
Copyright © 2003, 2004 ARM Limited. All rights reserved.
ARM IHI 0022B

AMBA
®

 AXI Protocol
v1.0

Specification

ii Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

AMBA AXI Protocol
Specification

Copyright © 2003, 2004 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

AMBA Specification License

1.Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE a perpetual, non-exclusive,
nontransferable, royalty free, worldwide licence to use and copy the AMBA Specification for the purpose of
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with the AMBA Specification.

2.THE AMBA SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY
QUALITY, MERCHANTABILITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE.

3. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to
use the ARM tradename, or AMBA trademark in connection with the AMBA Specification or any products
based thereon. Nothing in Clause 1 shall be construed as authority for LICENSEE to make any
representations on behalf of ARM in respect of the AMBA Specification.

Change history

Date Issue Change

16 June, 2003 A First release

19 March 2004 B Define read and write address channels

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. iii

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is Final (information on a developed product).

Web Address

http://www.arm.com

iv Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. v

Contents
AMBA AXI Protocol Specification

Preface
About this document .. xiv
Feedback ... xviii

Chapter 1 Introduction
1.1 About the AXI protocol .. 1-2
1.2 Architecture ... 1-3
1.3 Basic transactions ... 1-7
1.4 Additional features .. 1-11

Chapter 2 Signal Descriptions
2.1 Global signals ... 2-2
2.2 Write address channel signals .. 2-3
2.3 Write data channel signals .. 2-4
2.4 Write response channel signals .. 2-5
2.5 Read address channel signals .. 2-6
2.6 Read data channel signals .. 2-7
2.7 Low-power interface signals .. 2-8

vi Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Chapter 3 Channel Handshake
3.1 Handshake process .. 3-2
3.2 Relationships between the channels .. 3-6
3.3 Dependencies between channel handshake signals 3-7

Chapter 4 Addressing Options
4.1 About addressing options ... 4-2
4.2 Burst length .. 4-3
4.3 Burst size .. 4-4
4.4 Burst type ... 4-5
4.5 Burst address ... 4-7

Chapter 5 Additional Control Information
5.1 Cache support .. 5-2
5.2 Protection unit support .. 5-5

Chapter 6 Atomic Accesses
6.1 About atomic accesses ... 6-2
6.2 Exclusive access .. 6-3
6.3 Locked access .. 6-7

Chapter 7 Response Signaling
7.1 About response signaling ... 7-2
7.2 Response types .. 7-4

Chapter 8 Ordering Model
8.1 About the ordering model ... 8-2
8.2 Transfer ID fields .. 8-3
8.3 Read ordering ... 8-4
8.4 Normal write ordering ... 8-5
8.5 Write data interleaving .. 8-6
8.6 Read and write interaction .. 8-8
8.7 Interconnect use of ID fields ... 8-9
8.8 Recommended width of ID fields .. 8-10

Chapter 9 Data Buses
9.1 About the data buses .. 9-2
9.2 Write strobes .. 9-3
9.3 Narrow transfers ... 9-4
9.4 Byte invariance ... 9-5

Chapter 10 Unaligned Transfers
10.1 About unaligned transfers ... 10-2
10.2 Examples .. 10-3

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. vii

Chapter 11 Clock and Reset
11.1 Clock and reset requirements ... 11-2

Chapter 12 Low-power Interface
12.1 About the low-power interface .. 12-2
12.2 Low-power clock control .. 12-3

viii Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. ix

List of Tables
AMBA AXI Protocol Specification

Change history .. ii
Table 2-1 Global signals .. 2-2
Table 2-2 Write address channel signals .. 2-3
Table 2-3 Write data channel signals .. 2-4
Table 2-4 Write response channel signals .. 2-5
Table 2-5 Read address channel signals .. 2-6
Table 2-6 Read data channel signals .. 2-7
Table 2-7 Low-power interface signals .. 2-8
Table 4-1 Burst length encoding ... 4-3
Table 4-2 Burst size encoding ... 4-4
Table 4-3 Burst type encoding .. 4-5
Table 5-1 Cache encoding .. 5-3
Table 5-2 Protection encoding .. 5-6
Table 6-1 Atomic access encoding ... 6-2
Table 7-1 RRESP[1:0] and BRESP[1:0] encoding .. 7-2

x Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. xi

List of Figures
AMBA AXI Protocol Specification

Key to timing diagram conventions .. xvi
Figure 1-1 Channel architecture of reads ... 1-3
Figure 1-2 Channel architecture of writes ... 1-4
Figure 1-3 Interface and interconnect ... 1-5
Figure 1-4 Read burst ... 1-7
Figure 1-5 Overlapping read bursts .. 1-8
Figure 1-6 Write burst ... 1-9
Figure 3-1 VALID before READY handshake ... 3-2
Figure 3-2 READY before VALID handshake ... 3-3
Figure 3-3 VALID with READY handshake .. 3-3
Figure 3-4 Read transaction handshake dependencies ... 3-7
Figure 3-5 Write transaction handshake dependencies ... 3-8
Figure 9-1 Byte lane mapping .. 9-3
Figure 9-2 Narrow transfer example with 8-bit transfers ... 9-4
Figure 9-3 Narrow transfer example with 32-bit transfers ... 9-4
Figure 9-4 Example mixed-endian data structure ... 9-5
Figure 10-1 Aligned and unaligned word transfers on a 32-bit bus .. 10-3
Figure 10-2 Aligned and unaligned word transfers on a 64-bit bus .. 10-4
Figure 10-3 Aligned wrapping word transfers on a 64-bit bus .. 10-4
Figure 11-1 Exit from reset ... 11-2
Figure 12-1 CSYSREQ and CSYSACK handshake ... 12-3
Figure 12-2 Acceptance of a low-power request .. 12-4
Figure 12-3 Denial of a low-power request ... 12-5
Figure 12-4 Low-power clock control sequence ... 12-6

xii Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. xiii

Preface

This preface introduces the AMBA Advanced eXtensible Interface (AXI) Protocol
Specification and its reference documentation. It contains the following sections:

• About this document on page xiv

• Feedback on page xviii.

Preface

xiv Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

About this document

This is the AMBA AXI Protocol Specification v1.0. This issue supersedes the previous
r0p0 version of the specification.

Intended audience

This specification is written to help hardware and software engineers who want to
become familiar with the Advanced Microcontroller Bus Architecture (AMBA) and
design systems and modules that are compatible with the AXI protocol.

Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

Read this chapter to learn about the AXI protocol architecture and the
basic transactions that it defines.

Chapter 2 Signal Descriptions

Refer to this chapter for definitions of the AXI global, write address
channel, write data channel, write response channel, read address
channel, read data channel, and low-power interface signals.

Chapter 3 Channel Handshake

Read this chapter to learn about the AXI channel handshake process.

Chapter 4 Addressing Options

Read this chapter to learn about AXI burst types and how to calculate
addresses and byte lanes for transfers within a burst.

Chapter 5 Additional Control Information

Read this chapter to learn how to use the AXI protocol to support system
level caches and protection units.

Chapter 6 Atomic Accesses

Read this chapter to learn how to perform exclusive accesses and locked
accesses.

Chapter 7 Response Signaling

Read this chapter to learn about the four transaction responses of AXI
slaves.

Preface

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. xv

Chapter 8 Ordering Model

Read this chapter to learn how the AXI protocol uses transaction ID tags
to enable out-of-order transaction processing.

Chapter 9 Data Buses

Read this chapter to learn how to do transactions of varying sizes on the
AXI read and write data buses and how to use byte-invariant endianness
to handle mixed-endian data.

Chapter 10 Unaligned Transfers

Read this chapter to learn how the AXI protocol handles unaligned
transfers.

Chapter 11 Clock and Reset

Read this chapter to learn about the timing of the AXI clock and reset
signals.

Chapter 12 Low-power Interface

Read this chapter to learn how to use the AXI clock control interface to
enter into and exit from a low-power state.

