. (1.3.12) has a solution given by
r(t) = σ, θ(t) = ωt (σ, ω are constant and σ3ω2 = k). Make the following
change of variables:

x1 = r − σ, x2 = ṙ, x3 = σ(θ − ωt), x4 = σ(θ̇ − ω)

This gives

r = x1 + σ, ṙ = x2, θ =
x3

σ
+ ωt, θ̇ =

x4

σ
+ ω

So Eq. (1.3.12) reduces to

dx1

dt
= x2

dx2

dt
= (x1 + σ)(

x4

σ
+ ω)2 − k

(x1 + σ)2
+ u1 (1.3.13)

dx3

dt
= x4

dx4

dt
= −2σ(

x4

σ
+ ω)

x2

(x1 + σ)
+

u2σ

(x1 + σ)

Eq. (1.3.13) is a system of nonlinear ordinary diferential equations involving
the forcing functions ( controls) u1 and u2 and can be written in the compact
form as

dx̄

dt
= f(x̄, ū), x(t) ∈ <4, u(t) ∈ <2 (1.3.14)



1.4. DIFFERENCE EQUATIONS 19

Here f is a vector function with components f1, f2, f3, f4 given by

f1(x1, x2, x3, x4;u1, u2) = x2

f1(x1, x2, x3, x4;u1, u2) = (x1 + σ)(
x4

σ
+ ω)2 − k

(x1 + σ)2
+ u1

f1(x1, x2, x3, x4;u1, u2) = x4

f1(x1, x2, x3, x4;u1, u2) = −2σ(
x4

σ
+ ω)

x2

(x1 + σ)
+

u2σ

(x1 + σ)

We shall be interested in the solution, x(t) ∈ <4 of linearized equation corre-
sponding to Eq. (1.3.14) in terms of the control vector u(t) ∈ <2.

1.4 Difference Equations

In some models (as we shall see subsequently), the state vector x(t) may not
depend on t continuously. Rather, x(t) takes values at discrete set of points
{t1, t2, . . . , tk, · · · }
In such a situation we use difference quotients instead of differential quotients
and that leads to difference equations. Suppose there exists a sequence of vector
fields fi(x) : Ω → <n,Ω ⊆ <n. Then the first order difference equation has the
form

xi+1 = fi(xi), x̄i ∈ Ω, i = 1, 2 . . . (1.4.1(a))

If in addition
x0 = z0 (a given vector in <n) (1.4.1(b))

then Eq. (1.4.1(a)) - Eq. (1.4.1(b)) is called the IVP corresponding to a differ-
ence equation.
As for ODE, we can define orbit or trajectory and solution curve as discrete
subsets of <n and <n+1, respectively in an analogous way. A stationary point
or equilibrium point of the difference equation Eq. (1.4.1) is a constant solution
x such that

x = fi(x), i ∈ ℵ
Eq. (1.4.1) is called linear if it has the form

xi+1(t) = Aixi + bi, i ∈ ℵ

where Ai ∈ <n×n and bi ∈ <n.

For the scalar case n = 1, we have the linear difference equation

xi+1 = aixi + bi, i ∈ ℵ

Its solution is given by

xi = (Πi−1
j=0(aj))x0 +

i−1
∑

j=0

(Πi
l=j+1al)bj
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A kth order difference equation in 1-dimension is given by

xi+1 = gi(xi, xi+1, . . . , xi+1−k), i = k − 1, k, . . .

A linear kth order difference equation is given by

xi+1 =
k
∑

j=1

aijxi−j+1 + bi.

This can be written as the first order system

xi+1 = Aixi + bi, i ≥ 0 (1.4.2)

where

x̄i =







xi

...
xi+k−1






, b̄i =











0
...
0

bi+k











Ai =



















0 1
... 0

...
...

...
...

...
...

...
...

0 0 · · · 1
ai+k−1,k ai+k−1,k−1 · · · ai+k−1,1



















For the homogeneous case bi = 0, with Ai = A for all i, we get

xi+1 = Axi (1.4.3)

The solution of this system is of the form

xi = ric

where scalar r and vector c are to be determined.
Plugging this representation in Eq. (1.4.3) we get

(A− rI)c = 0 (1.4.4)

This is an eigenvalue problem. If A has distinct eigenvalues λ1, λ2, . . . , λn with
linearly independent eigenvectors c1, . . . cn, then the general solution of Eq.
(1.4.3) is given by

xm =

n
∑

i=1

diλ
m
i ci, m = 1, 2 . . . (1.4.5)

If the initial value is x0 then d = [d1, . . . , dn] is given by d = C−1(x0). Here
C = [c̄1, c̄2, · · · , c̄n]. So the solution to the IVP corresponding to Eq. (1.4.3) is
completely given by Eq. (1.4.5).
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Example 1.4.1 (Discrete One Species Population Dynamics Model)
We wish to measure population changes in a species with one year age distri-
bution. Let Ni(t) denote the number of ith year old species and let bi, di the
corresponding birth and death rates, respectively (0 ≤ i ≤M). Then we have

N0(t+ 4t) = b0N0(t) + b1N1(t)

+ . . .+ bMNM (t), (4t = 1) (1.4.6(a))

Ni+1(t+ 4t) = (1 − di)Ni(t), 0 ≤ i ≤M − 1 (1.4.6(b))

Let N(t) = (N0(t), N1(t), . . . , NM (t)). Then Eq. (1.4.6) becomes

N(t+ 4t) = AN(t) (1.4.7)

where

A =















b0 b1 · · · bM
1 − d0 0 · · · 0

0 1 − d1 · · ·
...

... · · ·
0 0 · · · 1 − dM−1















If we denote Nm = N(m4t), then Eq. (1.4.7) can be viewed as a difference
equation of the form

Nm+1 = ANm (1.4.8)

This is of the type given by Eq. (1.4.3) and hence the solution of the above
equation is of the form

Nm =

M
∑

i=1

aiλ
m
i φi

where {λi}M
i=1 and {φi}M

i=1 are eigenvalues (distinct) and linearly independent
eigenvectors of A, respectively. a = [a1, . . . , am] is a constant vector. If the
initial population N0 is known, the constant vector a is given by a = CN 0

where the nonsingular matrix C is given by

C = [φ1, φ2, . . . , φM ]

It is to be noticed that the population of each age group grows and decays de-
pending upon the sign of the eigenvalues λ1, λ2, . . . , λM .

1.5 Discretization

In this section we shall describe some well-known one-step numerical methods,
which are used to solve ODE. However, we shall not be concerned with the
stability and convergence aspects of these methods.
We also introduce to reader the concept of neural solution of ODE. This is also
based on discretization but uses neural network approach (refer Haykin [6]).
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It is interesting to observe that sometimes neural solution is a better way of
approximating the solution of ODE.
Let us begin with scalar ordinary differential equation

dx

dt
= f(t, x) (1.5.1)

corresponding to the scalar field f(t, x) : I ×< → <.
Let t0, t1, . . . , tN be a set of time points (called grid-points) wherein we would
like to approximate the solution values x(ti), 0 ≤ i ≤ N.
Integrating the above equation on [ti, ti + 1] we get

x(ti+1) = x(ti) +

∫ ti+1

ti

f(s, x(s))ds

If f is approximated by its values at ti, we get the Euler’s forward method

x(ti+1) = x(ti) + hf(ti, x(ti)), h = xi+1 − xi (1.5.2)

which is the so-called explicit, one-step method.
On the other hand, if f is approximated by its values at ti+1 we get Euler’s
backward method

x(ti+1) = x(ti) + hf(ti+1, x(ti+1)) (1.5.3)

which has to be solved implicitly for xti+1 .

If the integral

∫ ti+1

ti

f(s, x(s))ds is approximated by the trapezoidal rule, we

get

x(ti+1) = x(ti) +
1

2
h [f(ti, x(ti)) + f(ti+1, x(ti+1))] (1.5.4)

which is again implicit.
Combining Eq. (1.5.2) and Eq. (1.5.4) to eliminate x(ti+1), we get the Heun’s
method (refer Mattheij and Molenaar[9])

x(ti+1) = x(ti) +
1

2
h [f(ti, x(ti)) + f(ti+1, x(ti) + hf(ti, x(ti)))] (1.5.5)

An important class of one-step numerical methods is Runge-Kutta method.
Consider the integral equation

x(T ) = x(t) +

∫ T

t

f(s, x(s))ds (1.5.6)

Approximating the integral

∫ ti+1

ti

f(s, x(s))ds by a general quadrature formula

m
∑

j=1

βjf(tij , x(tij)), we get

x(ti+1) = x(ti) + h
m
∑

j=1

βjf(tij , x(tij)) (1.5.7)



1.5. DISCRETIZATION 23

where h = ti+1 − ti and tij = ti + ρjh(0 ≤ ρj ≤ 1) are nodes on the interval
[ti, ti+1].

As x(tij) are unknowns, to find them we apply another quadrature formula for

the integral

∫ tij

ti

f(s, x(s))ds to get

x(tij ) = x(ti) + h
m
∑

l=1

rjlf(til, x(til)) (1.5.8)

Combining Eq. (1.5.7) and Eq. (1.5.8), we get the Runge-Kutta formula

x(ti+1) = x(ti) + h

m
∑

j=1

βjkj (1.5.9)

kj = f(ti + ρjh, x(ti) + h

m
∑

l=1

rjlkl)

Eq. (1.5.9) is explicit if rjl = 0, l ≥ j. If ρ1 = 0, ρ2 = 1, r11 = 0 = r12, r21 =
1, r22 = 0 and β1 = 1/2 = β2, we get the Heun’s formula given by Eq. (1.5.5).
Also, it is easy to get the following classical Runge-Kutta method from Eq.
(1.5.9)

x(ti+1) = x(ti) + h

[

1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

]

(1.5.10)

k1 = f(ti, x(ti))

k2 = f(ti +
1

2
h, x(ti) +

1

2
hk1)

k3 = f(ti +
1

2
h, x(ti) +

1

2
hk2)

k4 = f(ti + h, x(ti) + hk3)

In case we have f(t, x) as a vector field, we obtain a similar Runge - Kutta
method, with scalars x(ti), x(ti + 1) being replaced by vectors x(ti), x(ti+1),
and scalars ki being replaced by vectors ki(1 ≤ i ≤ 4).

We now briefly discuss the concept of neural solution of the IVP associated
with Eq. (1.5.1). A neural solution (refer Logaris et al [8]) xN (t) can be written
as

xN (t) = x0 + tN(t,W ) (1.5.11)

where N(t,W ) is the output of a feed forward neural network (refer Haykin [
6 ]) with one input unit t and network weight vector W. For a given input t,

output of the network is N =
∑k

i=1 viσ(zi) where zi = wit− ui, wi denotes the
weight from the input unit t to the hidden unit i, vi denotes the weight from
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Figure 1.5.1: Neural network with one input

the hidden unit i to the output and ui denotes the bias of the unit i, σ(z) is
the sigmoid transfer function

σ(z) =
1

1 + e−z

and k is the number of hidden neurons.
We first determine the network parameters wi, vi and ui in such a manner

that xN (t) satisfies Eq. (1.5.1) in some sense. For this we discretize the interval
[t0, tf ] as t0 < ti < . . . < tm = tf .
As xN (t) is assumed to be a trial solution, it may not be exactly equal to
f(tj , xN (tj)) at point tj , 0 ≤ j ≤ m. Hence we train the parameter vector W
in such a way that it minimizes the error function φ(W ) given as

φ(W ) =

m
∑

j=0

(

dxN

dt
|t=tj

− f(tj , xN (tj))

)2

One can use any unconstrained optimization algorithms (refer Joshi and Kannan
[ 7 ]) to minimize φ w.r.t. the neural network parameters to obtain their optimal
values u∗i , v

∗
i , w

∗
i to get the neutral solution xN (t) given by Eq. (1.5.11)

This methodology will be clear from the following example, wherein we com-
pute numerical solutions by Euler’s and Runge-Kutta methods and also neural
solution. Further, we compare these solutions with the exact solution.

Example 1.5.1 Solve the IVP

dx

dt
= x− x2, t ∈ [0, 1] (1.5.12)

x(0) =
1

2

The exact solution of this ODE (Bernoulli’s differential equation) is given by

x(t) =
1

1 + e−t
(1.5.13)

(Refer Section 6 of this chapter).
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For neural solution we take three data points tj = 0, 0.5, 1 and three hidden
neurons with a single hidden layer network. The neural solution is of the form

xN (t) =
1

2
+ t

3
∑

i=1

vi
[

1 + e(−wit+ui)
] (1.5.14)

The weight vector W = (w1, w2, w3, v1, v2, v3, u1, u2, u3) is computed in such a
way that we minimize φ(W ) given by

φ(W ) =

3
∑

j=1

[

dxN (t)

dt
|t=tj

− f(tj , xN (tj)

]2

=
3
∑

j=1

[(

1

2
+

v1
1 + eu1−w1tj

+
v2

1 + eu2−w2tj
+

v3
1 + eu3−w3tj

)

−
(

v1
1 + eu1−w1tj

+
v2

1 + eu2−w2tj
+

v3
1 + eu3−w3tj

)

tj

+

(

eu1−w1tjv1w1

(1 + eu1−w1tj )2
+

eu2−w2tjv2w2

(1 + eu2−w2tj )2
+

eu3−w3tjv3w3

(1 + eu3−w3tj )2

)

tj

+

(

1

2
+

(

v1
1 + eu1−w1tj

+
v2

1 + eu2−w2tj
+

v3
1 + eu3−v3tj

)

tj

)2
]2

We have used the steepest descent algorithm (refer to Algorithm 2.3.1 ) to
compute the optimal weight vector W . The neural solution is given by Eq.
(1.5.14). We note that the neural solution is a continuous one. We can compare
the values of this solution at a discrete set of points with the ones obtained by
Euler and Runge-Kutta method ( refer Conte and deBoor [3]). The following
tables give the distinction between the three types of approximate solutions.

Table 1.5.1: Euler solution and actual solution

Euler’s method Actual solution Absolute difference
0.525, 0.52498 0.00002

0.54994 0.54983 0.00010
0.57469 0.57444 0.00025
0.59913 0.59869 0.00044
0.62315 0.62246 0.00069
0.64663 0.64566 0.00097
0.66948 0.66819 0.00129
0.69161 0.68997 0.00163
0.71294 0.71095 0.00199
0.73340 0.73106 0.00234
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Table 1.5.2: Runge-Kutta solution and actual solution

Runge Kutta method Actual solution Absolute difference
0.52498 0.52498 1.30339−9

0.54983 0.54983 2.64162−9

0.57444 0.57444 4.05919−9

0.59869 0.59869 5.59648−9

0.62246 0.62246 7.28708−9

0.64566 0.64566 9.15537−9

0.66819 0.66819 1.12147−8

0.68997 0.68997 1.34665−8

0.71095 0.71095 1.58997−8

0.73106 0.73106 1.84916−8

Table 1.5.3: Neural solution and actual solution

Neural Network sol Actual sol Absolute Difference
0.52511 0.52498 0.00013
0.54973 0.54983 0.00011
0.57383 0.57444 0.00062
0.59741 0.59869 0.00127
0.62048 0.62246 0.00198
0.64302 0.64566 0.00264
0.66503 0.66819 0.00316
0.68650 0.68997 0.00348
0.70743 0.71095 0.00352
0.72783 0.73106 0.003231

1.6 Techniques for Solving First Order Equa-

tions

The general form of a first order linear differential equation is

a(t)
dx

dt
+ b(t)x+ c(t) = 0 (1.6.1)

where a(t), b(t) and c(t) are continuous functions in a given interval with a(t) 6=
0. Dividing by a(t), we get the equivalent equation in normal form

dx

dt
+ P (t)x = Q(t) (1.6.2)
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This equation is solved by multiplying Eq. (1.6.2) by e
R

P (t)dt and integrating,
to give us the solution

x(t) = e−
R

P (t)dt

[∫

e
R

P (t)dtQ(t)dt+ c

]

(1.6.3)

Exact Equations
The differential equation

M(t, x)dt+N(t, x)dx = 0 (1.6.4)

or

M(t, x) +N(t, x)
dx

dt
= 0 = M(t, x)

dt

dx
+N(t, x)

is called exact if there is a differentiable function u(t, x) such that

∂u

∂t
= M,

∂u

∂x
= N (1.6.5)

If Eq. (1.6.5) holds, we have

M(t, x)dt+N(t, x)dx =
∂u

∂t
dt+

∂u

∂x
dx

= d(u(t, x))

Hence, intergrating the above wquation we get the solution

u(t, x) = C

of the exact equation given by Eq. (1.6.4).

The following theorem gives a test for the exactness of a differential equation.

Theorem 1.6.1 If M and N are continuously differentiable function of (t, x) ∈
D ⊆ <2 ( with no hole in D), then the differential equation

M(t, x)dt+N(t, x)dx = 0 is exact iff
∂M

∂x
=
∂N

∂t
in D (1.6.6)

Proof : If the differential equation is exact, we have
∂M

∂x
=

∂

∂x

[

∂u

∂t

]

and

∂N

∂t
=

∂

∂t

[

∂u

∂x

]

. Since M and N are continuously differentiable in D, it follows

that
∂2u

∂x∂t
=

∂2u

∂t∂x
and hence

∂M

∂x
=
∂N

∂t
in D.

Conversly, let Eq. (1.6.6) holds.
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(t,x)

τ

y

∆ (t+   t ,x)

0(t   ,x  )0

Figure 1.6.1: A curve in τ − y plane

We explicitily define the function u(t, x) as the solution of the initial value
problem

∂u

∂t
= M(t, x),

∂u

∂x
= N(t, x)

u(t0, x0) = u0

Then, u(t, x) is given by

u(t, x) = u0 +

∫ (t,x)

(t0,x0)

[M(τ, y)dτ +N(τ, y)dy]

where the integral on the RHS is a line integral along a path joining (t0, x0)
and (t, x). It can be shown that this line integral is independent of path if Eq.
(1.6.6) holds.
This gives

u(t+ 4t, x) − u(t, x) =

∫ (t+4t,x)

(t,x)

[M(τ, y)dτ +N(τ, y)dy]

=

∫ t+4t

t

M(τ, y)dτ (as y = x and dy = 0)

= M(τ1, x)4t, t < τ1 < t+ 4t

(by meanvalue theorem for integrals).
Hence

∂u

∂t
= lim

4t→0

[

u(t+ 4t, x) − u(t, x)

4t

]

= lim
4t→0

[M(τ1, x)] = M(t, x)
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Similarly, we have
∂u

∂x
= N(t, x)

It may happen that the equation M(t, x)dt+N(t, x)dx = 0 is not exact but
after multiplying both sides of this equation by a function µ(t, x), it becomes
exact. Such a function is called an integrating factor. For example, xdy−ydx =
(x2 + y2)dx is not exact. But dividing by (x2 + y2), we get

xdy − ydx

x2 + y2
= dx

which is equivalent to
x

x2
dy − y

x2
dx

1 +
y2

x2

= dx

This is now an exact differential equation with solution

tan−1(
y

x
) = x+ c

Change of Variables

There are a few common types of equations, wherein substitutions suggest them-
selves, as we see below

[A]
dx

dt
= f(at+ bx), a, b ∈ < (1.6.7)

We introduce the change of variable X = at+ bx, which gives

x =
1

b
(X − at),

dx

dt
=

1

b
(
dX

dt
− a)

and hence Eq. (1.6.7) becomes

1

b
(
dX

dt
− a) = f(X)

or
dX

dt
= a+ bf(X)

which can be easily solved.

[B]

dx

dt
= f(

x

t
) (1.6.8)
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in which RHS depends only on the ratio
x

t
.

Introduce the change of variable u =
x

t
. Thus

x = ut,
dx

dt
= u+ t

du

dt

Then Eq. (1.6.8) becomes

u+ t
du

dt
= f(u)

or
du

dt
=

f(u) − u

t

which can be easily solved.

[C] Consider the equation

dx

dt
= f

(

at+ bx+ p

ct+ dx+ q

)

, a, b, c, d, p, q,∈ < (1.6.9)

in which RHS depends only on the ratio of the linear expression.

We substitute T = t− h, X = x− k.

Then
dx

dt
=
dX

dt
where we choose h and k such that

ah+ bk + p = 0 = ch+ dk + q (1.6.10)

Then
dX

dT
= f

(

at+ bX

ct+ dX

)

which is of type [B].

Eq. (1.6.10) can always be solved for h, k except when ad − bc = 0. In
that case we have cx+ dy = m(ax+ by) and hence Eq. (1.6.9) becomes

dx

dt
= f

[

at+ bx+ p

m(at+ bx) + q

]

which is of the type [A].

[D] The equation

dx

dt
+ P (t)x = Q(t)xm (1.6.11)

in which the exponent is not necessarily an integer, is called Bernoulli’s
equation. Assume that m 6= 1. Then introduce the change of variable
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X = x1−m. Then x = X( 1
1−m

),
dx

dt
=

1

1 −m
X( m

1−m
) dX

dt
. Hence Eq.

(1.6.11) becomes

1

1 −m
X( m

1−m
) dX

dt
+ P (t)X( 1

1−m
) = Q(t)X( m

1−m
)

Equivalently
dX

dt
+ (1 −m)P (t)X = (1 −m)Q(t)

which is a linear differential equation in X .

Example 1.6.1 Solve

(t+ x2)dx+ (x− t2)dt = 0

M(t, x) = x− t2, N(t, x) = t+ x2

∂M

∂x
= 1 =

∂N

∂t

and hence this equation is exact.
So we write the solution u(t, x) as

u(t, x) = u0 +

∫ (t,x)

(t0,x0)

[

(τ − y2)dτ + (τ + y2)dy
]

(0,0)

C2C1

(t,  )x

τ

y

Figure 1.6.2: Path from (0, 0) to (t, x)

In the integrand on RHS, we go along the path C1, C2. Hence the integral
become

∫ t

0

(−τ2)dτ +

∫ x

0

(t+ y2)dy = − t
3

3
+ tx+

x3

3
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Hence, the solution is

−t2
3

+ tx+
x3

3
= C

Example 1.6.2 Solve
dx

dt
=

t+ x− 1

t+ 4x+ 2

Solve h+k−1 = 0 = h+4k+2. This gives h = 2, k = −1. Hence t = T +2, x =

X − 1 and
dX

dT
=

T +X

T + 4X
.

We now make substitution X = TU, to get

T
dU

dT
=

1 − 4U2

1 + 4U

which is equivalent to

1 + 4U

1 − 4U2
dU =

dT

T

This yields

(1 + 2U)(1 − 2U)3T 4 = C

or

(T + 2X)(T − 2X)3 = C

or

(t+ 2x)(t− 2x− 4)3 = C

Example 1.6.3 Solve
dx

dt
+ tx = t3x4

This is a Bernoulli’s equation. We make the change of variable X = x−3 and
get an equivalent linear differential equation

dx

dt
− 3tX = −3t3

The general solution of this equation is given by

X(t) = e3
R

tdt

[∫

(3t3)e−
R

3tdt + C

]

= e
3
2 t2
[∫

(−3t3)e−
3
2 t2dt+ c

]
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To compute I =
∫

(−3t3)e−
3
2 t2dt+ c, put t2 = u, 2tdt = du. This gives

I =

∫

e−
3
2 u

[

−3

2
udu

]

= −3

2

[

−2

3
e−

3
2 uu+

2

3

∫

e−
3
2 udu

]

= −3

2

[

−2

3
e−

3
2 uu− 2

3

2

3
e−

3
2 u

]

= e−
3
2 uu+

2

3
e−

3
2 u

= e−
3
2 t2t2 +

2

3
e−

3
2 t2

and hence

X(t) = e−
3t2

2

[

e−
3
2 t2 t2 +

2

3
e−

3
2 t2+c

]

=

[

t2 +
2

3
+ ce

3
2 t2
]

Equivalently

x =
1

X3
=

1
[

t2 + 2
3 + ce

3
2 t2
]3

Example 1.6.4 Solve the IVP

dx

dt
= x− x2, x(0) =

1

2

We make the change of variable X =
1

x
and get an equivalent linear equation

dX

dt
+X = 1, X(0) = 2

The unique solution X(t) is given by

X(t) = e−t

[∫

etdt+ t

]

= e−t + 1

This gives

x(t) =
1

1 + e−t

For more on techniques for solving first order differential equation refer Golomb
and Shanks[4].

For more on real life problems giving rise to mathematical models generated by
ordinary differential equations, refer to Braun et al[1], Burghe and Borrie[2] and
Haberman[5].
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1.7 Exercises

1. Sketch the direction field for the following differential equations.

(a)

(

dx

dt

)2

= x2 + t2

(b) t
dx

dt
− x =

√

(

dx

dt

)2

− 1

(c) x2 − (1 − t2)

(

dx

dt

)2

= 0

Sketch the solution x(t), wherever possible.

2. Consider the differential equation

dx

dt
= f(t, x(t))

f(t, x) =











2tx

t2 + x2
, (t, x) 6= (0, 0)

0, (t, x) = (0, 0)

(a) Sketch the direction field of the above equation.

(b) Solve the above equation.

(c) Find the number of solutions passing through (0, 0) and (x0, y0) 6=
(0, 0).

3. Consider the differential equation

dx

dt
= (x2 − 1)tp, p ≥ 0, t ≥ 0

(a) Determine the equilibrium points.

(b) Sketch the vector field.

(c) Find solution passing through (0,−2), (0, 0) and (0, 2).

4. Consider the linear system in <2 given by

dx1

dt
= (x2 + 1) cosat

dx2

dt
= x1 + x2

(a) Find the stationary points.

(b) Sketch the vector field in <2.

5. Solve following initial value problems.
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(a) t2
dx

dt
+ x(t+ 1) = t, x(−1) = −2.

(b) (1 + t2)
(

tan−1 t
) dx

dt
+ x = t, x(−1) = −1

(c) 2(1 − t2)
dx

dt
− 2tx = a(t3 − t), x(0) =

a

3

6. Test if the following equations are exact. If so, solve them.

(a) sin t sin2 xdt− (cos t cos 2x tanx+ cos t tanx) dx = 0.

(b)

[

xlog(t2 + x2) +
2t2x

t2 + x2
+ x

]

dx +

[

t+ log(t2 + x2) +
2t2x

t2 + x2
+ t

]

dx = 0

(c)

[

(t+ x)2

1 + (t+ x)2

]

dt−
[

1

1 + (t+ x)2
− 1

]

dx = 0

7. Using the line integrals, solve the following exact equations which pass
through the given point.

(a) [2t+ exp(t) sinx] dt+ exp(t) cosxdx = 0, x(0) =
π

2

(b) (cos t cosx) dx − (sin t sinx) dx = 0, x(
π

2
) =

π

3

(c)

[

(t+ x)

t2 + x2

]

dt−
[

t− x

t2 + x2

]

dx = 0, x(1) = 1

8. Solve the following Bernoulli equations.

(a)
dx

dt
+ x = tx3/2

(b) 2tx3 dx

dt
+ t4 − x4 = 0

(c) 3
dx

dt
+ t secx = x4(1 − sin t)2

9. Find all curves with the property that the angle of inclination of its tangent
line at any point is three times the inclination of the radius vector to that
point from the orgin.

10. Find the fimily of curves orthogonal to the family of cardiods r = λ(1 +
cos θ) in polar cordinates (r, θ).

11. In a model of epidemics, a single infected individual is introduced in to a
community containing n individuals susceptible to the desease. Let x(t)
denote the number of uninfected individuals in the population at time t.
If we assume that the infection spreads to all those susceptible, then x(t)
decreases from x(0) = n to x(0) = 0. Give a mathematical model for the
above problem and solve it.
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Chapter 2

Mathematical Preliminaries

This chapter is meant for laying the foundation for abstract concepts needed for
our subsequent discussion of ODE in function spaces.
We start with vector spaces and go on to define normed and inner product
spaces and then dwell on notions like Schwartz inequality, Bessel’s inequality,
Parseval’s equality, orthormal system and Fourier series.
Bounded linear and nonlinear operators in function spaces along with their
much needed properties - Lipscntiz continuity, monotonicity, differentiability
and compactness - are given a fair treatment.
We close by defining Dirac-delta function as a distribution function. This ap-
proach is essential for introducing Green’s function in Chapter 7.

2.1 Finite and Infinite Dimensional Spaces

Definition 2.1.1 Let X be a nonempty set which is closed with respect to binary
operation x + y (x, y ∈ X) and scalar multiplication αx (α ∈ <, x ∈ X). X is
said to be a vector space if the following holds.

1. For any x, y, z ∈ X

(a) (x+ y) + z = x+ (y + z)

(b) (x+ y) = (y + x)

(c) ∃ an element 0 ∈ X such that x+ 0 = x

(d) ∃ − x ∈ X such that x+ (−x) = 0

2. For any α, β ∈ < and x, y ∈ X

(a) α(x+ y) = αx+ αy

(b) (α+ β)x = αx+ βx

(c) α(βx) = (αβ)x

(d) 1x = x

37
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Definition 2.1.2 An inner product (x, y) in a vector space X is a function on
X ×X with values in < such that the following holds.

1. (x, x) ≥ 0 forall x ∈ X and equality holds iff x = 0̄

2. (x, y) = (y, x) for all x, y ∈ X

3. (αx + βy, z) = α(x, z) + β(y, z); α, β ∈ <, x, y, z ∈ X

The vector space X with an inner product defined is called inner product
space.

In an inner product space X, x is said to be orthogonal to y if (x, y) = 0.
This is denoted by x ⊥ y.

Definition 2.1.3 A vector space X is said to be a normed space if there exists
a function ‖x‖ from X to < such that the following properties hold.

1. ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = 0

2. ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ <

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X

In an inner product space, the induced norm is defined by

‖x‖2 = (x, x), x ∈ X

In a normed space X, the induced metric d(x, y) (distance between two vectors)
is defined as

d(x, y) = ‖x− y‖ ∀ x, y ∈ X

In view of Definition 2.1.3, this metric d(x, y) satisfies the following properties.

[P1] d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 iff x = y

[P2] d(x, y) = d(y, x) for all x, y ∈ X

[P3] d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

It is possible to define a metric d(x, y) satisfying properties [P1]− [P3] in any
set without having a vector space structure. Such a set is called a metric space.

Definition 2.1.4 A metric space X is a non-empty set with a metrix d : X ×
X → < defined on it, which satisfies the properties [P1] − [P3].

In a metric space, without the vector space structure, we can easily define
the concepts of convergence, Cauchy convergence, completeness etc., as we see
below.

Definition 2.1.5 A sequence {xk} in a metrix space (X, d) is said to be con-
vergent to x ∈ X if d(xk, x) → 0 as k → ∞. {xk} is said to be Cauchy if
d(xk , x`) → as k, l → ∞.
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Definition 2.1.6 A metrix space (X, d) is said to be complete if everyCauchy
sequence in (X, d) converges.

A complete normed space is called a Banach space, whereas a complete inner
product space is called a Hilbert space.

In a normed space X, it is possible to define infinite sum
∑∞

i=1 xi. We say
that s =

∑∞
i=1 xi iff the sequence of partial sums sn =

∑n
i=1 xi ∈ X, converges

to s ∈ X.

Definition 2.1.7 A set S of vectors {x̄1, x̄2, · · · , x̄n} in a vector space X is
said to be linearly dependent (l.d.) if ∃ scalars αi ∈ < (not all zero) such that

α1x1 + α2x2 + . . .+ αnxn = 0.

Otherwise, this set is called linearly independent (`.i.).
If the set S consists of infinite elements of the spaces X. Then S is said to

be `.i. if every finite subset of S is `.i.

Definition 2.1.8 A set of vectors S = {x1, x2, . . . , xn} in a vector space X is
said to be a basis for X if

1. S is `.i. and

2. L[S] = {α1x1 + α2x2 + · · · + αnxn;αi ∈ <}, called the linear span of S,
equals X.

The number of elements in a basis is unique (refer Bapat[1]).

Definition 2.1.9 A vector space X is said to be finite dimensional if it has
a basis consisting of finite number of elements and this number is called its
dimension and is denoted by dimX.

A vector space X which is not finite dimensional, is called infinite dimensional
space.

Example 2.1.1 In the space <n of n-tuples, the Euclidean norm and inner
product are defined as

‖x‖2 = x2
1 + x2

2 + . . .+ x2
n, x = (x1, x2, . . . , xn) (2.1.1(a))

(x, y) = x1y1 + x2y2 + . . . xnyn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn)
(2.1.1(b))

In terms of the matrix notation we can represent (x, y) as

(x, y) = y>x = x>y

if we treat x, y as column vectors and x>, y> as row vectors.

One can show that <n is complete with respect to the norm induced by the inner
product defined by Eq. (2.1.1(b)) and hence it is a Hilbert space.
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Remark 2.1.1 It is possible to define other norms in the space <n, as we see
below

‖x‖1 = |x1| + |x2| + . . .+ |xn|

‖x‖∞ = max1≤i≤n{|xi|}

Definition 2.1.10 Two different norms ‖x‖a and ‖x‖b in a normed space X
are said to be equivalent if ∃ positive constants α, β such that

α‖x‖a ≤ ‖x‖b ≤ β‖x‖a

One can show that all norms in <n are equivalent (refer Limaye[8]) and hence
<n is also complete w.r.t. ‖x‖1 and ‖x‖∞, defined earlier.

Example 2.1.2 In the space C[0, 1] of all real valued continuous functions, one
can define norm and inner product as under

‖f‖2
2 =

∫ 1

0

f2(t)dt (2.1.2(a))

(f, g) =

∫ 1

0

f(t)g(t)dt (2.1.2(b))

One can show that the space C[0, 1] w.r.t. the above norm is not complete and
hence it is not a Banach space. To see this consider the sequence {fn(t)} of
continuous functions on [0, 1] defined as

fn(t) = tn, t ∈ [0, 1]

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

f1

f2
f3

f4

Figure 2.1.1: A sequence which is Cauchy but not complete

‖fn − fm‖2
2 =

∫ 1

0

(tn − tm)2dt→ 0 as n,m→ ∞
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and hence {fn} is Cauchy but fn(t) converges to f(t) defined as

f(t) =

{

1, t = 1
0, t 6= 1

which is not a continuous function and hence the space is C[0, 1] is not complete
w.r.t. the above norm.

However, if ‖f‖∞ is defined as ‖f‖∞ = supt∈[0,1] |f(t)|, then C[0, 1] is complete
with respect to ‖f‖∞ norm and hence it is a Banach space.

Example 2.1.3 Let L2[a, b] denote the space of all square integrable functions.

L2[a, b] = {f : [a, b] → <,
∫ b

a f
2(t)dt <∞}

Let the norm and inner product be defined as in Eq. (2.1.2). Then L2[a, b]
is a Hilbert space.

Remark 2.1.2 <n is finite dimensional, where as C[a, b) and L2[a, b] are infi-
nite dimensional spaces

In an inner product space, we have the following identities.

1. Pythagorus identity:

x ⊥ y iff ‖x+ y‖2 = ‖x‖2 + ‖y‖2 (2.1.3)

2. Parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2[‖x‖2 + ‖y‖2] (2.1.4)

Parallelogram law is relevant in view of the following theorem.

Theorem 2.1.1 A normed space X is an inner product space iff the norm in
X satisfies the parallelogram law given by Eq. (2.1.4).

Refer Goffman and Pedrick [5] for the proof of the above Theorem.

Example 2.1.4 X = C[0, 1] with

‖f‖ = sup
t∈(0,1]

|f(t)|, f ∈ X t ∈ [0, 1]

Take f = t, g = 1. One can check that parallegram law is not satisfied and hence
the Banach space C[0, 1] with respect to the above norm can never be made a
Hilbert space.

Theorem 2.1.2 (Schwartz inequality)
Let X be an inner product space. Then for all x, y,∈ X, we have the following
inequality

|(x, y)| ≤ ‖x‖‖y‖ (2.1.5)

Equality holds iff x and ȳ are l.d.
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Proof : If any of the elements x, y is zero, we are through. So, assume that
x, y 6= 0. By normalizing y as y/‖y‖ = ē, the above inequality reduces to

|(x, e)| ≤ ‖x‖ for all x ∈ X (2.1.6)

So, it suffices to show Eq. (2.1.6). We have

0 ≤ (x− (x, e)e, x− (x, e)e)

= (x, x) − (x, e)2

This gives Eq. (2.1.5). Also, if equality holds in Eq. (2.1.5), we get

(x− (x, y)y, x− (x, y)y) = 0

This implies that
x− (x, y)y = 0

and hence x, y are l.d.
On the other hand if x̄, ȳ are l.d., then Eq. (2.1.5) is true. This proves the

theorem.

Let M be a closed subspace of a Hilbert space X. Given an element x ∈ X,
we wish to obtain z ∈M which is closest to M. We have the following theorem
in this direction.

Theorem 2.1.3 Suppose x ∈ X and M a closed subspace of X. Then ∃ a
unique element z ∈ M such that

‖x− z‖ = inf
y∈M

‖x− y‖

Proof : Let d = infy∈M ‖x− y‖. Then ∃ a sequence {ȳn} ∈ M such that

‖x− yn‖ → d

By parallelogram law, we have

‖yn − ym‖ = ‖(ȳn − x) − (ym − x)‖2

= [2‖yn − x‖2 + 2‖ym − x‖2 + ‖ − 2x+ yn + ym‖2]

≤ [2‖yn − x‖2 + 2‖ym − x‖2 − 4d2]

→ 2d2 + 2d2 − 4d2 = 0

That is, {yn} is Cauchy and since M is a closed subspace of X , it is complete
and hence yn → z ∈ M. It is clear that

‖x− z‖ = lim
n→∞

‖x− yn‖ = d

Uniqueness of z is easy to prove.

This gives us the following theorem. In this theorem M⊥ represent the
spaces of all elements orthogonal to M.



2.1. FINITE AND INFINITE DIMENSIONAL SPACES 43

Theorem 2.1.4 Let M be a closed subspace of X. Then z ∈M is the point of
minimum distance from x ∈ X iff x− z ∈M⊥.

This, in turn, implies that every x ∈ X has a unique representation

x = z + w, z ∈ M,w ∈ M⊥

This representation is written as

X = M ⊕M⊥

X is called the direct sum of M and M⊥.

Definition 2.1.11 A set S ⊂ X is called an orthonormal set if eα, eβ ∈ S ⇒
(eα, eβ) = 0, α 6= β and ‖eα‖ = 1 ∀ eα ∈ S.

We have the following property for orthonormal sets in X.

Theorem 2.1.5 Let {eα}α∈A be a collection of orthonormal elements in X.
Then, for all x ∈ X, we have

∑

α∈A

|(x, eα)|2 ≤ ‖x‖2 (2.1.7)

and further
(

x̄−∑α∈A(x, eα)eα

)

⊥ eβ ∀ β ∈ A.

The inequality Eq. (2.1.7) is referred as Bessel’s inequality.

Definition 2.1.12 Let S be an orthonormal set in a Hilbert space X. Then S is
called a basis for X (or a complete orthonormal system) if no other orthonormal
set contains S as a proper set.

The following theorem presents the most important property of a complete
orthonormal set.

Theorem 2.1.6 Let X be a Hilbert space and let S = {eα}α∈A be an orthonor-
mal set in X. Then the following are equivalent in X.

(1) S = {eα}α∈A is complete.

(2) 0 is only vector which is orthogonal to every eα ∈ S. That is, x ⊥ eα for
every α⇒ x = 0.

(3) Every vector x ∈ X has Fourier series expansion x =
∑

α∈A

(x, eα)eα.

(4) Every vector x ∈ X satisfies the Parseval’s equality

‖x‖2 =
∑

α∈A

‖(x, eα)|2 (2.1.8)
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Proof : (1) ⇒ (2)
Suppose (2) is not true, then ∃ x 6= 0 such that x ⊥ eα ∀α ∈ A. Defining
e = x/‖x‖, we get an orthonormal set S ∪ {e} which properly contains S. This
contradicts the completeness of S. (2) ⇒ (3)

x −
∑

α∈A

(x, eα)eα is orthogonal to eβ for every β. But by (2), it follows that it

must be the zero vector 0 and hence

x =
∑

α∈A

(x, eα)eα

(3) ⇒ (4)
We have

‖x‖2 = (x, x) = (
∑

α∈A

(x, eα)eα,
∑

β∈A

(x, eβ)eβ)

=
∑

α∈A

|(x, eα)|2

(4) ⇒ (1)
If S = {eα}α∈A is not complete, it is properly contained in an orthonormal set
Ŝ and let e ∈ Ŝ − S. then Parseval’s equation Eq. (2.1.8) gives

‖e‖2 =
∑

α∈A

|(e, eα)|2 = 0

contradicting the fact that e is a unit vector.

Example 2.1.5 In X = L2[−π, π], the collection of functions

S =

{

1√
2π
,
cos t√
π
,
cos 2t√

π
, . . .

sin t√
π
,
sin 2t√
π
, . . .

}

is a complete orthonormal set and every f ∈ L2[−π, π] has a Fourier series
expansion

f(t) =
a0

2
+

∞
∑

k=1

[ak cos kt+ bk sin kt] (2.1.9)

where

ak =
1

π

∫ π

−π

f(t) cos ktdt and bk =
1

π

∫ π

−π

f(t) sin ktdt, k = 0, 1, 2, . . .

The fact that the above set S forms an orthonormal basis in L2[−π, π] will be
proved in Chapter 7. We also note that for any f ∈ L2[−π, π] we have the
Parseval’s relation

∫ π

π

f2(t)dt =
(f, 1)2

2π
+

∞
∑

n=1

1

π
[(f, cosnt)2 + (f, sinnt)2]
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The Fourier series representation given by Eq. (2.1.9) will be used while dis-
cussing the solution of boundary value problems.

For a piecewise continuous function f(t) defined on [−π, π],

f(t) =

{

1, t ≥ 0
−1, t ≤ 0

we have the following Fourier series representation along with its graphics (Fig-
ure 2.1.2)

f(t) =
4

π

∞
∑

n=0

sin(2n+ 1)t

2n+ 1

-3 -2 -1 1 2 3
t

-1

-0.5

0.5

1

ft

Figure 2.1.2: Sketch of first few terms of the Fourier series

We now give the following Gram-Schmidt procedure which helps in producing an
orthonormal collection {e1, e1, . . . , en} out of the `.i. collection {x̄1, x̄2, . . . , x̄n}.
We first obtain orthogonal vectors {ȳ1, ȳ2, . . . , ȳn}, inductively

ȳ1 = x̄1

...
ȳi = x̄i − αi,1 ȳ1 − αi,2 ȳ2, . . . , αi,i−1 ȳi−1

where

αi,j =
(x̄i, ȳj)

(ȳj , ȳj)
, i ≤ j ≤ i− 1

This is continued inductively for i+ 1, i+ 2, , . . . , n. It is clear that

L[x̄1, x̄2, . . . , x̄n] = L[ȳ1, ȳ2, . . . , ȳn]
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for each n. Normalizing ȳi, we get the orthonormal collection {ē, ē2, . . . , ēn},
ēi = ȳi/‖ȳi‖.

Example 2.1.6 In the space L2[−1, 1], the set of all polynomials
{P0(t), P1(t), . . .}, called Legendre polynomials, which are obtained by Gram-
Schmidt orthonormalisation procedure, is an orthonormal basis for L2[−1, 1].
Computation for p0, p1, p2, p3, p4 is given below. The higher degree Legendre
polynomials are inductively obtained.

p0(t) = 1, p1(t) = t

p2(x) = t2 − α0p0(t) − α1p1(t), α0 =
(t2, 1)

(1, 1)
=

1

3
,

α1 =
(t3, t)

(t, t)
= 0

and hence

p2(t) = t2 − 1

3

p3(t) = t3 − α0p0(t) − α1p1(t) − α2p2(t), α0 =
(t3, 1)

(1, 1)
= 0,

α1 =
(t3, t)

(t, t)
=

3

5
, α2 = 0

and hence

p3(t) = t3 − 3

5
t

p4(t) = t4 − α0p0(t) − α1p1(t) − α2p2(t) − α3p3(t),

α0 =
(t4, 1)

(1, 1)
=

1

5
, α1 = 0,

α2 =
(t4, p2(t))

(p2(t), p2(t))
=

6

7
, α3 = 0

and hence

p4(t) = 0 = t4 − 6

7
t2 − 1

5

Normalising these polynomials we get the Legendre polynomials Pi(t), 1 ≤ i ≤ 4,

given by P0(t) = 1, P1(t) = t, P2(t) =
1

2
(3t2 − 1), P3(t) =

1

2
(5t3 − 3t),

P4(t) =
1

8
(35t4 − 30t2 + 3).
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For f ∈ L2[−1, 1], we have the Legendre series representation

f(t) =
∞
∑

i=0

aiPi(t), ai = (f, Pi) =

∫ 1

−1

f(t)Pi(t)dt, i ≥ 0

For f(t) = sinπt we have the following graphical representation of first few
terms of the Legendre series.

-3 -2 -1 1 2 3
t

-4

-2

2

4

ft

Figure 2.1.3: Sketch of First few of terms of Legendre series for sinπt

Legendre polynomials will be used while discussing series solution of Legendre
differential equation, to be discussed in Chapter 6.

2.2 Linear and Nonlinear Operators

In this section, the spaces under consideration will be normed spaces, unless
otherwise stated.

Definition 2.2.1 T : X → Y is said to be linear if

T (α1x1 + α2x2) = α1Tx1 + α2Tx2, ∀α1, α2 ∈ < ∀ x1, x2 ∈ X

Otherwise, T is called nonlinear.

Definition 2.2.2 T : X → Y is said to be continuous at x ∈ X if

xn → x in X ⇒ Txn → Tx in Y

T is said to be continuous on X if T is continuous at every x ∈ X.
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One can show that a linear operator T is continuous on X iff ∃ a constant
k > 0 such that

‖Tx‖ ≤ k‖x‖ ∀ x ∈ X (2.2.1)

A linear T satisfying Eq. (2.2.1) is said to be a bounded operator. B(X,Y ) will
denote the space of all bounded linear operators from X to Y. One can show that
B(X,Y ) is also normed space with ‖T‖ defined by

‖T‖ = sup{‖Tx‖‖x‖ , x 6= 0̄} (2.2.2)

B(X) will denote the space of bounded linear operator from X into itself.

Example 2.2.1 Let X = <n and T : <n → <n be defined by a matrix (αij)n×n

[Tx]i =

n
∑

j=1

αijxj , x = (x1, . . . , xn) ∈ <n

T is obviously linear. Also

‖Tx‖
1
≤



max
i

n
∑

j=1

|αij |



 ‖x‖1

Thus T is a bounded linear operator on <n, equipped with 1-norm. But on <n,
all norms are equivalent and hence T is also a bounded linear operator on <n,

equipped with the Euclidean norm ‖x‖2 =

(

n
∑

i=1

x2
i

)1/2

.

Example 2.2.2 For a discussion on boundary value problems, we shall be en-
countering a linear operator of the form

[Tf ](t) =

∫ 1

0

k(t, s)f(s)ds, f ∈ L2[0, 1]

Assume that k : [0, 1]× [0, 1] → < is square integrable :
∫ 1

0

∫ 1

0 k
2(t, s)dtds <∞.

We have

|Tf(t)|2 ≤
∫ 1

0

|k(t, s)f(s)|2ds

≤
∫ 1

0

|k(t, s)|2ds
∫ 1

0

|f2(s)|ds

(by the application of Schwartz inequality to f(s) and k(., s) ∈ L2[0, 1]). This
inequality implies that

∫ 1

0

|Tf(t)|2dt ≤ (

∫ 1

0

|k(t, s)|2dtds)(
∫ 1

0

|f2(s)|ds)
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Denote by k2 =
∫ 1

0

∫ 1

0
k(t, s)|2dtds. Then we get

‖Tf‖ ≤ k‖f‖ ∀ f ∈ L2[0, 1]

That is, T ∈ B(L2[0, 1]).

The normed space B(X,<) of all continuous linear operators fromX to < will
play a significant role throughout the solvability analysis of ordinary differential
equations. This space is called the conjugate space or dual space of X and is
denoted by X∗. Elements of this space are called continuous linear functionals
or simply functionals.

As claimed before, X∗ is a normed space with norm of a functional f ∈ X∗

defined as
‖f‖ = sup

‖x‖≤1

|f(x)|

We also have the second conjugate X∗∗ = (X∗)∗ defined in a similar way.
One can show that X ⊆ X∗∗. However, if X = X∗∗, then X is said to be
reflexive.

Definition 2.2.3 A one to one and onto linear mapping from X to Y is called
isomorphism. The spaces X and Y are then called isomorphic.

If X and Y are finite dimensional spaces of the same dimension, then one can
define an isomorphism between X and Y by defining a linear operator which
maps basis to basis. With this notion, it follows that every finite dimensional
space of dimension n is isomorphic to <n.

Example 2.2.3 Let X = <n. Then X∗ = <n (up to an isomorphism). To see
this we proceed as follows.

Let S = {e1, e2, . . . , en} be an orthonormal basis for <n. Define a set S∗ =
{f1, f2, . . . , fn} ⊂ X∗ as follows:

f j(ei) = δij =

{

0, i 6= j
1, i = j

It is clear that {f j}n
j=1 are `.i. Also, if f ∈ X∗, one can write

f = f(ē1)f̄1 + f(ē2)f2 + . . .+ f(ēn)fn

Thus S∗ is a basis for X∗ and S∗ consists of n `.i. vectors. So X∗ is equal
<n(up to an isomorphism).

Example 2.2.4 We denote by Lp[0, 1] (lp) the space of pth power absolutely
integrable functions (pth power absolutely summable sequences), 1 < p < ∞.

One can show that L∗
p[0, 1](lp∗) = Lq[0, 1](lq),

1

p
+

1

q
= 1. (Refer Royden [10]).

From this result it follows that Lp(lp) spaces are reflexive spaces. In particular,
we have L∗

2[0, 1] = L2[0, 1](l∗2 = l2).
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Definition 2.2.4 Let T ∈ B(X,Y ). We define the conjugate operator T ∗ :
Y ∗ → X∗, of T as follows:

[T ∗f ][x] = f(Tx), f ∈ X∗, x ∈ X

One can show that T ∗ is also bounded and ‖T ∗‖ = ‖T‖.
However, if X is a Hilbert space, then corresponding to T ∈ B(X,Y ) we define
T ∗ ∈ B(Y,X) as :

(x, T ∗y)X = (Tx, y)Y ∀ x ∈ X, y ∈ Y. (2.2.3)

We say that T ∈ B(X) is self-adjoint if T ∗ = T.

Definition 2.2.5 Let X be Hilbert space and T ∈ B(X) be a self adjoint oper-
ator. T is said to be positive semi-definite if

(T x̄, x̄) ≥ 0 for all x̄ ∈ X

T is called positive definite if the above inequality holds and is strict for x̄ 6= 0̄.
For T ∈ B(X,Y ), the subspaces N(T ) and R(T ) are defined as follows

N(T ) = {x ∈ X : Tx = 0}, R(T ) = {y ∈ Y : y = Tx, x ∈ X}

We have the following relationship between N(T ∗) and R(T ) and vice-versa.

Theorem 2.2.1 Let X and Y be Hilbert spaces and let T ∈ B(X,Y ). Then
N(T ∗) = R(T )⊥ and R(T ∗)⊥ = N(T ).

Proof : It is sufficient to prove the first one. Assume that x ∈ N(T ∗), then
T ∗x̄ = 0 and hence (T ∗x, y) = 0 for all y ∈ X. This implies that (x, Ty) = 0 for
all y ∈ X. That is, x ∈ R(T )⊥ and hence N(T ∗) ⊂ R(T )⊥. Reversing the above
argument, one can show that R(T )⊥ ⊂ N(T ∗) and hence the first part of the
result.

This theorem can be extended to get the following result.

Theorem 2.2.2 Let X and Y be Hilbert spaces. If T ∈ B(X,Y ), then R(T ) =
N(T ∗)⊥ and R(T ∗) = N(T )⊥.

Remark 2.2.1 If R(T ) is closed, we get

R(T ) = N(T ∗)⊥, R(T ∗) = N(T )⊥

For operators T ∈ B(X) with closed range in a Hilbert space, we get the or-
thogonal projector P from X to M = R(T ), if T ∗T is invertible. This is done
as follows by making use of Theorem 2.1.4.

Let M = R(T ). By Theorem 2.1.4 we can write z ∈ X as follows:

z = u+ v, u ∈ R(T ) = M, v ∈ R(T )⊥ = N(T ∗)
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v ∈ N(T ∗) implies that T ∗(z − Tx) = 0 and hence T ∗z = T ∗Tx. This gives

x = (T ∗T )−1T ∗z (2.2.4)

The operator P : X → R(T ) = M is called the orthogonal projector and is
given by

Pz = u = Tx = [T (T ∗T )−1T ∗]z

This element
u = T (T ∗T )−1T ∗z ∈ R(T ) = M (2.2.5)

minimizes the functional f(x) = ‖z − Tx‖ in R(T ) = M.

Example 2.2.5 Let X = <n and A be the matrix (αij). Then A∗ = (βij) where
βij = αji. That is A∗, reduces to the transpose A> of the matrix A. We have

(Ax, y) =

n
∑

i=1

n
∑

j=1

αijxjyi

=

n
∑

j=1

n
∑

i=1

αjixiyj

=

n
∑

i=1

(

n
∑

j=1

αjiyj)xi

As βij = αji, we get

(Ax, y) =

n
∑

i=1

(

n
∑

j=1

βijyj)xi

= (x,By), B = (βij)

This implies that A∗ = B = (βij) = (αji) = A>

Example 2.2.6 If X = <n and A = (aij) is a m× n matrix with (A>A)m×m

invertible, then Eq. (2.2.5) gives the element u ∈ R(A) nearest to R(A) from
z̄ ∈ <n. This formulation can be used in linear data fitting model leading to the
least square approximation, as we see below.

Data fitting model is used in measuring relationship between two physical
quantities. Let the first quantity be represented by variables x1, x2, . . . , xn, giving
the vector x ∈ <n, the second quantity by y and the functional relationship be
given by

y = f(x), x = (x1, . . . , xn)

We assume that the observed data fk approximate the value f(x(k)). The
problem of data fitting is to recover the function f(x) from the given data
fk, k = 1, 2, . . . ,m. We try to fit the data by a linear function F (x) given
by

F (x̄) = a0 + a1x1 + · · · + anxn (2.2.6)
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We shall compute parameters ak so that the deviations

dk = fk − F (x(k); a0, a1, . . . , an), k = 1, . . . ,m

are as small as possible.
Hence we minimize the error dk w.r.t. the 2-norm

‖d̄‖2 =
m
∑

k=1

d2
k, d̄ = (d1, d2, . . . , dm)

From the linear model given by Eq. (2.2.6), we have

‖d̄‖2 =

m
∑

k=1

(fk − F (x̄(k)))2

=

m
∑

k=1

(fk −
n
∑

i=0

aix
(k)
i )2

Let ā = (a0, a1, . . . , an), z̄ = (f1, f2, . . . , fn)

A =













1 x(1) x(2) · · · x(n)

1 x
(1)
2 x

(2)
2 · · · x

(n)
2

...
...

... · · ·
...

1 x
(1)
m x

(2)
m · · · x

(n)
m













.

Then the least square problem (data fitting problem) reduces to finding ū∗ = Aa∗

such that
‖z − u∗‖ = inf

a∈<n
‖z −Aa‖

By using Eq. (2.2.5), the vector u∗ is given by

ū∗ = A(A>A)−1A>z̄

if (A>A) is invertible.

Remark 2.2.2 From the point of view of applications to differential equations,

it is not possible to define the linear operator T =
d

dt
on the whole space L2[0, 1].

In such a case we first define the domain D(T ) as follows:

D(T ) = {f ∈ L2[0, 1] : ḟ =
df

dt
exists a.e. with ḟ ∈ L2[0, 1]}

D(T ) is called the space AC[0, 1] of all absolutely continuous functions on [0, 1].
It can be shown that D(T ) is dense in L2[0, 1]. However, it is not a bounded

operator as it maps the sequence fn(t) =

{

sinnπt

n

}

which converges to zero in

L2[0, 1] to a sequence Tfn(t) = π cosnπt which is not convergent.
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Definition 2.2.6 Let X be a Hilbert space and T : D(T ) → X be such that
D(T ) is dense in X. Then we define D(T ∗) to consist of y ∈ X for which the
linear functional

f(x) = (Tx, y), x ∈ D(T ) ⊂ X

is continuous in D(T ). By Riesz representation theorem (refer Bose and Joshi
[2]), there exists a unique y∗ ∈ X such that

(Tx, y) = (x, y∗) ∀ x ∈ D(T )

The adjoint T ∗ of T is defined on D(T ∗) by T ∗y = y∗. In other words the adjoint
T ∗ of T for densely defined operators is given by

(Tx, y) = (x, T ∗y), ∀ x ∈ D(T ), y ∈ D(T ∗)

T is said to be self-adjoint iff D(T ∗) = D(T ) and T ∗ = T.

Example 2.2.7 Let X = L2[0, 1] and Tf(t) = −f̈(t) = −d
2f

dt2
, where D(T ) is

defined as under

D(T ) = {f ∈ L2[0, 1]} : ḟ , f̈ ∈ L2[0, 1] with f(0) = f(1) = 0}

One can show that D(T ) is dense in L2[0, 1] and

(Tf, g) = −
∫ 1

0

f̈(t)g(t)dt = −ḟ(t)g(t)

∣

∣

∣

∣

∣

1

0

+

∫ 1

0

ḟ(t)ġ(t)dt

= −ḟ(1)g(1) − ḟ(1)g(0) + f(t)ġ(t)

∣

∣

∣

∣

∣

1

0

−
∫ 1

0

f(t)g̈(t)dt

= −ḟ(1)g(1) + ḟ(1)g(0) + f(1)ġ(1) − f(0)ġ(0) −
∫ 1

0

f(t)g̈(t)dt, f ∈ D(T )

= −ḟ(1)g(1) + ḟ(1)g(0) −
∫ 1

0

f(t)g̈(t)dt

= −
∫ 1

0

f(t)g̈(t)dt

if g(0) = g(1) = 0.

Hence

(Tf, g) = (f, Tg)

where T ∗g = −g̈ and D(T ∗) = {g ∈ X : ġ, g̈ ∈ L2, g(0) = g(1) = 0}.

Thus T ∗ = T and D(T ) = D(T ∗). So, T is a self-adjoint operator and is densely
defined. Also one can show that T is closed. That is if xn → x in X = L2[0, 1]
and Txn → y in X. Then x ∈ D(T ) and y = Tx.
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Definition 2.2.7 T ∈ B(X,Y ) is said to be compact if it maps bounded sets
B ⊂ X onto relatively compact set T (B) (T (B) is compact). Equivalently, T
is compact iff for every bounded sequence {x̄n} ⊂ X, {T x̄n} has a convergent
subsequence in Y .

Definition 2.2.8 T ∈ B(X,Y ) is called finite rank operator if the range of T
is finite dimensional.

Theorem 2.2.3 Every finite rank operator T ∈ B(X,Y ) is compact.

Proof : As R(T ) is finite dimensional, we have R(T ) = L[y1, y2, . . . , yN ].

Consider now a bounded sequence {xn} ⊂ X, then Txn =
∑N

j=1 α
(n)
j yj for

some scalars α
(n)
j .

Since T is bounded {α(n)
j } is bounded for each j and hence ∃ subse-

quence {α(nk)
j } such that α

(nk)
j → αj , 1 ≤ j ≤ N. It now follows that

Txnk =
∑N

j=1 α
(nk)
j yj → y = α1y1 + α2y2 + . . . + αNyN . This proves the

compactness of T.

The following theorem gives the compactness property of the adjoint of a
compact operator and also the limit of compact operators. X and Y are assumed
to be Hilbert spaces.

Theorem 2.2.4 (1) The composition of a compact operator with a bounded
operator is compact.

(2) Limit of a sequence of compact operator is compact.
(3) T ∈ B(X,Y ) is compact iff T ∗ ∈ B(Y,X) is compact.

Refer Bose and Joshi [2] for the proof of this theorem.

Example 2.2.8 Consider the operator T : L2[0, 1] → L2[0, 1], as defined in
Example 2.2.2:

[Tf ](t) =

∫ 1

0

k(t, s)f(s)ds, f ∈ L2[0, 1]

with
∫ 1

0

∫ 1

∞

[k(t, s)]2dtds <∞.

Let {φi(t)} be a complete orthonormal set in L2[0, 1], then the set
{φi(t)φj(s)}∞i,j=1 is a complete orthonormal set in L2([0, 1]× [0, 1]). Hence

k(t, s) =

∞
∑

i=1

∞
∑

j=1

aijφi(t)φj(s)

where aij =
∫ 1

0

∫ 1

0 k(t, s)φi(t)φj(s)dtds. By Parseval’s equality, we have

∫ 1

0

∫ 1

0

[k(t, s)]2dtds =
∞
∑

i=1

∞
∑

j=1

(aij)
2
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Further, we have

∫ 1

0

∫ 1

0



k(t, s) −
n
∑

i=1

n
∑

j=1

aijφi(t)φj(s)





2

dtds

=

∫ 1

0

∫ 1

0





∞
∑

i,j=n+1

[aijφi(t)φj(s)]





2

dtds

=

∞
∑

i,j=n+1

|aij |2 → 0

since
∞
∑

i=1

∞
∑

j=1

|aij |2 <∞.

Now define Kn(t, s) =
n
∑

i,j

aijφi(t)φj(s).

Then Tn : X → X defined by

(Tnf)(t) =

∫ 1

0

Kn(t, s)f(s)ds

is a finite rank operator and hence it is compact. Also Tn → T in B(X) and
hence by the previous theorem T is compact.

We have the following theorem, called Fredholm Alternative, giving the solv-
ability of the operator equation involving compact operators.

Consider three related equations in a Hilbert space X (over the field of complex
numbers)

Tx− λx = 0 (H)

T ∗z − λz = 0 (H∗)
Ty − λy = f (NH)

Theorem 2.2.5 1. Either both (H) and (H∗) have only trivial solutions or both
have nontrivial solutions.

2. The necessary and sufficient condition for (NH) to have a nontrivial
solution is that f be orthogonal to every solution of (H∗).
In particular, if λ is not an eigenvalue of T then λ is not an eigenvalue of T ∗

and (NH) has one and only one solution for each f ∈ X.

We now state the following theorem which gives orthonormal basis for a Hilbert
space X arising out of eigenvectors of T ∈ B(X), refer Bose and Joshi[2] for the
proof.

Theorem 2.2.6 Let T be a self-adjoint compact operator on a Hilbert space.
Then the eigenvectors of T form a complete orthonormal basis for X.
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Corollary 2.2.1 Let T be a compact and self-adjoint operator in a Hilbert space
X. Then T is positive semidefinite (positive definite) iff all eigenvalues of T are
nonegative (positive).

Example 2.2.9 Let X = <n and A : <n → <n be given by a symmetric
matrix (aij)n×n. Then A ∈ B(<n) is compact self-adjoint operator and hence
the eigenvectors of A form a basis.

Let
Aφi = λiφi, 1 ≤ i ≤ n

where {φi}n
i=1 are orthonormal.

Let P = [φi, φ2, . . . , φn]. Then P is an orthogonal matrix (P>P = I) and

AP = [Aφi, . . . , Aφn] = [λ1φ1, . . . λnφn] = PD

where D = diag[λ1, . . . , λn].

This gives us P−1AP = D. Thus A is similar to a diagonal matrix. This is
called diagonalisation procedure and will be used in Chapter 4 while computing
transition matrix of a given system of differential equations. However, it may be
pointed out A can be diagonalised even if A is not self-adjoint provided it has
distinct eigenvalues. Assume that the eigenvectors corresponding to distinct
eigenvalues are linearly independent and hence defining P as before, we get
P−1AP = D. But P is no longer an orthogonal matrix, it is merely nonsingular.

We now examine the properties of a nonlinear operator F : X → Y, X and Y
are normed spaces.

Definition 2.2.9 F : X → Y is said to be continuous if xn → x in X ⇒
Fxn → Fx ∀ x ∈ X. F is said to be bounded if it maps bounded sets in X into
bounded sets in Y.

Compact nonlinear operators are defined in the same way as compact linear
operators.

Remark 2.2.3 For nonlinear operators continuity is not equivalent to bound-
edness, refer Joshi and Bose [6].

Example 2.2.10 Consider the following ODE

dx

dt
= f(t, x(t)), t ∈ I = [t0, tf ] (2.2.7)

with f : I ×< → < continuous and bounded.

Then by Proposition 1.1.1, the solvability of Eq. (2.2.7) is equivalent to the
solvability of the equation

x(t) = x(t0) +

∫ t

t0

f(s, x(s))ds, t ∈ I = [t0, tf ] (2.2.8)
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The RHS of Eq. (2.2.8) gives rise to a nonlinear operator F on C[t0, tf ] defined
as follows

[Fx](t) = x(t0) +

∫ t

t0

f(s, x(s))ds

We have

|[Fx](t1) − [Fx](t2)| ≤
∫ t2

t1

|f(s, x(s))|ds

≤ m|t1 − t2|(m = sup
(s,x)∈I×<

|f(s, x)|)

For this inequality it follows that Fx is continuous and hence Fx ∈ C[t0, tf ] if
x ∈ C[t0, tf ]. Further

|Fxk(t) − Fx(t)| ≤
∫ t

t0

|f(s, xk(s)) − f(s, x(s)|ds

Let xk → x in C[t0, tf ]. This implies that xk(s) → x(s) in < for all s ∈ [t0, t1].
Since (s, x) → f(s, x) is continuous, it follows by bounded convergence theorem,
that

|Fxk(t) − Fx(t)| ≤
∫ t

t0

|f(s, xk(s)) − f(s, x, s)|ds→ 0

for all t ∈ [t0, tf ]. One can also show that this convergence is uniform and hence

‖Fxk − Fx‖ = sup
t∈[t0,tf ]

|Fxk(t) − Fx(t)| → 0

Hence F is a continuous nonlinear operator from X = C[t0, tf ] in to itself.
Similarly, one can show that F is bounded on X.

The above result also holds true if f(t, x) is defined on I × Ω → Ω where Ω is
an open subset of <n. One then denotes by C[t0, tf ] the space of all <n− valued
continuous functions and the norm of the elements x ∈ C[t0, tf ] is defined as

‖x‖ = sup
t∈[t0,tf ]

‖x(t)‖<n

2.3 Lipschitz Continuity and Differentiability

In this section too the spaces under consideration will be normed space.

Definition 2.3.1 F : X → Y is said to be Lipschitz continuous if ∃ constant
k > 0 such that

‖Fx− Fy‖ ≤ k‖x− y‖ ∀ x, y ∈ X (2.3.1)
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Definition 2.3.2 F : X → Y is said to be differentiable at x ∈ X if ∃ A ∈
B(X,Y ) such that

F (x+ h) − F (x) = Ah+ w(x, h) (2.3.2)

where lim
‖h̄‖→0

‖w(x, h)‖
‖h‖

= 0

A is called the derivative of F at x and is denoted by F ′(x). Its value at h
will be denoted by F ′(x)h. One can show that F is differentiable at x ∈ X with
derivative A iff

lim
t→0

F (x+ th) − F (x)

t
= Ah ∀ h ∈ X

and x̄ → F ′(x̄) is continuous.

Equivalently, writing φ(t) = F (x + th) for x, h ∈ X, we see that F has
derivative F ′(x̄) iff

d

dt
[φ(t)]t=0 = F ′(x)h, for all h̄ ∈ X

We have the following variant of the meanvalue theorem for F : X → Y. Refer
Joshi and Bose[ 6 ] for the proof of this theorem.

Theorem 2.3.1 Let F : X → Y be differentiable at every x̄ in X. Then for
points x̄, x̄+ h̄ ∈ X and ē ∈ Y ∗, there exists a constant τ, 0 < τ < 1, such that

(

ē, F (x̄+ h̄) − F (x)
)

=
(

ē, F ′(x̄+ τ h̄)h̄
)

This immediately gives the following Corollary.

Corollary 2.3.1 If ‖F ′(x̄)‖ ≤ K ∀ x̄ ∈ X then F is Lipschitz continuous.

Example 2.3.1 Let F : <n → <n be given by

F (x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . xn)). Let A = (aij) be
the m× n (matrix, which we want to compute) such that F ′(x) = A.

We choose h̄ ∈ <n as jth coordinate vector ej = (0, . . . , 1, . . . , 0) Then

lim
t→0

‖1

t
F (x+ th) − F (x) − tAh‖ = 0

⇔ lim
t→0

|1
t
[fi(x+ ej) − fi(x) − taij ]| = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

This shows that F (x) is differentiable at x ∈ <n iff fi(x) has continuous partial

derivatives at x ∈ <n and F ′(x) = A =

(

∂fi

∂xj
(x)

)

, if partial derivative are
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continuous. So we have

F ′(x) =























∂1f1(x̄) · · · ∂nf1(x̄)

∂1f2(x̄) · · · ∂nf2(x̄)

...
...

∂1fm(x̄) · · · ∂nfm(x̄)























In case f is a functional, that is, f is a mapping from <n to <, then f ′(x) =
∇f(x), called the gradient of f at x.

Example 2.3.2 Let X be a Hilbert space and let f : X → < be given by

f(x) =
1

2
(Ax, x), x ∈ X

We assume that A is a bounded self-adjoint linear operator. The derivative of
f is computed as under.

f ′(x)h = lim
t→0

[

f(x+ th) − f(x)

t

]

= lim
t→0

1

2

[

(A(x + th), (x+ th)) − (Ax, x)

t

]

= lim
t→0

1

2

[

t
[

(Ax, h) + (x,Ah)
]

+ t2(Ah, h)

t

]

= lim
t→0

1

2

[

(Ax, h) + (A∗x, h) + t(Ah, h)
]

=
1

2

((

A+A∗

2

)

x, h

)

= (Ax, h)

as A∗ = A.
This implies that f ′(x) = Ax ∀ x ∈ X. This derivative f ′ of a functional f is
also denoted as ∇f .
From this representation it also follows that f

′′

(x) = A.

Remark 2.3.1 In dealing with minimization problem involving several vari-
ables we shall encounter convex functionals as in Example 2.3.2. A function
f : X → < is said to be convex if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y), 0 < α < 1

for all x, y ∈ X. X is any normed space.
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Remark 2.3.2 One can show that f is strictly convex on a Hilbert space if
f

′′

(x) is positive definite (refer problem number 8 in sectoin 2.6). Hence the
functional of Example 2.3.2 is strictly convex, if A is positive definite.

Example 2.3.3 (Least Square Approximation - Data Fitting) In Exam-
ple 2.2.5 involving problems of least square approximations, we minimize ‖d‖2

given by

‖d‖2 = ‖z −Aa‖2 =

m
∑

k=1

(fk −
n
∑

i=0

aix
(k)
i )2

where z and A are as defined in the example. Let φ(a) be defined as follows

φ(a) = (z −Aa, z −Aa)

= (z, z) − 2(Aa, z) + (Aa,Aa)

= (z, z) − 2(Aa, z) + (A>Aa, a), ā ∈ <n

Proceeding as in Example 2.3.2, we get

∇φ(a) = −2A>z + 2A>Aa

It is clear that A>A is positive semi-definite. If A>A is invertible then A>A
is positive definite and hence f is strictly convex and its critical point is the
minimizer of φ. Also a∗ is the critical point of φ iff ∇φ(a∗) = 0

This implies that A>z = A>Aa∗ and hence a∗ = (A>A)−1A>z.

This is the same result, which we obtained earlier.

Remark 2.3.3 While solving differential equations, we shall also be estimating
a set of parameters which will arise in the defining model. Estimating parameters
requires the minimization of a functional involving these parameters.

Such functionals f may not be convex and hence there is a need to generate
algorithms which will computationally capture the minimizer (local / global).
We give below one such algorithm - called the steepest descent algorithm - which
captures the local minimizer of a function f defined on the entire space <n.

Steepest Descent Algorithm 2.3.1

Step 1 : Start with x(k)(k = 0)

Step 2 : Set d
(k)

= −g(k), g(k) = ∇f(x(k))

Step 3 : Minimize 1-dimensional function φ(α) = f(d
(k)

+αd
(k)

) to get
α(k)

Step 4 : Set x(k+1) = x(k) + α(k)d
(k)

Step 5 : Use any stopping criterion and set x∗ = x(k+1). Otherwise set
k = k + 1 or GO TO STEP 2

Step 6 : Compute f(x∗), x∗ is the point of optimum.
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In Example 2.3.2, the iteration procedure for the functional

f(x) =
1

2
(Ax, x), x ∈ <n

is given by

x(k+1) = x(k) −
(

g(k), g(k)
)

(

Ag(k), g(k)
)g(k) (2.3.3)

Example 2.3.4 Let F : X = C[0, 1] → C[0, 1] be defined by

[Fx](t) =

∫ 1

0

k(t, s)f(s, x(s))ds

where k and f satisfy the following properties

(i) k(t, s) is continuous on [0, 1]× [0, 1].

(ii) x → f(t, x) is differentiable mapping from < to < for all t ∈ [0, 1] such
that

|∂f
∂x

(t, x)| ≤M for all (t, x) ∈ [0, 1] ×<

As in Example 2.2.11, we can prove that F is a continuous mapping of C[0, 1]
to itself. We now compute the derivative of F.

[F ′(x)h] =
d

dα
[F (x+ αh)]α=0

= lim
α→0

[
F (x+ αh) − F (x)

α
]

= lim
α→0

∫ 1

0

k(t, s)
[f(s, (x+ αh)(s)) − f(s, x̄(s))]

α

=

∫ 1

0

k(t, s)
∂

∂x
f(s, x(s))h(s)ds

by Lebesgue dominated convergence theorem. Thus F is differentiable at x with
F ′(x) as a linear integral operator generated by the kernel

g(t, s) = k(t, s)
∂f

∂x
(s, x(s)) and is given by

F ′(x)h(t) =

∫ 1

0

g(t, s)h(s)ds.

Also, as g(t, s) is a bounded on [0, 1] × [0, 1], it follows that ‖F ′(x)‖ ≤ M
and hence by Corollary 2.3.1 it follows that F is Lipschitz continuous on X =
L2[0, 1].
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Let F be differentiable at x0 ∈ X, then it follows that we have the following
expansion for F (x) with F ′(x̄0) ∈ B(X).

F (x) = F (x0) + F ′(x0)(x − x0) + w(x, h) (2.3.4)

where
‖w(x, h‖

‖h‖
→ 0 as ‖h‖ → 0.

Definition 2.3.3 If F is differentiable at x0 then the function

F̂ (x) = F (x0) + F ′(x0)(x − x0) (2.3.5)

is called the linearization of F at x0.

Remark 2.3.4 The linearization process can be used to find the zeros of the
nonlinear function F (x) in a neighbourhood of the operating point x0 ∈ X if
[F

′

(x̄0)] is invertible.
By linearization, it suffices to compute the zeros F̂ (x) and hence

0 = F̂ (x) = F (x0) + F ′(x0)(x− x0).

This gives

x = x0 + [F ′(x0)]
−1
F (x0)

Hence we get the Newton’s algorithm to find the zeros of F (x), starting with an
initial guess x̄0.

Algorithm 2.3.2 - Newton’s Algorithm

Step 1 Set k = 0 and input initial guess xk and the tolerance ε > 0

Step 2 x(k+1) = x(k) − [F ′(x(k))]−1F (x(k))

Step 3 If ‖x(k+1) − x(k)‖ <∈, STOP and set x∗ = x(k) as the computed zero of
F (x̄). Otherwise increment k by 1.

Step 4 GO To Step 2

Example 2.3.5 We have shown in Example 1.3.2 that the motion of a satellite
orbiting around the earth is given by an ordinary differential equation (ODE) in
<4:

dx̄

dt
= f(x̄, ū), x̄ ∈ <4, ū ∈ <2 (2.3.6)

x̄(t) = (x1(t), x2(t), x3(t), x4(t)) represents the state vector and
ū(t) = (u1(t), u2(t)) is the control vector (thrusts on the satellite), f is given by

f(x̄, ū) = (f1(x̄, ū), f2(x̄, ū), f3(x̄, ū), f4(x̄, ū))

where

f1 = x2, f2 = (x1 + σ)(
x4

σ
+ w)2 − k

(x1 + σ)2
+ u1,

f3 = x4, f4 = −2σ(
x4

σ
+ w)

x2

(x1 + σ)
+

u2σ

(x1 + σ)
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Using linearization procedure for f(x̄, ū), described by Eq. (2.3.5), around
x̄ = 0, ū = 0 we get

f̂(x̄, ū) = f ′
x(0̄, 0̄)x̄+ f ′

u(0̄, 0̄)ū

A = f ′
x(0̄, 0̄) =

































∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x2

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x2

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4

































(ō,ō)

=





















0 1 0 0

3w2 0 0 2w

0 0 0 1

0 −2w 0 0





















(2.3.7)

B = f ′
u(0, 0) =

































∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

∂f3
∂u1

∂f3
∂u2

∂f4
∂u1

∂f4
∂u2

































(ō,ō)

=





















0 0

1 0

0 0

0 1





















(2.3.8)

Here σ is normalized to 1. So the linearized ODE, corresponding to Eq. (2.3.6)
is

dx̄

dt
= Ax̄ +Bū

where A and B are given by Eq. (2.3.7) and Eq. (2.3.8), respectively.

2.4 Fixed Point Theorems and Monotone Oper-

ators

Definition 2.4.1 Let X be a metric space and F : X → X. An element x ∈ X
is said to be a fixed point of the mapping F if Fx = x.

We begin with the following constructive fixed point theorem by Banach,
known as Banach contraction mapping principle. This theorem will be one of the
important instruments in obtaining existence theorems for ordinary differential
equations.

Definition 2.4.2 Let (X, d) be a metric space. F : X → X is said to be
contraction if F is Lipschitz continuous with Lipschitz constant strictly less than
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1. That is, there exists a positive constant α < 1 such that

d(Fx, Fy) ≤ αd(x, y) for all x, y ∈ X (2.4.1)

If X is a normed space, then (2.4.1) is equivalent to the following inequality

‖F x̄− F ȳ‖ ≤ α‖x̄− ȳ‖ for all x̄, ȳ ∈ X (2.4.2)

Theorem 2.4.1 Let F be a contraction mapping of a complete metric space X
into itself. Then F has a unique fixed point x∗ ∈ X. Moreover if x0 ∈ X is any
arbitrary point, and {xn} a sequence defined by

xn+1 = Fxn (n = 0, 1, 2, . . .)

then lim
n→∞

xn = x∗ and d(xn, x
∗) ≤ αn

1 − α
d(x1, x0).

Proof : We have

d(xk , xk−1) = d(Fxk−1, Fxk−2)

≤ αd(xk−1, xk−2)

≤ αd(x1, x0)

This gives

d(x`, xm) ≤ d(x`, x`−1) + . . .+ d(xm+1, xm)

≤ [αm + αm+1 + . . .+ αl−1]d(x1, x0)

≤ αm[1 + α+ α2 + . . .]d(x1, x0)

=

[

αm

1 − α

]

d(x1, x0), l > m

→ 0 as m→ ∞
This implies that {xn} is Cauchy in X and as X is complete, it converges to
x∗ ∈ X. As xn → x∗, xn+1 = Fxn and F is continuous, it follows that
x∗ = Fx∗.

The uniqueness of the fixed point x∗ follows from the fact that for two fixed
point x∗ and y∗, we have

d(x∗, y∗) = d(Fx∗, F y∗)

≤ αd(x∗, y∗)

< d(x∗, y∗)

and hence d(x∗, y∗) = 0.
The error estimate d(xn, x

∗) is given by

d(x∗n, x
∗) ≤ d(xm, x

∗) + d(xm, xn)

≤ d(xm, x
∗) +

αn

1 − α
d(x1, x0),m > k
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Letting m→ ∞, we get

d(xn, x
∗) ≤ αn

1 − α
d(x1, x0)

As a Corollary of this theorem, we obtain the solvability of the linear equa-
tion

x−Ax = y (2.4.3)

in a Banach space X. Here, A ∈ B(X) with ‖A‖ < 1 and ȳ ∈ X.

Corollary 2.4.1 Let A ∈ B(X) be such that ‖A‖ < 1. Then (I −A) is bounded
and invertible with

‖(I −A)−1‖ ≤ 1

1 − ‖A‖ (2.4.4)

Proof : We first show that

x−Ax = y, y ∈ X

has a unique solution. Let Fx = Ax+ y. Then

‖Fx1 − Fx2‖ = ‖Ax1 −Ax2‖ ≤ ‖A‖‖x1 − x2‖ for all x1, x2 ∈ X

As α = ‖A‖ < 1, it follows that F is a contraction and hence it has a unique
fixed point x in the Banach space X (complete metric space). That is, Eq.
(2.4.3) has a unique solution x. Further, let

x = (I −A)−1y

This implies that x−Ax = y, y ∈ X arbitrary and hence

‖x‖ ≤ ‖Ax‖+ ‖y‖
≤ ‖A‖‖x‖+ ‖y‖

This gives

‖x̄‖ ≤
[

1

1 − ‖A‖

]

‖ȳ‖

Hence

‖(I −A)−1ȳ‖ ≤
[

1

1 − ‖A‖

]

‖ȳ‖

for all ȳ ∈ X.
This implies that

‖(I −A)−1‖ ≤ 1

1 − ‖A‖
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Example 2.4.1 Solve the linear system

Ax̄ = b̄ (2.4.5)

in <n, A = (αij)n×n. Expanding Eq. (2.4.5) in terms of its component we get

α11x1 + α12x2 + . . .+ α1nxn = b1
α21x1 + α22x2 + . . .+ α2nxn = b2

...
αn1x1 + αn2x2 + . . .+ αnn

xn = bn

(2.4.6)

Assume that αii > 0 and the matrix A is diagonally dominant:
n
∑

i=1

i6=j

|αij | < αii, 1 ≤ i ≤ n.

Then Eq. (2.4.6) is equivalent to

x1 =
b1
α11

− α12x2

α11
. . .− α1nxn

α11

x2 =
b2
α22

− α21x1

α22
− . . .− α2nxn

α22

...

xn =
bn
αnn

− αn, x1

αnn
− . . .− αn,n−1xn−1

αnn

(2.4.7)

Define

B = −





























0
α12

α11
· · · α1n

α11

α21

α22
0 · · · α2n

α22

...

αn1

αnn

αn2

αnn
· · · 0





























, c =

































b1
α11

b2
α22

...

bn
αnn

































Then the solvability of Eq. (2.4.7) is equivalent to the solvability of the matrix
equation

x̄−Bx̄ = c̄, ‖B‖ < 1.

Hence by the above corollary, this has a unique solution x̄∗ and the iteration
scheme

x̄(k+1) = c̄+Bx̄(k)
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converges to x̄∗.
This gives us the well known Jacobi’s iteration scheme (refer Conte and deBoor
[4]).

x
(k+1)
1 =

b1
α11

− α12

α11
x

(k)
2 · · · − α2n

α11
x(k)

n

x
(k+1)
2 =

bn
α22

− α21

α22
x

(k)
1 · · · − α2,n

α22
x(k)

n

... =
... −

... −
...

x(k+1)
n =

bn
αnn

− αn1

αnn
x

(k)
1 · · · αn,n−1

αnn
x(k)

n

For the diagonally dominant matrix

A =









24 3 9 7
1 12 −3 −4
0 1 22 −3
7 −4 −3 24









, b̄ = (1, 1, 2,−4)

we get the following iterated solution x̄(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 ) of Ax̄ = b̄.

Table 2.4.1: Iterated solution of the matrix equation

n x
(n)
1 x

(n)
2 x

(n)
3 x

(n)
4 ‖x− x(n)‖

0 1 0 -1 2
1 -0.16667 0.41667 0.36364 -0.58333 5.53030
2 0.02336 -0.00631 -0.00758 -0.00316 1.56439
3 0.04622 0.07844 0.09077 -0.17548 0.37828
4 0.04901 0.04368 0.06341 -0.15573 0.08465
5 0.05785 0.04319 0.06769 -0.16575 0.02363
6 0.05923 0.04018 0.06634 -0.16788 0.00786
7 0.06073 0.03902 0.06619 -0.16895 0.00389
8 0.06125 0.03850 0.06610 -0.16960 0.00178
9 0.06154 0.03822 0.06603 -0.16986 0.00089

It may happen that F : (X, d) → (X, d) is not a contraction but some power
of it is a contraction. We still get a unique fixed point, as we see in the following
corollary.

Corollary 2.4.2 Let (X, d) be a complete metric space. F : (X, d) → (X, d) be
such that FN is a contraction for some positive integer N. Then F has a unique
fixed point.
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Proof : By the contraction mapping principle, FN has a unique fixed point
x∗. That is, ∃ x∗ ∈ X such that FNx∗ = x∗. Applying F to both sides, we get
FN+1(x∗) = F (x∗) and hence FN (F (x∗)) = F (x∗). This implies that F (x∗) is
also a fixed point of FN and uniqueness implies that Fx∗ = x∗. Also every fixed
point of F is also a fixed point of FN and hence fixed point of F is unique.

Example 2.4.2 Let F : C[a, b] → C[a, b] be defined by

[Fx](t) =

∫ t

a

x(s)ds

We have

[F kx](t) =
1

k − 1!

∫ t

a

(t− s)k−1x(s)ds

This gives

|(F kx− F ky)(t)| ≤ 1

k − 1!

∫ t

a

(t− s)k−1|x(s) − y(s)|ds

≤ (b− a)k

k!
sup

s∈[a,b]

|x(s) − y(s)|

=
(b− a)k

k!
‖x− y‖

This implies that

‖F kx− F ky‖ ≤ (b− a)k

k!
‖x− y‖ ∀ x, y ∈ X = C[a, b]

As
(b− a)k

k!
→ 0 as k → ∞, it follows that ∃ positive integer N such that

(b− a)N

N !
< 1. Thus there exist a positive integer N such that α =

(b− a)N

N !
< 1

and ‖FNx − FNy‖ ≤ α‖x − y‖ ∀ x, y ∈ X = C[a, b]. That is FN is a
contraction. However, F is not a contraction if (b− a) > 1.

At times, we shall encounter mappings in a normed space, which are not
contractions but have compactness property. For such operators, we have the
following Schauder’s theorem, giving a fixed point of F.

Theorem 2.4.2 Let K be a nonempty closed convex subset of a normed space
X. Let F be a continuous mapping of K into a compact subset of K. Then F
has a fixed point in K.

Another important notion which will be used in solvability analysis of differ-
ential equation is the concept of monotone operators in Hilbert spaces. We shall
now define this concept and obtain some abstract results which subsequently
will be used in Chapter 3 while dealing with existence and uniqueness theorems.
In the following, the space X is assumed to be a Hilbert space.
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Definition 2.4.3 F : X → X is said to be monotone if

(Fx1 − Fx2, x1 − x2) ≥ 0 for all x1, x2 ∈ X (2.4.8)

F is called strictly monotone if the above inequality holds and is strict for x1 6=
x2. F is called strongly monotone if ∃ constant c > 0 such that

(Fx1 − Fx2, x1 − x2) ≥ c‖x1 − x2‖2 for all x1, x2 ∈ X (2.4.9)

If F is not defined on the whole space, then we verify Eq. (2.4.8) - Eq. (2.4.9)
on D(F ), the domain of F .

Definition 2.4.4 A multivalued mapping F : X → 2X is called monotone if

(ȳ1 − ȳ2, x̄1, x̄2) ≥ 0 ∀ x̄1, x̄2 ∈ D(F ) and ȳ1 ∈ F x̄1, ȳ2 ∈ F x̄2

A monotone mapping F is called maximal monotone if it has no proper mono-
tone extensions.

Example 2.4.3 A : L2[0, 1] be the differential operator − d2

dt2
with D(A) defined

as
D(A) = {x ∈ L2[0, 1] : ẋ(t), ẍ(t) ∈ L2[0, 1]; x(0) = x(1) = 0}

A has dense domain and it is self adjoint

(Ax̄, ȳ) =

(

−
(

d2x

dt2

)

, y(t)

)

=

(

x,−
(

d2y

dt2

))

;x, y ∈ D(A)

A is monotone as

(Ax, x) = −
∫ 1

a

d2x

dt2
x(t)dt

=

∫ 1

0

(
dx

dt
)2dt, x̄ ∈ D(A)

≥ 0

Example 2.4.4 Let f(s, x) be a function defined on [0, 1]×< to < be such that
f(s, x) is measurable w.r.t. s for all x ∈ < and continuous w.r.t. x for almost
all s ∈ [0, 1]. Let F : X = L2[0, 1] → L2[0, 1] be defined by

[Fx](s) = f(s, x(s))

If we assume a growth condition of the type

|f(s, x)| ≤ a(s) + b|x|, a ∈ L2[0, 1], b > 0

on f, then one can show that F maps X into itself and is continuous and bounded
(refer Joshi and Bose[6]). Further, assume that the mapping x → f(s, x) is
monotone increasing for almost all s ∈ [0, 1]. Then we have

(F x̄1 − F x̄2, x̄1 − x̄2) =

(∫ 1

0

(f(s, x1(s)) − f(s, x2(s)))(x1(s) − x2(s))ds

)

(2.4.10)
As the integrand in the above equation is nonnegative for all x1, x2 ∈ X, it
follows that F is monotone.
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Example 2.4.5 Let F : X → X be a contraction. Then (I − F ) is strongly
monotone.

((I − F )x̄1 − (I − F )x̄2, x̄1 − x̄2) = (x̄1 − x̄2, x̄1 − x̄2) − (F x̄1 − F x̄2, x̄1 − x̄2)

≥ ‖x̄1 − x̄2‖2 − ‖F x̄1 − F x̄2‖ ‖x1 − x2‖

≥ ‖x̄1 − x̄2‖2 − α‖x̄1 − x̄2‖2

= (1 − α)‖x̄1 − x̄2‖2 ∀ x̄1, x̄2 ∈ X

We have the following solvability result due to Browder[3], concerning strongly
monotone continuous operators on X.

Theorem 2.4.3 Let F : X → X be a strongly monotone continuous operator.
Then F x̄ = ȳ has a unique solution for any y ∈ X. Moreover F−1 is Lipschitz
continuous and monotone.

In view of Example 2.4.5, we get the following Corollary.

Corollary 2.4.3 Let F : X → X be a contraction on the Hilbert space X. Then
x̄ = F x̄+ ȳ has a unique solution x̄ for every ȳ ∈ X and this solution x̄ varies
continuously w.r.t. ȳ.

Definition 2.4.5 F : X → X is called coercive if lim
‖x̄‖→∞

(F x̄, x̄)

‖x̄‖ = ∞.

For functions f defined on <, this corresponds to the condition lim
x→∞

f(x) = ∞
and lim

x→−∞
f(x) = −∞.

We have the following result due to Minty [9].

Theorem 2.4.4 Let F : X → X be continuous, monotone and coercive. Then
R(F ) = X.

While dealing with differential equations, we shall encounter operators, which
are only densely defined. For example, F = L+ F0 where L is densely defined
linear maximal monotone operator and F0 is monotone operator defined on the
whole space. Then the following theorem gives the surjectivity of F = L+ F0.
Refer Joshi and Bose [6] for the proof.

Theorem 2.4.5 Let F1 be a maximal monotone operator with dense domain
containing 0 and F2 a single valued operator which is defined on the whole space
and is continuous, bounded and coercive. Then R(F ) = X where F = F1 + F2.
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2.5 Dirac-Delta Function

During the course of our discussion on boundary value problems, we shall en-
counter Dirac-delta function δ(x), which is a symbolic function representing the
charge density corresponding to a unit charge at the origin. To specify it, we
take a continuously distributed charge on the real axis with charge density

ρε(t) =
1

π

[

ε

t2 + ε2

]

ε > 0 and ρε(t) is small for small ε but for a peak height
1

επ
at the origin.

The cumulative charge distribution γε(t) is given by

γε(t) =

∫ t

−∞

ρε(x)dx =
1

2
+

1

π
tan−1(t/ε)

Hence

lim
t→∞

γε(t) =

∫ ∞

−∞

ρε(x)dx = 1 for all ε

So, the total charge for the densily distribution ρε(t) on the line is 1, whereas

lim
ε→0

ρε(t) =

{

0, t 6= 0
∞, t = 0

This limiting charge is denoted by δ(t). That is

δ(t) = lim
ε→0

ρε(t)

So, vaguely the Dirac-delta function δ(t) can be defined as

δ(t) =

{

0, t 6= 0
∞, t = 0

such that

∫ ∞

−∞

δ(t)dt = 1

Obviously, this is not a function.
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Figure 2.5.1: Charge density
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Figure 2.5.2: Cumulative charge density

The description of a point charge by considering it as a limit of the sequence
ρε(t) is not quite satisfactory, mathematically. For, one can take various types
of sequences to get the limit δ(t), yet these sequences can behave differently at
t = 0.

To be more mathematically rigorous, we define what we call the action of
ρε(t) on a class of test functions which consists of functions continuous at the
origin and well behaved at infinity.

Definition 2.5.1 The support of a function f(t) is the closure of the set of all
points where f(t) is different from zero, that is,

sup f = {t : f(t) 6= 0}
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Definition 2.5.2 The space D(<) of test functions consists of all real valued
functions φ(t) which are infinitely times differentiable and which have compact
support. This space is a vector space with respect to pointwise addition and
scalar multiplication.

Example 2.5.1

φ(t) =







0, t ≥ 1

exp

(

1

t2 − 1

)

, |t| < 1
(2.5.1)

φ(t) is infinite times differentiable and derivatives of all order vanish for |t| ≥ 1.

Definition 2.5.3 A sequence of function {φn(t)} in D(<) is said to converge
to zero if

(i) all φn(t) have the same compact support,

(ii) sequence {φn(t)} converges to zero uniformly and for any positive integer

k, the derivatives {φ(k)
n (t)} also converges uniformly to zero.

Example 2.5.2 The sequence

{

φ(t)

n

}∞

n=1

with φ(t) defined by Eq. (2.5.1) con-

verges to zero in D(<). Whereas, the sequence

{

φ

(

t

n

)}

does not converge to

zero in D(<) as these functions do not have the same compact support.

Definition 2.5.4 A continuous linear function on the space D(<) is called a
distribution. The space of all distributions is denoted by D′(<). The action of
f ∈ D′(<) is denoted by (f, φ).

Definition 2.5.5 A sequence of functions {fn}∞n=1 in D′(<) is said to converge
if for every φ ∈ D(<) the sequence of scalars {(fn, φ)} converges to the limit
{(f, φ)}. One can show that f is also a distribution.

Example 2.5.3 Define a functional δ on D(<) by 〈δ, φ〉 = φ(0), ∀φ ∈ D(<)
It is easy to see that δ is linear and continuous and hence δ ∈ D′(<). The

distribution functional δ is defined as above is called the Dirac-delta function.

Example 2.5.4 Dipole distribution δ̃ is defined as (δ̃, φ) = φ′(0) ∀ φ ∈ D(<)

Definition 2.5.6 A locally integrable function f generates a distribution via
the definition

(f, φ) =

∫ ∞

−∞

f(t)φ(t) ∀ φ ∈ D(<)

This is called a regular distribution. A distribution which is not a regular
distribution is called a singular distribution.
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Theorem 2.5.1 The Dirac-delta distribution is a singular distribution.
For the proof of this fact refer Bose and Joshi [2]

We can define translation, scale expansion, derivative of a distribution as follows.

Definition 2.5.7 The translation f(t− a) and scale expansion f(at) of a dis-
tribution is given by

(f(t− a), φ(t)) = (f(t), φ(t + a)) ∀ φ ∈ D(<)

(f(at), φ(t)) =
1

|a| (f(t), φ(t/a)), a 6= 0 ∀ φ ∈ D(<)

Example 2.5.5 The translation δ(t − a) and scale expansion δ(−t) are given
by

(δ(t− a), φ(t)) = (δ, φ(t+ a)) = φ(a)
and

(δ(−t), φ(t)) = (δ, φ(−1)) = φ(0)
= (δ, φ(t)) ∀ φ ∈ D(<)

Definition 2.5.8 For any distribution f, its derivative f ′ is defined as

(f ′, φ) = (f,−φ′) = −(f, φ′) ∀ φ ∈ D(<)

By repeated application of the above definition, we get

(f (n), φ) = (−1)n(f, φ(n)) ∀ φ ∈ D(<)

Here f (n) =
dnf

dtn
.

Example 2.5.6 Let H(t) be the Heaviside function

H(t) =







0, t < 0
1/2, t = 0
1, t > 0

H(t) generates a distribution given by

(H(t), φ(t)) =

∫ ∞

−∞

H(t)φ(t)dt

=

∫ ∞

0

φ(t)dt

Its derivative H ′(t) is given by

(H ′(t), φ(t)) = −(H,φ′)

= −
∫ ∞

0

φ′(t)dt = φ(0)

= (δ, φ(t))

Hence we have H ′ = δ.
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Example 2.5.7 Let f(t) be differentiable except at points a1, . . . , an where f(t)
jumps by the respective amount 4f1,4f2, . . . ,4fn. We assume that f ′ is locally
integrable wherever it exists. Then the distributional derivative f ′ is computed
as follows

(f ′, φ) = −(f, φ′) = −
∫ ∞

−∞

f(t)φ′(t)dt

= −
∫ ∞

−∞

f(t)φ′(t)dt−
∫ a2

a1

f(t)φ′(t)dt . . .

−
∫ ∞

an

f(t)φ′(t)dt

Integrating by parts and noting that f(a+
k ) − f(a−k ) = 4fk, we get

(f ′, φ) =

∫ ∞

−∞

df

dt
φ(t)dt +

∫ a2

a1

df

dt
φ(t)dt + . . .

+

∫ ∞

an

df

dt
φ(t)dt +

n
∑

k=1

4fkφ(ak)

Therefore

(f ′, φ) =

∫ ∞

−∞

[f ′]φ(t)dt +
n
∑

k=1

4fkφ(ak)

This gives f ′ = [f ′] +
∑n

k=1 4fkδ(t− ak).
Here [f ′] indicates the usual derivative of f, wherever it exists.