Conventions

Conventions that this specification can use are described in:

• Typographical

• Timing diagrams on page xvi

• Signals on page xvii.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
ARM signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as
commands, file and program names, and source code.

Preface

xvi Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Key to timing diagram conventions

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Preface

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. xvii

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Prefix A Denotes AXI global, write address, and read address channel
signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.

Suffix n Denotes that the AXI ARESETn global reset signal is
active-LOW.

Further reading

This section lists publications by ARM Limited.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com and http://www.amba.com for current errata sheets, addenda, and the
ARM and AMBA Frequently Asked Questions list.

ARM publications

This specification contains information that is specific to the AXI protocol. Refer to the
following documents for other relevant information:

• AMBA Specification (Rev 2.0) (ARM IHI 0011)

• ARM Architecture Reference Manual (ARM DDI 0100).

Preface

xviii Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Feedback

ARM Limited welcomes feedback on the AMBA AXI protocol and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier
giving:

• the product name

• a concise explanation of your comments.

Feedback on this specification

If you have any comments on this specification, send email to errata@arm.com giving:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter describes the architecture of the AXI protocol and the basic transactions
that the protocol defines. It contains the following sections:

• About the AXI protocol on page 1-2

• Architecture on page 1-3

• Basic transactions on page 1-7

• Additional features on page 1-11.

Introduction

1-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

1.1 About the AXI protocol

The AMBA AXI protocol is targeted at high-performance, high-frequency system
designs and includes a number of features that make it suitable for a high-speed
submicron interconnect.

The objectives of the latest generation AMBA interface are to:

• be suitable for high-bandwidth and low-latency designs

• enable high-frequency operation without using complex bridges

• meet the interface requirements of a wide range of components

• be suitable for memory controllers with high initial access latency

• provide flexibility in the implementation of interconnect architectures

• be backward-compatible with existing AHB and APB interfaces.

The key features of the AXI protocol are:

• separate address/control and data phases

• support for unaligned data transfers using byte strobes

• burst-based transactions with only start address issued

• separate read and write data channels to enable low-cost Direct Memory Access
(DMA)

• ability to issue multiple outstanding addresses

• out-of-order transaction completion

• easy addition of register stages to provide timing closure.

As well as the data transfer protocol, the AXI protocol includes optional extensions that
cover signaling for low-power operation.

Introduction

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-3

1.2 Architecture

The AXI protocol is burst-based. Every transaction has address and control information
on the address channel that describes the nature of the data to be transferred. The data
is transferred between master and slave using a write data channel to the slave or a read
data channel to the master. In write transactions, in which all the data flows from the
master to the slave, the AXI protocol has an additional write response channel to allow
the slave to signal to the master the completion of the write transaction.

The AXI protocol enables:

• address information to be issued ahead of the actual data transfer

• support for multiple outstanding transactions

• support for out-of-order completion of transactions.

Figure 1-1 shows how a read transaction uses the read address and read data channels.

Figure 1-1 Channel architecture of reads

Figure 1-2 on page 1-4 shows how a write transaction uses the write address, write data,
and write response channels.

Master

interface

Slave

interface

Address

and

control

Read address channel

Read

data

Read

data

Read

data

Read

data

Read data channel

Introduction

1-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Figure 1-2 Channel architecture of writes

1.2.1 Channel definition

Each of the five independent channels consists of a set of information signals and uses
a two-way VALID and READY handshake mechanism.

The information source uses the VALID signal to show when valid data or control
information is available on the channel. The destination uses the READY signal to
show when it can accept the data. Both the read data channel and the write data channel
also include a LAST signal to indicate when the transfer of the final data item within a
transaction takes place.

Read and write address channels

Read and write transactions each have their own address channel. The appropriate
address channel carries all of the required address and control information for a
transaction. The AXI protocol supports the following mechanisms:

• variable-length bursts, from 1 to 16 data transfers per burst

• bursts with a transfer size of 8-1024 bits

• wrapping, incrementing, and non-incrementing bursts

• atomic operations, using exclusive or locked accesses

• system-level caching and buffering control

Master

interface

Slave

interface

Address

and

control

Write address channel

Write

data

Write data channel

Write

data

Write

data

Write

data

Write

response

Write response channel

Introduction

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-5

• secure and privileged access.