Example 2.5.8 If g(t) is infinitely differentiable, then g(t)f (n)(t) can be found
as follows

(gf (n)(t), φ) = (f (n), gφ)

= (−1)n(f,
dn

dtn
(gφ))

Example 2.5.9 Let L be a linear differential operator given by

L = a0(t)
dn

dtn
+ a1(t)

dn−1

dtn−1
+ . . .+ an−1(t)

d

dt
+ an

=
n
∑

k=0

an−k(t)
dk

dtk

with coefficients ak(t) infinite times differentiable. Then for the distribution f,
we have

(Lf, φ) = (

n
∑

k=0

an−k(t)f (k), φ)

= (−1)k

(

f,
dk

dtk
(an−k(t)φ(t))

)

= (f, L∗φ)
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where L∗φ =
n
∑

k=0

(−1)k d
k

dtk
(an−k(t)φ(t)).

The nth order differential operator L∗ is known as the formal adjoint of L.

Example 2.5.10 Consider the sequence {sinnt}∞n=1. As it is locally integrable,
it generates a sequence of distributions. This sequence does not converge point
wise except at t = 0. However, we have

|(sinnt, φ(t))| = |
∫ ∞

−∞

sinntφ(t)dt|

≤ 1

n

∫ ∞

−∞

| cosntφ′(t)|dt

≤ 1

n

∫ ∞

−∞

|φ′(t)|dt

→ 0 as n→ ∞

So {sinnt} converges in D′(<) to zero distribution.

Example 2.5.11 Let fn(t) =















0, |t| ≥ 1

n

n
2 , |t| < 1

n

(fn, φ) =

∫ ∞

−∞

fn(t)φ(t)dt =

∫ 1
n

− 1
n

n

2
φ(t)dt

=
n

2

∫ 1
n

− 1
n

φ(t)dt

This implies that

lim
n→∞

(fn, φ) = lim
n→∞

n

2

∫ 1/n

−1/n

φ(t)dt

= φ(0) = (δ, φ)

Thus the sequence of regular distribution {fn} converges in D′(<) to the delta
distribution whereas the corresponding functions converge almost everywhere to
zero.

2.6 Exercises

1. Test the convergence of the following sequences of the functions in the
space L2[0, 1]. Compute the limit function, if it exists.

(a) xn(t) = sinnπt
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(b) xn(t) = tn

(c) xn(t) = t sinnπt

(d) xn(t) =
sinnπt

n

2. Let A ∈ <n×n and let N(A) and R(A) denote the null space and range
space of A, respectively. Show that

<n = N(A) ⊕R(A)

3. Let M ⊂ L2 [−π, π] be the linear span of
{

1, t2, cos t
}

. Find an element
in M closest to cos 2t ∈ L2[−π, π].

4. Show that

[Lx](t) =

∫ t

0

x(s)ds

is a bounded linear operator in L2[0, 1]. Also, find its adjoint L∗ and show
that L is a singular operator.

5. Let L : L2[0, 1] → L2[0, 1] be defined by

[Lx](t) =

∫ 1

0

(s+ sin t)2x(s)ds

From the first principle, show that L is compact.

6. Linearize the following nonlinear operators around the given points.

(a) F (x1, x2) =
(

exp(x1x2) + cosx1 sinx2, x
2
2x1exp(x1, x2)

)

(x1, x2) = (0, 0)

(b) G(x1, x2) = (x1 + sinx1 cosx2, cosx1 sinx2 + x1x2)

(x1, x2) = (0, 0)

7. Determine if the function F : <3 → <3 defined as

F (x1, x2, x3) =
1

10

(

sin2 x1 + cosx2 cosx3, sinx2 cosx3,

cosx1 cosx2 cosx3)

is a contraction in <3 w.r.t 1-norm in <3.

8. Let f : X → < (X, a Hilbert space ) be differentiable. Show that f is
convex iff x̄ → 5f(x̄) is monotone for all x̄ ∈ X .

9. Show that

Ψ(t) =







exp(−(t−2))exp(−(t− a)−2), 0 ≤ t ≤ a

0, t ≤ 0, or t ≥ a

is a test function.
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10. Show that

(a) g(t)δ′(t) = g(0)δ′(t) − g′(t)δ(t), g ∈ C∞

(b) δ′(b− a) =
∫

δ′(b− a)δ(b− a)dt

(c)
d

dt
(sgnt) = 2δ(t)
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Chapter 3

Initial Value Problems

This chapter primarily deals with the existence and uniqueness theory of initial
value problems. The notions of - Picard iterates, maximal interval of existence,
continuation of solution and continuity of solution with respect to initial condi-
tion - are the prime targets of our investigation.

3.1 Existence and Uniqueness Theorems

Let I be an interval in < and Ω an open set containing (t0, x0) ∈ I × Ω. Let

f : I ×Ω 7→ <n be a function, not necessarily linear. As defined earlier (Defini-
tion 1.1.1), by Initial Value Problem (IVP), we mean the following differential
equation with initial condition

dx

dt
= f(t, x(t)) (3.1.1a)

x(t0) = x0 (3.1.1b)

Also, let us recall what we mean by the solution of the IVP - Eq. (3.1.1). x(t)
is a solution of Eq. (3.1.1), if ∃ an interval J ⊂ I , containing ‘t0’ such that x(t)
is differentiable on J with x(t) ∈ Ω, ∀ t ∈ J and x(t) satisfies Eq. (3.1.1).

The following theorem gives the existence of unique solution of Eq. (3.1.1),
requiring Lipschitz continuity on f(t, x) with respect to x.

Theorem 3.1.1 Let E = I × Ω ⊆ < × <n be an open set containing (t0, x0)
and let f : E 7→ <n be continuous. Further assume that x 7→ f(t, x) is Lipschitz
continuous :

∃ a constant M such that

||f(t, x) − f(t, y)|| ≤M ||x− y|| ∀ t ∈ I and ∀ x, y ∈ Ω (3.1.2)

Then the IVP given by Eq. (3.1.1) has a unique solution.

79
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Proof : As shown in Proposition 1.1.1, solvability of Eq. (3.1.1) is equivalent
to the solvability of the following integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (3.1.3)

in some appropriate subinterval J ⊂ I .
Let B denote a closed ball with centre at (t0, x̄0) and contained in E. Let
m = sup

(t,x)∈B

|f(t, x̄)|. ‘m’ is finite as f is continuous on a compact set B ⊆ I×<n.

Choose two positive numbers ‘δ’ and ‘τ ’ such that Mτ < 1, mτ < δ and

{ (t, x̄) ∈ I ×<n : |t− t0| ≤ τ, ||x− x0|| ≤ δ } ⊆ B.

Denote by J = [t0 − τ, t0 + τ ] and Ω0 = { x ∈ Ω : ||x− x0|| ≤ δ }. Define
X ⊂ C(J) to be set of all continuous functions on J with values in Ω0 ⊆ Ω.
Then X is a closed subset of C(J) and hence a complete metric space with
metric induced by the sup-norm of C(J). We define a nonlinear operator F on
X as follows

[Fx](t) = x0 +

∫ t

t0

f(s, x(s))ds, t ∈ J (3.1.4)

It is clear that Fx is a continuous function defined on J . Also,

‖[Fx](t) − x0‖<n = ‖
∫ t

t0

f(s, x(s))ds‖<n

≤
∫ t

t0

‖f(s, x(s))‖<nds

≤ m

∫ t

t0

ds

≤ mτ

≤ δ

This implies that [Fx](t) ∈ Ω0 ∀ t ∈ J and hence F maps X into itself.
Further, ∀x̄, ȳ ∈ X, we have,

||Fx(t) − Fy(t)||<n ≤
∫ t

t0

||f(s, x(s)) − f(s, y(s))||<nds

≤ M

∫ t

t0

||x(s) − y(s)||<nds

≤ M ||x− y|| (t− t0)

≤ τM ||x− y||

and hence

||Fx− Fy|| ≤ τM ||x− y|| ∀ x, y ∈ X
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As α = τM < 1, it follows that F is a contraction on the complete metric space
X . Invoking Theorem 2.4.1, it follows that F has a unique fixed point x∗ ∈ X.
That is, ∃ x̄∗ ∈ X = C(J,Ω0) such that

x∗(t) = Fx∗(t) = x0 +

∫ t

t0

f(s, x∗(s))ds

and x∗ is unique.
This proves that x∗(t) is unique solution of Eq. (3.1.3) and hence that of Eq.
(3.1.1).

Corollary 3.1.1 The iterations x(k)(t), defined as

x(k)(t) = x0 +

∫ t

t0

f(s, x(k−1)(s))ds (3.1.5)

with x(0)(t) = x0, converge to the unique solution x∗(t) of IVP given by Eq.
(3.1.1).
The iterates defined by Eq. (3.1.5) are called Picard iterates.

Proof : This follows from Theorem 2.4.1, wherein the converging iterates are
defined as

x(k) = Fx(k−1), x(0) ∈ X, (arbitrary)

Here F is defined by (3.1.4). We note that x(0)(t) = x0 ∈ X = C(J,Ω0).

We now consider an nth order differential equation

dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · · + a1(t)

dx

dt
= f(t, x(t)) (3.1.6a)

with initial values

x(0) = x
(0)
1 , x(1)(0) = x

(0)
2 , · · · , x(n−1)(0) = x(0)

n (3.1.6b)

Here x(k)(t) refer to the kth derivative of x(t).

Corollary 3.1.2 Let Ω ⊆ < be open and f : I × Ω 7→ < be continuous with
x 7→ f( . , x ) Lipschitz continuous with Lipschitz constant M . Further, assume
that ai(t), 1 ≤ i ≤ n− 1 are continuous functions on I. Then nth order initial
value problem given by Eq. (3.1.6) has a unique solution.

Proof : We shall reduce Eq. (3.1.6) in to an initial value problem in <n. For
this, set

x1 = x, x2 =
.
x1=

.
x, x3 =

.
x2=

..
x1=

..
x, · · · , xn =

.
xn−1

Proceeding as in section (1.3), the IVP given by Eq. (3.1.6) reduces to the
following IVP on I × Ω × Ω · · ·Ω ⊆ I ×<n

dx

dt
= F (t, x(t)) (3.1.7a)

x(0) = x0 (3.1.7b)
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Here x̄ = (x1, x2, · · · , xn), x̄0 =
(

x
(0)
1 , x

(0)
2 , · · · , x(0)

n

)

∈ <n and

F (t, x) = (x2, x3, . . . , xn, f(t, x1) − a1(t)x2 − · · · − an−1(t)xn) . It is clear that
F is continuous on I × Ωn and further x 7→ F (., x) is Lipschitz continuous as
we see below.

||F (t, x) − F (t, y)||2<n ≤ |x2 − y2|2 + |x3 − y3|2 + · · · + |xn − yn|2

+ n
[

|f(t, x1) − f(t, y1)|2 + |a1(t)|2|x2 − y2|2

+ · · ·+ |an−1|2|xn − yn|2
]

≤ nM2|x1 − y1|2 + (1 + n|a1(t)|2)|x2 − y2|2

+ · · · +
(

1 + n|an−1(t)|2
)

|xn − yn|2

≤ α2
[

|x1 − y1|2 + |x2 − y2|2 + · · · + |xn − yn|2
]

.

where α2 = max
(

nM2, 1 + na2
1, 1 + na2

2, · · · , 1 + na2
n−1

)

,
with ai = sup

t∈I
|ai(t)|, 1 ≤ i ≤ n.

Hence we have,
||F (t, x) − F (t, y)||2<n ≤ α2||x− y||2<n

Thus the function F appearing in the IVP given by Eq. (3.1.7), satisfies all
conditions of Theorem 3.1.1 and hence it has a unique solution. This in turn
implies that the nth order differential equation given by Eq. (3.1.6) has a unique
solution.

Example 3.1.1
dx

dt
= x2, x(0) = 1

Clearly, the function f(x) = x2 is Lipschitz continuous on a closed, bounded
subset of <. Hence by Theorem 3.1.1 this IVP has a unique solution. The
Picard’s iterates x(k)(t) are given by

x(k)(t) = x0 +

∫ t

0

f(s, x(k−1)(s))ds

= 1 +

∫ t

0

[

x(k−1)(s)
]2

ds

So, we get the following Picard iterates for the above problem.

x(1)(t) = 1 + t

x(2)(t) = (1 + t+ t2) +
t3

3
...

x(n)(t) = (1 + t+ t2 + · · · + tk) + o(tk+1)
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We can actually compute the solution of the above IVP by the method of

separation of variables and obtain x(t) =
1

1 − t
. The largest interval on which

this solution is defined in (−∞, 1). For small ′t′, the function x(t) has the series
expansion given by

x(t) = 1 + t2 + t3 + · · · + tn + · · · .

(refer Chapter 6).
Thus the Picard iterates x(k)(t) do converge to the actual solution x(t) = 1+t2+
t3 + · · · in a small interval |t| < 1 around t = 0, as envisaged in the Corollary
3.1.1.
The following graph gives first three Picard iterates.

The actual solution x(t) =
1

1 − t
is plotted in Figure 3.1.2.

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75
t

1
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3

4

x1

x2

x3

Figure 3.1.1: First three Picard iterates
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Figure 3.1.2: Actual solution x(t) =
1

1 − t

Example 3.1.2
dx

dt
= f(x), x(0) = 0

where f(x) is given by

f(x) =

{

2
√
x, x > 0

0, x ≤ 0

As
f(x)

x
=

2√
x
, x > 0,

f(x)

x
→ ∞ as x→ 0+, and hence f is not Lipschitz con-

tinuous at ‘0’. Hence Theorem 3.1.1 is not applicable. However, by inspection
one can easily compute the following solutions of above IVP :

x1(t) =

{

t2, t > 0

0, t ≤ 0

x2(t) = 0 ∀ t ∈ <

That is, the above IVP has at least two distinct solutions or in other words, the
solution is not unique.

Remark 3.1.1 This example concludes that there may exist a solution of IVP
of the type Eq. (3.1.1) without Lipschitz continuity assumptions on the nonlinear
function f(t, x̄). However it may not be unique. This point will discussed in
detail in section 3.4.
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Example 3.1.3

dx

dt
= f(t, x)

f(t, x) =











2tx

t2 + x2
(t, x) 6= (0, 0)

0 (t, x) = (0, 0)

The solution of the above differential equation passing through (0, 0) is given by
the following curve in (t, x)-plane

(x− c)2 − t2 = c2, c is arbitrary constant (3.1.8)

The solution curve is plotted as under.
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t
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xt

Figure 3.1.3: Solution curve for the above example

It may noted that the above IVP has a unique solution passing through the
point away form (0, 0). It can be easily seen that (t, x) 7→ f(t, x) is not even
continuous at (0, 0). Yet, there are infinitely many solutions passing through
(0, 0), of the above differential equation.
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Example 3.1.4
d2x

dt2
= cosx, x(0) = 0, ẋ(0) = 0

As f(x) = cosx is Lipschitz continuous, it follows by Corollary 3.1.2 that the
above second order initial value problem has a unique solution. However, a close
form solution of the above problem is difficult to obtain. One can, therefore,
resorts to Picard iterative procedure to obtain iterates x(k)(t) converging to the
unique solution of the above second order IVP.

x1(t) = x(t), x2(t) =
.
x; x̄(t) = (x1(t), x2(t))

dx̄

dt
= F (x̄(t)), F (x) = (x2, cosx1), x(0) = 0̄

We have

x
(1)
1 (t) =

∫ t

0

x
(0)
2 (s)ds = 0

x
(1)
2 (t) =

∫ t

0

cosx
(0)
1 (s)ds =

∫ t

0

ds = t

x
(2)
1 (t) =

∫ t

0

x
(1)
2 (s)ds =

∫ t

0

sds =
t2

2

x
(2)
2 (t) =

∫ t

0

cosx
(1)
1 (s)ds =

∫ t

0

ds = t

x
(3)
1 (t) =

∫ t

0

x
(2)
2 (s)ds =

∫ t

0

sds =
t2

2

x
(3)
2 (t) =

∫ t

0

cosx
(2)
1 (s)ds =

∫ t

0

cos
s2

2
ds

One can approximate cos (
s2

2
) by series expansion and obtain x

(3)
2 (t) and

(

x
(4)
1 (t), x

(4)
2 (t)

)

,

up to some accuracy.

x
(4)
1 (t) =

t2

2
− t6

240
+

t10

34560

x
(4)
2 (t) = t− t5

40
+

t9

3456
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Figure 3.1.4: Graph of iterates x
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Figure 3.1.5: Graph of iterates x
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2 (t), x
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2 (t)

There do exist examples where the nonlinear function f(t, x̄) under consider-
ation is not Lipschitz continuous but satisfies other nice property like monotonic-
ity with respect to the variable x̄. We shall now state and prove the existence
and uniquness theorem for IVP of the type given by Eq. (3.1.1) under the
monotonicity assumption.
Using the notion of monotonicity of Chapter 2 (Definition 2.4.3), we shall say
that x̄ 7→ f(t, x̄) is monotone in <n if

(f(t, x̄1) − f(t, x̄2), x1 − x̄2)<n ≥ 0 ∀ x̄1, x̄2 ∈ <n (3.1.9)

It is said to be strong monotone if ∃ c > 0 such that

(f(t, x̄1) − f(t, x̄2), x1 − x̄2)<n ≥ c ‖x̄1 − x̄2‖2
<n ∀ x̄1, x̄2 ∈ <n (3.1.10)
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In the IVP given by Eq. (3.1.1), we assume that t0 = 0 and x̄0 = 0.

Definition 3.1.1 A function x̄(t) ∈ L2[0, tf ] is said to satisfy Eq. (3.1.1) in
almost everywhere (a.e) sense if x̄(t) is differentiable for all t ∈ [0, tf ] = I and
satisfies Eq. (3.1.1) for all t ∈ I except on a set of measure zero in I.

Theorem 3.1.2 Let f(t, x) : [0, tf ] × <n 7→ <n be continuous and x 7→ f(t, x̄)
be strongly monotone and further it satisfies a growth condition of the form

‖f(t, x)‖<n ≤ a(t) + b‖x‖<n , a ∈ L2[0, tf ], b > 0 (3.1.11)

Then there exist unique x̄(t) ∈ L2[0, tf ] satisfying Eq. (3.1.1) in almost every-
where sense.

Proof : We are interested in the solvability of the IVP of the form

dx

dt
+ f(t, x) = 0 (3.1.12)

x(0) = 0

in the interval I = [0, tf ], in almost every where sense. Set X = L2[0, tf ]. Here
L2[0, tf ] is defined to be the set of all square integrable functions with values in

<n. Define L as Lx̄ =
dx̄

dt
with D(L) = {x ∈ X :

dx̄

dt
∈ X and x(0) = 0}. Then

D(L) is dense in X and L is monotone as

(Lx̄, x̄) = (Lx, x̄)L2[0,tf ] =

∫ tf

0

(

dx̄

dt
, x(t)

)

<n

dt

= ||x(tf )||2<n −
∫ tf

0

(

x(t),
dx̄

dt

)

<n

dt

= ||x̄(tf )||2<n − (Lx̄, x̄)

This implies that

(Lx̄, x̄) =
‖x(tf )‖

2
≥ 0 ∀ x ∈ L2[0, tf ]

Further, one can show that L is maximal monotone as R(L+λI) = X for λ > 0
(refer Pazy[6]).

We now define the nonlinear operator N on X as in Example 2.4.4:

[Nx] = f(t, x̄(t)) (3.1.13)

N is a bounded, continuous operator on X = L2[0, tf ] (refer Joshi and Bose
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[4]). Further, it is strongly monotone as we have

(Nx̄1 −Nx̄2, x̄1 − x̄2) =

∫ tf

0

(f(t, x̄1(t)) − f(t, x̄2(t)), (x̄1(t) − x̄2(t))) dt

≥ c

∫ tf

0

||x1(t) − x2(t)||2dt

= c||x1 − x2||2

for all x̄1, x̄2 ∈ X.

Thus the solvability of equation Eq. (3.1.12) reduces to the solvability of the
operator equation

Lx+Nx = 0 (3.1.14)

in the space X = L2[0, tf ]. L : D(L) → X is a linear maximal monotone
operator with dense domain. N is a bounded, continuous strongly monotone
operator defined on the whole space X . Hence by Theorem 2.4.5, it follows
that Eq. (3.1.14) has a unique solution and hence the unique solvability of Eq.
(3.1.12), in almost everywhere sense in X .

Example 3.1.5

dx

dt
+ αx + cosx = 0

x(0) = 0

f(x) = αx+ cosx is strongly monotone if α > 1.

Hence it is follows by Theorem 3.1.2 that the above initial value problem has
a unique solution x(t), (a.e. for t) in a finite subinterval of [0,∞). However,
Theorem 3.1.1 is not applicable.

3.2 The Maximal Interval of Existence

Theorem 3.1.1 and Theorem 3.1.2 establish the fact that under suitable continu-
ity and Lipschitz continuity amd monotoncity assumptions on f(t, x), the IVP
of the form Eq. (3.1.1) has a unique solution x(t) on some interval surrounding
t0. In this section we shall show that the solution x(t) is defined on the maximal
interval of existence (α, β).

Assumption 1: Let Ω ⊆ <n be an open set containing x0. Let f : <×Ω → <n

satisfies the assumptions of Theorem 3.1.1

Theorem 3.2.1 Let f satisfies Assumption 1. If x(t), y(t) are solutions of the
IVP given by Eq. (3.1.1) on the intervals I1, I2. Then t0 ∈ I1 ∩ I2 and if I is
any open interval around ‘t0’ contained in I1 ∩ I2, then x(t) = y(t) ∀ t ∈ I.
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Proof : It is clear that t0 ∈ I1 ∩ I2. If t0 ∈ I ⊂ I1 ∩ I2, then by Theorem
3.1.1, ∃ some open interval Ia = (a − t0, a + t0) ⊂ I such that Eq. (3.1.1) has
a unique solution. In view of the uniqueness of solutions on Ia, x(t) = y(t) on
Ia ⊂ I ⊂ I1 ∩ I2.

Define I∗ = ∪Ia. Then I∗ is the largest open interval contained in I on which
x(t) = y(t). If I∗ is properly contained in I , then one of the end points t∗ of I∗

is contained in I ⊂ I1 ∩ I2. As both x(t) and y(t) are continuous on I , it follows
that,

lim
t→t∗

x(t) = lim
t→t∗

y(t) = x̄∗

Now examine the initial value problem

dx

dt
= f(t, x(t)), x(t∗) = x̄∗ (3.2.1)

Eq. (3.2.1) has a unique solution on some interval I0 = (t∗ − a∗, t∗ + a∗) ⊂ I .
Again by uniqueness on I0 ⊂ I ⊂ I1∩I2, it follows that, x(t) = y(t) for t ∈ I∗∪I0
and I∗ is proper subinterval of I∗∪ I0 and hence a contradiction of the fact that
I∗ is the largest open interval contained in I on which x(t) = y(t). Hence I∗ = I
and thereby implying that x(t) = y(t) ∀ t ∈ I.

Theorem 3.2.2 Let f satisfies Assumption 1. Then for each x0 ∈ Ω, ∃
a maximal interval I∗ on which the IVP given by Eq. (3.1.1) has a unique
solution. Furthermore, the maximal interval J is open, that is I∗ = (α, β).

Proof : As in Theorem 3.2.1, we define I∗ = ∪Ia where Ia is an open interval
surrounding t0, on which Eq. (3.1.1) has a unique solution xa. Define x : I∗ 7→ Ω
as follows,

x(t) = xa(t), t ∈ Ia

This is well defined. for, if t ∈ I1∩I2, where I1 and I2 are two intervals on which
Eq. (3.1.1) has solutions x1(t) and x2(t). Then by Theorem 3.2.1 it follows that
x1(t) = x2(t). Also x(t) is a unique solution of Eq. (3.1.1) as xa(t) is a unique
solution of Eq. (3.1.1) for t ∈ Ia.

By definition, I∗ is maximal. Also let the maximal interval of existence be not
open say of the form (α, β] then we can extend the solution of Eq. (3.1.1) on
(α, β + a] with a > 0 as in the proof of Theorem 3.2.1.

If (α, β) is the maximal interval of existence for IVP given by Eq. (3.1.1), then
t0 ∈ (α, β). The intervals [t0, β) and (α, t0] are called the right and the left
maximal intervals of existence respectively. Without loss of generality we can
concentrate on the right maximal interval of existence. We wish to find out if
the right maximum interval of existence [t0, β) can be extended to [t0,∞). This
will then lead to global solvability of IVP given by Eq. (3.1.1). The following
theorem is an important one in that direction.
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Theorem 3.2.3 Let Ω and f be as defined in Theorem 3.2.2 with x0 ∈ Ω. Let
(α, β) be the maximal interval of existence of the solution x(t) of the IVP given
by Eq. (3.1.1). Assume that β < ∞. Then given any compact set K ⊂ Ω,
∃ t ∈ (α, β) such that x(t) /∈ K.

Proof : Let K be compact set in <n. Since f is continuous on (α, β)×K. It
follows that

m = sup
(t,x)∈(α, β)×K

‖f(t, x)‖ <∞

If possible, let the solution x(t) of Eq. (3.1.1) be such that x(t) ∈ K ∀ t ∈ (α, β)
with β <∞. For α < t1 < t2 < β, we have

‖x(t1) − x(t2)‖ ≤
∫ t2

t1

‖f(s, x(s))‖ds

≤ m‖t2 − t1‖
As t1, t2 → β, it follows that ‖x(t1) − x(t2)‖ → 0 which by Cauchy’s criterion
of convergence in <n implies that lim

t→β−
x(t) exists. Let x1 be this limit. Since

x(t) ∈ K and K is compact, it follows that x1 ∈ K ⊂ Ω. Now define y(t) on
(α, β] by

y(t) =

{

x(t), t ∈ (α, β)

x1, t = β

y(t) is differentiable on (α, β] with ˙̄y(β) = f(β, y(β)), as y(t) satisfies the
integral equation

y(t) = x0 +

∫ t

t0

f(s, y(s))ds

Thus y is a continuation of the solution x(t) on (α, β].
We now examine the IVP

dx

dt
= f(t, x(t))

x̄(β) = x̄1







(3.2.2)

By Theorem 3.1.1 the equation (3.2.2) has a unique solution z(t) on some open
interval (β − a, β + a) and hence z(t) = y(t) on (β − a, β) and at the end point
β we have z(β) = x1 = y(β).
Now we define a function v(t) as

v(t) =

{

y(t), t ∈ (α, β]

z(t), t ∈ [β, β + a)

Then v(t) is a solution of the IVP given by Eq. (3.1.1) on (α, β + a), contra-
dicting the assumption that (α, β) is the maximal interval of existence for given
IVP. Hence, if β <∞, ∃ a t ∈ (α, β) such that x(t) /∈ K.

As a Corollary of the above result, we immediately get the following theorem,
called continuation theorem. The process of continuation is already described
in the proof of Theorem 3.2.3.
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Theorem 3.2.4 Let Ω, f be as defined in Theorem 3.2.3 with x0 ∈ Ω. Let
[t0, β) be the right maximal interval of existence of solution x(t) of the IVP
given by Eq. (3.1.1).
Assume that ∃ a compact set K ⊂ Ω such that

{

y ∈ <n
/

y = x(t) for t ∈ [ t0, β)
}

⊂ K.

Then β = ∞. That is,IVP given by Eq. (3.1.1) has a solution x(t) on [t0,∞).
That is, x(t) is a global solution.

Corollary 3.2.1 Suppose Ω = <n and satisfies the following condition:
∃ ρ > 0 such that

||f(t, x)||<n ≤ |a(t)| ||x|| ∀ ||x||<n > ρ

with a(t) as a continuous function.Then the initial value problem given by Eq.
(3.1.1) has a global solution.

Proof : We have
dx

dt
= f(t, x(t))

Taking scalar product with x(t) we get

(

x(t),
dx

dt

)

=

(

x(t),
dx

dt

)

<n

= (f(t, x(t)), x(t) )

≤ ||f(t, x(t))|| ||x(t)||

≤ |a(t)| ||x(t)||2 for ||x(t)|| ≥ ρ

This implies that
d

dt

(

||x(t)||2
)

≤ |a(t)|
2

||x(t)||2

and hence

||x(t)||2 ≤ ||x(0)||2e
R

t

t0

|a(t)|
2 dt

for ||x(t)|| ≥ ρ

If ||x(t)|| ≤ ρ for all t, then we apply the previous theorem to K = {x : ||x|| ≤ ρ}
and get the result. If ||x(t)|| > ρ, we again apply the same theorem to

K =
{

x : ||x||2 ≤ ||x(0)||2e
R

β

t0

|a(t)|
2 dt

}

.

Corollary 3.2.2 Let x 7→ f( ., x) be Lipschitz continuous for all x(t) ∈ <n.
Then Eq. (3.1.1) has a global solution.

Proof : This follows from the previous corollary.
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Corollary 3.2.3 Let f(t, x) : I × <n → <n be continuous with x̄ → −f(t, x̄)
strongly monotone and f(t, 0) = 0. Then the IVP given by Eq. (3.1.1) has a
global solution.

Proof : We have a solution x(t) of Eq. (3.1.1) satisfying

dx

dt
− f(t, x(t)) = 0

Taking scalar product with x(t), we get

(

dx

dt
, x(t)

)

− (f(t, x(t)), x(t))) = 0

As −f strongly monotone, this gives

d

dt

(

||x(t)||2
)

= 2 (f(t, x(t)), x(t))

≤ −2c||x(t)||2

This implies that

||x(t)||2 ≤ ||x(0)||2e−2ct ≤ ||x(0)||2 ∀ t

This gives that x(t) ∈ K = {x ∈ <n : ||x|| ≤ ||x(0)||}. Hence Theorem 3.2.4,
implies that x(t) is a global solution of Eq. (3.1.1).

For more details on this section, refer Perko[ 7 ].

3.3 Dependence on Initial Condition

In this section we investigate the dependence of the solution of the differential
equation

dx̄

dt
= f(t, x̄(t)) (3.3.1)

on the initial condition x̄(t0) ∈ <n. We first state and prove the following lemma
called Gronwall’s lemma.

Lemma 3.3.1 Suppose that g(t) is a continuous real valued function satisfying
the conditions

(i) g(t) ≥ 0 (ii) g(t) ≤ c+ k

∫ t

t0

g(s)ds ∀t ∈ [t0, t1]

(c, k are positive constants.)
Then, we have

g(t) ≤ c exp (kt) ∀ t ∈ [t0, t1]
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Proof : Let G(t) = c+ k
∫ t1

t0
g(s)ds, t ∈ [t0, t1].

Then, G(t) ≥ g(t) and G(t) > 0 on [t0, t1]. By second fundamental theorem of
calculus

Ġ(t) = kg(t)

and hence
Ġ(t)

G(t)
= k

g(t)

G(t)
≤ k ∀ t ∈ [t0, t1]

This gives
d

dt
(logG(t)) ≤ k

Equivalently
G(t) ≤ G(t0) exp (kt) ∀t ∈ [t0, t1]

which is the required result.

Theorem 3.3.1 Let f(t, x̄) satisfy all conditions of Theorem 3.1.1. Then the
solution x̄(t) of the differential equation (3.1.1) depends continuously on the
initial condition x̄0.

Proof : Let x̄(t), ȳ(t) be unique solutions of Eq. (3.1.1), with respect to the
initial conditions x̄0 and ȳ0, respectively. Denote by J the interval of existence
of solutions.
Using the corresponding integral equation analog we have

x̄(t) = x̄0 +

∫ t

t0

f(s, x̄(s)) ds t ∈ J

ȳ(t) = ȳ0 +

∫ t

t0

f(s, ȳ(s)) ds t ∈ J

Substracting the above equations and using triangle inequality we get

||x̄(t) − ȳ(t)||<n ≤ ||x̄0 − ȳ0||<n +

∫ t

t0

||f(s, x̄(s)) − f(s, ȳ(s))||<n ds

Borrowing our earlier notation of Theorem 3.1.1, we have x̄, ȳ ∈ X =
C(J,Ω0), Ω0 ⊂ Ω. Using Lipschitz continuity of f and Gronwall inequality,
we get

||x̄(t) − ȳ(t)||<n ≤ ||x̄0 − ȳ0||<n +M

∫ t

t0

||x̄(s) − ȳ(s)||<n ds (3.3.2)

and

||x̄(t) − ȳ(t)||<n ≤ ||x̄0 − ȳ0||<n exp (Mt) ∀t ∈ J = [t0, tf ] (3.3.3)
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This gives that

||x̄− ȳ|| = sup
t∈J

||x̄(t) − ȳ(t)||<n ≤ ||x̄0 − ȳ0||<n exp (Mtf ) (3.3.4)

This implies that the mapping x̄0 7→ x̄ of <n into X = C(J,Ω0) is continuous.

We shall give an alternate proof of the above theorem by using the following
lemma, using fixed points, rather than Gronwall’s lemma.

Lemma 3.3.2 Let (X, d) be a complete metric space and let F, Fk be contrac-
tion mappings on X with the same contraction constant α < 1 and with the
fixed points x, xk respectively. Suppose that lim

k→∞
Fky = Fy ∀y ∈ X. Then

lim
k→∞

xk = x.

Proof : Using the error estimate given in Theorem 2.4.1 for Fk , we get

d(xk, F
l
ky) ≤

αl

1 − α
d(Fky, y), for any arbitrary y ∈ X and for any l.

Set l = 0 and y = x. We have

d(xk , x) ≤
1

1− α
d(Fkx, x) → 0, as k → ∞

This implies that xk → x.

Alternate Proof (of Theorem 3.3.1): Let the spaceX and constantsM,m, δ,
τ be as defined in Theorem 3.1.1 .
Let x̄k(t), x̄(t) be solutions of Eq. (3.3.1) with initial conditions x̄

(0)
k and x̄(0)

respectively and let x̄
(0)
k → x̄(0).

Define Fk, F : X 7→ X as under

[Fkx̄] (t) = x̄
(0)
k +

∫ t

t0

f(s, x̄(s)) ds, x̄ ∈ X

[F x̄] (t) = x̄(0) +

∫ t

t0

f(s, x̄(s)) ds, x̄ ∈ X

We have

||Fkx̄(t) − x̄(0)|| ≤ ||x̄(0)
k − x̄(0)|| +mτ

< δ for k large ( as x̄
(0)
k → x̄(0))

Thus Fk maps X to itself and so is the case for F (already proved in section 1).
Also x̄k , x̄ are fixed points of Fk and F , respectively with the same contraction

constant α = τm < 1. Also, Fkx̄ → F x̄ for x̄ ∈ X , as x̄
(0)
k → x̄(0) in X . Using

Lemma 3.3.2, we get that the fixed points x̄k of Fk and x̄ of F also converge.
This proves the theorem.
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3.4 Cauchy-Peano Existence Theorem

We shall prove an existence theorem for IVP given by Eq. (3.1.1) with the
assumptions of only continuity and boundedness of f .
For this purpose, we need Schauder’s fixed point theorem - Theorem 2.4.2.
We also need the following theorem, called Ascoli-Arzela theorem ( refer Rudin [
8 ] ), which gives the relative compactness for a class F of continuous functions.

Definition 3.4.1 A class F of continuous functions is said to be equicontinous,
if given ε > 0, ∃ δ > 0 such that

||f(t) − f(t′)|| < ε whenever |t− t′| < δ for all f ∈ F

( δ is independent of f ∈ F ).

Definition 3.4.2 F is said to be uniformly bounded if ∃ M independent of
f ∈ F such that

||f(t)|| ≤M, ∀ t and ∀ f ∈ F

Theorem 3.4.1 (Ascoli-Arzela theorem) Let F be a class of continuous
functions defined over some interval J . Then F is relatively compact iff F is
equicontinous and uniformly bounded.

Theorem 3.4.2 (Cauchy-Peano theorem) Let E be as defined in Theorem
3.1.1 and (t0, x0) ∈ E. Assume that f : E → <n is continuous. Then the initial
value problem given by Eq. (3.1.1) has a solution.

Proof : Let the space X and constants m, τ, δ, be as defined in Theorem
3.1.1
Recall that X is a complete metric space of all continuous mappings from
J = [t0 − τ, t0 + τ ] into Ω0 = {x ∈ Ω : ||x̄ − x̄0|| ≤ δ} and hence is a closed,
convex bounded subset of the space C(J).
As before, define F : X 7→ X as

[F x̄(t)] = x̄0 +

∫ t

t0

f(s, x̄(s)) ds, t ∈ J

Define F = {F x̄ : x̄ ∈ X}
F is a collection of continuous functions defined on J . F is equicontinous, since

||F x̄(t1) − F x̄(t2)||<n ≤
∫ t2

t1

||f(s, x̄(s)) ||<n ds

≤ m|t1 − t2| ∀ x̄ ∈ X

Further, F is uniformly bounded as

||F x̄(t)||<n ≤ ||x̄0||<n +

∫ t

t0

||f(s, x̄(s))||<n ds

≤ ||x̄0||<n +mτ ∀ x̄ ∈ X
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Hence by Ascoli-Arzela theorem, F is relatively compact.
To apply Schauder’s fixed point theorem, it remains to be shown that F : X 7→
X is continuous.We first observe the following.
f : J × Ω0 7→ <n is continuous on a compact set and hence it is uniformly
continuous. This implies that given ε > 0, ∃ δ(ε) > 0 such that

||f(s, x̄(s)) − f(s, ȳ(s))||<n <
ε

τ
whenever ||x(s) − y(s)||<n < δ

and this δ depends only on ε.
We have

||F x̄(t) − F ȳ(t)||<n ≤
∫ t

t0

||f(s, x̄(s)) − f(s, ȳ(s))||<n ds

This gives

||x̄− ȳ|| < δ ⇒ ||F x̄− F ȳ|| ≤
∫ t0+τ

t0

||f(s, x̄(s)) − f(s, ȳ(s))||<nds

≤ ε

τ
τ = ε

That is, F : X 7→ X is continuous. Thus F : X 7→ X satisfies all assumptions
and hence has a fixed point x̄ ∈ X . That is

x̄(t) = x̄0 +

∫ t

t0

f(s, x̄(s))ds, t ∈ J

This proves that Eq. (3.1.1) has a solution.

However, this solution need not be unique. In Example 1.2.1, the existence of
a solution of the initial value problem

dx

dt
= f(x), x̄(0) = 0

f(x) =

{

2
√
x, x ≥ 0

0, x ≤ 0

is guaranteed by Cauchy-Peano theorem. This solution is not unique, as already
seen before.

For more on existence and uniqueness of IVP refer Amann [1], Arnold [2], Hart-
man [3] and Mattheij and Molenaar [5].

3.5 Exercises

1. Find the regions (in <n × <n) of existence and uniquness of solutions of
the IVP associated with the following differential equations.
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(a)
dx

dt
=

3
√
xt

(b)
dx

dt
=
√

|x|

(c)
dx

dt
=







√
x x ≥ 0

−
√
−x x ≤ 0

(d)
dx

dt
=











2x

t
t 6= 0

0 x = 0

2. (a) Let x(t) be a solution of the differential equation

dx

dt
= (t2 − x2) sinx+ x2 cosx

which vanishes for t = t0. Show that x(t) ≡ 0.

(b) Find the solution of the IVP

dx

dt
= x|x|

x(t0) = 0

3. Show that the IVP

d2x

dt2
= f(t, x(t))

x(t0) = x01, ẋ(t0) = x02

is equivalent to the integral equation

x(t) = x01 + (t− t0)x02 +

∫ t1

t0

(t− s)f(s, x(s))ds, t ∈ J

where J is the interval of existence of solution.

4. Let x(t) and y(t) be two solutions of the nonhomogeneous linear differen-
tial equation

dnx

dtn
+ an−1(t)

dn−1x

dtn−1
+ · · · + a1(t)

dx

dt
+ a0(t)x = b(t)

in the interval J around the initial point t0. Show that

u(t0)exp(−2k|t− t0|) ≤ u(t) ≤ u(t0)exp(k|t− t0|)

where u(t) is given by

u(t) =
n−1
∑

j=0

(

x(j)(t) − y(j)(t)
)
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x(j)(t) =
djx

dtj
, y(j) =

djx

dtj
and k = 1 +

n−1
∑

j=1

sup
t∈J

|aj(t)|.

5. (a) Show that 0 < x0 < x(t) < π if 0 < x0 < π, where x(t) is the solution
of the IVP

dx

dt
= t sin t

x(0) = x0

(b) Show that x0 < x(t) < 1 for t ≥ 0 and 0 < x(t) < x1 for t ≤ 0, if
x(t) is the solution of the IVP

dx

dt
= x− x2

x(0) = x0, 0 < x0 < 1

6. Consider the IVP

dx

dt
= xp

x(0) = 1

Find the soultion of this problem for different values of p. Find how the
maximum interval Imax of existence depends on p.

7. Let x(t) be the solution of Eq. (3.1.1), where x → f(t, x) is Lipschitz
continuous from < to < for all t ∈ <.

Let x1(t), x2(t) be two continuous function on <, such that

dx1

dt
≤ f(t, x1(t))

x1(t0) ≤ x0

and

dx2

dt
≥ f(t, x2(t))

x2(t0) ≥ x0

Show that
x1(t) ≤ x(t) ≤ x2(t) ∀t ≥ t0

8. Find the maximal interval of existence of solution for the IVP

dx1

dt
= −x2

x3
,

dx2

dt
= −x1

x3
,
dx3

dt
= 1

x̄(
1

π
) = (0, 1,

1

π
)
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9. Show that for the IVP

dx

dt
= ax, x(0) = 1

the Picard iterates xn(t) converge to the unique solution eat, for more
than one initial guess x0(t).

10. Consider the following perturbed IVP (corresponding to the above prob-
lem)

dy

dt
= ax, y(0) = 1 + ε

Show that |x(t) − y(t)| ≤ |ε|e|a|t

Graphically, show that the above estimate is very accurate for a > 0, but
very inaccurate for a < 0.
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Chapter 4

Linear System And

Transition Matrix

The focus of this chapter is on the linear system of differential equations, wherein
the concept of transition matrix plays a crucial role.

We give the definition of transition matrix, its properties and the method of
computation. Some of the illustrative examples, introduced earlier in Chapter
1, are recalled for demonstrating the methodology involved in computation.

4.1 Linear System

In this chapter we shall be concerned with the properties of the linear system
of the form

dx

dt
= A(t)x(t) + b(t) (4.1.1)

This is a special case of Eq. (3.1.1) of Chapter 3.
Here A(t) is an n×nmatrix and b(t) is a vector in <n, with entries aij(t) and

bi(t) respectively, as continuous functions of t. The existence and uniqueness of
global solution of Eq. (4.1.1) with the initial condition

x(t0) = x0 (4.1.1(a))

follows from Theorem 3.1.1.
To study the solution of Eq. (4.1.1), it helps to study the homogeneous system

dx

dt
= A(t)x(t) (4.1.2)

We shall first prove the existence of n linearly independent solutions of Eq.
(4.1.2).

101
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Definition 4.1.1 Let x(1)(t), x(2)(t), · · · , x(n)(t) be n-vector valued functions.
The Wronskian W (t), is defined by

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) x

(2)
1 (t) · · · x

(n)
1 (t)

x
(1)
2 (t) x

(2)
2 (t) · · · x

(n)
2 (t)

... · · · . . .
...

x
(1)
n (t) x

(2)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Here x(i) =
(

x
(i)
1 , x

(i)
2 , · · · , x(i)

n

)

, 1 ≤ i ≤ n.

Theorem 4.1.1 Let W (t0) 6= 0 for some t0 ∈ J ⊆ <. Then x(1)(t), x(2)(t),
· · · , x(n)(t) are linearly independent in the interval J .

Proof : If possible, let
{

x(1)(t), · · · , x(n)(t)
}

be linearly dependent. This
implies that there exist n constants c1, c2, · · · , cn (not all zero) such that

c1x
(1)(t) + c2x2(t) + · · · + cnx

(n)(t) = 0̄ (4.1.3)

Eq. (4.1.3) implies that

c1x
(1)
1 (t0) + c2x

(2)
1 (t0) + · · · + cnx

(n)
1 (t0) = 0

c1x
(1)
2 (t0) + c2x

(2)
2 (t0) + · · · + cnx

(n)
2 (t0) = 0

... + · · · +
.. . +

...
...

c1x
(1)
n (t0) + c2x

(2)
n (t0) + · · · + cnx

(n)
n (t0) = 0

(4.1.4)

Eq. (4.1.4) is a linear system of equations in n-unknowns c1, c2, · · · , cn. As
the determinant W (t0) of this system is nonzero, it follows that ci = 0 for
1 ≤ i ≤ n (as RHS of Eq. (4.1.4) is zero). This is a contradiction. Hence the
set
{

x(1)(t), x(2)(t), · · · , x(n)(t)
}

is linearly independent.

This gives us the following theorem.

Theorem 4.1.2 There exists n linearly independent solutions of Eq. (4.1.2) in
J .

Proof : We consider n initial value problems

dx

dt
= A(t)x(t), t ∈ J

x(t0) = e(i), 1 ≤ i ≤ n

where e(i) are the unit vectors (0, · · · , 1 , · · · , 0) .
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By Theorem 3.1.1, the above set of n initial value problems has n unique solu-
tions x(1)(t), x(2)(t), · · · , x(n)(t), with initial conditions x(i)(t0) = e(i), (1 ≤
i ≤ n). Let

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) x

(2)
1 (t) · · · x

(n)
1 (t)

x
(1)
2 (t) x

(2)
2 (t) · · · x

(n)
2 (t)

...
...

. . .
...

x
(1)
n (t) x

(2)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Then

W (t0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1

By Theorem 4.1.1, x(1)(t), · · · , x(n)(t) are linearly independent on J .

Let X be the vector space of solutions of Eq. (4.1.2). The following theorem
gives the dimension of X .

Theorem 4.1.3 The dimension of the solution space X of the linear homoge-
neous system given by Eq. (4.1.2) is n.

Proof : We have already proved in Theorem 4.1.2 that Eq. (4.1.2) has n
linearly independent solutions x(1)(t), · · · , x(n)(t) with x(i)(t0) = e(i).
Let x(t) be any general solution of Eq. (4.1.2). Let us assume that x(t0) =

x(0), with x(0) =
(

x
(0)
1 , x

(0)
2 , · · · , x(0)

n

)

. Consider the function y(t) defined as

y(t) = x
(0)
1 x(1)(t) + x

(0)
2 x(2)(t) + · · · + x

(0)
n x(n)(t). It is clear that

dy

dt
= A(t)y(t)

Also,

y(t0) = x
(0)
1 x(1)(t0) + x

(0)
2 x(2)(t0) + · · · + x(0)

n x(n)(t0)

= x
(0)
1 e(1) + x

(0)
2 e(2) + · · · + x(0)

n e(n)

=
(

x
(0)
1 , · · · , .x(0)

n

)

= x(0)

Thus y(t) is a solution of the initial value problem

dx

dt
= A(t)x(t), x(t0) = x(0)
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By uniqueness theorem of IVP, it follows that

x(t) = y(t) =
n
∑

i=1

x
(0)
i x(i)(t)

That is, x̄(t) is spanned by n linearly independent solutions x̄(1)(t), x̄(2)(t),
· · · , x̄(n)(t) of Eq. (4.1.2) and hence X has dimension n.

At times, it helps to know the relation between W (t) and the matrix A(t).
The following theorem gives the relation.

Theorem 4.1.4 Let x(1)(t), · · · , x(n)(t) be solutions of Eq. (4.1.2) and let
t0 ∈ J . Then we have the Abel’s formula

W (t) = W (t0) exp

(∫ t

t0

Tr [A(s)] ds

)

(4.1.5)

where Tr [A(t)] is defined as

Tr[A(t)] =
n
∑

i=1

aii(t)

Proof : We have

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) x

(2)
1 (t) · · · x

(n)
1 (t)

x
(1)
2 (t) x

(2)
2 (t) · · · x

(n)
2 (t)

...
...

. . .
...

x
(1)
n (t) x

(2)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

This gives

dW (t)

dt
=

n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) · · · x

(n)
1 (t)

x
(1)
1 (t) · · · x

(n)
1 (t)

...
. . .

...

x
(1)
i−1(t) · · · x

(n)
i−1(t)

.
x

(1)
i (t) · · · .

x
(n)
i (t)

x
(1)
i+1(t) · · · x

(n)
i+1(t)

...
. . .

...

x
(1)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.1.6)
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In view of Eq. (4.1.2), we have

.
x

(k)
i (t) =

dx
(k)
i (t)

dt
=

n
∑

j=1

aij(t)x
(k)
j (t), 1 ≤ k ≤ n

and hence Eq. (4.1.6) gives

dW (t)

dt
=

n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) · · · x

(n)
1 (t)

...
...

...
∑n

j=1 aij(t)x
(1)
j (t) · · · ∑n

j=1 aij(t)x
(n)
j (t)

...
...

...

x
(1)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Multiply the first row by ai1(t), the second by ai2(t) and so on except the ith

row and substract their sum from the ith row. We get

dW (t)

dt
=

n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) x

(2)
1 (t) · · · x

(n)
1 (t)

...
...

...
...

aii(t)x
(1)
j (t) aii(t)x

(2)
j (t) · · · aii(t)x

(n)
j (t)

...
...