Read data channel

The read data channel conveys both the read data and any read response information
from the slave back to the master. The read data channel includes:

• the data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide

• a read response indicating the completion status of the read transaction.

Write data channel

The write data channel conveys the write data from the master to the slave and includes:

• the data bus, which can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide

• one byte lane strobe for every eight data bits, indicating which bytes of the data
bus are valid.

Write data channel information is always treated as buffered, so that the master can
perform write transactions without slave acknowledgement of previous write
transactions.

Write response channel

The write response channel provides a way for the slave to respond to write transactions.
All write transactions use completion signaling.

The completion signal occurs once for each burst, not for each individual data transfer
within the burst.

1.2.2 Interface and interconnect

A typical system consists of a number of master and slave devices connected together
through some form of interconnect, as shown in Figure 1-3.

Figure 1-3 Interface and interconnect

Interconnect

Slave 1 Slave 2 Slave 3 Slave 4

Master 1 Master 2 Master 3

Interface

Interface

Introduction

1-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

The AXI protocol provides a single interface definition for describing interfaces:

• between a master and the interconnect

• between a slave and the interconnect

• between a master and a slave.

The interface definition enables a variety of different interconnect implementations.
The interconnect between devices is equivalent to another device with symmetrical
master and slave ports to which real master and slave devices can be connected.

Most systems use one of three interconnect approaches:

• shared address and data buses

• shared address buses and multiple data buses

• multilayer, with multiple address and data buses.

In most systems, the address channel bandwidth requirement is significantly less than
the data channel bandwidth requirement. Such systems can achieve a good balance
between system performance and interconnect complexity by using a shared address
bus with multiple data buses to enable parallel data transfers.

1.2.3 Register slices

Each AXI channel transfers information in only one direction, and there is no
requirement for a fixed relationship between the various channels. This is important
because it enables the insertion of a register slice in any channel, at the cost of an
additional cycle of latency. This makes possible a trade-off between cycles of latency
and maximum frequency of operation.

It is also possible to use register slices at almost any point within a given interconnect.
It can be advantageous to use a direct, fast connection between a processor and
high-performance memory, but to use simple register slices to isolate a longer path to
less performance-critical peripherals.

Introduction

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-7

1.3 Basic transactions

This section gives examples of basic AXI protocol transactions. Each example shows
the VALID and READY handshake mechanism. Transfer of either address information
or data occurs when both the VALID and READY signals are HIGH. The examples are
provided in:

• Read burst example

• Overlapping read burst example on page 1-8

• Write burst example on page 1-9.

This section also describes Transaction ordering on page 1-9.

1.3.1 Read burst example

Figure 1-4 shows a read burst of four transfers. In this example, the master drives the
address, and the slave accepts it one cycle later.

Note
 The master also drives a set of control signals showing the length and type of the burst,
but these signals are omitted from the figure for clarity.

After the address appears on the address bus, the data transfer occurs on the read data
channel. The slave keeps the VALID signal LOW until the read data is available. For
the final data transfer of the burst, the slave asserts the RLAST signal to show that the
last data item is being transferred.

Figure 1-4 Read burst

ARADDR A

T12T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T13

ARVALID

ARREADY

D(A0) D(A1) D(A2) D(A3)

RVALID

RDATA

RLAST

RREADY

ACLK

Introduction

1-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

1.3.2 Overlapping read burst example

Figure 1-5 shows how a master can drive another burst address after the slave accepts
the first address. This enables a slave to begin processing data for the second burst in
parallel with the completion of the first burst.

Figure 1-5 Overlapping read bursts

ARADDR A

T12T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

ARVALID

ARREADY

B

D(A0) D(A1) D(A2) D(B0) D(B1)

RVALID

RDATA

RLAST

RREADY

ACLK

Introduction

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-9

1.3.3 Write burst example

Figure 1-6 shows a write transaction. The process starts when the master sends an
address and control information on the write address channel. The master then sends
each item of write data over the write data channel. When the master sends the last data
item, the WLAST signal goes HIGH. When the slave has accepted all the data items, it
drives a write response back to the master to indicate that the write transaction is
complete.