...
...

x
(1)
n (t) x

(2)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

That is
dW

dt
=

n
∑

i=1

aii(t)W (t) = W (t)Tr[A(t)]

which gives

W (t) = W (t0) exp

(∫ t

t0

Tr[A(t)]dt

)

Corollary 4.1.1 If x̄(1)(t), · · · , x̄(n)(t) are linearly independent solutions of
Eq. (4.1.2), then W (t) 6= 0 on J .

Example 4.1.1 Cosider the nth order linear differential equation in J ⊆ <
dnx(t)

dtn
+ an−1(t)

dn−1x(t)

dt
+ · · · + a1(t)

dx(t)

dt
+ a0x(t) = 0 (4.1.7)

with ai(t), 0 ≤ i ≤ n− 1 as continuous functions of t ∈ J .
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Proceeding as in Corollary 3.1.2, one can show that Eq. (4.1.7) is equivalent to
the linear first order homogeneous system

dx

dt
= A(t)x(t) (4.1.8)

where

A(t) =















0 1 · · · · · · 0
0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1















, x(t) =





















x(t)
dx

dt
...

dn−1x(t)

dtn−1





















Recall that A(t) is the companion matrix of Eq. (4.1.7).
It is now clear from Theorem 4.1.3 that Eq. (4.1.8) has n linearly independent
solutions x̄1(t), x̄2(t), · · · , x̄n(t) and its Wronskian is defined as

W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(t) x2(t) · · · xn(t)

x
(1)
1 (t) x

(1)
2 (t) · · · x

(1)
n (t)

x
(2)
1 (t) x

(2)
2 (t) · · · x

(n)
n (t)

...
... · · ·

...

x
(n)
1 (t) x

(n)
2 (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Here x
(n)
k (t) denotes

dnxk(t)

dtn
.

Remark 4.1.1 The converse of Theorem 4.1.1 is not true, as we see from the
following example.

x(1)(t) =

[

t
1

]

, x(2)(t) =

[

t2

t

]

are linearly independent functions defined

on < but W (t) ≡ 0.

4.2 Transition Matrix

In the previous section we proved that the homogeneous linear system

dx

dt
= A(t)x(t) (4.2.1)
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has n linearly independent solutions x(1), x(2), · · · , x(n).
Define a nonsingular matrix Ψ(t) as

Ψ(t) =
[

x(1)(t), x(2)(t), · · · , x(n)(t)
]

(4.2.2)

Then, we have

dΨ(t)

dt
=

[

dx(1)(t)

dt
,
dx(2)(t)

dt
, · · · , dx

(n)(t)

dt

]

=
[

A(t)x(1)(t), A(t)x(2)(t), · · · , A(t)x(n)(t)
]

That is

dΨ

dt
= A(t)Ψ(t) (4.2.3)

Definition 4.2.1 A nonsingular matrix Ψ(t) is called a fundamental matrix if
it satisfies the matrix differential equation given by Eq. (4.2.3).

Definition 4.2.2 A nonsingular matrix Φ(t, t0) is called principal fundamental
matrix or transition matrix or evolution matrix if it satisfies the matrix differ-
ential equation given by Eq. (4.2.3) with the initial condition Φ(t0, t0) = I.

That is, transition matrix Φ(t, t0), is the solution of the matrix initial value
problem

dΦ(t)

dt
= A(t)Φ(t), Φ(to) = I (4.2.4)

Here the solution Φ(t) of the above differential equation lies in the space Mn×n

of n×n matrices. Note that Mn×n is a Hilbert space ( finite dimensional) with
inner product and norm defined as

(A,B)Mn×n
=

n
∑

i=1

(

ā(i), b̄(i)
)

, ‖A‖2
Mn×n

=

n
∑

i=1

‖ā(i)‖2

where A =
[

ā(1), ā(2), · · · , ā(n)
]

and B =
[

b̄(1), b̄(2), · · · , b̄(n)
]

.

Proceeding as before, the solvability of Eq. (4.2.4) is equivalent to the solvability
of the Volterra integral equation

φ(t) = I +

∫ t

t0

A(s)φ(s)ds, t ∈ J = (t0, tf ) ⊂ (t0,∞) (4.2.5)

in the space C[J,Mn×n]. Its unique solution φ(t) is given by

φ(t) = I +

∞
∑

n=1

∫ t

t0

An(s)ds
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where An(t) =

∫ t

t0

∫ σ1

t0

· · ·
∫ σn−1

t0

[A(σ1)A(σ2) · · ·A(σn) dσn · · · dσ1]. Equiva-

lentely, we have

φ(t) = I +

∫ t

t0

A(σ1)dσ1 +

∫ t

t0

∫ σ1

t0

A(σ1)A(σ2) dσ2 dσ1 + · · · (4.2.6)

Eq. (4.2.5) or Eq. (4.2.6) is called the Peano-Baker series for the transition ma-
trix Φ(t) of the linear differential equation given by Eq. (4.2.1) ( refer Brockett
[2]).

Example 4.2.1 Let A(t) be a constant matrix A. Then the transition matrix
of the homogeneous system given by Eq. (4.2.1) is of the form

Φ(t, t0) = I +

∫ t

t0

Ads+

∫ t

t0

∫ s

t0

A2dτds+ · · ·

= I +A(t− t0) +A2 (t− t0)
2

2!
+ · · ·

= exp (A(t− t0))

Example 4.2.2 Let A =

[

0 1
−1 0

]

A2 = −I, A3 = −A, A4 = I, A5 = A, · · · , A2k = (−1)kI, A2k+1 = (−1)kA.
This gives

exp (A(t − t0)) = I +A(t− t0) − I
(t− t0)

2

2!
− A(t− t0)

3

3!

+
(t− t0)

4

4!
+A

(t− t0)
5

5!
+ · · ·

= I

[

1 − (t− t0)
2

2!
+

(t− t0)
4

4!
+ · · ·

]

+A

[

(t− t0) −
(t− t0)

3

3!
+ · · ·

]

=

[

cos (t− t0) sin (t− t0)
− sin (t− t0) cos (t− t0)

]

The following theorem implies that two different fundamental matrices corre-
sponding to the same system differ by a multiple of a constant nonsingular
matrix.

Theorem 4.2.1 Let Ψ1(t) be a fundamental matrix of the system given by Eq.
(4.2.1). Then Ψ2(t) is a fundamental matrix of Eq. (4.2.1) iff there exists a
nonsingular constant matrix C such that Ψ2(t) = Ψ1(t)C.
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Proof : Let Ψ2(t) = Ψ1(t)C. Then

dΨ2(t)

dt
=
dΨ1(t)

dt
C = AΨ1(t) C = AΨ2(t)

This implies that Ψ2(t) is a fundamental matrix of Eq. (4.2.1). Conversely, let
Ψ2(t) be another fundamental matrix of Eq. (4.2.1).
Set

C(t) = Ψ−1
1 (t)Ψ2(t)

This gives

Ψ2(t) = Ψ1(t)C(t)

and

dΨ2(t)

dt
=

dΨ1(t)

dt
C(t) + Ψ1(t)

dC(t)

dt

Hence

A(t)Ψ2(t) = A(t)Ψ1(t)C(t) + Ψ1(t)
dC(t)

dt

= A(t)Ψ2(t) + Ψ1(t)
dC(t)

dt

This implies that

Ψ1(t)
dC(t)

dt
= 0

and hence
dC(t)

dt
= 0

Thus C is a constant matrix. Also C is invertible as Ψ1(t), Ψ2(t) are invertible.

Corollary 4.2.1 If Ψ(t) is a fundamental matrix of Eq. (4.2.1), the transition
matrix Φ(t, t0) of Eq. (4.2.1) is given by

Φ(t, t0) = Ψ(t)Ψ−1(t0)

Corollary 4.2.2 The initial value problem

dx

dt
= A(t)x(t), x(t0) = x0

has a solution x(t), given by

x̄(t) = Ψ(t)Ψ−1(t0)x̄0

where Ψ(t) is a fundamental matrix of Eq. (4.2.1). That is

x(t) = Φ(t, t0)x0
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Proof : We have
dΨ(t)

dt
= A(t)Ψ(t)

This gives

[

dx(1)(t)

dt
,
dx(2)(t)

dt
· · · dx

(n)(t)

dt

]

=
[

Ax(1), Ax(2), . . . Ax(n)
]

where
Ψ(t) =

[

x(1), x(2), . . . x(n)
]

with {x(i)}n
i=1 linearly independent.

This implies that
dxi

dt
= Axi, 1 ≤ i ≤ n

Thus we have n linearly independent solutions of Eq. (4.2.1) and as its solution
space is of dimension n, it follows that every solution x(t) of Eq. (4.2.1) is given
by

x(t) = c1x
(1)(t) + · · · + cnx

(n)(t)

That is

x(t) = Ψ(t)c

where c̄ = (c1, c2, · · · , cn).
Since x(t0) = x̄0, we get

c = Ψ−1(t0)x0

This gives
x(t) = Ψ(t)Ψ−1(t0)x0 = Φ(t, t0)x0

We also note the following facts.

Remark 4.2.1 If Ψ1(t) and Ψ2(t) are two fundamental matrices of the systems
dx

dt
= A1(t)x(t) and

dx

dt
= A2(t)x(t), respectively (A1 6= A2). Then, Ψ1(t) 6=

Ψ2(t).

This follows from the fact that A1(t) =
dΨ1(t)

dt
Ψ−1

1 (t) and

A2(t) =
dΨ2(t)

dt
Ψ−1

2 (t).

Remark 4.2.2 Φ(t, t0) satisfies the following properties

(i) Φ(t, t0) = Φ(t, t1)Φ(t1, t0),
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(ii) Φ−1(t, t0) = Φ(t0, t)

(iii) Φ(t, t) = I

for all t, t0, t1 ∈ J

To realise this, just observe that Φ(t, t0) = Ψ(t)Ψ−1(t0).

We shall say a linear homogeneous differential equation in p̄(t) is adjoint equa-

tion associated with the given equation
dx̄

dt
= A(t)x̄(t), provided that for any

initial data, the scalar product (x(t), p(t)) is constant for all t.

This gives the following theorem.

Theorem 4.2.2 The adjoint equation associated with

dx̄

dt
= A(t)x̄(t)

is
dp̄

dt
= −A(t)>p̄(t) (4.2.7)

Proof : We have

d

dt
[(x̄(t), p(t))] =

(

dx̄

dt
, p̄(t)

)

+

(

x̄(t),
dp̄(t)

dt

)

= (A(t)x̄(t), p̄(t)) +
(

x̄(t),−A(t)>p̄(t)
)

= ([A(t) −A(t)] x̄(t), p̄(t))

= 0

This gives
(x̄(t), p̄(t)) = constant

That is Eq. (4.2.7) is the adjoint equation associated with Eq. (4.2.1).

Theorem 4.2.3 If Ψ(t) is a fundamental matrix of the system given by Eq.

(4.2.1), then
[

Ψ−1(t)
]>

is a fundamental matrix of the adjoint system.

Proof : We have Ψ(t)Ψ−1(t) = I. Differentiating this equality, we get

dΨ(t)

dt
Ψ−1(t) + Ψ(t)

dΨ−1(t)

dt
= 0

and hence

A(t) + Ψ(t)
dΨ−1(t)

dt
= 0

This gives
dΨ−1(t)

dt
= −Ψ−1(t)A(t)
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and hence
[

dΨ−1(t)

dt

]>

= −A(t)>
[

Ψ−1(t)
]>

Theorem 4.2.1 gives us the following corollary.

Corollary 4.2.3 If Ψ(t) is a fundamental matrix of Eq. (4.2.1) then χ(t) is
fundamental matrix of its adjoint system given by Eq. (4.2.7) iff

χ(t)>Ψ(t) = C

where C is a constant nonsingular matrix.

Remark 4.2.3 If A(t) is skew symmetric, that is, − [A(t)]> = A(t), then the
transition matrix is orthogonal

(

[Φ(t, t0)]
[

Φ>(t, t0)
]

= I
)

. This follows from the
fact that

(i)
d

dt

[

φ>(t, t0)φ(t, t0)
]

= φ>(t, t0)
[

A>(t) +A(t)
]

φ(t, t0) = 0 and

(ii) φ(t0, t0) = I.

We shall now give the method of variation of parameter to solve the non-
homogeneous system

dx

dt
= A(t)x(t) + b(t) (4.2.8)

We set

x(t) = Φ(t, t0)v(t) (4.2.9)

which satisfies Eq. (4.2.8), v(t) to be determined.
Plugging this representation of x̄(t) in Eq. (4.2.8), we get

[

d

dt
Φ(t, t0)

]

v(t) + Φ(t, t0)
dv(t)

dt
= A(t) Φ(t, t0) v(t) + b(t)

This gives

A(t)Φ(t, t0)v̄(t) + Φ(t, t0)
dv(t)

dt
= A(t)Φ(t, t0)v̄(t) + b(t)

and hence

dv(t)

dt
= Φ−1(t, t0)b(t)

= Φ(t0, t)b(t)
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Integrating this equation, we get

v(t) = v(t0) +

∫ t

t0

Φ(t0, s)b(s)ds

As x(t) = Φ(t, t0)v(t), it follows x(t0) = v(t0) and

x(t) = Φ(t, t0)v(t0) +

∫ t

t0

Φ(t, t0)Φ(t0, s)b(s)ds

This gives us the variation of parameter formula

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)b(s)ds

Example 4.2.3 Solve
dx

dt
= Ax(t) + b(t)

A =

[

0 1
−1 0

]

, b(t) =

[

t
0

]

The transition matrix for this system is given by

Φ(t, t0) =

[

cos (t− t0) sin (t− t0)
− sin (t− t0) cos (t− t0)

]

By the method of variation of parameter we have

x(t) = x(0) +

∫ t

t0

Φ(t, s)b(s)ds

where x(0) = x(t0).

∫ t

t0
Φ(t, s)b(s)ds =







∫ t

t0
s cos (t− s)ds

∫ t

t0
−s sin (t− s)ds







=





t0 sin (t− t0) + 1 − cos (t− t0)

t0 cos (t− t0) − 1 + sin (t− t0)





This gives the solution of the non-homogeneous system as





x1(t)

x2(t)



 =







x
(0)
1

x
(0)
2






+





t0 sin (t− t0) + 1 − cos (t− t0)

t0 cos (t− t0) − 1 + sin (t− t0)





For more on this section refer Agarwal and Gupta [1].
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4.3 Periodic Linear System

Let us first consider a homogenous periodic system

dx̄

dt
= A(t)x̄(t), t ∈ < (4.3.1a)

A(t+ T ) = A(t), t ∈ < (4.3.1b)

We shall make use of the following lemma, which we shall state without proof
(refer Coddington and Levinson [3] for further details).

Lemma 4.3.1 Let C be any nonsingular matrix, then ∃ a matrix R such that
C = eR.

We observe that Eq. (4.3.1) is a non-autonomous system, yet it is possible
to get a simpler representition of the transition matrix φ(t, t0) in view of the
periodicity of A(t).

noindent The Peano-Baker series representation of the transition matrix
φ(t, t0) gives

φ(t, t0) = I +

∫ t

t0

A(σ1) dσ1 +

∫ t

t0

A(σ1)

∫ σ1

t0

A(σ2)dσ2 dσ1 + · · ·

As
∫ t+T

t0+T
A(σ) dσ =

∫ t

t0
A(σ) dσ, it follows that φ(t, t0) is also periodic of period

T :

φ(t+ T, t0 + T ) = φ(t, t0).

Theorem 4.3.1 (Floquet-Lyapunov). If A(t + T ) = A(t), the associated tran-
sition matrix φ(t, t0) of the system given by Eq. (4.3.1) has the form

φ(t, t0) = P−1(t)eR(t−t0)P (t0)

where P (t) is a nonsingular periodic matrix function and R is a fixed matrix.

Proof : As φ(T, 0) is a nonsingular matrix, by Lemma 4.3.1, there exists a
matrix R such that φ(T, 0) = eRT (redefine R in Lemma 4.3.1).
We now define a nonsingular P (t), through its inverse P−1(t) as

P−1(t) = φ(t, 0)e−Rt

Then P−1(t+ T ) is satisfies the relationship

P−1(t+ T ) = φ(t+ T, 0)e−R(t+T )

= φ(t+ T, T )φ(T, 0)e−RT e−Rt

= φ(t+ T, T )e−Rt

= P−1(t)
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That is P (t) is periodic.
Also we have

φ(t, 0) = P−1(t)eRt, φ(0, t) = e−RtP (t) (4.3.2)

Eq. (4.3.2) imply that

φ(t, t0) = φ(t, 0)φ(0, t0)

= P−1(t)eRte−Rt0P (t0)

= P−1(t)eR(t−t0)P (t0)

This proves the theorem.

It is a pleasant surprise to observe that if we make the transformation

x̄(t) = P−1(t)z̄(t) (4.3.3)

then z̄(t) satisfies the autonomous system

dz̄

dt
= Rz(t) (4.3.4)

This can be seen as follows. Since
dφ

dt
= A(t)φ(t), we have

d

dt

[

P−1(t)eR(t−t0)P (t0)
]

= A(t)
[

P−1(t)eR(t−t0)P (t0)
]

Equivalently,

[

d

dt
P−1(t)

]

eR(t−t0) P (t0) + P−1(t) ReR(t−t0) P (t0)

= A(t)P−1(t) eR(t−t0)P (t0)

which gives

P−1(t)R = A(t)P−1(t) − d

dt
P−1(t) (4.3.5)

Operating Eq. (4.3.5) on z̄(t) we get

P−1(t)Rz̄(t) = A(t)P−1(t)z̄(t) −
[

d

dt
P−1(t)

]

z̄(t)

= A(t)x̄(t) −
[

d

dt
P−1(t)

]

z̄(t) (4.3.6)

Using transformation given by Eq. (4.3.3) we get

dx̄

dt
=

[

d

dt
P−1(t)

]

z̄(t) + P−1(t)
dz̄

dt
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and hence Eq. (4.3.6) reduces to

P−1(t)Rz̄(t) = A(t)x̄(t) − dx̄

dt
+ P−1(t)

dz̄

dt

= P−1(t)
dz̄

dt

This gives
dz̄

dt
= Rz̄(t)

which is the desired result.

Example 4.3.1 Consider the following periodic system

dx̄

dt
= A(t)x̄(t)

A(t) =

[

−2 cos2 t −1− sin 2t
1 − sin 2t −2 sin2 t

]

A(t+ 2π) = A(t)

One can verify that

φ(t) =





e−2t cos t − sin t

e−2t sin t cos t





is a fundamental matrix of this system.
One observes that

φ(t, 0) =

[

cos t − sin t
sin t cos t

] [

e−2t 0
0 1

]

= P−1(t)eRt

where P (t) = φ(t, 0) =

[

cos t − sin t
sin t cos t

]

is periodic of period 2π and R =
[

−2 0
0 0

]

Let us now examine the non-homogeneous initial value periodic system

dx̄

dt
= A(t)x̄(t) + b̄(t) (4.3.7a)

x̄(t0) = x̄0 (4.3.7b)

where A(t+ T ) = A(t), b̄(t+ T ) = b̄(t).
We state the following theorem regarding the solvability of Eq. (4.3.7),
refer Brocket[2] for a proof of this theorem.
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Theorem 4.3.2 Let φ(t, t0) be the transition matrix generated by A(t). Then
the solution of the non-homogeneous system given by Eq. (4.3.7) can be written
as

x̄(t) = x̄p(t) + φ(t, t0) [x̄0 − x̄p(t0)] (4.3.8)

iff b̄(t) is orthogonal to the solution p̄(t) of the adjoint equation

dp̄

dt
= −A>(t)p̄(t) (4.3.9)

(b̄ is orthogonal to p̄ iff

∫ t0+T

t0

(

p̄(σ), b̄(σ)
)

dσ = 0.)

Example 4.3.2 Consider the harmonic oscillator problem with periodic exter-
nal force b(t) (refer Example 1.3.1)

d2x

dt2
+ ω2x(t) = b(t), ω2 =

λ

ma

This is equivalent to










dx1

dt

dx2

dt











=

[

0 1
−ω2 0

][

x1

x2

]

=

[

0
b(t)

]

⇐⇒ dx̄

dt
= Ax̄(t) + b̄(t) (4.3.10)

with x1(t) = x(t), x2(t) = ẋ(t).
The eigenvalues of A are ±ωi and hence the transition matrix corresponding to
A is given by

φ(t, t0) =

[

1 0
0 ω

]





cosω(t− t0) sinω(t− t0)

− sinω(t− t0) cosω(t− t0)











1 0

0
1

ω







=







cosω(t− t0)
1

ω
sinω(t− t0)

−ω sinω(t− t0) cosω(t− t0)







Hence the solution of the homogeneous equation corresponding to Eq. (4.3.10)
is given by

xH(t) =

(

x
(1)
0 cosω(t− t0) +

x
(2)
0

ω
sinω(t− t0) ,

−x(1)
0 ω sinω(t− t0) + x

(2)
0 cosω(t− t0)

)
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This gives

xH(t) = xH(0) cosω(t− t0) +
ẋH (0)

ω
sinω(t− t0) (4.3.11)

The adjoint system corresponding to Eq. (4.3.10) is given by

dp̄

dt
=

[

0 ω2

−1 0

]

p̄(t)

The transition matrix of the adjoint system is




cosω(t− t0) ω sinω(t− t0)

− 1
ω sinω(t− t0) cosω(t− t0)





Hence the non-homogeneous equation will have a solution iff p̄(t) is orthogonal
to b̄(t). That is, b(t) satisfies the orthogonality condition

∫ t0+T

t0





cosω(t− t0) ω sinω(t− t0)

− 1
ω sinω(t− t0) cosω(t− t0)









0

b(t)



 dt = 0

This implies that b(t) satisfies the conditon

∫ t0+T

t0

sinω(t− t0) b(t)d(t) =

∫ t0+T

t0

cosω(t− t0) b(t)d(t) = 0

where T is the time period
2π

ω
.

4.4 Computation of Transition Matrix

We shall discuss some basic properties of the linear transformation expA in order
to facilitate its computaton. We note that exp (A(t− t0)) is the representation
of the transition matrix of the system

dx

dt
= Ax(t) (4.4.1)

where A is independent of t.
We note the following properties.

[1] If P and Q are linear transformation on <n and S = PQP−1, then
exp (S) = P exp (Q)P−1.

This follows from the fact

expS = lim
n→∞

n
∑

k=0

(PQP−1)k

k!
= P

(

lim
n→∞

n
∑

k=0

Qk

k!

)

P−1

= P exp (Q)P−1



4.4. COMPUTATION OF TRANSITION MATRIX 119

This implies that if P−1AP = diag[λj ], then

Φ(t, t0) = exp (A(t− t0)) = P diag[ exp (λj(t− t0)) ] P−1

Here, diag[λj ] represents the diagonal matrix with entries λj .

[2] If P and Q are linear transformation on <n which commute then

exp (P +Q) = exp (P ) exp (Q)

Example 4.4.1 If A =

[

a b
0 a

]

, then

exp (A(t− t0)) = exp (a(t− t0))

[

1 b(t− t0)
0 1

]

This follows from the fact that

A = aI +B, B =

[

0 b
0 0

]

Also, B commutes with I and B2 = 0. Using property[2], we get the required
representation as follows,

exp (A(t − t0) ) = exp (a(t− t0)I ) expB(t− t0)

= exp (a(t− t0) )[I +B(t− t0)]

= exp (a(t− t0) )

[

1 b(t− t0)
0 1

]

[3] If A =

[

a −b
b a

]

, then exp (A) = exp (a)

[

cos b − sin b
sin b cos b

]

Denote λ = a+ ib. By induction, we have

[

a −b
b a

]k

=

[

Re(λk) −Im(λk)
Im(λk) Re(λk))

]

This gives us exp (A) as

exp(A) =

∞
∑

k=0





Re
[

λk

k!

]

−Im
[

λk

k!

]

Im
[

λk

k!

]

Re
[

λk

k!

]





=

[

Re [exp (λ)] −Im [exp (λ)]
Im [exp (λ)] Re [exp (λ)]

]

= exp (a)

[

cos b − sin b
sin b cos b

]
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In a more general setting, we have the following theorem.

Theorem 4.4.1 If the set of eigenvalues {λ1, λ2, · · · , λn} of an n×n matrix
A is real and distinct, then any set of corresponding eigenvectors

{

u1, · · · , un
}

forms a basis for <n. The matrix P =
[

u(1), · · · , u(n)
]

is invertible and P−1AP =
diag [λ1, λ2, . . . , λn] and hence the transition matrix φ(t, t0) is given by

φ(t, t0) = P























exp (λ1(t− t0)) 0 · · · 0

0 exp (λ2(t− t0)) · · · 0

...
...

. . .
...

0 0 0 expλn(t− t0)























P−1

Proof : We have

Aū(i) = λiū
(i), ū(i) 6= 0̄, λi 6= λj

We claim that ū(i), · · · , ū(n) are linearly independent. We proceed by induction.
Obviously, the result is true for k = 1 as ū(1) 6= 0 is linearly independent. So let
the result be true for k ≤ n− 1. We shall show that it is also true for all k = n.
Let

α1ū
(1) + α2ū

(2) + · · · + αnū
(n) = 0̄, αi ∈ < (4.4.2)

Operating by A we get

α1λ1ū
(1) + α2λ2ū

(2) + · · · + αnλnū
(n) = 0̄ (4.4.3)

Multiply Eq. (4.4.2) by λn and subtract from Eq. (4.4.3), we get

α1(λ1 − λn)ū(1) + α2(λ1 − λn)ū(2) + · · · + αn−1(λn−1 − λn)ū(n−1) = 0̄

By induction ū(1), · · · , ū(n−1) are linear independent and hence αi = 0, 1 ≤ i ≤
n− 1.
Putting these values in Eq. (4.4.2) we get αnλnū

(n) = 0 which gives αn = 0 as
λnū

(n) 6= 0.
Thus ū(1) · · · ū(n) are linear independent by induction. Hence the matrix P =
[

ū(1), · · · , ū(n)
]

is nonsingular. Further, we have

AP =
[

Aū(1), · · · , Aū(n)
]

=
[

λ1ū
(1), · · · , λnū

(n)
]

= P







λ1

. . .

λn






= P diag [λj ]
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This implies that P−1AP = diag [λj ]
Proceeding as before, the transition matrix φ(t, t0) is given by

eA(t−t0) = P exp ( diag [λj(t− t0)])P
−1

= P











eλ1(t−t0) 0 · · · 0

0 eλ2(t−t0) · · · 0
...

. . .
...

0 0 · · · eλn(t−t0)











P−1

Example 4.4.2 A =

[

−1 −3
0 2

]

λ1 = −1, λ2 = 2. A pair of corresponding eigenvectors is (1, 0), (−1, 1).

P =

[

1 −1
0 1

]

, P−1 =

[

1 1
0 1

]

This gives

Φ(t− t0) = exp (A(t− t0))

= P





exp (−(t− t0)) 0

0 exp (−2(t− t0))



P−1

=





exp (−(t− t0)) exp (−(t− t0)) − exp (2(t− t0))

0 exp (2(t− t0))





If eigenvalues are complex, we state the following theorem concerning the com-
putation of the transition matrix.

Theorem 4.4.2 Let A be a 2n × 2n matrix with 2n distinct complex eigen-
values λj = aj + ibj , λj = aj − ibj with corresponding eigenvectors w(j) =
u(j) ± i v(j), 1 ≤ j ≤ n. Then

{

u(1), v(1), · · · , u(n), v(n)
}

is a basis for <2n

and the matrix P =
[

u(1), v(1), · · · , u(n), v̄(n)
]

is invertible and

P−1AP = diag

[

aj bj
−bj aj

]

with 2 × 2 blocks along the diagonal . The tran-

siton matrix φ(t, t0) has the representation.

φ(t, t0) = P exp

(

diag

[

aj bj
−bj aj

])

P−1

= P diag



(exp (aj(t− t0)))





cos (bj(t− t0)) sin (bj(t− t0))

− sin (bj(t− t0)) cos (bj(t− t0))







P−1
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Example 4.4.3 A =









1 −1 0 0
1 1 0 0
0 0 3 −2
0 0 1 1









A has eigenvalues λ1,2 = 1± i, λ3,4 = 2± i. A corresponding pair of eigenvectors
is

w(1) = (i, 1, 0, 0) , w(2) = (0, 0, 1 + i, 1)

P =
[

v̄(1) ū(1) v̄(2) ū(2)
]

=









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1









P−1 =









1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1









P−1AP =









1 −1 0 0
1 1 0 0
0 0 2 −1
0 0 1 2









Φ(t, t0) =

P





















exp (t) cos t − exp (t) sin t 0 0

exp (t) sin t exp (t) cos t 0 0

0 0 exp (2t) cos t − exp (2t) sin t

0 0 exp (2t) sin t exp (2t) cos t





















P−1

=




















exp (t) cos t − exp (t) sin t 0 0

exp (t) sin t exp (t) cos t 0 0

0 0 exp (2t) (cos t+ sin t) −2 exp (2t) sin t

0 0 2 exp (2t) sin t exp (2t) (cos t− sin t)





















For multiple eigenvalues of A we proceed as follows.
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Definition 4.4.1 let λ be an eigenvalue of n×n matrix A of multiplicity m ≤ n.
Then for k = 1 . . .m, any non zero solution v of

[(A− λI)k]v = 0

is called a generalized eigenvector of A.

Definition 4.4.2 A matrix N is said to be nilpotent of order k if N k−1 6=
0 and Nk = 0.

Theorem 4.4.3 Let A be a real n × n matrix with eigenvalues λ1, . . . , λn re-
peated according to their multiplicity. Then there exist a basis of generalized
eigenvectors v(1), v(2), . . . , v(n) with P = [v(1), v(2), . . . , v(n)] invertible and A =
S+N, where P−1SP = diag [λj ]. Further, the matrix N = A−S is nilpotent of
order k ≤ n and S and N commute. The transition matrix φ(t, t0) is computed
as follows

Φ(t, t0) =
[

Pdiag [exp (λj(t− t0))]P
−1
]

×
[

1 +N(t− t0) + · · · +Nk−1 (t− t0)
k−1

(k − 1)!

]

If λ is of multiplicity n, then S = diag[λ].

For proofs of Theorem 4.4.2 and Theorem 4.4.3, refer Perko[4].

Example 4.4.4 A =









0 −2 −1 −1
1 2 1 1
0 1 1 0
0 0 0 1









λ = 1 is of multiplicity 4. S = [I ]4×4 and N = A− S.

N =









−1 −2 −1 −1
1 1 1 1
1 2 1 1
0 1 0 0









N2 =









−1 −1 −1 −1
0 0 0 0
1 1 1 1
0 0 0 0









N3 = 0

Φ(t, t0) = exp (t− t0)

[

I +N(t− t0) +
N2(t− t0)

2

2!

]
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=

exp (t− t0) ×


































1 − [(t− t0) −[2(t− t0) −[(t− t0) −[(t− t0)
+ + + +

(t− t0)
2

2
]

(t− t0)
2

2
]

(t− t0)
2

2
]

(t− t0)
2

2
]

(t− t0) 1 + (t− t0) (t− t0) (t− t0)

(t− t0)
2

2
(t− t0) +

(t− t0)
2

2
1 +

(t− t0)
2

2

(t− t0)
2

2

0 0 0 1



































Example 4.4.5 A =





1 0 0
−1 2 0

1 1 2





Here λ1 = 1, λ2 = λ3 = 2
v(1) = (1, 1, −2 ), v(2) = (0, 0, 1 ), v(3), obtained by solving (A − 2I)2v = 0,
is given by

0 =





1 0 0
1 0 0

−2 0 0



 v

That is v(3) = (0, 1, 0)
So, we get

P =





1 0 0
1 0 1

−2 1 0



 P−1 =





1 0 0
2 0 1

−1 1 0





N =





0 0 0
0 0 0

−1 1 0





Φ(t, 0) = P





exp (t) 0 0
0 exp (2t) 0
0 0 exp (2t)



P−1 [1 +Nt]

=













exp (t) 0 0

exp (t) − exp (2t) exp (2t) 0

− exp (2t) + (2 − t) exp (2t) t exp (2t) exp (2t)
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Example 4.4.6 Let us consider the problem of mechanical oscillations dis-
cussed in Example 1.3.1, which is modelled by the second order differential
equaiton

d2x

dt2
+ k

dx

dt
+ ω2x = F (t) (4.4.4)

k is the resistance and ω2 =
λ

ma
.

This is equivalent to the following non-homogenous linear system

dx̄

dt
=

[

0 1
−ω2 −k

]

x̄+

[

0
F (t)

]

= Ax̄+ b̄(t)

A =

[

0 1
−ω2 −k

]

, b̄ =

[

0
F (t)

]

(i) Eigenvalues of A are complex if k2 − 4ω2 < 0 and are given by

−k
2
± i

2

√

4ω2 − k2 = a± bi

(

a = −k
2

and b =
√

ω2 − (k2/4)

)

.

Hence the transition matrix is given by

φ(t, t0)

=

ea(t−t0)







1 0

−k
2

b











cos b(t− t0) sin b(t− t0)

− sin b(t− t0) cos b(t− t0)











1 0

k

2b

1

b







=

ea(t−t0)











cos b(t− t0) +
k

2b
sin b(t− t0)

1

b
sin b(t− t0)

−ω
2

b
sin b(t− t0) cos b(t− t0) −

k

2b
sin b(t− t0)











This gives the solution of the homogeneous equation corresponding to Eq.

(4.4.4), passing through the initial point x(t0) = x
(1)
0 , ẋ(t0) = x

(2)
2 as

x(t) = ea(t−t0)

[

x(t0)

(

cos b(t− t0) +
k

2b
sin b(t− t0)

)

+
ẋ(t0)

b
sin b(t− t0)

]

(ii) Eigenvalues of A are real and distinct if k2 − 4ω2 > 0 and are given by

−k
2
± 1

2

√

k2 − 4ω2 =
−k ± c

2
, c =

√

k2 − 4ω2.
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So, the transition matrix corresponding to A is given by

φ(t, t0)

=







1 1

−k + c

2

−k − c

2





















e

(−k + c

2

)

(t− t0)
0

0 e

(−k − c

2

)

(t− t0)















×











k + c

2c

1

c

−k + c

2c
−1

c











=

















e

(−k + c

2

)

(t− t0)
e

(−k − c

2

)

(t− t0)

(−k + c

2

)

e

(−k + c

2

)

(t− t0) (−k − c

2

)

e

(−k − c

2

)

(t− t0)

















×











k + c

2c

1

c

−k + c

2c
−1

c











=













































































k + c

2c
e

(−k + c

2

)

(t− t0)







1

c
e

(−k + c

2

)

(t− t0)

+ −

−k + c

2c
e

(−k − c

2

)

(t− t0)







1

c
e

(−k − c

2

)

(t− t0)













c2 − k2

4c
e

(−k + c

2

)

(t− t0)







−k + c

2c
e

(−k + c

2

)

(t− t0)

+ +

k2 − c2

4c
e

(−k − c

2

)

(t− t0)







k + c

c
e

(−k − c

2

)

(t− t0)
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Hence the solution of the homogeneous equation passing through the initial
point is given by

x(t) =

x(t0)







k + c

2c
e

(−k + c

2

)

(t− t0)
+

−k + c

2c
e

(−k − c

2

)

(t− t0)







+ ẋ(t0)







1

c
e

(−k + c

2

)

(t− t0)
− 1

c
e

(−k − c

2

)

(t− t0)







=

e
−
k

2
(t− t0)






x(t0)











k + c

2c
e

( c

2

)

(t− t0)
+

−k + c

2c
e

(−c
2

)

(t− t0)

















+ e
−
k

2
(t− t0)

[

ẋ(t0)

{

1

c
e

c

2
(t− t0) − 1

c
e
−
c

2
(t− t0)

}]

= e
−
k

2
(t− t0)

[

e

c

2
(t− t0)

{

k + c

2c
x(t0) +

1

c
ẋ(t0)

}

]

+e
−
k

2
(t− t0)



e

−c
2

(t− t0)
{−k + c

2c
x(t0) −

1

c
ẋ(t0)

}





= e
−
k

2
(t− t0)



αe

c

2
(t− t0)

+ βe

−c
2

(t− t0)


 ,

α =
k + c

2c
x(t0) +

ẋ(t0)

c
, β =

−k + c

2c
x(t0) −

ẋ(t0)

c

(iii) If k2 − 4ω2 = 0, then the eigenvalues of A are repeated
−k
2
,
−k
2
. So, the

transition matrix is given by

φ(t− t0) =











e

(−k
2

)

(t− t0)
0

0 e

(−k
2

)

(t− t0)











[I +N(t− t0)]
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where N is the nilpotent matrix given by

N = A−











−k
2

0

0 −k
2











=











k

2
1

−ω2 −k
2











This gives

φ(t, t0) =














e

(−k
2

)

(t− t0)
0

0 e

(−k
2

)

(t− t0)















×











1 +
k

2
(t− t0) (t− t0)

−ω2(t− t0) 1 − k

2
(t− t0)











=



















[

1 +
k

2
(t− t0)

]

e

(−k
2

)

(t− t0)
(t− t0)e

(−k
2

)

(t− t0)

−ω2(t− t0)e

(−k
2

)

(t− t0) [

1 − k

2
(t− t0)

]

e

(−k
2

)

(t− t0)



















Hence, the solution of the homogeneous system is given by

x(t) = x(t0)

(

1 +
k

2
(t− t0)

)

e

(−k
2

)

(t− t0)

+ẋ(t0)e

(−k
2

)

(t− t0)
(t− t0)
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= e

(−k
2

)

(t− t0)
x(t0) + (t− t0)e

(−k
2

)

(t− t0)

{

k

2
x(t0) + ẋ(t0)

}

= αe

(−k
2

)

(t− t0)
+ β(t− t0)e

(−k
2

)

(t− t0)

where

α = x(t0), β =
k

2
x(t0) + ẋ(t0)

Example 4.4.7 Let us consider the linearized satellite problem, discussed ear-
lier in Chapters 1 and 2,

dx̄

dt
= Ax̄(t) +Bū(t)

where x̄ = (x1, x2, x3, x4), ū = (u1, u2),

A =









0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0









, B =









0 0
1 0
0 0
0 1









To compute the transition matrix of the above problem, we note that A has
eigenvalues 0, 0,±ωi.
We follow the procedure described in Theorem 4.4.3.
The generalized eigenvectors corresponding to the eigenvalue λ = 0
are (1, 0, 0,− 3

2ω), (0, 0, 1, 0) and the eigenvectors corresponding to the complex
eigenvalues λ = ±iω are (1, 0, 0, 2ω), (0, ω, 2, 0).
This gives

P =









1 0 1 0
0 0 0 ω
0 1 0 2

− 3
2ω 0 −2ω 0









, P−1 =









4 0 0 2
ω

0 − 2
ω 1 0

−3 0 0 − 2
ω

0 1
ω 0 0









and hence the nilpotent matrix N = A− S, where

S = P diag[Bj ]P
−1

=









1 0 1 0
0 0 0 ω
0 1 0 2

− 3
2ω 0 2ω 0

















0 0 0 0
0 0 0 0
0 0 0 ω
0 0 −ω 0

















4 0 0 2
ω

0 − 2
ω 1 0

−3 0 0 − 2
ω

0 1
ω 0 0









=









0 1 0 0
3ω2 0 0 2ω
6ω 0 0 4
0 −2ω 0 0
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That is

N = A− S =









0 0 0 0
0 0 0 0

−6ω 0 0 −3
0 0 0 0









N is nilpotent matrix of order 2. So, the transition matrix φ(t, t0) is given by

φ(t, t0)

=







































P





















1 0 0 0

0 1 0 0

0 0 cosω(t− t0) sinω(t− t0)

0 0 − sinω(t− t0) cosω(t− t0)





















P−1







































[I +N(t− t0)]

=



























4 − 3 cosω(t− t0)
sinω(t− t0)

ω
0 2

ω (1 − cosω(t− t0))

3ω sinω(t− t0) cosω(t− t0) 0 2 sinω(t− t0)

6 sinω(t− t0)
−2

ω
(1 − cosω(t− t0)) 1

4

ω
sinω(t− t0)

6ω(−1 + cosω(t− t0)) −2 sinω(t− t0) 0 −3 + 4 cosω(t− t0)



























×





















1 0 0 0

0 1 0 0

−6ω(t− t0) 0 1 −3(t− t0)

0 0 0 1
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=















































4 − 3 cosω(t− t0)
sinω(t− t0)

ω
0

2(1 − cosω(t− t0))

ω

3ω sinω(t− t0) cosω(t− t0) 0 2 sinω(t− t0)

[6(−ω)(t− t0) −
[

2

ω
1 − [3(t− t0)

+ − −
6 sinω(t− t0))]

2

ω
cosω(t− t0)

]

4

ω
sinω(t− t0)]

[−6ω −2 sinω(t− t0) 0 − [3
+ −

6ω cosω(t− t0)] 4 cosω(t− t0)]















































4.5 Euler’s Linear System

The equation of the form

dx̄

dt
=

1

t
Ax̄ (4.5.1)

where A is an autonomous matrix, is called Euler’s system.
We make a change variable of the form t = es in the independent variable, so
that Eq. (4.5.1) reduces to a linear sytem of the form

dx̄

dt
= Ax̄ (4.5.2)

One can now make use of the linear system theory to compute the solution of
Eq. (4.5.2) and hence that of Eq. (4.5.1)

Example 4.5.1 Solve

t2
d2x

dt2
− 2t

dx

dt
+ 2x = 0 (4.5.3)

Using the notation x1 = x and x2 = t
dx

dt
, we get

dx1

dt
=

1

t
x2

dx2

dt
= −2

t
x1 +

3

t
x2

So, we get the Euler’s system

dx̄

dt
=

1

t

(

0 1
−2 3

)

x̄ (4.5.4)
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Making the change of variable t = es we get

dx̄

ds
= Ax̄(s) (4.5.5)

where A =

(

0 1
−2 3

)

has eigenvalues 1,2 with eigenvectors

(

1
1

)

,

(

1
2

)

.

Hence a fundamental matrix of the system given by Eq. (4.5.5) is

φ(s) =

(

2 −1
−1 1

)(

es 0
0 e2s

)(

1 1
1 2

)

=

(

2es − e2s 2es − 2e2s

−es + e2s −es + 2e2s

)

Hence the solution of Eq. (4.5.4) is given by

x̄(t) =





c0(2t− t2) + c1(2t− t2)

c0(−t+ t2) + c1(−t+ t2)





Example 4.5.2 Solve

t3
d3x

dt3
+ t

dx

dt
− x = 0 (4.5.6)

Using the notation x1 = x, x2 = t
dx

dt
, x3 = t2

d2x

dt2
, we get that Eq. (4.5.6) is

equivalent to the Euler’s system

dx̄

dt
=

1

t





0 1 0
0 1 1
1 −1 2



 x̄ (4.5.7)

A =





0 1 0
0 1 1
1 −1 2



 has 1 as eigenvalues of multiplicity 3.

We use Theorem 4.4.3 to compute a fundamental matrix for the system

dx̄

dt
= Ax̄(s), A =





0 1 0
0 1 1
1 −1 2



 (4.5.8)

S = I, N = A− S =





−1 1 0
0 0 1
1 −1 1
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N is nilpotent of order 3 and hence

φ(s) = exp(s)
[

I + Ns+ N2s2
]

= exp(s)









1 0 0
0 1 0
0 0 1



+ s





−1 1 0
0 0 1
1 −1 1





+ s2





1 −1 1
1 −1 1
0 0 0









= exp(s)

























1 − s+ s2 s− s2 s2

s2 1 − s2 s+ s2

s −s 1 + s

























Hence the solution of the Euler’s system Eq. (4.5.7) is given by

x̄(t) = t













1 − lnt+ (lnt)2 lnt− (lnt)2 (lnt)2

(lnt)2 1 − (lnt)2 lnt+ (lnt)2

lnt −lnt 1 + lnt

























c1

c2

c3













This gives the solution of Eq. (4.5.6) as

x(t) = c1t
(

1 − lnt+ (lnt)2
)

+ c2
(

lnt− (lnt)2
)

+ c3t(lnt)
2

= c1t+ tlnt(c2 − c1) + t(lnt)2(c1 − c2 + c3)

or

x(t) = d1 t+ d2 t lnt+ d3 t (lnt)2

4.6 Exercises

1. If A =

[

0 1
−1 −2δ

]

, show that

eAt =











e−δt

(

cosωt+
δ

ω
sinωt

)

1

ω
e−δt sinωt

− 1

ω
e−δt sinωt e−δt

(

cosωt− δ
ω sinωt

)











where ω =
√

1 − δ2, δ ≤ 1.
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2. Let A and B be two n× n matrices given by

A =































λ 1 0 · · · 0

0 λ 1 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1

0 0 0 · · · λ































, B =































0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1

0 0 0 · · · 0































Show that

(a) Bn = 0.

(b) (λI)B = B(λ)I .

(c) eAt = eλt

[

I + tB +
t2

2!
B2 + · · · + 1

n!
tn−1Bn−1

]

3. Find two linearly independent solutions of the system

dx̄

dt
= A(t)x̄(t)

where

A(t) =







0 1

− 1

t2
−1

t






, t 6= 0

Also, compute the Wronskian of the linearly independent solutions.

4. Compute the transition matrix of the system

dx̄

dt
=





0 et

0 0



 x̄(t)

by using Peano-Baker series.

5. Verify that

φ(t) =





e−2t cos t − sin t

e−2t sin t cos t





is a fundamental matrix of the system

dx̄

dt
=





−2 cos2 t −1− sin 2t

1 − sin 2t −2 sin t



 x̄(t)
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6. Solve the non-homogeneous system

dx̄

dt
= A(t)x̄(t) + b̄(t), x̄(0) = 0

where a(t) is an given in Problem 5 and b̄(t) = (1, e−2t).

7. Compute the transition matrix of the following system

dx̄

dt
=













2 1 0

1 3 1

0 1 2













x̄(t)

8. Solve the initial value problem

dx̄

dt
= Ax̄(t)

x̄(0) = (1, t)

where

(a) A =





















0 −1 0 0

1 0 0 0

0 0 0 −1

2 0 1 0





















(b) A =





















−1 −1 0 0

0 −1 0 0

0 0 0 −2

0 0 1 2





















9. Show that the transition matrices corresponding to autonomous systems
described by two similar matrices are necessarily similar.

10. Verify the following properties of the transition matrix φ(t, t0) of the sys-
tem described by Problem 7.

(a) [φ(t, s)]
−1

= φ(s, t)

(b) [φ(t, t0)φ(t0, s)] = φ(t, s)

(c) φ(t, t) = I
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11. (a) Find two distinct fundamental matrices of the system

dx̄

dt
=

(

1 1
0 2

)

x̄(t)

(b) Find a fundamental matrix of the adjoint system of the above.
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Chapter 5

Stability Analysis

In this chapter we utilize the theory of transition matrix discussed in Chapter 4,
to study boundedness property of solutions of both linear and nonlinear systems
along with the stability of equilibrium points.
Various notions of stability including the one due to Lyapunov are introduced
and examined leading to some interesting theorems.
Phase portraits, around the equilibrium points in two dimensions, are discussed
in detail. This gives rise to the notion of saddle point, stable and unstable node,
focus and centre. We also sketch phase portraits, vector fields and solution
curves of some illustrative examples.

5.1 Asymptotic Behaviour of Linear System

Theorem 4.4.1 - 4.4.3 can be completely described in terms of the following
theorem, known as Jordan canonical form of a matrix, which can be used in
investigating the behaviour of solution of a linear system of the form given by
Eq. (4.1.1) for large values of t.

Theorem 5.1.1 ( Jordan canonical form)
Let A be a real matrix with real eigenvalues λj , 1 ≤ j ≤ k, and complex eigen-
values λj = aj ± ibj , k + 1 ≤ j ≤ n.
Then there exists a basis {v̄1, ..., v̄k , v̄k+1, ūk+1, ..., v̄n, ūn} of <2n−k where
v̄j are generalized eigenvectors of A corresponding to real eigenvalues λj (1 ≤
j ≤ k) and w̄j are generalized eigenvectors of A corresponding to complex
eigenvalues λj (k + 1 ≤ j ≤ n) with ūj = Re(w̄j) and v̄j = Im(w̄j). Let
P = [v̄1, ..., v̄k, v̄k+1, ūk+1, ..., v̄n, ūn].

Then P is invertible and

P−1AP =











B1

B2

. . .

Br











(5.1.1)
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The elementary Jordan blocks B = Bj , j = 1, 2, ..., r are either of the form

B =











λ 1 0
λ 1

...
. . . 1

0 λ











(∗)

for λ as one of the real eigenvalues of A or of the form

B =











D I2 0
D I2

. . . I2
0 D











(∗∗)

with

D =

[

a b
−b a

]

, I2 =

[

1 0
0 1

]

for λ = a± ib as a pair of complex eigenvalues of A.

This gives us the solvability of the linear system

dx̄

dt
= Ax̄(t) (5.1.2)

x̄(t0) = x̄0

Theorem 5.1.2 The solution x̄(t) of the system given by Eq. (5.1.2) is of the
form

x(t) = φ(t, t0)x̄0

where φ(t, t0) = φ(t−t0) = P diag [expBj(t− t0)] P
−1 is the transition matrix

of the system.

(a) If Bj = B is an m×m matrix of the form (*), then B = λI +N and

expB(t− t0) = expλ(t− t0) expN(t− t0)

= expλ(t− t0) ×
































1 t− t0
(t−t0)

2

2! · · · (t−t0)m−1

(m−1)!

0 1 t− t0 · · · (t−t0)m−2

(m−2)!

...
. . . · · ·

0 0 · · · (t− t0)

0 0 · · · · · · 1
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(b) If Bj = B is 2m×2m matrix of the form (**) and λ = a± ib is a complex
pair of eigenvalues, then

expB(t− t0) = exp a(t− t0) ×




























R R(t− t0) R (t−t0)
2

2! · · · R (t−t0)
m−1

(m−1)!

0 R R(t− t0) · · · R (t−t0)
m−2

(m−2)!

...
. . .

0 0 · · · R R(t− t0)
0 0 · · · 0 R





























where R =





cos b(t− t0) sin b(t− t0)

− sin b(t− t0) cos b(t− t0)





Corollary 5.1.1 Each component of the solution of the linear system Eq. (5.1.2)
is a linear combination of functions of the form

(t− t0)
l exp a(t− t0) cos b(t− t0) or (t− t0)

l exp a(t− t0) sin b(t− t0),

where λ = a± ib is a pair of eigenvalues of the matrix A and l is smaller than
the dimension of the space.

Let multiplicity of each eigenvalues λj be pj where λj = aj + ibj . Let

a = max
1≤j≤k

aj and p = max
1 ≤j ≤l

pj

Then by Corollary (5.1.1), it follows that ∃ t1 ≥ 0 such that

‖φ(t)‖ = ‖ exp (At)‖ ≤ c exp (at) tp ∀ t ≥ t1

where c is some suitable constant.

Corollary 5.1.2 Every solution of the linear system given by Eq. (5.1.2) tends
to zero as t→ ∞ iff the real parts of the eigenvalues of the matrix A are negative.

Corollary 5.1.3 Every solution of Eq. (5.1.2) is bounded iff the real parts of
the multiple eigenvalues of the matrix A are negative and real parts of the simple
eigenvalues of A are non positive.

Theorem 5.1.1 gives us the following well-known theorem called Cayley-Hamilton
theorem.

Theorem 5.1.3 Let p(λ) = det(λI −A), A ∈ <n. Then p(A) = 0. That is, if
det(λI −A) = λn + pn−1λ

n−1 + · · ·+ p0, then An + pn−1A
n−1 + · · ·+ p0I = 0.



140 CHAPTER 5. STABILITY ANALYSIS

For the proof of the Theorem 5.1.1 and Theorem 5.1.3, refer Gantmacher[5]
We shall now investigate the following perturbed linear system

dx̄

dt
= Ax̄ +B(t)x̄ (5.1.3)

where B(t) is a continuous matrix on the interval [ t0,∞) . We wish to examine
the relationship between the boundedness of solutions of Eq. (5.1.2) and Eq.
(5.1.3).
Let φ(t, t0) = exp (A(t − t0)) be the transition matrix of the the linear system
given by Eq. (5.1.2). By variation of parameter formula, the solvability of Eq.
(5.1.3) is given by

x̄(t) = φ(t, t0)x̄0 +

∫ t

t0

φ(t, s)B(s)x̄(s)ds (5.1.4)

We first prove the following variation of Gronwall’s lemma.

Lemma 5.1.1 (Generalized Gronwall’s inequality)
Let u(t), p(t), q(t) be nonnegative continuous functions in the interval I =
[t0, tf ] and let

u(t) ≤ p(t) +

∫ t

t0

q(s)u(s)ds, t ∈ I (5.1.5)

Then we have

u(t) ≤ p(t) +

∫ t

t0

p(τ)q(τ) exp

(∫ t

τ

q(s)ds

)

dτ, t ∈ I (5.1.6)

Proof : Let

r(t) =

∫ t

t0

q(s)u(s)ds

Then r(t0) = 0 and ṙ(t) = q(t)u(t).
By assumption, we have u(t) ≤ p(t) + r(t) and hence

ṙ(t) = q(t)u(t) ≤ p(t)q(t) + r(t)q(t)

This gives
ṙ(t) − r(t)q(t) ≤ p(t)q(t)

and hence multiplying both side by exp
(

−
∫ t

t0
q(s)ds

)

, we get

d

dt

[

r(t) exp

(

−
∫ t

t0

q(s)ds

)]

≤ exp

(

−
∫ t

t0

q(s)ds

)

p(t)q(t)

which implies that

exp

(

−
∫ t

t0

q(s)ds

)

r(t) ≤
∫ t

t0

p(τ)q(τ) exp

(

−
∫ τ

t0

q(s)ds

)

dτ
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This gives

r(t) ≤
∫ t

t0

p(τ)q(τ)

[

exp

(∫ t0

τ

q(s)ds+

∫ t

t0

q(s)ds

)]

dτ

=

∫ t

t0

q(τ)p(τ) exp

(∫ t

τ

q(s)ds

)

dτ

and hence

u(t) ≤ p(t) +

∫ t

t0

q(τ)p(τ) exp

(
∫ t

τ

q(s)ds

)

dτ

Corollary 5.1.4 If p(t) is nondecreasing on I, then

u(t) ≤ p(t) exp

(∫ t

t0

q(s)ds

)

(5.1.7)

Proof : As p(t) is nondecreasing, (5.1.6) gives

u(t) ≤ p(t)

[

1 +

∫ t

t0

q(τ) exp

(∫ t

τ

q(s)ds

)

dτ

]

= p(t)

[

1 −
∫ t

t0

d

dτ
exp

(∫ t

τ

q(s)ds

)

dτ

]

= p(t)

[

exp

(∫ t

t0

q(s)ds

)]

We are now ready to state and prove the boundedness of solutions of the
perturbed system given by Eq. (5.1.3).

Theorem 5.1.4 Let all solutions of Eq. (5.1.2) be bounded on [t0,∞). Then
all solutions of Eq. (5.1.3) are also bounded provided

∫ ∞

t0

‖B(t)‖ ≤ ∞ (5.1.8)

Proof : As all solutions of Eq. (5.1.2) are bounded, it follows that ∃ c such
that

‖ exp (At)‖ ≤ c ∀ t ∈ I = [t0,∞).

From Eq. (5.1.4), we have

‖x̄(t)‖ ≤ ‖ exp (A(t− t0))‖ ‖x̄0‖ +

∫ t

t0

‖B(s) exp (A(t− s))‖ ‖x̄(s)‖ds

≤ c‖x̄0‖ + c

∫ t

t0

‖B(s)‖ ‖x̄(s)‖ ds (5.1.9)
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Applying the generalized Gronwall’s inequality given by Eq. (5.1.7) to the above
inequality we have

‖x̄(t)‖ ≤ c‖x̄0‖
[

exp

(

c

∫ t

t0

‖B(s)‖ds
)]

≤ c‖x̄0‖ exp (M) ∀ t ∈ I

where

M = exp

(

c

∫ ∞

t0

‖B(s)‖ds
)

<∞

This implies that Eq. (5.1.3) has bounded solutions.

Remark 5.1.1 We examine the boundedness of solutions of the non-homogeneous
system

dx̄

dt
= Ax̄(t) + b̄(t) (5.1.10)

under the assumption that

(a) Eq. (5.1.2) has bounded solutions and

(b)
∫∞

t0
‖b̄(s)‖ds <∞.

One can show that the solutions of Eq. (5.1.10) remains bounded. The proof
is similar to that of Theorem 5.1.3. The inequality given by Eq. (5.1.9) in the
proof of Theorem 5.1.3 will be replaced by the following inequality

‖x̄(t)‖ ≤ c‖x̄0‖ + c

∫ t

t0

‖b̄(s)‖ds

The following theorem gives asymptotic convergence of solutions of Eq.
(5.1.3) vis-a-vis asymptotic convergence of solutions of Eq. (5.1.2).

Theorem 5.1.5 Let all solutions of Eq. (5.1.2) be such that they tend to zero
as t→ ∞. Then all solutions of Eq. (5.1.3) are also asymptotically convergent
to zero, provided

‖B(t)‖ → 0 as t→ ∞ (5.1.11)

Proof : By Corollary 5.1.2, it follows that all eigenvalues of A have negative
real parts and hence there exist constants c and δ > 0 such that

‖ exp (At)‖ ≤ c exp (−δt) ∀ t ≥ t0

Using this inequality in Eq. (5.1.4) we get,

‖x̄(t)‖ ≤ c exp (−δ(t− t0)) ‖x̄0‖ + c

∫ t

t0

exp (−δ(t− s)) ‖B(s)‖ ‖x̄(s)‖ds
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In view of Eq. (5.1.11), given any c1 > 0, ∃ t1 ≥ t0 > 0 such that

‖B(t)‖ ≤ c1 for t ≥ t1

and hence we get

‖x̄(t)‖ exp (δt) ≤ c exp (δt0) ‖x̄0‖ + c

∫ t1

t0

exp (δs) ‖B(s)‖ ‖x̄(s)‖ ds

+

∫ t

t1

‖B(s)‖ exp (δs) ‖x̄(s)‖ ds

≤ c exp (δt0) ‖x̄0‖ + c

∫ t1

t0

exp (δs) ‖B(s)‖ ‖x̄(s)‖ ds

+ c

∫ t

t1

c1 exp (δs) ‖x̄(s)‖ ds.

Let u(t) = exp (δt) ||x̄(t)|| and C denote the first two terms of RHS of the above
inequality:

C = c exp (δt0) ||x̄0|| + c

∫ t1

t0

exp (δs) ||B(s)|| ||x̄(s)||ds

Then we get,

u(t) ≤ C + c c1

∫ t

t1

u(s)ds , t ∈ I

By Gronwall’s lemma we get

u(t) ≤ C exp (

∫ t

t1

c c1ds)

= C exp (c c1(t− t1)) ∀ t ∈ I

This gives

||x̄(t)|| ≤ exp (−δt)C exp (c c1(t− t1))

= C exp(t(c c1 − δ) − c c1t1), ∀ t ∈ I

As c1 is arbitrary, we choose c1 such that cc1 < δ and hence exp (t(c c1 − δ)) →
0 as t→ ∞. This gives that ‖x̄(t)‖ → 0 as t→ ∞.
This proves the theorem.

Remark 5.1.2 If Eq. (5.1.2) has solutions asymptoticaly convergent to zero,
then the solutions of non-homogeneous system given by Eq. (5.1.10) satisfies
the same property if ‖b̄(t)‖ 7→ 0 as t 7→ ∞.
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We now consider the boundedness and stability of solution of non-autonomous
linear system

dx̄

dt
= A(t)x̄(t) (5.1.12)

Observe that,
||x̄(t)||2 = (x̄(t), x̄(t))

Differentiating the above relation, we get

d

dt

(

||x̄(t)||2
)

=

(

dx̄(t)

dt
, x̄(t)

)

+

(

x̄(t),
dx̄(t)

dt

)

= (A(t)x̄(t), x̄(t)) + (x̄(t), A(t)x̄(t))

=
(

(A(t) + [A(t)]>)x̄(t), x̄(t)
)

A(t) + [A(t)]> is a symmetric matrix and hence its eigenvalues are real. Let
M(t) be the largest eigenvalue of A(t)+[A(t)]>. We have the following theorem

Theorem 5.1.6 (a) If
∫∞

t0
M(s)ds is bounded then Eq. (5.1.12) has bounded

solutions.

(b) If
∫∞

t0
M(s)ds = −∞, then Eq. (5.1.12) has solutions asymptotically con-

verging to zero.

Proof : We have

d

dt

(

||x̄(t)||2
)

≤
(

(A(t) + [A(t)]>x̄(t), x̄(t)
)

≤ M(t) ||x̄(t)||2

This implies that

||x̄(t)||2 ≤ ||x̄(0)||2 exp

(
∫ t

t0

M(s)ds

)

, t ∈ I

If
∫∞

t0
M(s)ds < ∞, then we get (a). If lim

t→∞

[

∫ t

t0
M(s)ds

]

= −∞ then we get

(b).

Example 5.1.1
dx̄

dt
= [A+B(t)] x̄(t)

A =

[

0 1
−1 0

]

and B(t) =

[

0 0

0
2a

at+ b

]



5.1. ASYMPTOTIC BEHAVIOUR OF LINEAR SYSTEM 145

One can compute that the fundamental matrix of the unperturbed system is
[

cos t sin t
− sin t cos t

]

which is bounded.

The perturbed system has the fundamental matrix as

[

a sin t− (at+ b) cos t a cos t+ (at+ b) sin t
(at+ b) sin t (at+ b) cos t

]

which is unbounded. We note that
∫ t

0
||B(s)||ds → ∞ as t→ ∞.

Example 5.1.2

A(t) =





1

(1 + t)2
t2

−t2 −1



 and A(t) +A(t)> =





2

(1 + t)2
0

0 −2





M(t) =
2

(1 + t)2
and this gives

∫∞

0
M(s)ds = 2.

Hence by Theorem 5.1.5 the non-autonomous system

dx̄

dt
= A(t)x̄(t)

has bounded solutions.

We shall now consider boundedness and asymptotic stability of the perturbed
system of the form

dx̄

dt
= [A(t) +B(t)] x̄(t) (5.1.13)

corresponding to the non-autonomous system given by Eq. (5.1.12).
Assumptions 1 The matrix A(t) corresponding to the system given by Eq.

(5.1.12) is such that

(a)

lim
t7→∞

inf

∫ t

t0

TrA(s)ds > −∞ or TrA(s) = 0 (5.1.14)

(b) The perturbation matrix B(t) satisfies the condition

∫ ∞

t0

||B(t)||dt <∞

Theorem 5.1.7 Under Assumptions 1, if all solution of Eq. (5.1.12) are
bounded, then all solutions of Eq. (5.1.13) are also bounded.
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Proof : Let ψ(t) be a fundamental matrix of the system Eq. (5.1.12). Then,
the boundedness of solutions implies that ψ(t) is bounded. Also, by Abel’s
lemma (Theorem 4.1.4), we have

det[ψ(t)] = det[ψ(t0)]exp(

∫ t

t0

TrA(s)ds)

and hence

ψ−1(t) =
adjψ(t)

detψ(t)
=

adjψ(t)

det[ψ(t0)]exp(
∫ t

t0
TrA(s)ds)

(5.1.15)

In view of Assumptions 1(a), it follows that ||ψ−1(t)|| is bounded.
We now apply the variation of parameter formula to the IVP corresponding to
Eq. (5.1.13), to get the following integral represntation of the solution x̄(t).

x̄(t) = ψ(t)ψ−1(t0)x̄0 +

∫ t

t0

ψ(t)ψ−1(s)B(s)x(s)ds (5.1.16)

Define

c = max
{

supt≥t0 ||ψ(t)||, supt≥t0 ||ψ−1(t)||
}

, c0 = c||x̄0||.

Then Eq. (5.1.16) gives

||x̄(t)|| ≤ c0 + c2
∫ t

t0

||B(s)||||x̄(s)||ds

and hence Gronwall’s inequality gives

||x̄(t)|| ≤ c0exp

(

c2
∫ t

t0

||B(s)||ds
)

<∞

This proves the theorem.

Theorem 5.1.8 Under Assumptions 1 , if all solution of system Eq. (5.1.12)
are asymptotically convergent to zero, so is the case for all soluiton for Eq.
(5.1.13).

Proof : Asymptotic convergence of solution of Eq. (5.1.12) will imply that
||ψ(t)|| −→ 0 as t −→ ∞. Using this fact in Eq. (5.1.15), we get that ||ψ−1(t)|| 7→
0 as t −→ ∞.
Let c be defined as before. Estimating Eq. (5.1.16), we get

||x̄(t)|| ≤ ||ψ(t)||
[

c1 + c

∫ t

t0

||B(s)||||x̄(s)||ds
]
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where c1 = ||ψ−1(t0)x̄0||. The above inequality gives

||x̄(t)||
||ψ(t)|| ≤ c1 + c

∫ t

t0

||B(s)||||ψ(s)||
( ||x(s)||
||ψ(s)||

)

ds

Put ||y(t)|| =
||x̄(t)||
||ψ(t)|| and apply Gronwall’s inequality to get

||y(t)|| ≤ c1

[

exp

∫ t

t0

c2||B(s)||ds
]

thereby implying that

||x̄(t)|| ≤ c1||ψ(t)||
[

exp

∫ t

t0

c2||B(s)||ds
]

−→ 0 as t −→ ∞

These theorems immediately lead to the following result corresponding to
the asymptotic stability of the non-homogeneous system

dx̄

dt
= A(t)x̄(t) + b̄(t) (5.1.17)

Assumptions 2

(a) Same as Assumption 1(a)

(b) The function b̄(t) is such that

∫ t

t0

||b̄(s)||ds <∞

Theorem 5.1.9 Let Assumptions 2 hold. Then

(a) boundedness of solutions of Eq. (5.1.12) will imply boundedness of solu-
tions of Eq. (5.1.17) and

(b) asymptotic convergence of solutions of Eq. (5.1.12) to zero will imply
asymptotic convergence of solutions to zero of the non-homogeneous equa-
tion Eq. (5.1.17).

If the non-autonomous system under consideration is periodic, we can dispatch
with the Assumption 1(a). The boundedness and asymptotic convergence of the
perturbed system Eq. (5.1.13) is preserved under Assumption 1(b).

Theorem 5.1.10 Let A(t) be periodic. Let Assumption 1(b) hold. Then

(a) boundedness of solutions of Eq. (5.1.12) implies boundedness of solutions
of Eq. (5.1.13) and
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(b) asymptotic convergence of solutions of Eq. (5.1.12) implies asymptotic
convergence of solution of Eq. (5.1.13).

Proof : By Floquet-Lyapunov theorem - Theorem 4.3.1, the transition matrix
of the periodic system Eq. (5.1.12) is given by

φ(t, t0) = P−1(t)eR(t−t0)P (t0)

where P is periodic nonsingular matrix and R is a fixed martix.
By variation of parameter formula applied to the IVP corresponding to Eq.
(5.1.13) we get

x̄(t) = P−1(t)eR(t−t0)P (t0)x̄0

+

∫ t

t0

P−1(t)eRte−RsP (s)B(s)x̄(s)ds

This gives

‖x̄(t)‖ ≤ ‖P−1(t)‖‖eRt‖‖e−Rt0P (t0)x̄0‖

+

∫ t

t0

‖P−1(t)‖‖eR(t−s)‖‖P (s)‖‖B(s)‖‖x̄(s)‖ds (5.1.18)

P (t) is periodic and nonsingular and hence det P (t) 6= 0 and hence both ||P (t)||
and ||P−1(t)|| are bounded on [t0,∞). Let

d = max

{

sup
t≥t0

||P (t)||, sup
t≥t0

||P−1(t)||
}

Eq. (5.1.18) gives

‖x̄(t)‖ ≤ d1‖eRt‖ + d2

∫ t

t0

‖eR(t−s)‖‖B(s)‖‖x(s)‖ds (5.1.19)

where d1 = d||e−Rt0P (t0)x̄0||.
Boundedness of solutions of Eq. (5.1.12) implies that ||eRt|| ≤ d2 and hence Eq.
(5.1.19) gives

||x̄(t)|| ≤ d1d2 + d2d2

∫ t

t0

||B(s)||||x̄(s)||ds

and hence

||x̄(t)|| ≤ d1d2

[

exp

(

d2d2

∫ t

t0

||B(s)||ds
)]

This proves the boundedness of solutions of Eq. (5.1.13).
If solutions of Eq. (5.1.12) are asymptotically convergent to zero, we must
have ||eRt|| ≤ d3e

−αt for some positive constant d3 and α. This inequality
immediately gives

||x̄(t)|| ≤ d1d3e
−αt + d2d3

∫ t

t0

e−α(t−s)||B(s)||||x̄(s)||ds
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and hence

||x̄(t)|| ≤ d1d3e
−αt

[

exp

(

d2d3

∫ t

t0

||B(s)||ds
)]

−→ 0 as t −→ ∞

This proves the theorem.

5.2 Stability Analysis - Formal Approach

We shall formally define various concepts of stability of solution of the initial
value problem

dx̄

dt
= f(t, x̄), x̄(t0) = x̄0 (5.2.1)

We assume that Eq. (5.2.1) has a global solution on [t0,∞).

Definition 5.2.1 Let x̄(t, t0, x̄0) denote the solution of the initial value problem
Eq. (5.2.1), indicating its dependence on t and also the initial point t0 and initial
value x̄0. This solution is said to be stable if for a given ε > 0, ∃ δ > 0 such
that

||∆x̄0|| < δ ⇒ ||x̄(t, t0, x̄0 + ∆x̄0) − x̄(t, t0, x̄0)|| < ε

Definition 5.2.2 x̄(t, t0, x̄0) is said to be asymptotically stable if it is stable
and ∃ δ0 > 0 such that

||∆x̄0|| < δ0 ⇒ ||x̄(t, t0, x̄0 + ∆x̄0) − x̄(t, t0, x̄0)|| → 0 as t → ∞ (5.2.2)

To be more explicit, Eq. (5.2.2) can be restated as, given µ > 0, there exist δ
and T (µ) such that

||∆x̄0|| < δ ⇒ ||x̄(t, t0, x̄0 + ∆x̄0) − x̄(t, t0, x̄0)|| < µ ∀ t ≥ t0 + T (µ)

Definition 5.2.3 x̄(t, t0, x̄0) is said to be uniformly stable if for any ε > 0,
∃ δ = δ(ε) > 0 such that for any solution x̄(1)(t, t0, x̄1) of

dx̄

dt
= f(t, x̄), x̄(t0) = x̄1

||x̄(t1) − x̄(1)(t1)|| < δ ⇒ ||x̄(t) − x̄(1)(t)|| < ε ∀ t ≥ t1 ≥ t0

Theorem 5.2.1 For the linear system

dx̄

dt
= A(t)x(t) (5.2.3)

stability is equivalent to the boundedness of the solution.
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Proof : Let φ(t, t0) be the transition matrix. Then,

||x̄(t, t0, x̄0 + ∆x̄0) − x̄(t, t0, x̄0)|| = ||φ(t, t0)∆x̄0|| ≤ ||φ(t, t0)|| ||∆x̄0||

If φ(t, t0) is bounded, it follows that the solution x̄(t, t0, x̄0) is stable.
Conversely, let the solution of the linear system be stable. Then, given ε >
0, ∃ δ > 0 such that

||x̄(t, t0, x̄0 + ∆x̄0) − x̄(t, t0, x̄0)|| = ||φ(t, t0)∆x̄0|| < ε

whenever ||∆x̄0|| < δ.

Choose ∆x̄0 =
δ

2
ē(j). Then

||φ(t, t0)∆x̄0)|| =
δ

2
||φ(t, t0) ē

(j)|| < ε

But φ(t, t0) ē
(j) is the jth column vector φ(j) of the matrix φ(t, t0). Hence we

have

||φ(t, t0)|| = max
1 ≤ j ≤ n

||φ(j)|| = max
1≤j≤n

||φ(t, t0)ē
(j)|| ≤ 2ε

δ

This gives

||x̄(t, t0, x̄0)|| = ||φ(t, t0)x̄0|| ≤ 2 ε

δ
||x̄0||

That is, the solution of the linear system given by Eq. (5.2.3) is bounded.

Corollary 5.2.1 Let φ(t) be a fundamental matrix of the system given by Eq.
(5.2.3). Then Eq. (5.2.3) has asymptotically stable solutions iff ||φ(t)|| → 0
as t → ∞.

For the uniform stability of the linear system we have the following theorem

Theorem 5.2.2 Let φ(t) be a fundamental matrix of Eq. (5.2.3). Then all
solutions of Eq. (5.2.3) are uniformly stable iff there exists a constant c > 0
such that

||φ(t)φ−1(t1)|| ≤ c ∀ t0 ≤ t1 ≤ t <∞ (5.2.4)

Proof : Let x̄(t) = x̄(t, t0, x̄0) be a solution of Eq. (5.2.3). Then for any
t1 ≥ t0 we have x̄(t) = φ(t)φ−1(t1)x̄(t1). Let x̄(1)(t) = φ(t)φ−1(t1)x̄

(1)(t1) be
any other solution. As Eq. (5.2.4) is satisfied, we have

||x̄(1)(t) − x̄(t)|| ≤ ||φ(t)φ−1(t1)||||x̄(1)(t1) − x̄(t1)||
≤ c||x̄(1)(t1) − x̄(t1)|| ∀ t0 ≤ t1 ≤ t <∞

Let ε > 0 be given.

||x̄(1)(t1) − x̄(t1)|| ≤
ε

c
= δ(ε) > 0 imply that ||x̄(1)(t) − x̄(t)|| < ε
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and hence x̄(t) is uniformly stable.

Conversley, let Eq. (5.2.3) uniformly stable and hence zero solution is uniformly
stable. Hence given ε > 0, ∃ δ(ε) such that t1 ≥ t0 and

||x̄(1)(t)|| < δ ⇒ ||x̄(1)(t)|| < ε ∀ t ≥ t1.

Thus we have ||φ(t)φ−1(t1)x̄
(1)(t1)|| < ε ∀ t ≥ t1.

As in Theorem 5.2.1, we choose x̄(1)(t1) =
δ

2
ē(j). Then

||φ(t)φ−1(t1)x̄
(1)(t1)|| = ||φ(j)||δ

2
< ε.

Here φ(j)(t) is the jth column of φ(t)φ−1(t1). Hence, it follows that

||φ(t)φ−1(t1)|| = max
1≤j≤n

||φ(j)(t)|| < 2ε

δ
, t ≥ t1

This proves Eq. (5.2.4) and the theorem.

However, for nonlinear systems, boundedness and stability are distinct concepts.

Example 5.2.1 Consider,
dx

dt
= t

This has a solution of the form x(t) = x(t0) +
t2

2
. This is a stable solution but

not bounded. Whereas for
dx

dt
= 0, all solutions are of the form x(t) = x(t0)

which are uniformly stable but not asymptotically stable.

Example 5.2.2 Every solution of the system

dx

dt
= p(t)x(t)

is of the form

x(t) = x(t0) exp

(
∫ t

t0

p(s)ds

)

Hence x(t) ≡ 0 is asymptotically stable iff
∫ t

t0
p(s)ds → −∞ as t→ ∞.

For the nonlinear initial value problem given by Eq. (5.2.1), it is difficult to
give the stability criterion. Instead, we examine a special form of Eq. (5.2.1),
which is of the type

dx

dt
= Ax(t) + g(t, x(t)) (5.2.5)



152 CHAPTER 5. STABILITY ANALYSIS

g(t, x) satisfies the following condition

‖g(t, x)‖
‖x‖ → 0 as ‖x‖ → 0 (5.2.6)

In view of Eq. (5.2.6), it follows that g(t, 0) = 0 and hence 0 is a trivial solution
of Eq. (5.2.5) with 0 initial condition.
We have the following stability theorem for such a kind of system.

Theorem 5.2.3 Suppose the real part of eigenvalues of the matrix A are neg-
ative and the function g(t, x) satisfies Eq. (5.2.6). Then the trivial solution of
Eq. (5.2.5) is asympotically stable.

Proof : The solvability of Eq. (5.2.5) with x(t0) = x0 is equivalent to the
solvability of the following equation

x(t) = exp (A(t− t0)) x0 +

∫ t

t0

exp (A(t− s)) g(s, x(s))ds (5.2.7)

Since real(λ) < 0, ( λ is any eigenvalue of A), it follows that there exists c, δ > 0
such that || exp (At)|| ≤ c exp (−δt) ∀ t ≥ 0. In view of this fact, Eq. (5.2.7)
gives

‖x(t)‖ ≤ c exp (−δ(t− t0)) ‖x0‖+ c

∫ t

t0

exp (−δ(t− s)) ‖g(s, x(s))‖ ds(5.2.8)

Also the condition given by Eq. (5.2.6) on g(t, x) implies that for given m >
0, ∃ d > 0 such that

||g(t, v)|| ≤ m||v|| whenever ||v|| ≤ d (5.2.9)

We assume that the initial condition x(t0) = x0 is such that ||x̄0|| < d. Then in
view of continuity of the function x(t), there exists t1 > t0 such that ||x(t)|| < d
for all t ∈ [t0, t1] = I .
Hence t ∈ I , implies that ||x(t)|| < d and Eq. (5.2.9) gives that ||g(t, x(t))|| ≤
m||x(t))|| for all t ∈ I . Using this inequality in Eq. (5.2.8), we get

‖x(t)‖ exp (δt) ≤ c exp (δt0)‖x0‖ + c m

∫ t

t0

exp (δs) ||x(s)||ds, t ∈ I

By Gronwall’s lemma, we get that

||x(t)|| exp (δt) ≤ c ||x0|| exp (δt0) exp (c m(t− t0)), t ∈ I

That is

||x(t)|| ≤ c ||x0|| exp ((c m− δ)(t − t0)), t ∈ I (5.2.10)

Since x0 and m are at our disposal, we choose m and x̄0 in such a way that

c m < δ and ‖x0‖ ≤ min
(

d,
ε

c

)

. Then Eq. (5.2.10) implies that ||x(t)|| ≤ d
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for t ∈ I and this bound d does not depend on t and hence by continuation
theorem (Theorem 3.2.4) the solution x(t) can be extended for t ∈ [t0, ∞).

Further Eq. (5.2.10) implies that given ε > 0, ∃ η = min
(

d,
ε

c

)

such that

‖x0‖ < η ⇒ ‖x(t, t0, x0)‖ < ε ∀ t ∈ [t0, ∞)

and also ||x(t)|| → 0 as t → ∞.
This gives us the asymptotic stability of the zero solution of Eq. (5.2.5).

Example 5.2.3 The motion of a simple pendulum with damping is given by

θ̈ +
k

m
θ̇ +

g

l
sin θ = 0

Approximating sin θ by θ − θ3

3!
+ . . ., we get

sin θ = θ + f(θ),
f(θ)

θ
→ 0 as θ → 0

This gives

θ̈ +
k

m
θ̇ +

g

l
θ +

g

l
f(θ) = 0 (5.2.11)

where
f(θ)

θ
→ 0 as θ → 0.

Eq. (5.2.11) is equivalent to

dx

dt
= Ax+ F (x)

where

x = (θ, θ̇), A =

[

0 1

−g
l

− k

m

]

and F (x) = F (θ, θ̇) =
(

0, −g
l
f(θ)

)

A has eigenvalues − k

2m
±
(

k2

4m2
− g

l

)
1
2

both of which have negative real parts

if k,m, g and l are positive and

‖Fx‖ =
g

l

∣

∣

∣

∣

θ3

3!
− . . .

∣

∣

∣

∣

≤ M |θ|3 → 0 as ‖x‖ → 0

Thus Theorem 5.2.3 is applicable and hence the main pendulum problem given
by Eq. (5.2.11) is asymptotically stable.
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In a similar way we have the following theorem for the unstability of zero solution
of Eq. (5.2.5).

Theorem 5.2.4 Assume that A possesses at least one eigenvalue with positive
real part and g(t, x) satisfies Eq. (5.2.6). Then the trivial solution of Eq. (5.2.5)
is unstable.

For details analysis concerning this section refer Agarwal and Gupta[1].

5.3 Phase Portrait Analysis

For the phase portrait, we shall concentrate on the autonomous system

dx

dt
= f(x(t)) (5.3.1)

Definition 5.3.1 The set of solution curves in the phase space <n of the system
given by Eq. (5.3.1) is called the phase portrait of the system.

We shall be interested in the stability of the system around equilibrium points
- those points where f(x) = 0. Also, phase space will be assumed to be two
dimensional so that its geometry can be studied clearly.
If x̄0 is an isolated equilibrium point of f(x̄) and if f is differentiable at x̄0, then
we have (by Eq. (2.3.4))

f(x̄) = f(x̄0) + f ′(x0)(x̄− x̄0) + g(x̄)

where
‖g(x̄)‖
‖x̄− x̄0‖

→ 0 as ‖x̄− x̄0‖ → 0.

As f(x̄0) = 0, we have f(x̄) = f ′(x0)(x̄ − x̄0) + g(x̄). Translating the origin to
x̄0, we get that Eq. (5.3.1) is equivalent to the system

dx̄

dt
= Ax̄+ g(x̄) (5.3.2)

with
‖g(x̄)‖
‖x̄‖ → 0 as ‖x̄‖ → 0 and A = f ′(x0).

We shall now study Eq. (5.3.2) through the linear system

dx̄

dt
= Ax̄ (5.3.3)

Theorem 5.2.3 and 5.2.4 give the relationship between the stability of the triv-
ial solution of the nonlinear system of the form Eq. (5.3.2) with that of the
linear system given by Eq. (5.3.3). We restate this relationship in terms of the
following theorem.

Theorem 5.3.1 (a) If the equilibrium point zero of the linear system given
by Eq. (5.3.3) is asymptotically stable, so is the equilibrium point zero of
the nonlinear system given by Eq. (5.3.2).
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(b) If the equilibrium point zero of the Eq. (5.3.3) is unstable, so is the un-
stability of the equilibrium point zero of Eq. (5.3.2).

(c) If the equilibrium point zero Eq. (5.3.3) is stable then the zero solution of
Eq. (5.3.2) can be stable, asymptotically stable or unstable.

Example 5.3.1 We investigate the phase portrait of the linear system given by

Eq. (5.3.3) around the origin with A =

[

−1 0
0 2

]

. The solution of the linear

system is given by

x(t) =

[

exp (−t) 0
0 exp (2t)

]

c, c = x0 = x(t0).

The solution curves of the above system are of the form

x2 =
k

x1
2
, k = c1

2c2 (c = (c1, c2)).

The solution x(t) defines a motion along these curves, that is each point c ∈ <2

moves to the point x(t) ∈ <2 after a time t. Hence the phase portrait in <2 is
as under.

-3 -2 -1 1 2 3
x1

-2

-4

2

4

x2

Figure 5.3.1: Phase portrait of Example 5.3.1

The function f(x) = Ax defines a mapping on <2. Recall that this is called

a vector field. Since
dx

dt
= f(x) = Ax, at each point x ∈ <2, the solution curve

x(t) is tangent to the vectors in the vector field f(x) = Ax. So the vector field
is as given below.
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Figure 5.3.2: Vector field of Example 5.3.1

Example 5.3.2 Consider now the coupled system

dx

dt
=





−1 −3

0 2



x = Ax

The eigenvalues of the matrix A are −1 and 2 and the pair of corresponding
eigenvectors is (1, 0), (−1, 1).

P =





1 −1

0 1



 , P−1 =





1 1

0 1



 , P−1AP =





−1 0

0 2



 = D

So, under the transformation y = P−1x̄, we obtain the decoupled system

dy

dt
= Dy

The phase portraits in y1 − y2 plane and x1 − x2 plane are as under.
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-3 -2 -1 1 2 3
y1

-2

-4

2

4

y2

Figure 5.3.3: Phase portrait in y1 − y2 plane

-4 -2 2 4
x1

-3

-2

-1

1

2

3

x2

Figure 5.3.4: Phase portrait in x1 − x2 plane

In general, the phase portrait of a linear system given by Eq. (5.3.3) is best
studied by an equivalent linear system

dx

dt
= Bx (5.3.4)

where the matrix B = P−1AP has one of the following form ( by appealing to
Theorem 5.1.1)

B =

[

λ 0
0 µ

]

, B =

[

λ 1
0 λ

]

, or B =

[

a −b
b a

]
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The solution of the initial value problem given by Eq. (5.3.4) with x(0) = x0 is

x(t) =

[

exp (λt) 0
0 exp (µt)

]

x0, x(t) = exp (λt)

[

1 t
0 1

]

x0

or

x(t) = exp (at)

[

cos bt − sin bt
sin bt cos bt

]

x0

Different cases will have different phase portraits.

Case 1: B =

[

λ 0
0 µ

]

, λ < 0 < µ

The phase portrait is of the form given in Figure 5.3.3.

In this case the system given by Eq. (5.3.4) is said to have a saddle point at
0. If λ > 0 > µ, then the arrows in the vector field are reversed as we see in the
following Figure.

Figure 5.3.5: Vector field with arrows reversed

Case 2: B =

[

λ 0
0 µ

]

, λ ≤ µ < 0 or B =

[

λ 1
0 λ

]

, λ < 0

In this case the origin is referred to as a stable node ( unstable if λ ≥ µ > 0
). The phase portraits are as under:
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-3 -2 -1 1 2 3
x1

-6

-4

-2

2

4

6

x2

Figure 5.3.6: Phase portrait with λ = µ < 0 (stable node)

-3 -2 -1 1 2 3
x1

-1.5

-1

-0.5

0.5

1

1.5

x2

Figure 5.3.7: Phase portrait with λ < µ < 0 (stable node)

When B =

[

λ 1
0 λ

]

, λ < 0, the phase portrait is as under.
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-4 -2 2 4
x1

-2

-1

1

2

x2

Figure 5.3.8: Origin as stable node

Case 3: B =

[

a −b
b a

]

If a < 0, the origin is a stable focus with trajectories as spiral converging
to zero. If a > 0, we have unstable focus.

-10 -5 5
x1

-10

-5

5

10

x2

Figure 5.3.9: Stable focus
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-10 -7.5 -5 -2.5 2.5 5 7.5
x1

-10

-5

5

10

x2

Figure 5.3.10: Unstable focus

Case 4: B =

[

0 −b
b 0

]

In this case the system given by Eq. (5.3.4) is said to have a centre at the
origin. The phase portrait is as under.

-1 -0.5 0.5 1
x1

-1

-0.5

0.5

1

x2

Figure 5.3.11: Origin as centre

Example 5.3.3

dx̄

dt
= Ax̄, A =

[

0 −4
1 0

]
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A has eigenvalues λ = ±2i.

P =

[

2 0
0 1

]

, P−1 =

[

1
2 0
0 1

]

, B = P−1AP =

[

0 −2
2 0

]

x̄(t) = P

[

cos 2t − sin 2t
sin 2t cos 2t

]

P−1c̄

=

[

cos 2t −2 sin2t
1
2 sin 2t cos 2t

]

c̄

c̄ = x̄(0).
It can be seen that x1

2 + 4x2
2 = c1

2 + 4c2
2.

-4 -2 2 4
x1

-2

-1

1

2

x2

Figure 5.3.12: Phase portrait with origin as centre

The above discussion can be described in the following theorem, giving the
saddle point, node, focus or centre at the origin of the linear system. We assume
that det A 6= 0, so that 0̄ is the only equilibrium point.

Theorem 5.3.2 Let δ = detA and τ = traceA and consider the linear system
given by Eq. (5.3.3).

(a) If δ < 0, then Eq. (5.3.3) has a saddle point at the origin.

(b) If δ > 0 and τ2 − 4δ ≥ 0, then Eq. (5.3.3) has a node at the origin. it is
stable if τ < 0 and unstable if τ > 0.

(c) If δ > 0 and τ2 − 4δ < 0 and τ 6= 0, then Eq. (5.3.3) has a focus at the
origin. It is stable if τ < 0 and unstable if τ > 0.

(d) If δ > 0 and τ = 0 then Eq. (5.3.3) has a centre at the origin.
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Example 5.3.4 Consider the following linearized Predator-prey model (linearized

around the equilibrium point (
k

λ
,
a

c
)), given by Eq. (1.2.5)

dx̄

dt
= Ax̄(t), A =











0 −kc
λ

aλ

c
0











where x̄ = (F, S), with F representing fish population and S shark population.
Using the notation of the above theorem (Theorem 5.3.2), we get δ = det A =
ak > 0 and τ = trace A = 0. As δ > 0 and τ = 0, it implies that the equilibrium

point (
k

λ
,
a

c
) is a centre.

Example 5.3.5 Consider the problem of mechanical oscillations discussed in
Example 1.3.1

d2x

dt2
+ k

dx

dt
+ w2x = 0

k is the resistance and w2 =
λ

ma
.

This is equivalent to the following system

dx̄

dt
= Ax̄

where x̄ =

(

x,
dx

dt

)

and A =





0 1

−w2 −k



.

δ = detA = w2 > 0 and τ = traceA = −k < 0.

(i) If τ2 − 4δ = k2 − 4w2 < 0, we have origin as a stable focus.

(ii) If k2 − 4w2 ≥ 0, we have origin as a stable node.

For more on phase portrait analysis refer Perko [9].

5.4 Lyapunov Stability

The principle idea in the Lyapunov method is the following physical reasoning.

If the rate of change
dE(x̄)

dt
of the energy of a physical system is negative

for every possible state x̄ except for a single equilibrium state x̄e, then the
energy will continually decrease until it finally assumes its minimum. From
mathematical perspective, we look for a scalar valued Lyapunov function V (x̄)
of the state which is (a) positive (b) with V̇ (x̄) < 0(x̄ 6= x̄e) and (c) V (x̄) =
V̇ (x̄) = 0 for x̄ = x̄e. One of the attractions of the Lyapunov method is its
appeal to geometric intution as we see in the following two examples.
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Example 5.4.1 Let us recall Example 1.3.1, case 1 of a harmonic oscillator
given by a second order differential equation.

d2x

dt2
+ ω2x = 0, ω2 =

λ

ma

In terms of a first order system we have

dx̄

dt
=

[

0 1
−ω2 0

]

x̄, x̄ = (x1, x2)

The trajectories of the above system in the phase-plane are ellipses about the
origin. The energy of the system is given by

E(x̄) = E(x1, x2) = ω2x2
1 + x2

2 = V (x̄)

The derivative V̇ and V along the trajectory of the above system is given by

V̇ (x̄) =
dV x̄(t)

dt
= (x̄(t),5V (x̄))

= ẋ1
∂V

∂x1
+ ẋ2

∂V

∂x2

= 2ω2x1x2 + 2x2ẋ2

= 0

So energy remains constant and hence the system is conservative.

Example 5.4.2 Consider a slight modification of the earlier example

ẋ1 = x2 − ax1

ẋ2 = −x1 − ax2

with a > 0.
We define V (x̄) = (x2

1 + x2
2). Then

V̇ (x̄(t)) = (ẋ(t),5V (x̄))

= −2a(x2
1 + x2

2)
2

= −2aV (x̄)

< 0 if x̄ 6= 0

= 0 if x̄ = 0

This implies that V (x̄) is constantly decreasing along any solution of the above
system. The trajectory of the above system is given by

R(t) = R0e
−(t−t0), R(t) = x2

1(t) + x2
2(t)
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x

x 2

1

V(x)=constant

Figure 5.4.1: Trajectory along V (x̄) = constant

Hence the trajectory of the above system cross the boundary of every region
V (x̄) = constant from the outside towards inside. This leads to the following
intersting geometric interpretation of the Lyapunov function. Let V (x̄) be a
measure of the distance of the state x̄ from the orgin in the state space resulting
in to V (x̄) > 0 for x̄ 6= 0 and V (0) = 0. Suppose this distance is continuously
decreasing as t→ ∞, that is, V̇ (x̄(t)) < 0. Then x̄(t) → 0.

We now investigate the role of Lyapunov function to ensure the stability of the
equilibrium state of the non-autonomous nonlinear system.

dx̄

dt
= f(t, x̄(t)), (t, x̄) ∈ I ×<n (5.4.1)

where f : I ×<n → <n with origin as an equilibrium point (f(t, 0) = 0).
Assumptions 1: There exists a scalar valued function V (t, x̄) : I × <n → <n,
called Lyapunov function, such that it is continuous and has continuous partial
derivatives w.r.t x̄ and t with V (t, 0) = 0 and

(i) V (t, x̄) is positive definite, that is, there exist a continuous, non-decreasing
function α such that α(0) = 0 and for all t and all x̄ 6= 0, we have

0 < α(||x̄||) ≤ V (t, x̄) (5.4.2)

(ii) there exists a continuous scalar valued function r such that r(0) = 0 and
the derivative V̇ (x̄) of V (x̄) along the motion x̄(t) satisfies the following

V̇ (t, x̄(t)) ≤ −r(||x̄||) < 0 ∀ (t, x̄) ∈ I ×<n (5.4.3)
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(ii) (a)

V̇ (t, x̄(t)) ≤ 0 ∀ (t, x̄) ∈ I ×<n (5.4.4)

(iii) there exists a continuous, non-decreasing function β such that β(0) = 0
and

V (t, x̄(t)) ≤ β(||x̄||) ∀ t ∈ I (5.4.5)

Theorem 5.4.1 Let V (t, x̄) be a Lyapunov function of the system (5.4.1).
Then the equilibrium state 0̄ is

(a) stable if Assumptions (i) and (ii) hold

(b) uniformly stable if Assumptions (i),(ii)(a) and (iii) hold

(c) asymptotically stable if (i),(ii) and (iii) hold.

Proof :

(a) Let β∗(t, ||x̄||) be the maximum of V (t, ȳ) for ||ȳ|| ≤ ||x̄||. Let ε > 0 be
arbitary. As β∗(t0, ||x̄||) is a continuous function of x̄, we can choose
δ(t0, ε) such that

β∗(t0, ||x̄0||) < α(ε) if ||x̄0|| < δ (5.4.6)

Using (5.4.2), (5.4.4) and (5.4.6), we get

α(||x̄||) ≤ V (t, x̄(t, t0, x̄0)) ≤ V (t0, x̄0) ≤ β∗(t0, x̄0) < α(ε)

forall t ≥ t0 and ||x̄0|| < δ.

Since α is non-decreasing and positive, the above inequality implies that

||x̄(t, t0, x̄0)|| < ε whenever ||x̄0|| < δ for t ≥ t0.

This proves the stability of the equilibrium state 0̄.

(b) Let (i), (ii)(a) and (iii) hold and assume that ε > 0 is arbitary. We get
δ(ε) (independent of t0) such that β(δ) < α(ε). Let ||x̄0|| < δ. Then
proceeding as in part(a), we have

α(ε) > β(δ) ≥ V (t0, x̄0) ≥ V (t, x̄(t, t0, x̄0)) ≥ α(||x̄(t, t0, x̄0)||)

Here, for the second inequality, we have used Assumption 1(iii).

The above inequality gives

||x̄(t, t0, x̄0)|| < ε for t ≥ t0 and ||x̄0|| < δ

where δ is independent of t0.

This implies the uniform stability of the zero solution the equilibriun point.
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(c) For asymptotic stability of the zero solution, we only need to show that
∃ r > 0 such that

||x̄0|| ≤ r ⇒ ||x̄(t, t0, x̄0)|| → 0 uniformly with t→ ∞.

Equivallently, given µ > 0, ∃ T (µ, r) such that

||x̄0|| ≤ r ⇒ ||x̄(t, t0, x̄0)|| < µ for t ≥ t0 + T

Let functions α(µ) and β(µ) be as defined in Eq. (5.4.3) and Eq. (5.4.5).
Take any positive constant c1 and find r > 0 such that β(r) < α(c1). Let
||x̄0|| ≤ r. Then by part (b), we have

||x̄0|| ≤ r ⇒ ||x̄(t, t0, x̄0)|| < c1 ∀ t ≥ t0

Let 0 < µ ≤ ||x̄0||. As β(µ) is continuous at 0, we find λ(µ) > 0 such that
β(λ) < α(µ). Also r(||x̄||) is a continuous function and hence it assumes
its minimum on a compact set λ ≤ ||x̄|| ≤ c1(r) and let this minimum be
c2(µ, r).

Define T (µ, r) =
β(r)

c2(µ, r)
> 0.

We first claim that ||x̄(t, t0, x̄0)|| = λ for some t = t2 in [t0, t1], t1 =
t0 + T. If not, then ||x̄(t, t0, x̄0)|| > λ on [t0, t1]. Hence Eq. (5.4.2) gives

0 < λ ≤ V (t1, x̄(t, t0, x̄0))

= V (t0, x0) +

∫ t1

t0

V̇ (x̄(τ, t0, x̄0))dτ

≤ V (t0, x0) −
∫ t1

t0

r(||x̄(τ)||)dτ

≤ V (t0, x0) − (t1, t0)c2

≤ β(r) − Tc2

= 0

which is a contradiction.

Hence, we have

||x̄2|| = ||x(t2, t0, x̄0)|| = λ
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Therefore

α(||x̄(t, t0, x̄0)||) ≤ V (t, x̄(t, t2, x2))

≤ V (t2, x2)

≤ β(λ)

< α(µ) ∀ t ≥ t0

This implies that

||x̄(t, t0, x̄0)|| < µ ∀ t ≥ t0 + T (µ, r) ≥ 0

The real weakness of Lyapunov method is that no general technique is known for
the construction of the Lyapunov function V (t, x̄). However, we shall describe
the method of construction of Lyapunov function for asymptotically stable linear
autonomuous system

dx̄

dt
= Ax̄

We assume that A has k distinct real eigenvalues λ1, λ2, · · · , λk and the re-
maining are complex eigenvalues λj = aj ± ibj , k + 1 ≤ j ≤ n. Then by
Theorem 5.1.1, there exists a basis {v̄1, v̄2, · · · , v̄k, ¯vk+1, ¯vk+2, · · · , v̄n, ūn} of
<2n−k where v̄j(1 ≤ j ≤ k) are eigenvectors corresponding real eigenvalues
and uj ± ivj(k + 1 ≤ j ≤ n) are the complex eigenvectors.
If P = [v̄1, v̄2, · · · , v̄k, v̄k+1, v̄k+2, · · · , v̄n, ūn], then P is nonsingular and P−1AP
= D, where D is block diagonal matrix of the form

D =

























λ1

λ2

. . .