Figure 1-6 Write burst

1.3.4 Transaction ordering

The AXI protocol enables out-of-order transaction completion. It gives an ID tag to
every transaction across the interface. The protocol requires that transactions with the
same ID tag are completed in order, but transactions with different ID tags can be
completed out of order.

Out-of-order transactions can improve system performance in two ways:

• The interconnect can enable transactions with fast-responding slaves to complete
in advance of earlier transactions with slower slaves.

AWADDR A

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

AWVALID

AWREADY

D(A0)

WVALID

WDATA

WLAST

WREADY

BVALID

BRESP

BREADY

ACLK

D(A1) D(A2) D(A3)

OKAY

Introduction

1-10 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

• Complex slaves can return read data out of order. For example, a data item for a
later access might be available from an internal buffer before the data for an
earlier access is available.

If a master requires that transactions are completed in the same order that they are
issued, then they must all have the same ID tag. If, however, a master does not require
in-order transaction completion, it can supply the transactions with different ID tags,
enabling them to be completed in any order.

In a multimaster system, the interconnect is responsible for appending additional
information to the ID tag to ensure that ID tags from all masters are unique. The ID tag
is similar to a master number, but with the extension that each master can implement
multiple virtual masters within the same port by supplying an ID tag to indicate the
virtual master number.

Although complex devices can make use of the out-of-order facility, simple devices are
not required to use it. Simple masters can issue every transaction with the same ID tag,
and simple slaves can respond to every transaction in order, irrespective of the ID tag.

Introduction

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 1-11

1.4 Additional features

The AXI protocol also supports the following additional features:

Burst types

The AXI protocol supports three different burst types that are suitable for:

• normal memory accesses

• wrapping cache line bursts

• streaming data to peripheral FIFO locations.

See Chapter 4 Addressing Options.

System cache support

The cache-support signal of the AXI protocol enables a master to provide
to a system-level cache the bufferable, cacheable, and allocate attributes
of a transaction.

See Cache support on page 5-2.

Protection unit support

To enable both privileged and secure accesses, the AXI protocol provides
three levels of protection unit support.

See Protection unit support on page 5-5.

Atomic operations

The AXI protocol defines mechanisms for both exclusive and locked
accesses.

See Chapter 6 Atomic Accesses.

Error support

The AXI protocol provides error support for both address decode errors
and slave-generated errors.

See Chapter 7 Response Signaling.

Unaligned address

To enhance the performance of the initial accesses within a burst, the AXI
protocol supports unaligned burst start addresses.

See Chapter 10 Unaligned Transfers.

Introduction

1-12 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 2-1

Chapter 2
Signal Descriptions

This chapter defines the AXI signals. Although bus width and transaction ID width are
implementation-specific, the tables in this chapter show a 32-bit data bus, a four-bit
write data strobe, and four-bit ID fields. This chapter contains the following sections:

• Global signals on page 2-2

• Write address channel signals on page 2-3

• Write data channel signals on page 2-4

• Write response channel signals on page 2-5

• Read address channel signals on page 2-6

• Read data channel signals on page 2-7

• Low-power interface signals on page 2-8.

Signal Descriptions

2-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

2.1 Global signals

Table 2-1 lists the global AXI signals.

Table 2-1 Global signals

Signal Source Description

ACLK Clock source Global clock signal. All signals are sampled on the rising edge of the global clock.

ARESETn Reset source Global reset signal. This signal is active LOW.

Signal Descriptions

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 2-3

2.2 Write address channel signals

Table 2-2 lists the AXI write address channel signals.

Table 2-2 Write address channel signals

Signal Source Description

AWID[3:0] Master Write address ID. This signal is the identification tag for the write address group of
signals.

AWADDR[31:0] Master Write address. The write address bus gives the address of the first transfer in a write burst
transaction. The associated control signals are used to determine the addresses of the
remaining transfers in the burst.