λk

Bk+1

. . .

Bn

























with Bi =

[

ai −bi
bi ai

]

as a Jordan block corresponding to the eigenvalue ai ±
ibi. Using the transformation x̄ = P ȳ, we get the reduced system

dȳ

dt
= P−1AP ȳ = Dȳ
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For asymptotic stability, we require all diagonal elements of D to be negative.
We seek Lyapunov function V of the forrm

V (ȳ) = (Bȳ, ȳ) (5.4.7)

where B is a suitable positive definite matrix. Differentiating Eq. (5.4.7), we
get

dV

dt
=

(

B
dȳ

dt
, ȳ(t)

)

+

(

Bȳ(t),
dy

dt

)

= (BDȳ(t), ȳ(t)) + (Bȳ(t), Dȳ(t))

= (BDȳ(t), ȳ(t)) +
(

D>Bȳ(t), ȳ(t)
)

=
([

BD +D>B
]

ȳ(t), ȳ(t)
)

(5.4.8)

In order to ensure that
dV

dt
is negative definite, we shall require that

dV

dt
= − (Qȳ(t), ȳ(t)) (5.4.9)

where Q is a given positive definite matrix. Eq. (5.4.9) will hold, if we assume
that

BD +D>B = −Q (5.4.10)

Thus, to get a Lyapunov function which is positive definite with
dV

dt
as negative

definite, we need to solve the matrix equation given by Eq. (5.4.10) for B with
a given positive definite matrix Q (say Q = I).

Example 5.4.3 Construct a Lyapunov function for the system

dx̄

dt
=









−1 −1 0 0
0 −1 0 0
0 0 −3 −2
0 0 1 −1









x̄

The eigenvalues of this system are −1± i, −2± 2i.
One gets

P =









1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 1 0









with P−1 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 −1









Then

P−1AP = D =









−1 1 0 0
−1 −1 0 0
0 0 −2 −2
0 0 −2 −2
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We make the transformation x̄ = P ȳ to get the reduced system

dȳ

dt
= Dȳ

Take Q = I and solve the matrix equation

BD +DTB = −I

to get

B =



















1

2
0 0 0

0
1

2
0 0

0 0
1

4
0

0 0 0
1

4



















This gives the Lyapunov function V (ȳ) as

V (ȳ) =
1

2
y2
1 +

1

2
y2
2 +

1

4
y2
3 +

1

4
y2
4

where

ȳ = P−1x̄ =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 −1









We have

y1 = x1, y2 = x2, y3 = x4, y4 = −x3 − x4

Hence

V (x̄) =
x2

1

2
+
x2

2

4
+

(x3 + x4)
2

4
+
x2

4

4

Example 5.4.4 Consider the nonlinear system of the form

dx̄

dt
= Ax̄+ g(x̄) (5.4.11)

A has eigenvalues with negative real part and g(x̄) satisfies the growth condition
of the form

||g(x̄)|| ≤ k||x̄|| ∀ x̄

with small k.

We construct a Lyapunov function for Eq. (5.4.11) in the following way. V (x̄)
= (Bx̄, x̄) , B a positive definite matrix. Solve B to satisfy the matrix equation

A>B +B>A = −I
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We have

dV

dt
= ˙̄x>Bx̄+ ˙̄x>B ˙̄x

=
(

x̄>A> + [g(x̄)]>
)

Bx̄+ x̄>B(Ax̄+ g(x̄))

= x̄>(A>B +BA)x̄ +
(

[g(x̄)]>Bx̄+ x̄>B[g(x̄)]
)

= −x̄>x̄+
(

[g(x)]>Bx̄+ x̄>B[g(x̄)]
)

Estimating the second term within the square bracket, we get

||[g(x̄)]>Bx̄+ x̄>B[g(x̄)]|| ≤ 2||g(x̄)||||B||||x̄||

≤ 2k||B||||x̄||2

Hence
dV

dt
≤ −||x̄||2[1−2k||B||] = −α(||x||) where α(r) = αr2, α−2k||B|| > 0.

Thus the Lyapunov function V (x̄) is such that V is positive definite with
dV

dt
negative definite and hence the system Eq. (5.4.11) is asymptotically stable.

For more on stability results refer Aggarwal and Vidyasagar [2], Amann [3],
Borckett [4], Lakshmikantham et al[6,7] and Mattheij and Molenaar [8].

5.5 Exercises

1. Show that all the solution of the linear system

dx̄

dt
= A(t)x̄

where A(t) =













−t 0 0

0 −t2 0

0 0 −t2













,













e−t −1 − cos t

1 −e−2t t2

cos t −t2 e−3t













tend to zero as t→ ∞.

2. By using the Cayley-Hamilton theorem (Theorem 5.1.3), show that for
A ∈ <n×n, there exist functions αk(t), 1 ≤ k ≤ n − 1 such that eAt =
n−1
∑

k=0

αk(t)Ak .

3. Show that all solutions of the following differential equations are bounded
in [ t0,∞)
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(i)
d2x

dt2
+ c

dx

dt
+

[

1 +
1

1 + t2

]

x = 0, c > 0.

(ii)
d2x

dt2
+ c

dx

dt
+

[

1 +
1

1 + t4

]

x = 0, c > 0.

4. Test the stability, asymptotic stability or unstability for the trivial solution
of the following linear systems.

(i)
dx̄

dt
=





0 1

−1 0



 x̄

(ii)
dx̄

dt
=













0 1 0

0 0 1

−1 −6 −5













x̄

(iii)
dx̄

dt
=













1 2 0

0 1 1

1 3 1













x̄

(iv)
dx̄

dt
=













1 −1 −1

1 1 −3

1 −5 −3













x̄

5. Test the stability, asymptotic stability or unstability of trivial solution of
each of the following system

(i)

dx1

dt
= −2x1 + x2 + 3x3 + 8x2

1 + x3
2

dx2

dt
= −6x2 − 5x3 + 7x4

3

dx3

dt
= −2x3 + x4

1 + x2
2 + x3

3
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(ii)

dx1

dt
= 2x1 + x2 − x2

1 − x2
2

dx2

dt
= x1 + 3x2 − x3

1 sinx3

dx3

dt
= x2 + 2x3 + x2

1 + x2
2

6. Discuss the stability or unstability of the origin of the following linear
sytem and sketch the phase portraits.

(i)
dx1

dt
= −2x1 + x2

dx2

dt
= −5x1 − 6x2

(ii)
dx1

dt
= 4x1 + x2

dx2

dt
= 3x1 + 6x2

(iii)
dx1

dt
= x2

dx2

dt
= 2x1 − x2

(iv)
dx1

dt
= x1 + x2

dx2

dt
= 3x1 − x2

7. Consider the nonlinear system

dx

dt
= a(t)x3

Find its solution.

(i) Show that origin is uniformly asymptotically stable if a(t) < 0.

(ii) If a(t) = − 1

t+ 1
, show that origin is asymptotically stable but not

uniformly stable.

(iii) If a(t) = − 1

(t+ 1)2
, show that the solution of the corresponding IVP

approaches a constant value as t→ ∞ but origin is uniformly stable.

8. Consider the nonlinear system

dx

dt
= −xp, p > 1 and p is integer

Show that
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(i) If p is odd, then origin is uniformly stable and

(ii) If p is even, then origin is unstable.

9. Find Lyapunov functions around the origin for the following system.

(i)
dx

dt
= −x

(ii)
dx

dt
= −x(1 − x)

(iii)
dx̄

dt
=

[

0 1
−1 −a

]

x̄, a ≥ 0

10. Show that the origin is unstable equilibrium point of the system

d2x

dt2
−
(

dx

dt

)2

sgn(ẋ) + x = 0
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Chapter 6

Series Solution

This chapter lays emphasis on the classical theory of series solution for ODE by
using power series expansion around ordinary and singular points.
We mainly focus on Legendre, Hermite and Bessel differential equations. We
also deduce various interesting properties of Legendre and Hermite polynomials
as well as Bessel functions.

6.1 Preliminaries

A power series in powers of (t− t0) is an infinite series of the form

∞
∑

k=0

ck(t− t0)
k = c0 + c1(t− t0) + c2(t− t0)

2 + · · · (6.1.1)

where t is a variable and c0, c1, c2, · · · are constants. Recall that a series
∞
∑

k=0

ck(t− t0)
k is convergent at a point t if the limit of the partial sums sn(t) =

n
∑

k=0

ck(t− t0)
k exists. This limit f(t) is denoted as the sum of the series at the

point t. A series which does not converge is said to be a divergent series.

Example 6.1.1 Consider the geometric power series

∞
∑

k=0

tk = 1 + t + t2 + · · ·

The partial sums sn(t) = 1 + t+ · · · + tn satisfy the relation

tsn(t) = t+ t2 + · · · + tn + tn+1

and hence sn(t) =
1 − tn+1

1 − t
.

This gives f(t) = lim sn(t) =
1

1− t
for |t| < 1.

175
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Definition 6.1.1 A power series
∞
∑

k=0

ck(t− t0)
k is said to converge absolutely

at a point t if the series

∞
∑

k=0

|ck(t− t0)
k| converges.

One can show that if the series converges absolutely, then it also converges.
However, the converse is not true.

We have the following tests for checking the convergence or divergence of a
series of real numbers.

(i) Comparision test

(a) Let a series

∞
∑

k=0

ak of real numbers be given and let there exists a

convergent series

∞
∑

k=0

bk of nonnegative real numbers such that

|ak| ≤ bk, k ≥ 1

Then the orginal series

∞
∑

k=0

ak converges.

(b) Let a series
∞
∑

k=0

ak of real numbers be given and let there exists a

divergent series

∞
∑

k=0

dk of nonnegative real numbers such that

|ak| ≥ dk, k ≥ 1

Then the orginal series

∞
∑

k=0

ak diverges.

(ii) Ratio test

Let the series
∞
∑

k=0

ak( with an 6= 0) be such that lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= L.

(a) The series

∞
∑

k=0

ak converges absolutely if L < 1.

(b) The series
∞
∑

k=0

ak diverges if L > 1.

(c) No conclusion if L = 1.
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(iii) Root test

If the series

∞
∑

k=0

ak is such that lim
k→∞

(

(|ak|)
1
k

)

= L.

(a) The series

∞
∑

k=0

ak converges absolutely of L < 1.

(b) The series

∞
∑

k=0

ak diverges if L > 1.

(c) No conclusion if L = 1.

Theorem 6.1.1 If the power series given by Eq. (6.1.1) converges at a point
t = t1, then it converges absolutely for every t for which |t− t0| < |t1 − t0|.

Proof : Since the series given by Eq. (6.1.1) converges for t = t1, it follows
that the partial sums sn(t1) converge and hence sn(t1) is Cauchy. This implies
that

sn+1(t1) − sn(t1) → 0 as n→ ∞
This, in turn, implies that ck(t1 − t0)

k −→ 0 as k → ∞. Hence the elements
ck(t1 − t0)

k of the series given by Eq. (6.1.1) are bounded at t = t1. That is,

|ck(t1 − t0)
k| ≤M for all k ≥ 1 (6.1.2)

Eq. (6.1.2) implies that

|ck(t− t0)
k| =

∣

∣

∣

∣

∣

ck(t1 − t0)
k

(

t− t0
t1 − t0

)k
∣

∣

∣

∣

∣

≤ M

∣

∣

∣

∣

t− t0
t1 − t0

∣

∣

∣

∣

k

(6.1.3)

If |t−t0| < |t1−t0|, the series
∞
∑

k=0

∣

∣

∣

∣

t− t0
t1 − t0

∣

∣

∣

∣

k

converges and hence by comparision

test the series

∞
∑

k=0

ck(t− t0)
k converges absolutely.

Definition 6.1.2 If the series

∞
∑

k=0

ck(t− t0)
k converges absolutely for |t− t0| <

r and diverges for |t− t0| > r, then r is called the radius of convergence.

The power series

∞
∑

k=1

tk

k
converges for |t| < 1 and diverges for |t| > 1. At t = 1,

it diverges and t = −1, it converges. Thus, the radius of convergence of this
series is 1.
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The radius of convergence of the power series given by Eq. (6.1.1) may be
determined from the coefficients of the series as follows.

Theorem 6.1.2 (Radius of convergence)

(i) Suppose that the sequence {|ck|
1
k } converges . Let L denotes its limit.

Then, if L 6= 0, the radius of convergence r of the power series is
1

L
.

(ii) If L = 0, then r = ∞ and hence the series Eq. (6.1.1) converges for all t.

(iii) If {|ck|
1
k } does not converge, but it is bounded, then r =

1

l
where l =

sup{|ck|
1
k }. If this sequence is not bounded, then r = 0 and hence the

series is convergent only for t = t0.

Let

∞
∑

k=0

ck(t− t0)
k be a power series with non zero radius of convergence r.

Then the sum of the series is a function f(t) of t and we write

f(t) =

∞
∑

k=0

ck(t− t0)
k (6.1.4)

One can easily show the following.

(i) The function f(t) in Eq. (6.1.4) is continuous at t = t0.

(ii) The same function f(t) can not be represented by two different power
series with the same centre. That is, if

f(t) =

∞
∑

k=0

ck(t− t0)
k =

∞
∑

k=0

dk(t− t0)
k

in a disk: |t− t0| < r, then ck = dk for all k ≥ 0.

We can carry out the standard operations on power series with ease - addition
and subtraction, multiplication, term by term differentiation and integration.

(i) Addition and Subtraction

Two power series
∑∞

k=0 ck(t− t0)k and
∑∞

k=0 dk(t− t0)k can be added and
subtracted in the common radius of convergence.

If f(t) =
∞
∑

k=0

ck(t− t0)
k in |t− t0| < r1 and

g(t) =

∞
∑

k=0

dk(t− t0)
k in |t− t0| < r2

Then f(t) ± g(t) =

∞
∑

k=0

(ck ± dk)(t− t0)
k in |t− t0| < r = min(r1, r2).
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(ii) Multiplication

If f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r1 and

g(t) =

∞
∑

k=0

dk(t− t0)
k in |t− t0| < r2

Then h(t) = f(t)g(t) defined within the radius of convergence of each
series and

h(t) =

∞
∑

k=0

ck(t− t0)
k

where ck =

k
∑

m=0

cmdk−m. That is

h(t) = c0d0 + (c0d1 + c1d0) t+ (c0d2 + c1d1 + c2d0) t
2 + · · ·

The series converges absolutely within the radius of convergence of each
series.

(iii) Differentiation

Let f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r

Then

df

dt
= ḟ =

∞
∑

k=1

ckk(t− t0)
k−1 in |t− t0| < r

(iv) Integration

Let f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r

Then
∫

f(t)dt =

∞
∑

k=0

ck
k + 1

(t− t0)
k+1 in |t− t0| < r

Definition 6.1.3 We shall say that a function f(t) is analytic at t = t0 if it

can be expanded as a sum of a power series of the form
∞
∑

k=0

ck(t− t0)
k with

a radius of convergence r. It is clear that if f(t) is analytic at t0, then ck =
f (k)(t0)

k!
, k = 0, 1, 2, · · · ( fk(t0) denotes the kth derivative of f at t0).
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Example 6.1.2 We have the binomial expansion for (1 − t)−k for a fixed pos-
itive number k to give us

(1 − t)−k = 1 + kt+
k(k + 1)

2!
t2 +

k(k + 1)...(k + r − 1)

r!
tr + · · · for |t| < 1

We denote by

ur =
k(k + 1)...(k + r − 1)

r!

Then

(1 − t)−k =

∞
∑

r=0

urt
r, |t| < 1

As a power series can be differentiated term by term in its interval of conver-
gence, we have

k(1 − t)−k−1 =
∞
∑

r=1

rurt
r−1, |t| < 1

This gives

k(1 − t)−k 1

(1 − t)
=

∞
∑

r=1

rurt
r−1, |t| < 1

Again, using the power series expansion for
1

1 − t
= 1 + t+ t2 + · · · , we get

k

(

∞
∑

r=0

tr

)(

∞
∑

r=0

urt
r

)

=

∞
∑

r=1

rurt
r−1

Using the product formula for LHS, we get

k

∞
∑

r=0

tr
r
∑

l=0

ul =

∞
∑

r=0

(r + 1)ur+1t
r

Uniqueness of power series representation gives

(r + 1)ur+1 = k
r
∑

l=0

ul (6.1.5a)

where

ur =
k(k + 1).....(k + r − 1)

r!
, k is a fixed integer (6.1.5b)

We now make an attempt to define the concept of uniform convergence. To
define this concept, we consider the following series whose terms are functions
{fk(t)}∞k=0

∞
∑

k=0

fk(t) = f0(t) + f1(t) + f2(t) + · · · (6.1.6)

Note that for fk(t) = ck(t− t0)
k, we get the power series.
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Definition 6.1.4 We shall say that the series given by Eq. (6.1.6) with sum
f(t) in an interval I ⊂ < is uniformly convergent if for every ε > 0, we can find
N = N(t), not depending on t, such that

|f(t) − sn(t)| < ε for all n ≥ N(ε)

where sn(t) = f0(t) + f1(t) + · · · + fn(t).

Theorem 6.1.3 A power series
∞
∑

k=0

ck(t− t0)
k with nonzero radius of conver-

gennt is uniformly convergent in every closed interval |t − t0| ≤ p of radius
p < r.

Proof : For |t− t0| ≤ p and any positive integers n and l we have

∣

∣cn+1(t− t0)
n+1 + · · · + cn+l(t− t0)

n+l
∣

∣

≤ |cn+1| pn+1 + · · · + |cn+l| pn+l (6.1.7)

The series

∞
∑

k=0

ck(t− t0)
k converges absolutely if |t− t0| ≤ p < r ( by Theorem

6.1.1) and hence by Cauchy convergence, given ε > 0, ∃ N(ε) such that

|cn+1| pn+1 + · · · + |cn+p| pn+l < ε for n ≥ N(ε), l = 1, 2, ..

Eq. (6.1.7) gives

∣

∣cn+1(t− t0)
n+1 + · · · + cn+p(t− t0)

n+l
∣

∣

≤ |cn+1| pn+1 + · · · + |cn+p| pn+l < ε for n ≥ N(ε), |t− t0| ≤ p < r

This implies that, given ε > 0, ∃ N(ε) such that |f(t) − sn(t)| < ε for n ≥ N(ε)

and all t where sn(t) =

n
∑

k=0

ck(t− t0)
k. This proves the uniform convergence of

the power series inside the interval |t− t0| ≤ p < r.

Example 6.1.3 The geometric series 1 + t+ t2 + · · · is uniformly convergent
in the interval |t| ≤ p < 1. It is not uniformly convergent in the whole interval
|t| < 1.

6.2 Linear System with Analytic Coefficients

We now revisit the non-autonomous system in <n

dx̄

dt
= A(t)x̄ + g(t) (6.2.1)

x̄(0) = x̄0
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where the matrix A(t) is analytic at t = 0 and hence has the power series
representation

A(t) =
∞
∑

k=0

Akt
k (6.2.2)

in its interval of convergence |t| < r. Here each Ak is n× n matrix.
So, the homogeneous system corresponding to Eq. (6.2.1) is given by

dx̄

dt
=

∞
∑

k=0

Akt
kx̄ (6.2.3)

x̄(0) = x̄0

We shall look for analytic solution of Eq. (6.2.3), which is of the form x̄(t) =
∞
∑

k=0

c̄kt
k. The vector coefficients c̄k are to be determined. The point t = 0 is

called ordinary point of the above system.

The following theorem gives the analytic solution of the system given by Eq.
(6.2.3)

Theorem 6.2.1 The homogeneous system given by Eq. (6.2.3) has analytic

solution x̄(t) =

∞
∑

k=0

c̄kt
k in the interval of convergence |t| < r. This solution x̄(t)

is uniquely determined by the initial vector x̄0.

Proof : Let x̄(t) =

∞
∑

k=0

c̄kt
k, where the vector coefficient c̄k are yet to deter-

mined. Plugging this representation in Eq. (6.2.3) we get

∞
∑

k=1

kc̄kt
k−1 =

(

∞
∑

k=0

Akt
k

) (

∞
∑

k=0

c̄kt
k

)

=

∞
∑

k=0

(

k
∑

l=0

Ak−lc̄l

)

tk

Equivalently, we have

∞
∑

k=0

(k + 1)c̄k+1t
k =

∞
∑

k=0

(

k
∑

l=0

Ak−l c̄l

)

tk (6.2.4)

Uniqeness fo power series in the interval |t| < r, gives

(k + 1)c̄k+1 =

k
∑

l=0

Ak−l c̄l (6.2.5)
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and hence

(k + 1) ‖c̄k+1‖ ≤
k
∑

l=0

‖Ak−l‖ ‖c̄l‖ (6.2.6)

By Theorem 6.1.3, the power series

∞
∑

k=0

Akt
k converges absolutely and uniformly

in the interval |t| ≤ p < r and hence the terms Akp
k must be uniformly bounded.

That is, ∃M such that

‖Ak‖pk ≤M, k ≥ 0 (6.2.7)

Using the above inequality in Eq. (6.2.6), we get

(k + 1)‖c̄k+1‖ ≤
k
∑

l=0

M
‖c̄l‖
pk−l

Put dl = pl‖c̄l‖, then the above inequality becomes

(k + 1)dk+1 ≤Mp

k
∑

l=0

dl (6.2.8)

Using Eq. (6.2.8) inductively, we get

d1 ≤ Mpd0

d2 ≤ Mp

2
(d0 + d1)

≤ 1

2

(

Mp+M2p2
)

d0

...

dk ≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!
d0 (6.2.9)

To claim that Eq. (6.2.8) holds for all k, we need to prove this inequality by
induction. So, let this inequality be true for all r < k. By Eq. (6.2.8), we have

(r + 1)dr+1 ≤ Mp‖c̄0‖
r
∑

l=0

dl

≤ Mp‖c̄0‖
r
∑

l=0

Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ l − 1)

l!

Using the notation of Example 6.1.2, set

ul =
Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ l − 1)

l!
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Hence using Eq. (6.1.5), we get

(r + 1)dr+1 ≤ Mp‖c̄0‖
r
∑

l=0

ul

= ‖c̄0‖(r + 1)ur+1

This gives

(r + 1)dr+1 ≤ (r + 1)
Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ r)

(r + 1)!
‖c̄0‖

That is

dr+1 ≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ r)

(r + 1)!
‖c̄0‖

This proves the induction.
Hence, it follows that

‖c̄k‖ =
dk

pk
≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!pk
‖c̄0‖

This gives

‖x̄‖ =

∥

∥

∥

∥

∥

∞
∑

k=0

c̄kt
k

∥

∥

∥

∥

∥

≤ ‖c̄0‖ ×
(

∞
∑

k=0

Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!

( |t|
p

)k
)

That is

‖x̄‖ ≤ ‖c̄0‖
(

1 − |t|
p

)Mp
(6.2.10)

provided |t| ≤ p < r.
This proves the existence of analytic solution of the system given by Eq. (6.2.3),
This solution is uniquely determined by the initial value x̄0. For if x̄(t) and ȳ(t)
are two different solutions of the initial value problem given by Eq. (6.2.3), then
z̄(t) = x̄(t) − ȳ(t) is the solution of the initial value problem

dz̄

dt
= A(t)z̄(t)

z̄(0) = 0̄

Since c̄0 = 0, it follows that z̄ = 0̄, thereby implying that x̄ = ȳ.
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Example 6.2.1 ( Legendre Differential Equation)

(1 − t2)
d2x

dt2
− 2t

dx

dt
+ n(n+ 1)x = 0 (6.2.11)

By substituting x1 = x, x2 =
dx

dt
, this differential equation is equivalent to the

following linear homogeneous system

dx̄

dt
= A(t)x̄(t)

where

A(t) =







0 1

−n(n+ 1)

1 − t2
2t

1 − t2







As A(t) is analytic in the interval |t| < 1, it follows by Theorem 6.2.1 that

Eq. (6.2.11) has a unique analytic solution of the form
∞
∑

k=0

ckt
k. We shall now

determine the coefficients ck. We substitute

x(t) =

∞
∑

k=0

ckt
k,

dx

dt
=

∞
∑

k=1

kckt
k−1,

d2x

dt2
=

∞
∑

k=2

k(k − 1)ckt
k−2

in Eq. (6.2.11) to get

(1 − t2)

∞
∑

k=2

k(k − 1)ckt
k−2 − 2t

∞
∑

k=1

kckt
k−1 + n(n+ 1)

∞
∑

k=1

ckt
k = 0

Equivalently, we have

∞
∑

k=0

[(k + 2)(k + 1)ck+2 + ck [n(n+ 1) − (k − 1)k − 2k]] tk = 0

The uniqueness of series representaion in |t| < 1 gives

ck+2 = − [n(n+ 1) − (k − 1)k − 2k]

(k + 2)(k + 1)
ck

= − (n− k)(n+ k + 1)

(k + 2)(k + 1)
ck, k = 0, 1, 2, · · · (6.2.12)

This gives us

c2 = −n(n+ 1)

2!
c0, c4 = − (n+ 3)(n− 2)

4.3
c2 =

(n+ 3)(n+ 1)n(n− 2)

4!
c0

c3 = − (n+ 2)(n− 1)

3!
c1, c5 = − (n+ 4)(n− 3)

5.4
c3

=
(n+ 4)(n+ 2)(n− 3)(n− 1)

5!
c1
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and hence the coefficients ck’s are inductively defined.
So, we have

x(t) = c0x1(t) + c1x2(t)

x1(t) = 1 − n(n+ 1)

2!
t2 +

(n− 2)n(n+ 1)(n+ 3)

4!
t4 − · · ·

x2(t) = t− (n− 1)(n+ 2)

3!
t3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
t5 − · · ·

Since RHS of Eq. (6.2.12) is zero for k = n, we have 0 = cn+2 = cn+4 = · · ·
and hence if n is even, x1(t) reduces to a polynomial of degree n and if n is odd,
the same is true for x2(t). These polynomials multiplied by some constants, are
called Legendre polynomials.

In Eq. (6.2.12), writing ck in terms of ck+2, we get

ck = − (k + 2)(k + 1)

(n− k)(n+ k + 1)
ck+2 (k ≤ n− 2)

This gives

cn−2 = − n(n− 1)

2(2n− 1)
cn

We fix cn and then compute the lower order coefficients. It is standard to choose

cn = 1 when n = 0 and
2n!

2n(n!)2
=

1.3.5...(2n− 1)

n!
for n 6= 0. This defines

cn−2 = − n(n− 1)

2(2n− 1)

(2n)!

2n(n!)2

= − n(n− 1)2n(2n− 1)(2n− 2)!

2(2n− 1)2n(n− 1)!n(n− 1)(n− 2)!

= − (2n− 2)!

2n(n− 1)!(n− 2)!

In general

cn−2m =
(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!

So we get a solution of Legendre differential equation given by Eq. (6.2.11) as

Pn(t) =

M
∑

m=0

(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
tn−2m

where M =
n

2
or

n− 1

2
whichever is an integer. Some of the Legendre polyno-

mials are given as below
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P0(t) = 1, P1(t) = t, P2(t) =
1

2
(3t2 − 1), P3(t) =

1

2
(5t3 − 3t)

P4(t) =
1

8
(35t4 − 30t2 + 3), P5(t) =

1

8
(63t5 − 70t3 + 15t)

We shall discuss the properties of Legendre differential equation in section 4.

Example 6.2.2 (Hermite Differential Equation)
In the study of the linear harmonic oscillator in quantum mechanics, one en-
counters the following deifferential equation

d2u

dt2
+
[

λ− t2
]

u(t) = 0 (6.2.13)

over the interval (−∞, ∞). As we look for the solution u ∈ L2(−∞, ∞), we

put u(t) = e

“

−t2

2

”

x(t). So Eq. (6.2.13) becomes

d2x

dt2
− 2t

dx

dt
+ (λ− 1)x = 0

We take λ = 2n+ 1 and get the equation

d2x

dt2
− 2t

dx

dt
+ 2nx = 0 (6.2.14)

Eq. (6.3.13) (or alternatively Eq. (6.2.14)) is called Hermite differential equa-
tion.

As the coefficient of the differential equation given by Eq. (6.2.14) are analytic
in (−∞,∞), we get a series solution of the form

x(t) =

∞
∑

k=0

ckt
k for −∞ < t <∞ (6.2.15)

Plugging the representation for x(t),
dx

dt
and

dx2

dt2
in Eq. (6.2.14) we see that

ck satisfy the recurrence relation

ck+2 =
2k + 1− (2n+ 1)

(k + 2)(k + 1)
ck

=
2(k − n)

(k + 2)(k + 1)
ck (6.2.16)

It is clear that cn+2 = 0 and hence the solution given by Eq. (6.2.15) is a
polynomial. As in the previous example, we normalize cn and put it equal to
2n and then compute the coefficients in descending order. This gives us the
solution, which is denoted by Hn(t), the Hermite polynomial. It is given by

Hn(t) =

M
∑

m=0

(−1)mn!

m!(n− 2m)!
(2t)n−2m

We shall discuss the properties of the Hermite polynomials in section 4.
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6.3 Linear System with Regular Singularities

A system of the form

dx̄

dt
=

1

t− t0
A(t)x̄ (6.3.1)

where A(t) is analytic at t0, is said to have a regular singularity at t0.

As before, we can assume that t0 = 0 and A(t) has series representation of the
form

A(t) =
∞
∑

k=0

Akt
k (6.3.2)

in the interval of the convergence |t| < r.

Eq. (6.3.1) then reduces to the equation of the form

dx̄

dt
=

1

t

(

∞
∑

k=0

Akt
k

)

x̄ (6.3.3)

We prove the following theorem, giving the existence of a series solution of the
equation given by Eq. (6.3.3)

Theorem 6.3.1 The differential equation given by Eq. (6.3.3) has a series

solution of the form x̄(t) = tµ
∞
∑

k=0

c̄kt
k in the interval |t| < r, provided µ is an

eigenvalue of A0 and no other eigenvalue of the form µ+n exists for A0, where
n is a positive integer.

Proof : We introduce a new dependent variable ȳ(t) = tµx̄(t). This gives

dȳ

dt
=

1

t
[A(t) − µI ] ȳ(t)

=
1

t

[

∞
∑

k=0

Akt
k − µI

]

ȳ(t)

Assuming that ȳ(t) =

∞
∑

k=0

c̄kt
k, we get
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∞
∑

k=1

c̄kkt
k =

∞
∑

k=0

[(

k
∑

l=0

Ak−lc̄l

)

− µc̄k

]

tk. This gives us the recurrence relations

(A0 − µI)c̄0 = 0

(A0 − (µ+ I)) c̄1 = −A1c̄0 (6.3.4)

...

(A0 − (µ+ n)I)c̄n = −
n−1
∑

l=0

An−lc̄l

...

Since |(A0 − (µ+n)I)c̄n| 6= 0 for all n ≥ 1, the above relations iteratively define

c̄0, c̄1, · · · , c̄n, · · · We shall now show that the series x(t) = tµ
∞
∑

k=0

c̄kt
k converges.

As in Section 6.2, for some positive numbers M , and p < r we have

‖Ak‖pk ≤M, k = 0, 1, 2, · · · (6.3.5)

We first observe the following

(i) |A0 − (µ+ k)I | 6= 0 for all positive integer k

(ii) lim
k→∞

∣

∣

∣

∣

A0 −
(µ+ k)

k
I

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

(A0 − µI)

k
− k

k
I

∣

∣

∣

∣

= n

In view of property (ii), it follows that there exists a positive quantity ε > 0
such that

‖A0 − (µ+ k)I‖
k

> ε, k = 1, 2, 3, · · ·

So, the recurrence relation given by Eq. (6.3.4) provides

(k + 1)c̄k+1 = [A0 − (µ+ k + 1)I ]
−1

(k + 1)

k
∑

l=0

Ak+1−lc̄l

Using Eq. (6.3.5) and (ii) we get

(k + 1) ‖c̄k+1‖ ≤ M(k + 1)

ε

k
∑

l=0

‖c̄l‖
pk+1−l

Equivalently,

(k + 1) ‖c̄k+1‖ pk+1 ≤ M

ε
(k + 1)

k
∑

l=0

‖c̄l‖pl
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Proceeding as in Theorem 6.2.1, we have the relation

‖c̄k‖ ≤
(

M
ε

) (

M
ε + 1

)

· · ·
(

M
ε + k − 1

)

k!pk
‖c̄0‖

for all k ≥ 1.

Applying this estimate to the series expansion for x̄(t), we get

‖x̄(t)‖ ≤
∥

∥

∥

∥

∥

tµ
∞
∑

k=0

c̄kt
k

∥

∥

∥

∥

∥

≤ |t|µ‖c̄0‖
∞
∑

k=0

(

M
ε

) (

M
ε + 1

)

· · ·
(

M
ε + k − 1

)

k!

( |t|
p

)k

=
|t|µ‖c̄0‖

(

1 − |t|
p

)

M

ε

in the interval of uniform convergence |t| ≤ p < r.
This proves the theorem.

Example 6.3.1 (Bessel’s Equation)

t2
d2x

dt2
+ t

dx

dt
+ (t2 − µ2)x(t) = 0 (6.3.6)

⇐⇒ d2x

dt2
+

1

t

dx

dt
+ (1 − µ2

t2
)x(t) = 0

We use the substitution x1 = x(t), x2 = tẋ(t) to get

dx1

dt
=

1

t
x2

dx2

dt
=

dx1

dt
+ t

d2x1

dt2

=
dx1

dt
− dx1

dt
− (t− µ2

t
)x1(t)

= −1

t
(t2 − µ2)x1(t)

This reduces Eq. (6.3.6) to

dx̄

dt
=

1

t





0 1

µ2 − t2 0



 x̄

=
1

t

[

A0 +A2t
2
]

x̄



6.3. LINEAR SYSTEM WITH REGULAR SINGULARITIES 191

where A0 =

(

0 1
µ2 0

)

, A2 =

(

0 0
−1 0

)

. It is clear that A is analytic in

(−∞, ∞) and A0 has eigenvalues ±µ.
Case 1: µ is not an integer
Then Eq. (6.3.6) has solution of the form x(t) = tµ

∑∞
k=0 c̄kt

k in (−∞, ∞).

For the eigenvalue µ > 0, plugging the representation

x(t) =

∞
∑

m=0

cmx
m+µ,

dx

dt
=

∞
∑

m=0

cm(m+ µ)tm+µ−1

d2x

dt2
=

∞
∑

m=0

cm(m+ µ)(m+ µ− 1)tm+µ−2

in Eq. (6.3.6) we get the recurrence relation

c2m = − 1

22m(µ+m)
c2m−2, m = 1, 2 · · ·

c2m+1 = 0, m = 0, 1, 2, · · ·

This gives

c2 = − c0
22(µ+ 1)

c4 = − c2
222(µ+ 2)

=
c0

242!(µ+ 1)(µ+ 2)

...

c2m =
(−1)mc0

22mm!(µ+ 1)(µ+ 2) · · · (µ+m)
, (6.3.7)

m = 1, 2, · · ·
c2m+1 = 0, m = 0, 1, 2, 3, · · ·

Now define the gamma function Γ(µ) as

Γ(µ) =

∫ ∞

0

e−ttµ−1dt, µ > 0

which is a convergent integral. Γ(µ) satisfies the property that Γ(µ+1) = µΓ(µ)

and Γ(n+ 1) = n! If we put c0 =
1

2µ
Γ(µ+ 1), then c2m is given by

c2m =
(−1)m

22m+µm!(µ+ 1)(µ+ 2) · · · (µ+m)Γ(µ+ 1)

=
(−1)m

22m+µm!Γ(µ+m+ 1)
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This gives us the first solution Jµ(t), called Bessl’s function of order µ of the
differential equation given by Eq. (6.3.6), as

Jµ(t) = tµ
∞
∑

m=0

(−1)mt2m

22m+µm!Γ(µ+m+ 1)

Extending gamma function for µ < 0, we get the representation for the second
solution J−µ(t) as

J−µ(t) = t−µ
∞
∑

m=0

(−1)mt2m

22m−µm!Γ(−µ+m+ 1)

Jµ(t) and Jµ(t) are linearly independent.

Case 2: µ = n integer
We have

Jn(t) = tn
∞
∑

m=0

(−1)mt2m

22m+nm!(n+m)

One can easily derive that

J−n(t) = (−1)nJn(t)

This gives

J0(t) =

∞
∑

m=0

(−1)mt2m

22m(m!)2

= 1 − t2

22(1!)2
+

t4

24(2!)2
− t6

26(3!)2
+ · · ·

J1(t) =

∞
∑

m=0

(−1)mt2m+1

22m+1(k!)(k + 1)!

= t− t3

23(1!)(2!)
+

t5

25(2!)(3!)
− t7

27(3!)(4!)
+ · · ·

J0 looks similar to cosine function and J1 looks similar to sine function. The
zeros of these functions are not completely regularly spaced and also oscillations
are damped as we see in the following graphics.
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Figure 6.3.1: Sketch of J0 and J1

Example 6.3.2 (Bessel’s equation of order zero)
Consider the equation

x
d2x

dt2
+
dx

dt
+ x = 0

This is equivalent to the first order system of the form

dx̄

dt
= −1

t

(

0 1
−t2 0

)

x̄ (6.3.8)

where x1 = x, x2 = t
dx

dt
.

As we have seen before, a solution of this system is given by

x1(t) =

∞
∑

k=0

(−1)kt2k

4k(k!)2
(6.3.9)

x2(t) =

∞
∑

k=0

(−1)kt2k

4k(k!)2
(6.3.10)

To get another solution ȳ(t) linearly independent of x̄(t) and satisfying Eq.
(6.3.8), we set

ȳ(t) = ψ(t)z̄(t) where ψ(t) =





1 x1

0 x2



 .
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This gives
dȳ

dt
=
dφ

dt
z̄(t) + ψ(t)

dz̄

dt
= A(t)ψ(t)x̄(t)

That is






0
1

t
x2

0 −tx1






z̄ +





1 x1

0 x2





dz

dt
=







0
1

t
x2

−t −tx1






z̄(t)

Solving for
dz

dt
we get





1 x1

0 x2





dz

dt
=





0 0

−t 0



 z̄(t)

and hence

dz

dt
=









t
x1

x2
0

− t

x2
0









z̄(t)

So, we need to solve

dz1
dt

= t
x1

x2
z1 = − ẋ2

x2
z1 (6.3.11a)

dz2
dt

= − t

x2
z1 (6.3.11b)

Integrating Eq. (6.3.11(a)) - Eq. (6.3.11(b)) we get

z1 =
c1
x2
, z2 = −c1

∫

t

x2
2(t)

dt

Hence ȳ(t) = ψ(t)z̄(t) is given by

ȳ(t) =











c1
x2

− c1x1

∫

tdt

x2
2(t)

−c1x2

∫ t

x2
2(t)

dt











That is

y1(t) =
c1
x2

− c1x1

∫ [−ẋ2/x1

x2
2

]

dt

= −c1x1

∫

ẋ2

x2x2
1

dt

= −c1x1

∫

1

tx2
1

dt
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y2(t) = −c1x2

∫

t

x2
2

dt

Using the represntations of Eq. (6.3.9) - Eq. (6.3.10), we get

x1(t) = 1 − t2

4
+ · · ·

x2(t) = − t
2

2
+
t4

16
+ · · ·

This gives

x1

∫

dt

tx2
1

= x1

∫

1 + t2

2 + · · ·
t

dt

= x1lnt+ x1(
t2

4
+ · · · )

and

x2

∫

t

x2
2

dt = 4x2

∫ t
(

1 + t2

4 + · · ·
)

t4
dt

=
−2x2

t2
+ x2lnt+ · · ·

Hence, it follows that the second solution ȳ(t), linearly independent of x(t), is
given by

y(t) = x(t)lnt+ x(t)

(

1 +
t2

4
+ · · ·

)

To be more precise, one can show that

y(t) = J0(t)lnt+

∞
∑

m=1

(−1)mhmt
2m

22m(m!)2

where hm =
(

1 + 1
2 + · · · + 1

m

)

.

The function Y0(t) defined as

Y0(t) = ay(t) + bJ0(t), a =
2

π
, b = r − ln2

where r is the Euler’s constant limn→∞

(

1 + 1
2 + · · · + 1

m − lnn
)

is called the
Bessel’s function of the second kind (order zero). Hence, it is given by

Y0(t) =
2

π

[

J0(t)

(

ln
t

2
+ r

)

+

∞
∑

m=1

(−1)mhmt
2m

22m(m!)2

]
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6.4 Properties of Legendre, Hermite and Bessel

Functions

Legendre polynomial Pn(t) is a solution of the differential equation

(1 − t2)
d2x

dt2
− 2t

dx

dt
+ n(n+ 1)x(t) = 0 (6.4.1)

In terms of the notation of Chapter 6, this is eigenvalue problem of the form

Lx = λx (6.4.2)

where L is the second order differential operator

Lx = (1 − t2)
d2x

dt2
− 2t

dx

dt
=

d

dt

(

(1 − t2)
dx

dt

)

(6.4.3)

We can think of L as an operator defined on L2[−1, 1] with D(L) as the set of
all functions having second order derivatives.

Then Green’s formula (to be done in Section 7.1) gives

∫ 1

−1

(yLx− xL∗y) dt = J(x, y)

∣

∣

∣

∣

1

−1

where J(x, y)|1−1 = a0

(

y
dx

dt
− x

dy

dt

)∣

∣

∣

∣

1

−1

with a0(t) = (1 − t2).

As a0(1) = a0(−1) = 0, it follows that J(x, y)|1−1 = 0 and hence

∫ 1

−1

(yLx− xL∗y) dt = 0 ∀x, y ∈ D(L) = D(L∗)

That is L∗ = L and D(L∗) = D(L).

We appeal to Theorem 7.5.1, of Chapter 7 to claim that the eigenfunctions
of L form a complete orthonormal set. We have already proved in Example
6.2.1 that Eq. (6.4.1) has sequence of eigenvalues {n(n + 1)} with {Pn(t)}
corresponding eigenfunctions and hence they are orthogonal. However, for the
sake of completeness we prove this result directly.

Theorem 6.4.1 The set of Legendre polymonials {Pn(t)} satisfying Eq. (6.4.1)
are orthogonal set of polynomials in L2[−1, 1].

Proof : We have

d

dt

(

(1 − t2)
dPn

dt

)

= −n(n+ 1)Pn(t) (6.4.4)

d

dt

(

(1 − t2)
dPm

dt

)

= −m(m+ 1)Pm(t) (6.4.5)
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Multiplying Eq. (6.4.4) by Pm(t) and Eq. (6.4.5) by Pn(t) and substracting the
equations and integrating, we get

∫ 1

−1

[m(m+ 1) − n(n+ 1)]Pm(t)Pn(t)dt

=

∫ 1

−1

[

d

dt

(

(1 − t2)
dPn

dt

)

Pm(t) − d

dt

(

(1 − t2)
dPm

dt
Pn(t)

)]

dt

=
[

(1 − t2)
[

Ṗn(t)Pm(t) − Ṗm(t)Pn(t)
]]1

−1

−
∫ 1

−1

[

(1 − t2)
[

Ṗn(t)Ṗm(t) − Ṗm(t)Ṗn(t)
]]

= 0

Hence (Pm, Pn) =
∫ 1

−1
Pm(t)Pn(t)dt = 0. That is Pm ⊥ Pn.

Theorem 6.4.2 The Legendre polynomials Pn(t) satisfy the Rodrigues formula

Pn(t) =
1

2nn!

dn

dtn
[

(t2 − 1)n
]

, n = 0, 1, 2, · · · (6.4.6)

Proof : We have

Pn(t) =
1

2nn!

M
∑

k=0

(−1)kn!

k!(n− k)!

(2n− 2k)!

(n− 2k)!
tn−2k

Since
dn

dtn
[

t2n−2k
]

=
(2n− 2k)!

(n− 2k)!
tn−2k, it follows that

Pn(t) =
1

2nn!

dn

dtn

[

M
∑

k=0

(−1)kn!

k!(n− k)!
t2n−2k

]

It is now clear that the sum

[

∑M
k=0

(−1)kn!

k!(n− k)!
t2n−2k

]

is the binomial expansion

of (t2 − 1)n and hence

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

Definition 6.4.1 Let {fn(t)} be a sequence of functions in an interval I. A
function F (t, u) is said to be a generating function of this sequence if

F (t, u) =

∞
∑

n=0

fn(t)un (6.4.7)
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We have the following theorem giving the generating function for the sequence
{Pn(t)} of Legendre polynomials.

Theorem 6.4.3 For Legendre polynomials {Pn(t)}, we have

(1 − 2tu+ u2)−
1
2 =

∞
∑

n=0

Pn(t)un (6.4.8)

Proof : Let |t| ≤ r (arbitary positive number) and |u| < (1 + r2)
1
2 − r. Then

|2tu− u2| ≤ 2|t||u| + |u2|
≤ 2r(1 + r2)

1
2 − 2r2 + (1 + r2) + r2 − 2r(1 + r2)

1
2

= 1

So expanding (1 − 2tu+ u2)−
1
2 in a binomial series, we get

[1− u(2t− u)]
− 1

2 = 1 +
1

2
u(2t− u) +

1

2

3

4
u2(2t− u)2 + · · ·

+
1.3......(2n− 1)

1.2.....(2n)
un(2t− u)n + · · ·

The coefficient of un in this expression is

1.3......(2n− 1)

2.4....(2n)
(2t)n − 1.3......(2n− 3)

2.4....(2n− 2)
(2t)n−2 + · · ·

=
1.3......(2n− 1)

n!

[

tn − n(n− 1)

(2n− 1)2
tn−2 +

n(n− 1)(n− 2)(n− 3)

(2n− 1)(2n− 3)2.4
tn−4 + · · ·

]

= Pn(t)

Theorem 6.4.4 The Legendre polynomials satisfy the following recurrence re-
lation

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t) − nPn−1(t), n = 1, 2, ... (6.4.9)

Proof : Differentiating the relation given by Eq. (6.4.8) with respect to u, we
get

(t− u)(1 − 2tu+ u2)−
3
2 =

∞
∑

n=1

nPn(t)un−1

This gives

(t− u)(1 − 2tu+ u2)−
1
2 = (1 − 2tu+ u2)

∞
∑

n=0

nPn(t)un−1
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That is

(t− u)

∞
∑

n=1

Pn(t)un = (1 − 2tu+ u2)

∞
∑

n=0

nPn(t)un−1

Equivalently,

∞
∑

n=0

tPn(t)un −
∞
∑

n=0

Pn(t)un+1

=

∞
∑

n=1

nPn(t)un−1 − 2

∞
∑

n=1

ntPn(t)un

+

∞
∑

n=0

nPn(t)un+1

Rewriting, we get

∞
∑

n=1

tPn(t)un −
∞
∑

n=1

Pn−1(t)u
n

=

∞
∑

n=1

(n+ 1)Pn+1(t)u
n − 2

∞
∑

n=1

ntPn(t)un

+

∞
∑

n=1

(n− 1)Pn−1(t)u
n

Comparing the coefficient of un, we get

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t) − nPn−1(t)

Corollary 6.4.1

‖Pn‖2 =

∫ 1

−1

P 2
n(t)dt =

2

2n+ 1
(6.4.10)

Proof : Recurrence relation gives

(2n+ 1)tPn(t) = (n+ 1)Pn+1(t) + nPn−1(t)

(2n− 1)tPn−1(t) = nPn(t) + (n− 1)Pn−2(t)

These two equations give

0 =

∫ 1

−1

[tPn(t)Pn−1(t) − tPn−1(t)Pn(t)] dt

=
(n+ 1)

(2n+ 1)

∫ 1

−1

Pn+1(t)Pn−1(t) +
n

(2n+ 1)

∫ 1

−1

P 2
n−1(t)dt

− (n− 1)

(2n− 1)

∫ 1

−1

Pn−2(t)Pn(t) − n

(2n− 1)

∫ 1

−1

P 2
n(t)dt
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This implies that

∫ 1

−1

P 2
n(t)dt =

(2n− 1)

(2n+ 1)

∫ 1

−1

P 2
n−1(t)dt

and hence

∫ 1

−1

P 2
n(t)dt =

(2n− 1)

(2n+ 1)

(2n− 3)

(2n− 1)
· · · 2

1

∫ 1

−1

P 2
0 (t)dt

=
2

(2n+ 1)

We now examine the properties of the Hermite polynomials. Recall that Hermite
polynomial Hn(t) satisfy the differential equation

d2x

dt2
− 2t

dx

dt
+ 2nx = 0

and is given by

Hn(t) =

∞
∑

k=0

(−1)nn!

k!(n− 2k)!
(2t)n−2k

We have the following theorem concerning the orthogonality of {Hn(t)} in

L2(−∞, ∞) with respect to the weight function e−t2 .

Theorem 6.4.5 The Hermite Polynomials Hn(t) are orthogonal set of polyno-

mials in the space L2(−∞, ∞) with respect to the weight function e−t2 .

Theorem 6.4.6 For Hermite polynomials Hn(t), we have the following formu-
lae.

(i) Rodgriues formula

Hn(t) = (−1)et2 d
n

dtn
e−t2

(ii) Generating function

e2tu−u2

=

∞
∑

n=0

Hn(t)
un

n!

(iii) Recurrence relation

Hn+1(t) = 2tHn(t) − 2nHn−1(t), H0 = 1, H1 = 2t

We now enunciate the properties of the Bessel’s function Jn(t).
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Theorem 6.4.7 For each fixed nonnegative integer n, the sequence of Bessel
functions Jn(kmt), where km are the zeros of Jn(k), form an orthogonal set in
L2[0, 1] with respect to the weight function t. That is

∫ 1

0

tJn(klt)Jn(kmt)dt = 0, l 6= m (6.4.11)

Proof : The Bessel function Jn(t) satisfies the differential equation (refer Eq.
(6.3.6))

t2J̈n(t) + tJ̇n(t) + (t2 − n2)Jn(t) = 0

Set t = ks, then the above equation reduces to the differential equation

d

ds

[

sJ̇n(ks)
]

+

(

−n
2

s
+ k2s

)

Jn(ks) = 0 (6.4.12)

Let km be the zeros of the Bessel function Jn(k), then we have

d

ds

[

sJ̇n(kls)
]

+

(

−n
2

s
+ k2

l s

)

Jn(kls) = 0 (6.4.13)

and
d

ds

[

sJ̇n(kms)
]

+

(

−n
2

s
+ k2

ms

)

Jn(kms) = 0 (6.4.14)

Eq. (6.4.13) - Eq. (6.4.14) give

(k2
l − k2

m)

∫ 1

0

sJn(kls)Jn(kms)ds

=

∫ 1

0

[

d

ds

[

sJ̇n(kls)
]

Jn(kms) −
d

ds

[

sJ̇n(kms)
]

Jn(kls)

]

ds

= 0, kl 6= km

using the fact that Jn(kl) = 0 = Jn(km).

Theorem 6.4.8 The generating function for the sequence {Jn(t)} of Bessel
functions is given by

exp

(

1

2
t

(

u− 1

u

))

=
∞
∑

n=−∞

Jn(t)un (6.4.15)

and hence J−n(t) = (−1)nJn(t).
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Proof : Expanding exp
(

1
2 t
(

u− 1
u

))

in powers of u, we get

exp

(

1

2
t

(

u− 1

u

))

=

(

exp
1

2
tu

)(

exp
1

2

(−t
u

))

=

(

∞
∑

k=0

(tu)k

2kk!

)(

∞
∑

l=0

(−t)l

2ll! ul

)

=

∞
∑

−∞

cn(t)un

The coefficient cn(t) of un in the above expression is

∞
∑

k=0

(−1)k

(

t

2

)2k+n

k!(k + n)!
= Jn(t)

and hence we get the generating function relation given by Eq. (6.4.15) for
Jn(t).

If we replace u by −1

v
in Eq. (6.4.15), we get

exp(
1

2
(v − 1

v
)t) =

∞
∑

n=−∞

Jn(t)(−1)nv−n

=
∞
∑

n=−∞

J−n(t)vn

Hence, it follows that J−n(t) = (−1)nJn(t)

Theorem 6.4.9 The Bessel functions Jµ(t) satisfy the following recurrence re-
lations

Jµ−1(t) + Jµ+1(t) =
2µ

t
Jµ(t) (6.4.16a)

Jµ−1(t) − Jµ+1(t) = 2Jµ(t) (6.4.16b)

Proof : We have

Jµ(t) = tµ

(

∞
∑

k=0

(−1)kt2k

22k+µ(k!)Γ(µ+ k + 1)

)

Multiplying Jµ(t) by tµ and pulling t2µ under the summation, we have

tµJµ(t) =

∞
∑

k=0

(−1)kt2k+2µ

22k+µ(k!)Γ(µ+ k + 1)
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Differentiating the above expression we have

d

dt
(tµJµ(t)) =

∞
∑

k=0

(−1)k2(k + µ)t2k+2µ−1

22k+µ(k!)Γ(µ+ k + 1)

= tµtµ−1
∞
∑

k=0

(−1)kt2k

22k+µ−1(k!)Γ(µ+ k)

= tµJµ−1(t)

Thus, we have
d

dt
(tµJµ(t)) = tµJµ−1(t)

and
d

dt

(

t−µJµ(t)
)

= −t−µJµ+1(t)

Expanding the LHS of the above expressions, we have

µtµ−1Jµ + tµJ̇µ = tµJµ−1

−µtµ−1Jµ + tµJ̇µ = −tµJµ+1

Adding and substracting the above relations, we get

Jµ−1 + Jµ+1 =
2µ

t
Jµ(t)

Jµ−1 − Jµ+1 = 2J̇µ(t)

Corollary 6.4.2 From the definition of Jµ(t), we have

J 1
2
(t) =

√

2

πt
sin t, J− 1

2
(t) =

√

2

πt
cos t

and hence the above recurrence relations give

J 3
2
(t) =

√

2

πt

(

sin t

t
− cos t

)

J− 3
2
(t) =

√

2

πt

(

−cos t

t
− sin t

)

We have the following graphics for the above functions.



204 CHAPTER 6. SERIES SOLUTION

5 10 15 20
t

-0.25

0.25

0.5

0.75

1
J-1\2

J1\2

Figure 6.4.2: Sketch of J−1/2(t) and J1/2(t)

5 10 15 20
t

-1

-0.75

-0.5

-0.25

0.25

0.5
J3\2

J-3\2

Figure 6.4.3: Sketch of J3/2(t) and J−3/2(t)

For more details on varioius topics in this chapter, refer Agarwal and Gupta
[1], Brown and Churchill [2], Hochstadt [3] and Kreyzig [4].
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6.5 Exercises

1. Let the functions f, g : < → < be defined as follows

f(t) =











sin t

t
, t 6= 0

1, t = 0

, g(t) =















1 − cos t

t2
, t 6= 0

1

2
, t = 0

Show that f and g are analytic at t = 0.

2. Find the series solution of the following IVPs

(i) ẍ+ tẋ− 2x = 0, x(0) = 1, ẋ(0) = 0

(ii) t(2 − t)ẍ− 6(t− 1)ẋ− 4x = 0, x(1) = 1, ẋ(1) = 0

(iii) ẍ+ etẋ+ (1 + t2)x = 0, x(0) = 1, ẋ(0) = 0

(iv) ẍ− (sin t)x = 0, x(π) = 1, ẋ(π) = 0

3. Show that the general solution of the Chebyshev differential equation

(1 − t2)ẍ− tẋ+ a2x = 0

is given by

x(t) = c0

[

1 +

∞
∑

n=1

(−a)2(22 − a2)......((2n− 2)2 − a2)

(2n)!
t2n

]

+ c1

[

t+

∞
∑

n=1

(1 − a2)(32 − a2)......((2n− 1)2 − a2)

(2n− 1)!
t2n+1

]

4. Show that the two linearly independent solutions of the following differ-
ential equation

t2ẍ+ t(t− 1

2
)ẋ+

1

2
x = 0

are given by

x1(t) = |t|
∞
∑

n=0

(−1)n (2t)n

(2n+ 1)(2n− 1)......3.1

x2(t) = |t| 12
∞
∑

n=0

(−1)n t
n

n!

5. Show that the two linearly independent solutions of the differential equa-
tion

t(1 − t)ẍ + (1 − t)ẋ− x = 0
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are given by

x1(t) = 1 +

∞
∑

n=1

1.2.5......((n− 1)2 + 1)

(n!)2
tn

x2(t) = x1(t)ln|t| + 2

(

∞
∑

n=1

1.2.5.....((n− 1)2 + 1)

(n!)2

)

×
(

n
∑

k=1

k − 2

k((k − 1)2 + 1)

)

tn

6. Using Rolle’s theorem show that between two consucative zeros of Jn(t),
there exists precisely one zero of Jn+1(t).

7. Prove the following identities for Bessel functions Jµ(t), µ ∈ <.

(i)
∫

tµJµ−1(t)dt = tµJµ(t) + c

(ii)
∫

t−µJµ+1(t)dt = −t−µJµ(t) + c

(iii)
∫

Jµ+1(t)dt =
∫

Jµ−1(t)dt− 2Jµ(t)

8. Show that

‖Jn(klmt)‖2 =

∫ 1

0

tJ2
n(klmt)dt =

1

2
J2

n+1(klm)

9. Using Rodrigues formula, show that

Pn(0) =











0, n is odd

(−1)n/2 1.3....n− 1

2.4.....n
, n is even

10. Let p(t) be a polynomial of degree n. Show that p(t) is orthogonal to all
Legendre polynomials of degree strictly less than n.
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Chapter 7

Boundary Value Problems

In this chapter we mainly deal with boundary value problems involving sec-
ond order differential operators. The main tool for solvability analysis of such
problems is the concept of Green’s function. This transforms the differential
equation in to integral equation, which, at times, is more informative.

Hence there is a detailed discussion involving the definition of Green’s func-
tion through Dirac-delta function, its properties and construction. Numerous
examples are given for illustration.

Towards the end, we give eigenfunction expansion technique for computing the
solution of boundary value problems. Nonlinear boundary value problem is also
the topic of our investigation. We use both fixed point theory and monotone
operators for this analysis.

7.1 Introduction

We shall be concerned with the solution of the ordinary differential equation

Lx = f (7.1.1)

over the interval a ≤ t ≤ b, subject to certain boundary conditions. Here L is a
second order linear differential operator of the form

L = a0(t)
d2

dt2
+ a1(t)

d

dt
+ a2(t), a0(t) 6= 0 on [a, b]

Since L is of second order, there will be two boundary conditions of the form

Bi(x) = Ci, i = 1, 2 (7.1.2)

where C ′
is are given constants, B′

is are functions of the unknown variable x.
Throughout this chapter, we shall limit ourselves to those B ′

is which are linear
combinations of x and its derivative. So the most general form of the boundary

207
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condition Eq. (7.1.2) will be written as

B1(x) ≡ α11x(a) + α12ẋ(a) + β11x(b) + β12ẋ(b) = C1

B2(x) ≡ α21x(a) + α22ẋ(a) + β21x(b) + β22ẋ(b) = C2 (7.1.3)

where the coefficients αij , βij are given real numbers. To ensure that Eq. (7.1.3)
gives two distinct boundary conditions we assume that the row vectors
(α11, α12, β11, β12) and (α21, α22, β21, β22) are linearly independent .

If C1 = C2 = 0 , we say that boundary conditions are homogeneous,
If β11 = β12 = α21 = α22 = 0, the boundary conditions are called unmixed.

Eq. (7.1.3) then reduces to

α11x(a) + α12ẋ(a) = C1

β21x(b) + β22ẋ(b) = C2 (7.1.4)

If α12 = β11 = β12 = α21 = β21 = β22 = 0, we have initial conditions

x(a) = C1

ẋ(a) = C2

The boundary conditions are periodic if they are of the form

x(a) = x(b), ẋ(a) = ẋ(b) (7.1.5)

Example 7.1.1

d2x

dt2
= f(t)

x(0) = x(1) = 0 (7.1.6)

This denotes the deflection of a string stretched under a unit tension at fixed
end points 0 and 1 and subjected to force distribution f(t). Writing Eq. (7.1.6)
in the form Eq. (7.1.1), we have

Lx = f, B1(x) = 0 = B2(x)

where L ≡ d2

dt2
, B1(x) ≡ x(0), B2(x) ≡ x(1).

It is clear that we have homogeneous unmixed boundary conditions.

Example 7.1.2 Consider a rod of length unity and unit cross-section. We
assume that the rod is homogeneous and the flow of heat is in the direction of
t only. Suppose there is a heat source of density f(t) in the interior, then the
temperature distribution x(t) satisfies

− d

dt

(

K
dx

dt

)

= f(t)
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Here, K is the thermal conductivity of the rod, which is a function of t.
If the end points of the rod are kept at zero temperature we have the boundary

value problem
Lx = f, B1(x) = 0 = B2(x)

where L ≡ − d

dt

(

K
d

dt

)

, B1(x) ≡ x(0), B2(x) ≡ x(1).

Here again, we have homogeneous unmixed boundary conditions.

Example 7.1.3 Consider the motion of a particle along a straight line. The
force on the particle is along the line and the particle starts from rest at the
origin. Then the displacement x(t) satisfies Newton’s law

m
d2x

dt2
= f(t)

with initial conditions x(0) = 0,
dx

dt
(0) = 0.

We can write this in our standard form as

Lx = f, B1(x) = 0 = B2(x)

where L ≡ m
d2

dt2
, B1(x) ≡ x(0), B2(x) ≡ ẋ(0).

This is an initial-value problem.

7.2 Adjoint of a Differential Operator

As before, we shall denote by L2[a, b] the Hillbert space of all square integrable
real valued functions on [a, b].

Definition 7.2.1 Let L : L2[a, b] → L2[a, b] be a second order differential opera-
tor. By domain D(L), we mean a subspace of L2[a, b] which consists of functions
which have piecewise-continuous derivatives of second order and which satisfy
homogeneous boundary conditions

B1(x) = 0 = B2(x)

Definition 7.2.2 Let L be the differential operator acting on the Hilbert space
L2[a, b] with domain D. Then, using Definition 2.2.6 the adjoint operator L∗ :
L2[a, b] → L2[a, b] is defined implicitly by the equation

(y, Lx) = (L∗y, x); x ∈ D(L) and y ∈ D(L∗) (7.2.1)

D(L∗) will be obtained in the following steps:

(y, Lx) =

∫ b

a

yLxdt

=

∫ b

a

y(a0ẍ+ a1ẋ+ a2x) dt
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On the RHS, integrating by parts we get

(y, Lx) = [a0(yẋ− xẏ) + xy(a1 − ȧ0)]
b
a

+

∫ b

a

x

[

d2

dt2
(a0y) −

d

dt
(a1y) + a2y

]

dt

Applying the definition of L∗ we see that

(L∗y, x) =

∫ b

a

x

[

d2

dt2
(a0y) −

d

dt
(a1y) + a2y

]

dt

+ [a0(yẋ− xẏ) + xy(a1 − ȧ0)]
b
a (7.2.2)

Thus we see that L∗ consists of two parts, a second order differential operator

d2

dt2
(a0y) −

d

dt
(a1y) + a2y (7.2.3)

appearing in the integrand and some boundary terms.

Definition 7.2.3 The operator given by Eq. (7.2.3) is called the formal adjoint
of L and is denoted by L∗. So the formal adjoint of the operator

L = a0
d2

dt2
+ a1

d

dt
+ a2

is

L∗ = a0
d2

dt2
+ (2ȧ0 − a1)

d

dt
+ (ä0 − ȧ1 + a2)

Definition 7.2.4 The expression J(x, y) = a0(yẋ− xẏ) + (a1 − ȧ0)xy is called
the bilinear concomitant of x and y. From Eq. (7.2.2) we get the Green’s formula

∫ b

a

(yLx− xL∗y)dt = J(x, y)

∣

∣

∣

∣

∣

b

a

Definition 7.2.5 L is said to be formally self-adjoint if L∗ = L.
It is clear that L is formally self-adjoint if ȧ0(t) = a1(t). So, a formally

self-adjoint operator L can be written in the form

L =
d

dt

(

a0(t)
d

dt

)

+ a2(t)

J(x, y) is then given by
a0 (yẋ− ẏx)

and the Green’s formula reduces to

∫ b

a

(yLx− xLy) dt = J(x, y) = a0 (yẋ− ẏx)

∣

∣

∣

∣

∣

b

a
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We say that y ∈ D∗ (domain of L∗) if it is twice differentiable and if J(x, y)|ba = 0

for every x ∈ D. From the definition of J(x, y), it can be seen that J(x, y)|ba = 0
for all x ∈ D only if y satisfies two homogeneous boundary conditions B∗

1 (y) =
B∗

2(y) = 0. These are called adjoint boundary conditions.

Definition 7.2.6 Consider the boundary value problem

Lx = f ; a ≤ t ≤ b

B1(x) = 0 = B2(x) (7.2.4)

Its adjoint boundary value problem is

L∗x = f

B∗
1(x) = 0 = B∗

2(x) (7.2.5)

Boundary value problem given by Eq. (7.2.4) is said to be self-adjoint, if

L = L∗ and D = D∗

Remark 7.2.1 If we consider L∗ as an operator on the Hilbert space L2[a, b]
with domain D∗, one can show that L is self-adjoint as an unbounded operator
if the boundary value problem given by Eq. (7.2.4) is self-adjoint in the sense
of the above definition (Refer Dunford and Schwartz [3]).

Example 7.2.1 L =
d2

dt2
with boundary conditions

B1(x) ≡ x(0) = 0

B2(x) ≡ ẋ(0) = 0

L is formally self-adjoint and so L∗ =
d2

dt2
.

To determine adjoint boundary conditions, we need to find J(x, y)|10.

J(x, y) = (yẋ− ẏx) |10
= ẋ(1)y(1) − ẏ(1)x(1) − ẋ(0)y(0) + ẏ(0)x(0)

= ẋ(1)y(1) − x(1)ẏ(1)

So J(x, y)|10 = 0 for all x ∈ D iff B∗
1 (y) ≡ y(1) = 0, B∗

2(y) ≡ ẏ(1) = 0.
Thus we see that though the operator is formally self-adjoint. D∗ 6= D.

Hence the boundary value problem is not self-adjoint.

Example 7.2.2 Consider the second order differential operator

L = a0
d2

dt2
+ a1(t)

d

dt
+ a2(t)

with boundary conditions B1(x) ≡ x(0) = 0, B2(x) ≡ ẋ(1) = 0. We know that

L∗ = a0
d2

dt2
+ (2ȧ0 − a1)

d

dt
+ (ä0 − ȧ1 + a2)
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L will be formally self-adjoint iff ȧ0 = a1.
To determine the adjoint boundary conditions we first determine J(x, y)|10.

J(x, y)|10 = a0(yẋ− xẏ) + (a1 − ȧ0)xy|10

= a0(1) [y(1)ẋ(1) − x(1)ẏ(1)] + [a1(1) − ȧ0(1)]x(1)y(1)

−a0(0) [y(0)ẋ(0) − x(0)ẏ(0)] + [a1(0) − ȧ0(0)]x(0)y(0)

= [a1(1) − ȧ0(1)]x(1)y(1) − a0(1)ẏ(1)x(1) − a0(0)y(0)ẋ(0)

J(x, y)|10 = 0 for all x ∈ D iff

B∗
1 ≡ y(0) = 0

B∗
2 ≡ ẏ(1) − [a1(1) − ȧ0(1)]y(1)

a0(1)
= 0

Thus, we see that the adjoint boundary conditions differ from the original one
and D∗ 6= D. However, if L is formally delf-adjoint, then D∗ = D. That is, the
boundary value problem is self-adjoint.

7.3 Green’s Function

Let the boundary value problem be given by

Lx = f

B1(x) = 0 = B2(x) (7.3.1)

We want to find L−1, the inverse of L, and use it to solve the above equation.
As we will see later, this inverse operator is an integral operator. The kernel of
this operator will turn out to be the Green’s function of the system Eq. (7.3.1),
which we now define.

First we define fundamental solution for the operator L.

Definition 7.3.1 Any solution of the equation

LT = δ(t− s) (7.3.2)

is said to be a fundamental solution for the operator L.

Since RHS of Eq. (7.3.2) is a distribution, the solution T of Eq. (7.3.2) must
be interpreted in the sense of a distribution. But we will show that the solution
of Eq. (7.3.2) is a weak solution.
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We prove this assertion by writing Eq. (7.3.2) formally as

LT = 0, t 6= s

Let x(t) be an arbitrary solution of the homogeneous equation and let ys(t) be
any other solution which is to be determined.

We get a particular solution of Eq. (7.3.2) in the following way:

T =







ys(t), t > s

x(t), t < s

We will determine ys(t) by appropriate matching conditions at t = s. Assume
that T is continuous at t = s, then integrating Eq.(7.3.2) we get

lim
ε→0

∫ s+ε

s−ε

a0(t)
d2T

dt2
dt = 1,

where a0 is the coefficient of
d2T

dt2
occuring on the expression for LT . That is,

a0(s)

[

dT

dt

∣

∣

∣

∣

t=s+

− dT

dt

∣

∣

∣

∣

t=s−

]

= 1

or ẏs(s) = ẋ(s) +
1

a0(s)

Thus a solution T of (7.3.2) is given by

T (t, s) =







ys(t), t > s

x(t), t < s
(7.3.3)

where x(t) is an arbitrary solution of the homogeneous equation and ys(t) is
another solution of the homogeneous equation satisfying

ys(s) = x(s)

ẏs(s) = ẋ(s) +
1

a0(s)

By the theory of differential equaitons, such a solution ys(t) exists and is deter-
mined by x(t) and a0(t).

We now show that T (t, s) defined by Eq. (7.3.3) is a weak solution of Eq.
(7.3.2).

That is (T, L∗φ) = (δ, φ) = φ(s) for every test function φ.
By definition

L∗φ =

2
∑

k=0

(−1)k d
k

dtk
(an−kφ)
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(T, L∗φ) =

∫ ∞

−∞

T (t)L∗φ(t)dt

Integrating by parts twice and using boundary conditions, we get

(T, L∗φ) = φ(s) +

∫ s−

−∞

φLxdt+

∫ ∞

s+

φLysdt

Since both x and ys satisfy the homogeneous equation LT = 0, we get

(T, L∗φ) = φ(s) = (δ(t− s), φ)

That is
LT = δ(t− s)

We are now in a position to define the Green’s function of Eq. (7.3.1).

Definition 7.3.2 The Green’s function g(t, s) of Eq.(7.3.1) is a fundamental
solution of

Lg = δ(t− s)

which satisfies additional boundary condition B1(g) = 0 = B2(g). In view of
what we have just proved, alternatively we can define the Green’s function g(t, s)
as a solution of the boundary value problem

Lg = 0, a ≤ t < s, s < t ≤ b

B1(g) = 0 = B2(g) (7.3.4)

g is continuous at t = s and
dg

dt

∣

∣

∣

∣

t=s+

− dg

dt

∣

∣

∣

∣

t=s−

=
1

a0(s)
.

Example 7.3.1 Consider the string problem

d2x

dt2
= f(t)

x(0) = x(1) = 0

Green’s function g(t, s) for the above sustem is the solution of the auxiliary
problem

d2g

dt2
= δ(t− s)

g(0, s) = 0 = g(1, s)

That is

d2g

dt2
= 0, 0 ≤ t < s, s < t ≤ 1

g(0, s) = 0 = g(1, s)
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g(t, s) is continuous at t = s,
dg

dt

∣

∣

∣

∣

t=s+

− dg

dt

∣

∣

∣

∣

t=s−

= 1.

Integrating the above equation and imposing boundary conditions at 0 and 1,
we get

g(t, s) =







At, 0 ≤ t < s

C(t− 1), s < t ≤ 1

The continuity of g(t, s) at t = s gives

g(t, s) =















At, 0 ≤ t ≤ s

A(1 − t)s

(1 − s)
, s ≤ t ≤ 1

Finally, the jump condition on the derivatives
dg

dt
at t = s gives

As

s− 1
−A = 1, A = s− 1

So

g(t, s) =







t(s− 1), 0 ≤ t ≤ s

s(t− 1), s ≤ t ≤ 1

Example 7.3.2 Consider the initial-value problem representing motion of a
particle in a straight line

m
d2x

dt2
= f(t), 0 ≤ t <∞

x(0) = ẋ(0) = 0

Green’s function for the above system is given by

m
d2g

dt2
= 0, 0 ≤ t < s, s < t <∞

g(0, s) = 0 = ġ(0, s)

g is continuous at t = s and
dg

dt

∣

∣

∣

∣

t=s+

− dg

dt

∣

∣

∣

∣

=s−

=
1

m
.

Integrating and using the boundary conditions we get

g(t, s) =







0, t ≤ s

At+B, s ≤ t
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Using continuity of g at t = s we get B = −As.
So

g(t, s) =







0, t ≤ s

A(t− s), s ≤ t

Finally the jump condition for the derivative gives A =
1

m
.

Hence

g(t, s) =











0, t ≤ s

(t− s)

m
, s ≤ t

Definition 7.3.3 The adjoint Green’s function h(t, s) is defined as the solution
of the system

L∗h = δ(t− s)

B∗
1(h) = 0 = B∗

2 (h) (7.3.5)

Theorem 7.3.1 Theadjoint Green’s function h(t, s) and the Green’s function
g(t, s) satisfy the relation h(t, s) = g(s, t). In particular, if the original boundary
value problem given by Eq. (7.3.1) is self-adjoint, then the Green’s function
g(t, s) is symmetric.

Proof : We have

Lg = δ(t− s) (7.3.6)

B1(g) = 0 = B2(g)

and

L∗h = δ(t− η) (7.3.7)

B∗
1(h) = 0 = B∗

2 (h)

Multiply Eq. (7.3.6) by h(t, η), Eq. (7.3.7) by g(t, s), subtract and integrate
from t = a to t = b. Then we get

∫ b

a

(hLg − gL∗h)dt =

∫ b

a

h(t, η)δ(t − s)dt−
∫ b

a

g(t, s)δ(t− η)dt

Using Green’s formula
∫ b

a (hLg − gL∗h) = J(g, h)
∣

∣

∣

b

a
and substituting this in the

left hand side of the above equation we get

J(g, h)|ba = h(s, η) − g(η, s)

Since h satisfies the adjoint boundary condition J(g, h)|ba = 0 and hence
h(s, η) = g(η, s) for all s, η. If the system is self-adjoint, then we know that
h = g and hence

g(s, η) = g(η, s) for all s, η
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That is, g is symmetric.

Now we shall show how Green’s function can be used to obtain the solution
of the boundary value problem by constructing the inverse of the corresponding
differential operator.

Theorem 7.3.2 Suppose g(t, s) is a Green’s function for the boundary value
problem Lx = f, a ≤ t ≤ b, B1(x) = 0 = B2(x). Then it has a solution given
by

x(t) =

∫ b

a

g(t, s)f(s)ds (7.3.8)

We shall use the following lemma which is stated without proof.

Lemma 7.3.1 (Leibnitz) Let f(t, η) be a continuous function of two variables
in a region α(t) ≤ η ≤ β(t), c ≤ t ≤ d, where α(t) and β(t) are continuous
functions. Then the integral

g(t) =

∫ β(t)

α(t)

f(t, η)dη; c ≤ t ≤ d (7.3.9)

represents a continuous function of t. If the derivatives α̇(t) and β̇(t) exist, and
∂f

∂t
as well as f are continuous, then the derivative of the integral in Eq. (7.3.9)

is given by the generalized Leibnitz formula

ġ(t) =

∫ β(t)

α(t)

∂

∂t
f(t, η)dη + f(t, β(t))β̇(t) − f(t, α(t))α̇(t)

Proof (Proof of the main theorem): Let g(t, s) be the Green’s function for
the boundary value problem given by Eq. (7.3.1). We can write Eq. (7.3.8) as

x(t) =

∫ b

a

g(t, s)f(s)ds =

∫ t−

a

g(t, s)f(s)ds+

∫ b

t+

g(t, s)f(s)ds

Then, using the above mentioned lemma, we have

ẋ(t) =

∫ t−

a

gt(t, s)f(s)ds+

∫ b

t+

gt(t, s)f(s)ds

+ [g(t, t−)f(t) − g(t, t+)f(t)]

Due to the continuity of g(t, s), the last bracketed expression vanishes. Also

ẍ(t) =

∫ t−

a

gtt(t, s)f(s)ds+

∫ b

t+

gtt(t, s)f(s)ds

+ gt(t, t−)f(t) − gt(t, t+)f(t)

We note that gt(t, t+) = gt(t−, t) and gt(t, t−) = gt(t+, t) due to the continuity
of g(t, s) in the triangular regions ABC and ABD respectively (Refer Fig. 7.2.1).
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A

B

D

C

S

t

t=s

Figure 7.3.1: Integration in a triangular region

So, substituting the expressioins for ẍ(t) and ẋ(t) in Lx ≡ a0(t)ẍ+ a1(t)ẋ+
a2(t)x, we have

Lx =

∫ t−

a

[a0(t)gtt(t, s) + a1(t)gt(t, s) + a2(t)g(t, s)] ds

+

∫ b

t+

[a0(t)gtt(t, s) + a1(t)gt(t, s) + a2(t)g(t, s)] ds

+ f(t) [gt(t, t−) − gt(t, t+)] a0(t)

= 0 + 0 + f(t)

[

1

a0(t)
a0(t)

]

= f(t)

Hence x(t) =

∫ b

a

g(t, s)f(s)ds satisfies the given differential equation. In exactly

the same manner one can show that x given by Eq. (7.3.8) satisfies B1(x) =
0 = B2(x). Thus, x(t) given by Eq. (7.3.8) is the solution of the boundary value
problem given by Eq. (7.3.1). �

Theorem 7.3.3 The operator L and the integral operator G defined as

Gf =

∫ b

a

g(t, s)f(s)ds

are inverses of each other.
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Proof : It is clear from the definition of L and G that LGf = f and GLx = x.
Hence the result.

Green’s function also enables us to get a solution of the boundary value
problem with non-homogeneous boundary conditions:

Lx = f

B1(x) = α, B2(x) = β (7.3.10)

Theorem 7.3.4 If g(t, s) is a Green’s function of Eq. (7.3.10), then it has a
solution x(t) given by

x(t) =

∫ b

a

g(t, s)f(s)ds− J(x(s), g(t, s))

∣

∣

∣

∣

∣

b

a

Proof : We recall that the adjoint Green’s function h(t, s) satisfies the system

L∗h = δ(t− s) (7.3.11)

B∗
1(h) = 0 = B∗

2(h)

Multiply Eq. (7.3.10) by h(t, s), Eq. (7.3.11) by x(t) , subtract and integrate
from t = a to t = b. to get

∫ b

a

(hLx− xL∗h)dt =

∫ b

a

f(t)h(t, s)dt−
∫ b

a

δ(t− s)x(t)dt

Using Green’s formula in the LHS, we have

J(x, h)|ba =

∫ b

a

h(t, s)f(t)dt− x(s)

That is

x(s) =

∫ b

a

h(t, s)f(t)dt− J(x, h)

∣

∣

∣

∣

∣

b

a

Using the fact that h(t, s) = g(s, t) we obtain

x(s) =

∫ b

a

g(s, t)f(t)dt− J(x(t), g(s, t))

∣

∣

∣

∣

∣

b

a

or

x(t) =

∫ b

a

g(t, s)f(s)ds− J(x(s), g(t, s))

∣

∣

∣

∣

∣

b

a

J(x(s), g(t, s))|ba can be calculated explicitly by the given boundary conditions.

An alternative method of solution of Eq. (7.3.10) is as follows.
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Let x1(t) and x2(t) be non-trivial solutions of the homogeneous system, cor-
responding to Eq. (7.3.10) satisfying B1(x1) = 0 and B2(x2) = 0, respectively.
Since a completely homogeneous system has only the trivial solution, we must
have B1(x2) 6= 0. We write the solution of the system as

x(t) =

∫ b

a

g(t, s)f(s)ds+ c1x1(t) + c2x2(t)

g(t, s) is the Green’s function for the system with homogeneous boundary con-
ditions and c1 and c2 are constants to be determined. Applying boundary
conditions, we have

c2B1(x2) + c1B1(x1) +

∫ b

a

B1(g(t, s))f(s)ds = α

c1B2(x1) + c2B2(x2) +

∫ b

a

B2(g(t, s))f(s)ds = β

Therefore,

x(t) =

∫ b

a

g(t, s)f(s)ds+
β

B2(x1)
x1(t) +

α

B1(x2)
x2(t)

It is clear that this solution depends continuously on f, α and β and is unique.

Example 7.3.3 Let us compute the solution of the non-homogeneous boundary
value problem

d2x

dt2
= f(t)

x(0) = α, x(1) = β

As in Example 7.3.1, its Green’s function g(t, s) is given by

g(t, s) =







t(s− 1), t ≤ s

s(t− 1), t ≥ s

It is a symmetric function and satisfies the boundary conditions g(t, s)|t=0 =
0 = g(t, s)|t=1.

From the above

ġ(t, s) =







s− 1, t ≤ s

s, t ≥ s

ġ(t, s)|t=0 = (s− 1), ġ(t, s)|t=1 = s
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Using the formula for J(x, g) we get

J(x, g)|10 = [ẋg − xġ]
1
0

= [ẋ(1)g(1) − x(1)ġ(1)] − [ẋ(0)g(0) − x(0)ġ(0)]

= x(0)ġ(0) − x(1)ġ(1)

= αġ(0) − βġ(1)

= α(s− 1) − βs

Hence, by Theorem 7.3.4, the solution x(s) of the above boundary value problem
is given by

x(s) =

∫ 1

0

g(t, s)f(t)dt− J(x, g)|10

=

∫ 1

0

g(t, s)f(t)dt− α(s− 1) + βs

=

∫ s

0

t(s− 1)f(t)dt+

∫ 1

s

s(t− 1)f(t)dt+ α(1 − s) + βs

or

x(t) =

∫ t

0

s(t− 1)f(s)ds+

∫ 1

t

t(s− 1)f(s)ds+ α(1 − t) + βt

7.4 Construction of Green’s Function and Mod-

ified Green’s Function

We shall consider the boundary value problem

Lx = f

B1(x) = α, B2(x) = β

We prove the existence of Green’s function of the above system where the bound-
ary conditions are of unmixed and initial type only, by construction.

Theorem 7.4.1 For the restricted case of unmixed and initial boundary condi-
tions of the completely homogeneous system

Lx = 0, B1(x) = 0 = B2(x) (7.4.1)

which has only the trivial solution, the Green’s function for the boundary value
problem exists and is unique.

Proof : Uniqueness of the solution is immediate. For, if there are two Green’s
functions g1 and g2 then (g1 − g2) is a non-trivial solution of the completely ho-
mogeneous equation Eq. (7.4.1) which is a contradiction to the hypothesis. We
need to prove the existence in two parts, first for unmixed boundary conditions
and then for initial conditions.
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Case 1 Unmixed boundary conditions are given by

B1(x) = α11x(a) + α21ẋ(a) = 0

B2(x) = β21x(b) + β22ẋ(b) = 0

Let x1(t) be a non-trivial solution of Lx = 0 satisfying boundary condition
at t = a and x2(t) be a non-trivial solution satisfying boundary condition
at t = b. Such a solution exists, for one can take x1(t) to be the unique
solution of Lx = 0, x(a) = α12, ẋ(a) = −α11. This follows from the theory
of differential equation (Refer Coddington and Levinson[1].) Similarly, we
have the existence of x2(t). x1 and x2 are linearly independent, otherwise
the completely homogeneous system will have a non-trivial solution. The
Green’s function is then of the form







Ax1(t), a ≤ t < s

Bx2(t), s < t ≤ b

Continuity and jump conditions of g(t, s) give

Ax1(s) −Bx2(s) = 0

−Aẋ1(s) −Bẋ2(s) =
1

a0(s)

Solving the above of equations for A and B we get

A =
x2(s)

a0(s)W (x1, x2, s)

B =
x1(s)

a0(s)W (x1, x2, s)

where W (x1, x2, s) is the Wronskian of x1 and x2 and is non-zero since x1

and x2 are linearly independent.

So

g(t, s) =























x1(t)x2(s)

a0(s)W (x1, x2, s)
, a ≤ t < s

x1(s)x2(t)

a0(s)W (x1, x2, s)
, s < t ≤ b

This proves the existence of Green’s function for the boundary value prob-
lem.

Case 2 Boundary conditions are of initial type

x(a) = 0 = ẋ(a)



7.4. CONSTRUCTION OF GREEN’S FUNCTION AND MODIFIED GREEN’S FUNCTION223

Green’s function is of the form

g(t, s) =







0, a ≤ t < s

Ax1(t) +Bx2(t), t > s

where x1, x2 are two linearly independent solutions of Lx = 0.

Continuity and jump conditions on g(t, s) give

Ax1(s) +Bx2(s) = 0

Aẋ1(s) +Bẋ2(s) =
1

a0(s)

Solving for A and B, we get

A =
x2(s)

a0(s)W (x1, x2, s)

B =
x1(s)

a0(s)W (x1, x2, s)

This gives

g(t, s) =















0, a ≤ t ≤ s

x2(t)x1(s) − x1(t)x2s

a0(s)W (x1, x2, s)
, t ≥ s

Example 7.4.1 Let us compute the Green’s function for the string problem

d2x

dt2
= f(t)

x(0) = 0 = x(1)

We take x1(t) = t x2(t) = 1 − t. Then

W (x1, x2, s) =

∣

∣

∣

∣

∣

∣

s 1 − s

1 −1

∣

∣

∣

∣

∣

∣

= −1

=

∣

∣

∣

∣

∣

∣

x1(s) x2(s)

ẋ1(s) ẋ2(s)

∣

∣

∣

∣

∣

∣

A =
x2(s)

a0(s)W (x1, x2, s)
=

1 − s

−1

B =
x1(s)

a0(s)W (x1, x2, s)
=

s

−1
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So

g(t, s) =







t(s− 1), t ≤ s

s(t− 1), t ≥ s

Example 7.4.2 Consider the initial-value problem describing the motion of a
particle in a straight line

m
d2x

dt2
= f(t)

x(0) = 0 = ẋ(0)

We take x1(t) = 1, x2(t) = t as two linearly independent solutions of the

homogeneous differential equation
d2x

dt2
= 0.

Then

W (x1, x2, s) =

∣

∣

∣

∣

∣

∣

1 s

0 1

∣

∣

∣

∣

∣

∣

= 1

Hence

g(t, s) =











0, t ≤ s

(t− s)

m
, t ≥ s

Example 7.4.3 Consider the problem of heat distribution in a rod of unit length
and unit cross-section and with thermal conductivity k(t). If the heat source has
density f(t), then the governing equation is

− d

dt

(

k
dx

dt

)

= f(t)

Assume that the ends of the rod are kept at 0◦ temperature

x(0) = 0 = x(1)

We look for two linearly independent solutions x1(t) and x2(t) of the homoge-
neous equation

− d

dt

(

k
dx

dt

)

= 0

which satisfy the boundary conditions at 0 and 1 respectively. So we write

x1(t) =

∫ t

0

ds

k(s)
, x2(t) =

∫ t

1

dx

k(s)

W (x1, x2, s) =

∣

∣

∣

∣

∣

∣

∣

x1(s) x2(s)

1

k(s)
− 1

k(s)

∣

∣

∣

∣

∣

∣

∣
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= −x1(s) + x2(s)

k(s)
= −

∫ 1

0

k−1(s)ds

k(s)

Hence

g(t, s) =































x1(t)x2(s)

k(s)

[

k(s)
∫ 1

0 k
−1(t)dt

]

, t ≤ s

x1(s)x2(t)

k(s)

[

k(s)
∫ 1

0 k
−1(t)dt

]

, t ≥ s

=

[∫ 1

0

k−1(t)dt

]−1






x1(t)x2(s), t ≤ s

x2(t)x1(s), t ≥ s

Example 7.4.4 In the study of heat flow in a cylindrical shell, one comes across
the Bessel’s equation of the type

d

dt

(

t
dg

dt

)

+ tg = δ(t− s); a ≤ t ≤ b

with boundary conditions

g = 0 at t = a and t = b

As we know, the homogeneous Bessel’s equation

d

dt

(

t
dg

dt

)

+ tg = 0

has two linearly independent solutions J0(t) and Y0(t)

J0(t) =
∞
∑

n=0

(−1)nt2n

22n(n!)2

and

Y0(t) =
2

π

[

γ +
lnt

2

]

J0(t) +
2

π

(t/2)2

(1!)2
− 2

π

(t/2)4

(2!)2
(1 + 1/2)

+
2

π

(t/2)6

(3!)2
(1 + 1/2 + 1/3)− · · ·

where γ ∼= 0.5772 is the so called Euler constant which is the limit of 1 + 1
2 +

· · · + 1
5 − lns as s approaches infinity. But J0(t) and Y0(t) fail to satisfy the

boundary conditions at a and b. So we define two other linearly independent
solutions

Z1
0 (t) = J0(t)Y0(a) − Y0(t)J0(a)

Z2
0 (t) = J0(t)Y0(b) − Y0(t)J0(b)
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Obviously now Z1
0 (a) = 0 = Z2

0 (b).

It can be shown that

W (Z1
0 , Z

2
0 ; t) = W [J0, Y0; t][J0(a)Y0(b) − Y0(a)J0(b)]

=
2

πt
[J0(a)Y0(b) − Y0(a)J0(b)]

So

g(t, s) =



















Z1
0 (t)Z2

0 (s)

C
, t ≤ s

Z1
0 (s)Z2

0 (t)

C
, t ≥ s

where C =
2

π
[J0(a)Y0(b) − Y0(a)J0(b).

Example 7.4.5 Consider the boundary value problem

−d
2x

dt2
− λx = f(t)

x(0) = 0 = x(1)

To find the Green’s function for this problem we first look for two linearly inde-

pendent solutions of the completely homogeneous problem −d
2x

dt2
−λx = 0, which

satisfy the boundary condition at 0 and 1, respectively.

x1(t) = sin
√
λt, x2(t) = sin

√
λ(1 − t)

W (x1, x2; t) =

∣

∣

∣

∣

∣

∣

sin
√
λt sin

√
λ(1 − t)

√
λ cos

√
λt −

√
λ cos

√
λ(1 − t)

∣

∣

∣

∣

∣

∣

=
√
λ sin

√
λ(1 − t) cos

√
λt

+ sin
√
λt cos

√
λ(1 − t)

=
√
λ sin

√
λ(1 − t+ t)

=
√
λ sin

√
λ

So

g(t, s) =























sin
√
λt sin

√
λ(1 − s)√

λ sin
√
λ

, t ≤ s

sin
√
λ(1 − t) sin

√
λs√

λ sin
√
λ

, t ≥ s
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In general, where the boundary conditions are mixed, the Green’s function may
be found in a straignt forward way.

Let x1(t) and x2(t) be any two linearly independent solutions of Lx = 0.
Then write

g(t, s) = Ax1(t) +Bx2(t) +
x1(t)x2(s)H(s− t) + x2(t)x1(s)H(t− s)

W (x1, x2; s)a0(s)

where A and B are constants which will be determined so that g(t, s) satisfies
the given boundary conditions.

It is clear that g(t, s) is continuous and its derivative has a jump of magni-

tude
1

a0(s)
. Now consider the boundary conditions. Since they are linear and

homogeneous, we have

B1(g) ≡ AB1(x1) +BB1(x2) +B1(r) = 0 (7.4.2)

B1(g) ≡ AB1(x1) +BB1(x2) +B1(r) = 0 (7.4.3)

where r(x) stands for
x1(t)x2(s)H(s− t) + x2(t)x1(s)H(t− s)

W (x1, x2; s)a0(s)

The boundary conditions give us two linear equations which will determine
the values of A and B. These equations will have solutions if the determinant





B1(x1) B1(x2)

B2(x1) B2(x2)





does not vanish.

If the determinant vanishes, either B1(x1) = B2(x1) = 0, or B1(x2) =
B2(x2) = 0 which implies that either x1(t) or x2(t) is a non-trivial solution of the
completely homogeneous system which is a contradiction. The other possiblility
for the determinant to vanish is that there exists a constant c such that

B1(x2) + cB1(x1) = 0

B2(x2) + cB2(x1) = 0

These equations imply that B1(x2 + cx1) = B2(x2 + cx1) = 0, which is not
possible as discussed earlier. So by solving Eq. (7.4.2)- Eq. (7.4.3) for A and
B, we get the desired Green’s function.

So far, we have proved the existence of Green’s function for the system

Lx = f, B1(x) = 0 = B2(x)

under the assumption that the completely homogeneous system Lx = 0, B1(x)
= 0 = B2(x) has only the trivial solution. What happens when the com-

pletely homogeneous system has a non-trivial solution ?
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We state the following Alternative theorem which answers the question raised
above

Consider the related systems:

(i) The compeletely homogeneous system

Lx = 0; a ≤ t ≤ b; B1(x) = 0 = B2(x)

(ii) The inhomogeneous system

Ly = f ; a ≤ t ≤ b; B1(y) = 0 = B2(y)

(iii) The adjoint homogeneous system

L∗z = 0; a ≤ t ≤ b; B∗
1 (z) = 0 = B∗

2 (z)

Theorem 7.4.2 (a) If (i) has only the trivial solution x(t) = 0 in a ≤ t ≤ b,
then (iii) has also the trivial solution and (ii) has one and only one solution.

(b) If (i) has a non-trivial solution, (iii) will also have non-trivial solution
and (ii) has solution iff
∫ b

a

f(t)z(t) = 0 for every z which is a solution of (iii).

For a proof of this, refer Stakgold [5].

Example 7.4.6 Consider the self-adjoint system

d2g

dt2
= δ(t− s) (7.4.4)

g(0) = 0, ġ(1) = g(1)

The completely homogeneous system

d2g

dt2
= 0, g(0) = 0, ġ(1) = g(1)

has a non-trivial solution g = t.

So it follows by alternative theorem that Eq. (7.4.4) will have a solution iff
∫ 1

0

δ(t− s)dt = 0. Since

∫ 1

0

δ(t− s)dt 6= 0, Eq. (7.4.4) will have no solution.

That is, the ordinary Green’s function does not exist.

Example 7.4.7 Consider the self-adjoint system

d2g

dt2
= δ(t− s), 0 ≤ t ≤ 1 (7.4.5)

g(0) = 0 = ġ(1)
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The completely homogeneous system

d2g

dt2
= 0, ġ(0) = 0 = ġ(1)

has a non-trivial solution g = const. Hence Eq. (7.4.5) has no solution, for
∫ 1

0

δ(t− s)ds 6= 0.

That is, the ordinary Green’s function can not be constructed for Eq. (7.4.5).

Modified Green’s Function
Assume that the self-adjoint system

Lx = f ; a ≤ t ≤ b; B1(x) = 0 = B2(x)

is such that the completely homogeneous system

Lx = 0; a ≤ t ≤ b; B1(x) = 0 = B2(x)

has non-trivial solution of the form x1(t), where x1(t) is normalized
(

∫ b

a

x2
1(t)dt = 1

)

.

It now follows that the Green’s function which is a solution of the system

Lg = δ(t− s); B1(g) = 0 = B2(g)

will not exist for

∫ b

a

x1(t)δ(t − s)dt 6= 0. However, in order to compute the

Green’s function one has to resort to modified Green’s function by the addition
of new source density of strength x1(s).

Definition 7.4.1 Modified Green’s function is the solution of the system

LgM (t, s) = δ(t− s) − x1(t)x1(s)

B1(gM ) = 0 = B2(gM )

It is clear that the solution of the above system exists for

∫ b

a

[δ(t− s) − x1(t)x1(s)]x1(t)dt = 0

The method of construction of gM is now similar to that of ordinary Green’s
function which we have already discussed.

Theorem 7.4.3 The modified Green’s function gM (t, s) is symmetric if

∫ b

a

gM (t, s)x1(t)dt = 0 for every s
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Proof : Consider gM (t, s1) and gM (t, s2) wich satisfy the systems:

LgM (t, s1) = δ(t− s1) − x1(t)x1(s1) (7.4.6)

B1(gM (t, s1)) = 0 = B2(gM (t, s1))

and

LgM (t, s2) = δ(t− s2) − x1(t)x1(s2) (7.4.7)

B1(gM (t, s2)) = 0 = B2(gM (t, s2))

Multiply Eq. (7.4.6) by gM (t, s2) and Eq. (7.4.7) by gM (t, s1) and subtract and
integrate from a to b. Then we get

∫ b

a

[gM (t, s2)(LgM (t, s1)) − gM (t, s1)(LgM (t, s2))] dt

=

∫ b

a

gM (t, s2)δ(t− s1)dt−
(

∫ b

a

x1(t)gM (t, s2)dt

)

x1(s1)

−
∫ b

a

gM (t, s1)δ(t− s2)dt+

(

∫ b

a

x1(t)gM (t, s1)dt

)

x1(s2)

Using Green’s formula and boundary conditions for gM (t, s1), gM (t, s2), we have

0 = gM (s1, s2) − gM (s2, s1) − x1(s1)

(

∫ b

a

x1(t)gM (t, s2)dt

)

+x1(s2)

(

∫ b

a

x1(t)gM (t, s1)dt

)

But
∫ b

a
x1(t)gM (t, s)dt = 0 for every s. Hence

gM (s1, s2) = gM (s2, s1)

On imposing the conditions of symmetry on gM (t, s) we can alternatively
define the modified Green’s function as the solution of the system:

LgM (t, s) = δ(t− s) − x1(t)x1(s); a ≤ t, s ≤ b

satisfying

(i) B1(gM (t, s)) = 0 = B2(gM (t, s))

(ii) gM (t, s) is continuous at t = s
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(iii)
dgM

dt
|t=s+ − dgM

dt
|t=s− =

1

a0(s)

and

(iv)
∫ b

a
x1(t)gM (t, s)dt = 0 for every s

For computational purposes, the above defining property of gM (t; s) will be used.
We finally have the following theorem which gives a solution of the self-adjoint
system by using the modified Green’s function.

Theorem 7.4.4 Let gM (t, s) be the modified Green’s function of the self-adjoint
system

Lx = f ; a ≤ t ≤ b; B1(x) = 0 = B2(x) (7.4.8)

having x1(t) as the only normalized solution of the completely homogeneous
system.