AWLEN[3:0] Master Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address. See
Table 4-1 on page 4-3.

AWSIZE[2:0] Master Burst size. This signal indicates the size of each transfer in the burst. Byte lane strobes
indicate exactly which byte lanes to update. See Table 4-2 on page 4-4.

AWBURST[1:0] Master Burst type. The burst type, coupled with the size information, details how the address for
each transfer within the burst is calculated. See Table 4-3 on page 4-5.

AWLOCK[1:0] Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. See Table 6-1 on page 6-2.

AWCACHE[3:0] Master Cache type. This signal indicates the bufferable, cacheable, write-through, write-back,
and allocate attributes of the transaction. See Table 5-1 on page 5-3.

AWPROT[2:0] Master Protection type. This signal indicates the normal, privileged, or secure protection level
of the transaction and whether the transaction is a data access or an instruction access.
See Protection unit support on page 5-5.

AWVALID Master Write address valid. This signal indicates that valid write address and control
information are available:
1 = address and control information available
0 = address and control information not available.
The address and control information remain stable until the address acknowledge signal,
AWREADY, goes HIGH.

AWREADY Slave Write address ready. This signal indicates that the slave is ready to accept an address and
associated control signals:
1 = slave ready
0 = slave not ready.

Signal Descriptions

2-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

2.3 Write data channel signals

Table 2-3 lists the AXI write data channel signals.

Table 2-3 Write data channel signals

Signal Source Description

WID[3:0] Master Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match
the AWID value of the write transaction.

WDATA[31:0] Master Write data. The write data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.

WSTRB[3:0] Master Write strobes. This signal indicates which byte lanes to update in memory. There is one
write strobe for each eight bits of the write data bus. Therefore, WSTRB[n] corresponds
to WDATA[(8 × n) + 7:(8 × n)].

WLAST Master Write last. This signal indicates the last transfer in a write burst.

WVALID Master Write valid. This signal indicates that valid write data and strobes are available:
1 = write data and strobes available
0 = write data and strobes not available.

WREADY Slave Write ready. This signal indicates that the slave can accept the write data:
1 = slave ready
0 = slave not ready.

Signal Descriptions

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 2-5

2.4 Write response channel signals

Table 2-4 lists the AXI write response channel signals.

Table 2-4 Write response channel signals

Signal Source Description

BID[3:0] Slave Response ID. The identification tag of the write response. The BID value must match the
AWID value of the write transaction to which the slave is responding.

BRESP[1:0] Slave Write response. This signal indicates the status of the write transaction. The allowable
responses are OKAY, EXOKAY, SLVERR, and DECERR.

BVALID Slave Write response valid. This signal indicates that a valid write response is available:
1 = write response available
0 = write response not available.

BREADY Master Response ready. This signal indicates that the master can accept the response information.
1 = master ready
0 = master not ready.

Signal Descriptions

2-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

2.5 Read address channel signals

Table 2-2 on page 2-3 lists the AXI read address channel signals.

Table 2-5 Read address channel signals

Signal Source Description

ARID[3:0] Master Read address ID. This signal is the identification tag for the read address group of
signals.

ARADDR[31:0] Master Read address. The read address bus gives the initial address of a read burst transaction.
Only the start address of the burst is provided and the control signals that are issued
alongside the address detail how the address is calculated for the remaining transfers in
the burst.

ARLEN[3:0] Master Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address. See
Table 4-1 on page 4-3.

ARSIZE[2:0] Master Burst size. This signal indicates the size of each transfer in the burst. See Table 4-2 on
page 4-4.

ARBURST[1:0] Master Burst type. The burst type, coupled with the size information, details how the address for
each transfer within the burst is calculated. See Table 4-3 on page 4-5.

ARLOCK[1:0] Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. See Table 6-1 on page 6-2.

ARCACHE[3:0] Master Cache type. This signal provides additional information about the cacheable
characteristics of the transfer. See Table 5-1 on page 5-3.