If

∫ b

a

f(t)x1(t)dt = 0, then Eq. (7.4.8) has a solution x(t) given by

x(t) =

∫ b

a

gM (t, s)f(s)ds + Cx1(t).

Proof : The existence of a solution of Eq. (7.4.8) is clear by alternative

theorem, for

∫ b

a

f(t)x1(t)dt = 0.

We have
Lx = f ; B1(x) = 0 = B2(x)

and

LgM = δ(t− s) − x1(t)x1(s)

B1(gM ) = 0 = B2(gM )

By our standard procedure we get

∫ b

a

(gMLx− xLgM ) =

∫ b

a

gM (t, s)f(t)dt −
∫ b

a

x(t)δ(t− s)dt

+x1(s)

∫ b

a

x1(t)x(t)dt

Using Green’s formula, it reduces to

J(x, gM ) =

∫ b

a

gM (t, s)f(t)dt − x(s) + Cx1(s)

The LHS vanishes, fo both x and gM satisfy zero boundary conditions and there
fore we have

x(s) =

∫ b

a

gM (t, s)f(t)dt+ Cx1(s)
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or

x(t) =

∫ b

a

gM (t, s)f(s)ds+ Cx1(t)

Example 7.4.8 Consider the system

d2x

dt2
= sin 2πt; 0 ≤ t ≤ 1

(7.4.9)

ẋ(0) = 0 = ẋ(1)

The completely homogeneous system has a non-trivial solution x = const.

Since

∫ 1

0

sin 2πtdt = 0, by Theorem 7.4.4, the above system has a solution x(t)

given by

x(t) =

∫ b

a

gM (t, s) sin 2πsds+ C (7.4.10)

To compute gM (t, s) we solve the system

d2gM

dt2
= δ(t− s) − 1 (7.4.11)

˙gM (0) = 0 = ˙gM (1)

gM (t, s) is continuous at t = s

dgM

dt
|t=s+ − dgM

dt
|t=s− = 1

∫ 1

0

gM (t, s)dt = 0 for every s

Integrating Eq.(7.4.11) and using boundary conditions, we get

gM (t, s) =







A− t2

2 , t < s

C + t− t2

2 , t > s

Continuity at t = s implies that

A− s2

2
= C + s− s2

2

or

C = A− s
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So

gM (t, s) =







A− t2

2 , t ≤ s

A− s+ t− t2

2 , t ≥ s

The last defining condition gives

∫ s

0

(A− t2

2
)dt+

∫ 1

s

(A− s+ t− t2

2
)dt = 0

That is, As− s
6 +

[

A− s+ 1
2 − 1

6

]

−
[

(A− s)s+ s2

2 − s3

3

]

= 0, which gives

A =

[

s− s2

2
− 1

3

]

Hence, we have the following symmetric modified Green’s function

gM (t, s) =















[

s− s2

2 − 1
3

]

− t2

2 , t ≤ s

[

s− s2

2 − 1
3

]

− s+ t− t2

2 , t ≥ s

=







s− 1
3 − s2+t2

2 , t ≤ s

t− 1
3 − s2+t2

2 , t ≥ s

7.5 Eigenfunction Expansion - Sturm-Liouville

System

Consider the self-adjoint system

Lx− λx = f, 0 ≤ t ≤ b

(7.5.1)

B1(x) = 0 = B2(x)

where a and b are finite constants and f ∈ L2[a, b]. Such a self-adjoint system
is called Sturm-Liouville system.

We assume that the operator L acts on L2[a, b] with domain D define as

D = {x ∈ L2[a, b] : ẋ, ẍ ∈ L2[a, b], B1(x) = 0 = B2(x)}

We consider the related eigenvalue problem

Lφ = λφ, B1φ = 0 = B2φ (7.5.2)

with the assumption that λ = 0 is not an eigenvalue of L. We get the following
important theorem, giving eigenfunctions of L as a basis for L2[a, b].
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Theorem 7.5.1 The self-adjoint system Eq.(7.5.2) has discrete eigenvalues
{λ1, λ2, · · · , λn, · · · } and the corresponding eigenfunctions {φ1, φ2, · · · , φn, · · · }
form a compelete orthonormal set in L2[a, b].

Proof : As zero is not the eigenvalue of L, there exists Green’s function g such
that the solvability of Eq. (7.5.2) is equivalent to the solvability of the integral
equation

x(t) = λ

∫ b

a

g(t, s)x(s)ds (7.5.3)

in the space L2[a, b]. Let K be the integral operator generated by g(t, s)

[Kx](t) =

∫ b

a

g(t, s)x(s)ds

Then Eq. (7.5.3) is equivalent to the following operator equation

[Kx] =
1

λ
x = µx, µ =

1

λ
(7.5.4)

in the space L2[a, b].
We note that µ = 0 is not an eigenvalue of K. For, if x 6= 0 exists satisfying

∫ b

a

g(t, s)x(s)ds = 0, then the boundary value problem

Lw = x, B1(w) = 0 = B2(w)

has a unique solution w =

∫ b

a

g(t, s)x(s)ds = 0. This implies that x = Lw = 0,

a contradiction.

We observe that

∫ b

a

∫ b

a

g2(t, s)dtds <∞ and hence the operator K generated

by g(t, s) is a compact operator on L2[a, b]. K is also self-adjoint as the system
Eq. (7.5.2) is self-adjoint. So, it follows from Theorem 2.2.6 that eigenvalues of
K are discrete and the eigenfunctions of K form a basis for L2[a, b]. As K and
L are inverses of each other, it follows that eigenvalues of L are discrete and the
corresponding eigenfunctions {φ1, φ2, · · · , φn, · · · } form a basis for L2[a, b].

Theorem 7.5.2 If λ is not any one of the eigenvalues {λ1, λ2, · · · } of L, then
the self-adjoint system Eq. (7.5.1) has one and only one solution x(t) ∈ L2[a, b]
given by

x(t) =

∞
∑

n=1

fnφn(t)

λn − λ

where fn is given by fn = (f, φn). Here (., .) is the innerproduct in L2(a, b].
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Proof : Since λ is not any one of the eigenvalues, uniqueness of the solution
of Eq. (7.5.1) follows by Theorem 7.4.2. {φ1, φ2, · · · } is a complete orthonormal
set in L2[a, b] and hence we can write

f(t) =
∞
∑

n=1

fnφn; fn = (f, φn) =

∫ b

a

f(t)φn(t) dt (7.5.5)

and

x(t) =

∞
∑

n=1

xnφn; xn = (x, φn) =

∫ b

a

x(t)φn(t) dt (7.5.6)

Operating on Eq. (7.5.6) by (L− λI) we get

(L− λI)x(t) =
∞
∑

n=1

xn(L− λI)φn(t) =
∞
∑

n=1

xn(λn − λ)φn(t)

Since (L− λI)x = f, we get

∞
∑

n=1

xn(λn − λ)φn(t) =

∞
∑

n=1

fnφn(t)

That is

∞
∑

n=1

[fn − xn(λn − λ)] φn(t) = 0. Completeness of {φ1, φ2, · · · } implies

that fn − xn(λn − λ) = 0 and hence xn = fn/(λn − λ).
Plugging in the value of xn in Eq. (7.5.6) we get

x(t) =
∞
∑

n=1

fn

(λn − λ)
φn(t)

Remark 7.5.1 If λ = λj for some j, Eq. (7.5.1) has infinitely many solutions
if fj = 0 and no solution if fj 6= 0. This remark follows by Theorem 7.4.2.

Corollary 7.5.1 If zero is not one of the eigenvalues of the boundary value
problem

Lx = f ; B1(x) = 0 = B2(x) (7.5.7)

then the above system has a unique solution x(t) given by

x(t) =

∞
∑

n=1

fn

λn
φn(t) =

∞
∑

n=1

(

∫ b

a

f(y)φn(y)dy

)

φn(t)

λn
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Example 7.5.1 Consider the self adjoint-system

−d
2x

dt2
= f(t); x(0) = 0, ẋ(1) =

1

2
x(1)

The associated eigenvalue problem is

−d
2φ

dt2
= λφ; φ(0) = 0, φ̇(1) =

1

2
φ(1)

We take up different cases, depending upon the algebraic sign of λ. It can be
easily seen that there are no negative eigenvalues. For λ > 0, φ(t) = c1 sin

√
λt

+c2 cos
√
λt. Boundary condition φ(0) = 0 gives c2 = 0 and hence φ(t) =

c1 sin
√
λt.

The second boundary condition implies that λ satisfies the equation

tan
√
λ = 2

√
λ

Let λ = k2, then the above equation becomes tan k = 2k. By considering the
curves y = tanx and y = 2x, we see that the above equation has infinitely many
solutions. So eigenvalues are given by λ = k2

n where kn is a non-zero solution of

tan k = 2k. The corresponding normalized eigenfunctions are − 2

cos 2kn
sin knt.

These eigenfunctions are orthogonal and form a complete set. Hence, by Theo-
rem 7.5.2, the solution x(t) of the above system is given by

x(t) =
∞
∑

n=1

4 sin knt

k2
n(cos 2kn)2

[∫ 1

0

f(y) sin kny dy

]

Example 7.5.2 Consider the boundary value problem

−1

t

d

dt

(

t
dt

dt

)

= f(t)

lim
t→0

t
dx

dt
= 0; x(1) = 0

We first make the above system self-adjoint by defining a new inner product

(x, y) =

∫ 1

0

tx(t)y(t) dt and hence its eigenvalues are real. The associated eigen-

value problem is

−1

t

d

dt

(

t
dφ

dt

)

+ λφ = 0

That is,
dφ

dt
+

1

t

dφ

dt
+ λφ = 0

This is a Bessel’s equation of zero order in the variable
√
λt and has the solution

φ(t) = AJ0(
√
λt) + BY0(

√
λt). But the first boundary condition gives B = 0.
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Hence, φ(t) = AJ0(
√
λt). The second boundary condition gives J0(

√
λ) = 0.

Thus, the zeros of the Bessel’s function J0(t) gives the eigenvalues of the above
boundary value problem. The corresponding eigenfunctions are φn = J0(

√
λnt).

{J0(
√
λnt)} forms a complete set and hence by Theorem 7.5.2

x(t) =

∞
∑

n=1

fnφn(t)

λn
=

∞
∑

n=1

J0(
√
λnt)

λn‖J0(
√
λnt)‖2

[∫ 1

0

f(y)J0(
√

λny) dy

]

Theorem 7.5.3 Let {λ1, λ2, · · · } be a discrete set of eigenvlaues of L with
eigenfunctions {φ1, φ2, · · · } forming a complete set in L2[a, b]. Then the Green’s

function for Eq. (7.5.1) is given by g(t, s, λ) =

∞
∑

n=1

φn(t)φn(s)

λn − λ
provided λ is not

one of the eigenvalues.

Proof : Green’s function g(t, s, λ) is the solution of the system Lg − λg =
δ(t − s), B1(g) = 0 = B2(g). Applying Theorem 7.5.2 for f(t) = δ(t − s)
(formally) we get

g(t, s, λ) =
∞
∑

n=1

δnφn(t)

λn − λ
, where δn =

∫ b

a

δ(t− s)φn(t) dt = φn(t)

That is

g(t, s, λ) =
∞
∑

n=1

φn(t)φn(s)

λn − λ

For more on this section refer Bose and Joshi [2].

7.6 Nonlinear Boundary Value Problem

In this section we shall be concerned with two point boundary value problem of
the form

Lx = f(t, x(t)), t ∈ [a, b] (7.6.1)

B1(x) = α, B2(x) = β (7.6.2)

whereL is the second order differential operator as defined before and B1(x), B2(x)
are boundary conditions on x.

Here f : [a, b]×< → < is nonlinear function satisfying Caratheodory condi-
tons:

(i) x → f(t, x) is continuous for almost all t ∈ [a, b].

(ii) t→ f(t, x) is measurable for all values of x ∈ <.
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Let g(t, s) be the Green’s function, corresponding to the operator L with given
zero boundary conditions. Then the solvability of the nonlinear boundary value
problem given by Eq. (7.6.1) is equivalent to the solvability of the integral
equation

x(t) =

∫ b

a

g(t, s)f(s, x(s))ds+ y(t) (7.6.3)

where y(t) is a known function given by y(t) = −J(x(s), g(t, s))|ba , J being the
bilinear concomitant of x and g.

We shall prove the existence of solution of Eq. (7.6.3) in the space X =
L2[a, b] by using operator theoretic approach in terms opratorsK andN , defined
as below

[Kx](t) =

∫ b

a

g(t, s)x(s)ds (7.6.4)

[Nx] (t) = f(t, x(t)) (7.6.5)

Assumptions I

(i) g(t, s) is a Hilbert Schmidt kernel . That is

k2 =

∫ b

a

∫ b

a

g2(t, s)dtds <∞ (7.6.6)

(ii) f(t, x) satisfies growth condition of the form

|f(t, x)| ≤ a(t) + b|x|, a ∈ L2(a, b), b > 0 (7.6.7)

(iii) x → f(t, x) is Lipschitz continuous - there exists constant γ > 0 such that

|f(t, x1) − f(t, x2)| ≤ γ|x1 − x2| ∀t ∈ [a, b], ∀x1, x2 ∈ < (7.6.8)

Theorem 7.6.1 Let Assumptions I hold and let kγ < 1. Then Eq. (7.6.1)
has a unique solution x∗(t) which is obtained as a limit of the Picard iterates
xn(t), defined iteratively as

xn(t) = Txn−1(t) =

∫ 1

0

g(t, s)f(s, xn−1(s))ds + y(s) (7.6.9)

with x0(t) = y(t).

Proof : Solvability of Eq. (7.6.1) or Eq. (7.6.3) is equivalent to the solvability
of the operator equation

x = KNx+ y (7.6.10)

where K, N are as defined by Eq. (7.6.4), Eq. (7.6.5), respectively.
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We have already proved in Example 2.2.8 that K is a compact operator on
X . Also, inview of Assumption I(ii), it follows thatN is a bounded continuous
operator on X ( refer Joshi and Bose [4] ). Further Assumption I(iii) implies
that N is Lipschitz continuous, that is,

‖Nx1 −Nx2‖X ≤ γ‖x1 − x2‖X ∀x1, x2 ∈ X

Let

Tx = KNx+ y, ∀x ∈ X (y ∈ X fixed)

Then

‖Tx1 − Tx2‖ = ‖K(Nx1 −Nx2)‖

≤ ‖K‖ ‖Nx1 −Nx2‖

≤ kγ‖x1 − x2‖ ∀x1, x2 ∈ X

If α = kγ < 1, it follows that T is a contraction on the space X and hence
it has a fixed point x∗ and this point is approximated by the iterates xn =
Txn−1, x0 = y. This proves that x∗(t) is a solution of Eq. (7.6.1) where
x∗(t) = lim

n→∞
xn(t). Thus, we have

xn(t) =

[

y(t) +

∫ b

a

g(t, s)f(s, xn−1(s))ds

]

and

x0(t) = y(t)

This proves the theorem.

Example 7.6.1 Let us consider the nonlinear boundary value problem

d2x

dt2
= γ sinx(t) (7.6.11)

x(0) = α, x(1) = β (7.6.12)

Following Example 7.3.1, we find that the Green’s function g(t, s) for the above
problem is given by

g(t, s) =







t(s− 1), t ≤ s

s(t− 1), t ≥ s

This gives

∫ 1

0

∫ 1

0

g2(t, s)dtds =
1

90
and hence k = ‖K‖ =

1

3(
√

10)
.
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Solvability of Eq. (7.6.11) is equivalent to the solvability of the integral equa-
tion

x(t) = γ

∫ 1

0

g(t, s) sinx(s)ds+ y(t) (7.6.13)

where y(t) = α(1 − t) + βt.
It is clear that f(x) = γ sinx which satisfies Assumptions I(i) and (ii).

If we assume that γ

(

1

3(
√

10)

)

< 1, it follows that Eq. (7.6.11) has a unique

solution x∗(t), which is the limit of xn(t), defined, iteratively as

xn(t) = α(1 − t) + βt+ γ

∫ 1

0

g(t, s) sinxn−1(s)ds

with x0(t) = α(1 − t) + βt.

If f is monotone increasing, we may resort to the concept of monotone
operators (see Section 2.4) to get a solvability results for Eq. (7.6.1).

Assumptions II

(i) [g(t, s)] is symmetric positive semidefinite ( K is monotone) and Hilbert -
Schmidt.

(ii) Assumption I(ii) holds.

(iii) x → f(t, x) is strongly monotone: ∃ c > 0 such that

(f(t, x1) − f(t, x2)) (x1 − x2) ≥ c(x1 − x2)
2 x1, x2 ∈ <

Theorem 7.6.2 Under Assumptions II, Eq. (7.6.1) has a unique solution.

Refer Joshi and Bose [4] for the proof of this theorem.

Example 7.6.2 Consider the following boundary value problem:

d2x

dt2
+ γx+ sinx = 0 (7.6.14)

x(0) = α, x(1) = β (7.6.15)

Assume that γ > 1.
Solvability of Eq. (7.6.14) is equivalent to the solvability of the integral equa-

tion

x(t) +

∫ 1

0

g(t, s)[γx(s) + sinx(s)]ds = α(1 − t) + βt

Observe that [Kx](t) =

∫ 1

0

g(t, s)x(s)ds is positive semi definite as K is the

inverse of the differential operator Lx = −d
2x

dt2
which is positive semi definite

(monotone).
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As f(t, x) = γx+ sinx, we get
∂f(t, x)

∂x
= γ+ cosx ≥ (γ − 1) > 0 for all x ∈ <.

Hence, x → f(t, x) is a strongly monotone function:

(f(t, x1) − f(t, x2)) (x1 − x2) ≥ (α− 1)(x1 − x2)
2 ∀x1, x2 ∈ <

As g and f satisfy all Assumptions II, it follows that Eq. (7.6.14) has a
unique solution.

Remark 7.6.1 If γ is such that γ >
[

3(
√

10) − 1
]

> 1 then Eq. (7.6.14) is not
solvable through Theorem 7.6.1 whereas Theorem 7.6.2 is applicable.

7.7 Exercises

1. Consider the operator L with boundary conditions ẋ(0) = x(1), ẋ(1) = 0.
Find L∗ and adjoint boundary conditions.

2. Find the Green’s function for the operator L given by

(a) L = (t+ 1)
d2

dt2
with boundary conditions x(0) = 0 = x(1).

(b) L =
d2

dt2
with boundary conditions ẋ(0) = x(1), ẋ(1) = 0.

3. Find the modified symmetric Green’s function for the system L =
d2

dt2
,

−1 ≤ t ≤ 1 with boundary conditions x(−1) = x(1) and ẋ(−1) = ẋ(1).

4. Show that the differential operator

Lx = − 1

w(t)
(a0(t)ẋ) + a2(t)x, w(t) > 0

is formally self adjoint if the inner product is defined by

(x, y) =

∫ 1

0

w(t)x(t)y(t)dt

5. Prove that the solution x(t) =
∫ 1

0 g(t, s)f(s)ds of the system

Lx = f, B1(x) = 0 = B2(x)

depends continuously on f .

6. Using Green’s function technique, show that the solution x(t) of the
boundary value problem

d2x

dt2
+ tx = 1, x(0) = ẋ(0) = 0
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satisfies the Volterra integral equation

x(t) =

∫ t

0

s(s− t)x(s)ds +
1

2π2

Prove that the converse of the above is also true. Compare this approach
with that of the initial value problem.

7. Obtain the solution of the following boundary value problems through
eigenfunction expansion.

(a)
d2x

dt2
+ x = t, x(0) = 0, ẋ(1) = 0

(b)
d2x

dt2
+ x = sin t, x(1) = 2, ẋ(0) = 1

(c)
d2x

dt2
+ x = et, x(0) = x(1), ẋ(0) = ẋ(1)

8. Compute the first few Picard iterates for the following nonlinear boundary
value problems

(a)
d2x

dt2
= x+ x3, x(0) = 0 = x(1)

(b)
d2x

dt2
= x+ sinx, ẋ(0) = 0 = ẋ(1)
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Chapter 8

Control Theory Of Linear

Systems

Control theory deals with the maneuver of the state or trajectory of the sys-
tem, modelled by ODE. Some of the important properties of such systems are
controllability, observability and optimality.
In this chapter we show how operator theoretic approach in function spaces is
useful to discuss the above mentioned properties. We substantiate our theory
by concrete examples.

8.1 Controllability

We shall be interested in the linear system of the form

dx̄

dt
= A(t)x̄(t) +B(t)ū(t) (8.1.1a)

x̄(t) = x̄0 (8.1.1b)

where A(t) is n×n matrix, B(t) is n×m matrix, ū(t) ∈ <m and x̄(t) ∈ <n. ū(t)
is called control or input vector and x̄(t) the corresponding trajectory or state
of the system.

The typical controllability problem involves the determination of the control
vector ū(t) such that the state vector x̄(t) has the desired properties. We assume
that the entries of the matrices A(t), B(t) are continuous so that the above
system has a unique solution x̄(t) for a given input ū(t) .

Definition 8.1.1 The linear system given by Eq. (8.1.1) is said to be control-
lable if given any initial state x̄0 and any final state x̄f in <n, there exist a
control ū(t) so that the correspondoing trajectory x̄(t) of Eq. (8.1.1) satisfies
the condition

x̄(t0) = x̄0, x̄(tf ) = x̄f (8.1.2)

243
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The control ū(t) said to steer the trajectory from the initial state x̄0 to the final
state x̄f .

Assume that φ(t, t0) is the transition matrix of the above system. Then by
the variation of parameter formula, Eq. (8.1.1) is equivalent to the following
integral equation

x̄(t) = φ(t, t0)x̄0 +

∫ t

t0

φ(t, τ)B(τ)ū(τ)dτ (8.1.3)

As (t, τ) → φ(t, τ) is continuous, it follows that ‖φ(t, τ)‖ ≤ M for all t, τ ∈
[t0, tf ].

So controllability of Eq. (8.1.1) is equivalent to finding ū(t) such that

x̄f = x̄(tf ) = φ(tf , t0)x̄0 +

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ

Equivalently,

x̄(tf ) − φ(tf , t0)x̄0 =

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ (8.1.4)

Let us define a linear operator L : X = L2 ([t0, tf ], <m) by

[Lū] =

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ (8.1.5)

Then, in view of (8.1.4), the controllability problem reduces to showing that
operator L is surjective.

Theorem 8.1.1 The system given by Eq. (8.1.1) is controllable iff the control-
lability Grammian

W (t0, tf ) =

∫ tf

t0

[

φ(tf , τ)B(τ)B>(τ)φ>(t, tf )
]

dτ (8.1.6)

is nonsingular. A control ū(t) steering the system from the initial state x̄0 to
the final state x̄f is given by

ū(t) = B>(t)φ>(tf , t) [W (t0, tf )]
−1

[x̄f − φ(tf , t0)x̄0]

Proof : Let (x̄0, x̄f ) be any pair of vectors in <n × <n. The controllability
problem of Eq. (8.1.1) reduces to the determination of ū ∈ X such that

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ = z̄f = x̄f − φ(tf , t0)x̄0

This is equivalent to solving
Lū = z̄f
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in the space X for a given z̄f , where L is given by Eq. (8.1.5).
We first note that L is a bounded linear operator as φ(t, τ) is bounded. Let

L∗ : <n → X be its adjoint. This is determined as follows.
For ū ∈ X and ᾱ ∈ <n, we have

(Lū, ᾱ)<n =

(

ᾱ,

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ

)

<n

=

∫ tf

t0

(ᾱ, φ(tf , τ)B(τ)ū(τ))<n dτ

=

∫ tf

t0

(

B>(τ)φ>(tf , τ)ᾱ, ū(τ)
)

<n dτ

= (ū, L∗ᾱ)X

This implies that

[L∗ᾱ](t) = B>(t)φ>(tf , t)ᾱ (8.1.7)

To claim that L is onto, it is sufficient to prove that LL∗ : <n → <n is onto
(equivalently nonsingular). That is, given any z̄f ∈ <n, find ᾱ ∈ <n such that

LL∗ᾱ = z̄f (8.1.8)

If Eq. (8.1.8) is solvable, then a control ū which solves Lū = z̄f is given by
ū = L∗ᾱ.
Computing LL∗ we get

[LL∗](ᾱ) = L
(

B>(t)φ>(tf , t)ᾱ
)

=

[∫ tf

t0

[

φ(tf , t)B(t)B>(t)φ>(tf , t)
]

dt

]

ᾱ

= W (t0, tf )ᾱ

If the controllability Grammian W (t0, tf ) is nonsingular, we have a control ū(t)
given by

ū(t) = L∗α = L∗(LL∗)−1z̄f

= L∗ [W (t0, tf )]
−1
z̄f

= B>(t)φ>(tf , t) [W (t0, tf )]
−1

[x̄f − φ(tf , t0)x̄0]

which will steer the state from the initial state x̄0 to the final state x̄f .

Conversely, let the Eq. (8.1.1) be controllable. That is, L is onto. Equiva-

lently, R(L) = <n. Then, by Theorem 2.2.1, N(L∗) = [R(L)]
⊥

= [<n]
⊥

= {0}.
Hence L∗ is 1-1. This implies LL∗ is also 1-1, which is proved as under. Assume
that LL∗ᾱ = 0. This gives 0 = (LL∗ᾱ, ᾱ) = (L∗ᾱ, L∗α) = ‖L∗α‖2 and hence
L∗ᾱ = 0̄. L∗ 1-1 implies that ᾱ = 0. Thus N(LL∗) = {0̄}.
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Thus W (t0, tf ) = LL∗ : <n → <n is 1-1 and hence nonsingular . This proves
the result.

The controllability GrammianW (t0, tf ) has some intersting properties, which
we now describe.

Theorem 8.1.2 (i) W (t0, tf ) is symmetric and positive semidefinite.
(ii) W (t0, tf ) satisfies the linear differential equation

d

dt
[W (t0, t)] = A(t)W (t0, t) +W (t0, t)A

>(t) +B(t)B>(t)

W (t0, t0) = 0

(iii) W (t0, tf ) satisfies functional equation

W (t0, tf ) = W (t0, t) + φ(tf , t)W (t, tf )φ>(tf , t)

Proof : We have

W (t0, tf ) =

∫ tf

t0

[

φ(tf , τ)B(τ)B>(τ)φ>(tf , τ)
]

dτ

(i) It is clear that W>(t0, tf ) = W (t0, tf ). Further,

(W (t0, tf )ᾱ, ᾱ)<n =

∫ tf

t0

(

φ(tf , τ)B(τ)B>(τ)φ>(tf , τ)ᾱ, ᾱ
)

<n dτ

=

∫ tf

t0

‖B>(τ)φ>(tf , τ)ᾱ‖2

≥ 0

for all ᾱ ∈ <n.

(ii) Using Leibnitz rule, we get

d

dt
(W (t0, t)) =

d

dt

[∫ t

t0

φ(tf , τ)B(τ)B>(τ)φ(t, τ)dτ

]

= B(t)B>(t) +

[∫ t

t0

d

dt

[

φ(tf , τ)B(τ)B>(τ)φ>(t, τ)
]

dτ

]

= B(t)B>(t) +

[∫ t

t0

A(t)φ(tf , τ)B(τ)B>(τ)φ(t, τ)dτ

]

+

[∫ t

t0

φ(tf , τ)B(τ)B>(τ)φ>(t, τ)A>(t)dτ

]

= A(t)W (t0, t) +W (t0, t)A
>(t) +B(t)B>(t)

Bounadry condition W (t0, t0) = 0 follows from the definition.
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(iii) To get the functional equation we express W (t0, tf ) as follows

W (t0, tf ) =

∫ t

t0

φ(tf , τ)B(τ)B>(τ)φ>(tf , τ)dτ

+

∫ tf

t

φ(tf , τ)B(τ)B>(τ)φ>(tf , τ)dτ

= W (t0, t) + φ(tf , t)

(∫ tf

t

φ(t, τ)B(τ)B>(τ)φ>(t, τ)dτ

)

φ>(tf , t)

= W (t0, t) + φ(tf , t)W (t, tf )φ>(tf , t)

Remark 8.1.1 Theorem 8.1.1 implies that to check the controllability of the
linear system given by Eq. (8.1.1), one needs to verify the invertibility of the
Grammian matrix W (t0, tf ). This is a very tedious task. However, if A(t) and
B(t) are time invariant matrics A,B, then the controllability of the linear system
is obtained in terms of the rank of the following controllability matrix

C =
[

B,AB, · · · , An−1B
]

(8.1.9)

The next theorem, in this direction, is due to Kalman [4].

Theorem 8.1.3 The linear autonomous system

dx̄

dt
= Ax̄(t) +Bū(t) (8.1.10a)

x̄(t0) = x̄0 (8.1.10b)

is controllable iff the controllability matrix C given by Eq. (8.1.9) has rank n.

Proof : Assume the rank of C = n. It follows that N(C>) = {0̄}. We shall
prove that N(W (t0, tf )) = {0̄}. Let ᾱ ∈ <n be such that W (t0, tf )ᾱ = 0. This
implies that

0 = ‖W (t0, tf )ᾱ‖2 =

∫ tf

t0

‖B>φ>(tf , τ)ᾱ‖2dτ

=

∫ tf

t0

‖B>eA>(tf−τ)ᾱ‖2dτ

This implies that

B>eA>(tf−τ)ᾱ = 0 for all t ∈ [t0, tf ] (8.1.11)

Expanding the LHS of Eq. (8.1.11) in a Taylor series arround t = tf , we get
that

0 = B>ᾱ = B>(A>)ᾱ = B>(A>)2ᾱ = · · ·B>(A>)n−1ᾱ
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This implies that ᾱ ∈ N(C>) = {0̄}.

Conversely, let N(W (t0, tf )) = {0̄}. We shall show that N(C>) = {0̄}.
Assume that ᾱ ∈ N(C>). This implies that

B>(A>)kᾱ = 0, 1 ≤ k ≤ n− 1 (8.1.12)

We have

W (t0, tf )ᾱ =

∫ tf

t0

[

φ(tf , τ)BB
>φ>(t, τ)ᾱ

]

dτ

As φ(tf , τ) = eA(tf−τ), it follows by Cayley-Hamilton theorem (refer prob-
lem number 4 in Section 5.5), that there exist functions αk(tf − τ) such that

φ(tf , τ) =
n−1
∑

k=0

αk(tf − τ)Ak and hence W (t0, tf )ᾱ is given by

W (t0, tf )ᾱ =

∫ tf

t0

φ(tf , τ)B(τ)

[

n−1
∑

k=0

αk(tf − τ)B>(AT )kᾱ

]

dτ (8.1.13)

In view of Eq. (8.1.12), we have

n−1
∑

k=0

αk(tf − τ)B>(A>)kᾱ = 0. This implies

that ᾱ ∈ N(W (t0, tf )) = {0̄}.
This proves the theorem.

Example 8.1.1 Let us recall Example 2.3.5 which gives the linearized motion
of a satellite of unit mass orbiting around the earth. This is given by the control
system of the form given by Eq. (8.1.10), where

A =





















0 1 0 0

3w2 0 0 2w

0 0 0 1

0 −2w 0 0





















B =





















0 0

1 0

0 0

0 1
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For this system, one can easily compute the controllability matrix,
C =

[

B,AB,A2B,A3B
]

. It is given by

C =





















0 0 1 0 0 2w −w2 0

1 0 0 2w −w2 0 0 −2w3

0 0 0 1 −2w 0 0 −4w2

0 1 −2w 0 0 −4w2 2w3 0





















One can verify that rank of C is 4 and hence the linearized motion of the satellite
is controllable. It is intersting to ask the following question.

What happens when one of the controls or thrusts becomes inoperative ?

For this purpose set u2 = 0 and hence B reduces to B1 = [0 1 0 0]>.

So, the controllability matrix C1 = [B1, AB1, A
2B1, A

3B1], is given by

C1 =





















0 1 0 −w2

1 0 −w2 0

0 0 −2w 0

0 −2w 0 2w3





















C1 has rank 3.

On the other hand u1 = 0 reduces B to B2 = [0 0 0 1]> and this gives control-
lability matrix C2 = [B2, AB2, A

2B2, A
3B2], as

C2 =





















0 0 2w 0

0 2w 0 −2w3

0 1 0 −4w2

1 0 −4w2 0





















C2 has rank 4.

Since u1 was radial thrust and u2 was trangential thrust, we see that the loss
of radial thrust does not destroy controllability where as loss of tangential thrust
does. In terms of practical importance of satellite in motion, the above analysis
means that we can maneuver the satellite just with radial rocket thrust.
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8.2 Observability

Consider the input-output system of the form

dx̄

dt
= A(t)x̄(t) +B(t)x̄(t) (8.2.1a)

ȳ(t) = C(t)x̄(t) (8.2.1b)

The questions concerning observability relate to the problem of determining the
values of the state vector x̄(t), knowing only the output vector ȳ(t) over some
interval I = [t0, tf ] of time.

As in the previous section, A(t) ∈ <n×n, B(t) ∈ <n×m are assumed to be
continuous functions of t. Let φ(t, t0) be the transition matrix of the above
system. Then the output vector ȳ(t) can be expresssed as

ȳ(t) = C(t)φ(t, t0)x̄(t0) + ȳ1(t) (8.2.2)

where ȳ1(t) is known quantity of the form

y1(t) =

∫ tf

t0

C(t)φ(t, τ)B(τ)u(τ)dτ

Thus, from Eq. (8.2.2) it follows that if we are concerned about the deter-
mination of x̄(t0), based on the output ȳ(t), we need only the homogeneous
system

dx̄

dt
= Ax̄(t) (8.2.3a)

ȳ(t) = C(t)x̄(t) (8.2.3b)

in place of Eq. (8.2.1).

Definition 8.2.1 We shall say that Eq. (8.2.3) is observable on I = [t0, tf ] if
ȳ(t) = 0 on I implies that x̄(t) = 0 on I.

We define a linear operator L : <n 7→ X = L2 ([t0, tf ], <n) as

[Lx̄0](t) = C(t)φ(t, t0)x̄0 = H(t)x̄0 (8.2.4)

where H : t→ H(t) is a matrix function which is continuous in t. Observability
of the system Eq. (8.2.3), then, reduces to proving that L is one-one.

The following theorem gives the observability of the system given by Eq. (8.2.3),
in terms of the nonsingularity of the matrix M(t0, tf ).

Theorem 8.2.1 For the homogeneous system given by Eq. (8.2.3), it is possible
to determine the initial state x̄(t0) within an additive constant vector which lies
with null space of M(t0, tf ) which is defined by

M(t0, tf ) =

∫ tf

t0

φ>(t, t0)C
>(t)C(t)φ(t, t0)dt (8.2.5)
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Hence x̄(t0) is uniquely determined if M(t0, tf ) is nonsingular. That is, Eq.
(8.2.3) is observable ifff M(t0, tf ) is nonsingular.

Proof : If the output vector ȳ(t) is known, solving ȳ(t) = C(t)φ(t, t0)x̄(t0) for
x̄(t0) is equivalent to solving the operator equation

Lx̄(t0) = ȳ (8.2.6)

where L is defined by Eq. (8.2.4). Premultiplying Eq. (8.2.6) by L∗, we get

[L∗L] x̄(t0) = L∗ȳ (8.2.7)

where L∗ : X → <n is given by

[L∗u] =

∫ tf

t0

φ>(t, t0)C
>(t)u(t)dt (8.2.8)

Observe that M(t0, tf ) = L∗L. If RHS of Eq. (8.2.7) is known, x̄(t0) is deter-
mined up to an additive constant lying in the null space of L∗L = M(t0, tf ). If
L∗L is invertible, then it is clear that L is one-one and hence the system given
by Eq. (8.2.3) is observable.

Conversely, if L is one-one then so is L∗L and hence R(L∗L) = [N(L∗L)]⊥ =
<n. This implies that L∗L is nonsingular. For such an observable system, the
initial state x̄(t0) is given by

x̄(t0) = (L∗L)−1L∗y = [M(t0, tf )]
−1

[
∫ tf

t0

φ>(t, t0)C
>(t)y(t)dt

]

(8.2.9)

This proves the theorem.

M(t0, tf ) defined by Eq. (8.2.5) is called the observability Grammian.

Theorem 8.2.2 The observability Grammian M(t0, tf ) satisfies the following
properties

(i) M(t0, tf ) is symmetric and positive semidefinite.

(ii) M(t0, tf ) satisfies the following matrix differential equation

d

dt
[M(t, t1)] = −A>(t)M(t, t1) −M(t, t1)A(t) − C>(t)C(t)

M(t1, t1) = 0

(iii) M(t0, tf ) satisfies the functional equation

M(t0, tf ) = M(t0, t) + φ>(t, t0)M(t, t1)φ(t, t0)
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The proof of the above theorem follows along the lines of the proof of the
Theorem 8.1.2. See Brocket [1] for more details.

We also have the following theorem giving the necessary and sufficient con-
tition which is easily verifiable for observability.

Let us denote by O the observability matrix

O = [C,CA, · · · , CAn−1] (8.2.10)

Theorem 8.2.3 The system given by Eq. (8.2.3) is observable iff the observable
matrix O given by Eq. (8.2.10) is of rank n.

Example 8.2.1 As a continuation of Example 8.1.1, consider the satellite or-
biting around the Earth.
We assume that we can measure only the distance r of the satellite from the
centre of the force and the angle θ. So, the defining state-output equation of the
satellite is given by

dx̄

dt
= Ax̄(t)

ȳ(t) = Cx(t)

where

A =





















0 1 0 0

3w2 0 0 2w

0 0 0 1

0 −2w 0 0





















C =





1 0 0 0

0 0 1 0





x̄ = (x1, x2, x3, x4), ȳ = (y1, y2); y1 = r, y2 = θ being the radial and angle
measuments. So, the observability matrix O is given by

O = [C,CA,CA2, CA3]

=

























1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3w2 0 0 2w
0 −2w 0 0
0 −w2 0 0

−6w3 0 0 −4w2

























Rank of C is 4 and hence the above state -output system is observable.
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To minimize the measurement, we might be tempted to measure y1 only not y2.
This gives

C1 = [1 0 0 0 0]> and

O1 = [C1, C1A,C1A
2, C1A

3] =





















1 0 0 0

0 1 0 0

3w2 0 0 2w

0 −w2 0 0





















which is of rank 3.
However, if y1 is not measured, we get

C2 = [0 0 1 0 0]> and

O2 = [C2, C2A,C2A
2, C2A

3]

=





















0 0 1 0

0 0 0 1

0 −2w 0 0

−6w3 0 0 −4w2





















which is of rank 4.
Thus, the state of the satellite is known from angle measurements alone but this
is not so for radial measurements.

8.3 Optimal Control

In this section we shall be concerned with the optimization problem of two types.

(i) Unconstrained optimal control problem:

Find the control ū∗ ∈ U = L2 ([t0, tf ],<m) that minimizes the cost func-
tional J(u) which is given by

J(ū) =

∫ tf

t0

[(ū(t), v̄(t)) + (Rx̄(t), x̄(t))] dt (8.3.1)

where x̄ ∈ X is the state of the dynamical system

dx̄

dt
= A(t)x̄(t) +B(t)ū(t) (8.3.2a)

x̄(t0) = x̄0 (8.3.2b)
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corresponding to the given control ū(t). R is a positive definite symmetric
matrix and X = L2 ([t0, tf ], <n).

(ii) Constrained optimal control system:

Find the control ū∗ that minimizes J(ū) over the constrained set Uc ⊆ U,
where J(ū) and Uc are given as follows

J(ū) =

∫ tf

t0

(ū(t), ū(t)) dt (8.3.3)

Uc = {ū ∈ U : ū steers the state x̄(t) of Eq. (8.3.1) from the initial state
x̄0 to the final state x̄f}.

We shall show that unconstrained problem is a problem of minimization of a
strictly convex functional defined on the Hilbert space U .

Using the transition matrix φ(t, t0), we obtain the state x̄(t) of the linear
system given by Eq. (8.3.2) through the integral equation.

x̄(t) = φ(t, t0)x̄0 +

∫ t

t0

φ(t, τ)B(τ)u(τ)dτ (8.3.4)

We now define a bounded linear operator K from U to X as follows.

[Kū](t) =

∫ t

t0

φ(t, τ)B(τ)ū(τ)dτ

Set ȳ0(t) = φ(t, t0)x̄0, then in abstract notation, x̄ ∈ X is given by

x̄ = ȳ0 +Kū (8.3.5)

So, the cost functional J on U , determined by Eq. (8.3.1), is given by

J(ū) = (ū, ū)U + (T x̄, x̄)X

where T is a positive definite operator induced by R on X .

Using the concept of the derivative of a functional (refer section 2.3), we
obtain

J ′(ū) = ū+K∗TKū+K∗TKȳ0 (8.3.6)

and

J ′′(u) = I +K∗TK ∀ ū ∈ U (8.3.7)

Theorem 8.3.1 J is a strictly convex functional on the space U and hence it
has a unique minimizer ū∗ ∈ U of J(u) and is given by

ū∗ = − [I +K∗TK]
−1

[K∗TK∗ȳ0] (8.3.8)
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Proof : We have

J ′(ū) = ū+K∗TKū+K∗TKȳ0

J ′′(ū) = I +K∗TK

for all ū ∈ U.
Note that J ′′(u) : U → U is positive definite for all u ∈ U, as

(J ′′(u)v̄, v̄) = (v̄, v̄)U + (K∗TKv̄, v̄)U

= ‖v̄‖2 + (TKv̄,Kv̄)X

> ‖v̄‖2 (for v̄ 6= 0)

in view of positive definiteness of T . As J ′′(u) is positive definite, it follows by
Remark 2.3.2 that J is strictly and hence it follows that J has unique minimizer
ū∗ ∈ U and is given by the critical point of J (refer Joshi and Kannan [5]
Chapter1). Hence, we have

ū∗ +K∗TKū∗ = −K∗TKȳ0

Also, the invertibility of [I +K∗TK] (refer Joshi and Bose [3]), gives

ū∗ = −[I +K∗TK]−1 (K∗TKȳ0)

Remark 8.3.1 One can obtain integro-differential equation analog of Eq. (8.3.8)
which is equivalent to the equation

ū∗(t) +

∫ tf

t

φ(τ, t)B(TKū∗)(τ)dτ +

∫ tf

t

(TK)(ȳ0(τ))dτ = 0 (8.3.9)

Differentiating Eq. (8.3.9) we get

dū∗

dt
−BTKu∗(t) +

∫ tf

t

d

dt
[φ(τ, t)]BTKu∗(τ)dτ = TKȳ0(t)

As
d

dt
[φ(τ, t)] = −φ(τ, t)A, we get the equivalent integro-differential equation

dū∗

dt
= −BTKu∗(t) −

∫ tf

t

φ(τ, t)ABTKu∗(τ)dτ (8.3.10a)

= TKȳ0(t) (8.3.10b)

with u∗(tf ) = 0.

In the above equation we assume that the system Eq.(8.3.2) is autonomous.
We now address ourself to second problem pertaining to constrained optimal

control. We have the following theorem in this direction.
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Theorem 8.3.2 Let W (t0, tf ) be the controllability Grammian of Eq. (8.3.2).
If ū∗ is any control of the form

ū∗(t) = B>(t)φ>(tf , t)ᾱ (8.3.11)

where ᾱ satisfies the equation

W (t0, tf )ᾱ = x̄f − φ(tf , t)x̄0 (8.3.12)

Then ū∗ ∈ Uc. Further, if ū is any, controllability vector belonging to Uc, then
∫ tf

t0

‖u∗(t)‖2dt ≤
∫ tf

t0

‖ū(t)‖2dt (8.3.13)

Moreover, if W (t0, tf ) is nonsingular, then

∫ tf

t0

‖ū∗(t)‖2dt =
(

W−1(t0, tf ) [x̄f − φ(tf , t0)] x̄0, [x̄f − φ(tf , t0)] x̄0

)

Proof : We have

z̄f = x̄f − φ(tf , t0)x̄0 =

∫ tf

t0

φ(tf , τ)B(τ)ū(τ)dτ = Lū

z̄f = x̄f − φ(tf , t0)x̄0 =

∫ tf

t0

φ(tf , τ)B(τ)u∗(τ)dτ = Lū∗

where L is defined by Eq. (8.1.5).
Subtracting the above two equations, we have

Lū− Lū∗ = 0

This gives

(Lū∗, ᾱ)U = (Lū, ᾱ)U (8.3.14)

where ᾱ solves Eq. (8.3.12). Solvability of Eq. (8.3.12) is equivalent to the
solvability of the following equation

LL∗ᾱ = z̄f

Also Eq. (8.3.11) is equivalent to defining ū∗ = L∗ᾱ. Hence, Eq. (8.3.14) gives

‖ū∗‖2
U = (ū∗, ū∗)U

= (ū∗, L∗ᾱ)U = (Lū, α)U = (ū, L∗α)U = (ū, ū∗)U (8.3.15)

Eq. (8.3.15) gives

0 ≤ ‖ū− ū∗‖2
U = (ū− ū∗, ū− ū∗)U

= ‖ū‖2
U − 2(ū, ū∗)U + ‖ū∗‖2

U

= ‖ū‖2
U − ‖ū∗‖2

U
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That is
‖ū∗‖2

U ≤ ‖ū‖2
U

or
∫ tf

t0

(ū∗(t), ū∗(t))<m dt ≤
∫ tf

t0

(ū(t), ū(t))<mdt

Further, if LL∗ = W (t0, tf ) is invertible, we get

‖ū∗‖2 = ‖L∗ᾱ‖2 = (L∗ᾱ, L∗ᾱ)

= (LL∗ᾱ, ᾱ) = (W (t0, tf )ᾱ, ᾱ)

= (x̄f − φ(tf , t)x0, W
−1(t0, tf ) [x̄f − φ(tf , t)x̄0])

Example 8.3.1 Consider the following electrical network, given by Figure 8.3.1.

vi c

r

Figure 8.3.1: Electrical network

Its equation is given by

d

dt
(cv(t)) = i(t), c = Capacitance (8.3.16)

i is the current out of the source. The energy dissipated in the resister in the
time interval [0, tf ] is

∫ tf

0 ri2(t)dt .

We wish to find the current i(t) such that the voltage v(0) = v0 and v(tf ) =
v1 and the energy disspipated is minimum.

Thus, we want to minimize
∫ tf

0 i2(t)dt subject to the output voltage satisfying
the equation Eq. (8.3.16) with the constraint that v(0) = v0 and v(tf ) = v1.
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For this problem, the controllability Grammian W (t0, tf ) =
tf
c2

and hence the

optimal current i∗(t) =
c

tf
(v1 − v0) and hence is constant on the interval [0, tf ].

For more on control theory refer Brockett [1] and Gopal[3].

8.4 Exercises

1. Show that the system

dx̄

dt
= A(t)x̄(t) +Bū(t)

where A(t) =





1 ēt

0 −1



 , B =





0

1





is controllable. Find the control ū∗(t) with minimum L2 - norm, which
will steer the trajectory from the initial state 0̄ at t = 0 to the final state
(1, 1) at time tf = 1.

2. Show that the linear system given by the pair {A, b̄} is controllable for all
values of αi’s arising the definition of A.

A =







































0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0

...
...

0 0 0 · · · 1

−α1 −α2 −α3 · · · −αn







































, b̄ =































0

0

0

...

1































3. Prove that the systems

dx̄

dt
= A(t)x̄(t) +Bū(t) (∗)

and
dz̄

dt
= −A>(t)z̄(t) (∗∗)

w̄(t) = B>z̄(t)

are dual of each other. That is (*) is controllable iff (**) is observable.



8.4. EXERCISES 259

4. Show that, if the time invariant system

dx̄

dt
= A(t)x̄(t) +Bū(t)

is controllable, then there exists a matrix C such that

dx̄

dt
= (A+BC)x̄(t) + b̄iv(t)

is also controllable where b̄i is any nonzero column vector of B.

5. Consider the system

dx̄

dt
= g(t) [Ax̄(t) +Bū(t)]

with g continuous and bounded (0 < α ≤ g(t) ≤ β <∞) .

Show that if C =
[

B,AB, · · · , An−1B
]

has rank n, then the above system
is controllable.

6. Obtain controllable conditions analogous to Theorem 8.1.1 for the follow-
ing matrix differential equation

dX(t)

dt
= A(t)X(t) +X(t)B(t) + C(t)U(t)D(t)

7. Show that the differential equation

d2y

dt2
+ u(t)

dy

dt
+ y(t) = 0

is controllable ( in the sense that given any y0, ẏ0 and y1, ẏ1, there exists
a control u(t) such that y(t0) = y0, y(tf ) = y1, ẏ(t0) = ẏ0, ẏ(tf ) = ẏ1),
provided y2

0 + ẏ2
0 and y1 + ẏ2

1 are nonzero.

8. Show that there exists an initial state for the adjoint system

dp̄

dt
= −A>(t)p̄(t)

such that the control ū(t), which minimizes the functional

φ(ū) =

∫ tf

t0

(ū(t), ū(t)) dt

for steering the initial state x̄0 to the final state x̄f , is given by

ū(t) = −B>(t)p̄(t)
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positive definite operator, 254
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Schauder’s theorem, 68
Schwartz inequality, 41, 48
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