ARPROT[2:0] Master Protection type. This signal provides protection unit information for the transaction. See
Protection unit support on page 5-5.

ARVALID Master Read address valid. This signal indicates, when HIGH, that the read address and control
information is valid and will remain stable until the address acknowledge signal,
ARREADY, is high.

1 = address and control information valid
0 = address and control information not valid.

ARREADY Slave Read address ready. This signal indicates that the slave is ready to accept an address and
associated control signals:
1 = slave ready
0 = slave not ready.

Signal Descriptions

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 2-7

2.6 Read data channel signals

Table 2-6 lists the AXI read data channel signals.

Table 2-6 Read data channel signals

Signal Source Description

RID[3:0] Slave Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is
generated by the slave and must match the ARID value of the read transaction to which it
is responding.

RDATA[31:0] Slave Read data. The read data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.

RRESP[1:0] Slave Read response. This signal indicates the status of the read transfer. The allowable responses
are OKAY, EXOKAY, SLVERR, and DECERR.

RLAST Slave Read last. This signal indicates the last transfer in a read burst.

RVALID Slave Read valid. This signal indicates that the required read data is available and the read
transfer can complete:
1 = read data available
0 = read data not available.

RREADY Master Read ready. This signal indicates that the master can accept the read data and response
information:
1= master ready
0 = master not ready.

Signal Descriptions

2-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

2.7 Low-power interface signals

Table 2-7 lists the signals of the optional low-power interface.

Table 2-7 Low-power interface signals

Signal Source Description

CSYSREQ Clock
controller

System low-power request. This signal is a request from the system clock controller for the
peripheral to enter a low-power state.

CSYSACK Peripheral
device

Low-power request acknowledgement. This signal is the acknowledgement from a peripheral
of a system low-power request.

CACTIVE Peripheral
device

Clock active. This signal indicates that the peripheral requires its clock signal:
1 = peripheral clock required
0 = peripheral clock not required.

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 3-1

Chapter 3
Channel Handshake

This chapter describes the master/slave handshake process and outlines the
relationships and default values of the READY and VALID handshake signals. It
contains the following sections:

• Handshake process on page 3-2

• Relationships between the channels on page 3-6

• Dependencies between channel handshake signals on page 3-7.

Channel Handshake

3-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

3.1 Handshake process

All five channels use the same VALID/READY handshake to transfer data and control
information. This two-way flow control mechanism enables both the master and slave
to control the rate at which the data and control information moves. The source
generates the VALID signal to indicate when the data or control information is
available. The destination generates the READY signal to indicate that it accepts the
data or control information. Transfer occurs only when both the VALID and READY
signals are HIGH.

There must be no combinatorial paths between input and output signals on both master
and slave interfaces.

Figure 3-1 to Figure 3-3 on page 3-3 show examples of the handshake sequence. In
Figure 3-1, the source presents the data or control information and drives the VALID
signal HIGH. The data or control information from the source remains stable until the
destination drives the READY signal HIGH, indicating that it accepts the data or
control information. The arrow shows when the transfer occurs.

Figure 3-1 VALID before READY handshake

In Figure 3-2 on page 3-3, the destination drives READY HIGH before the data or
control information is valid. This indicates that the destination can accept the data or
control information in a single cycle as soon as it becomes valid. The arrow shows when
the transfer occurs.

READY

VALID

INFORMATION

ACLK

Channel Handshake

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 3-3

Figure 3-2 READY before VALID handshake

In Figure 3-3, both the source and destination happen to indicate in the same cycle that
they can transfer the data or control information. In this case the transfer occurs
immediately. The arrow shows when the transfer occurs.

Figure 3-3 VALID with READY handshake

The individual AXI protocol channel handshake mechanisms are described in:

• Write address channel

• Write data channel on page 3-4

• Write response channel on page 3-4

• Read address channel on page 3-4

• Read data channel on page 3-5.

3.1.1 Write address channel

The master can assert the AWVALID signal only when it drives valid address and
control information. It must remain asserted until the slave accepts the address and
control information and asserts the associated AWREADY signal.

The default value of AWREADY can be either HIGH or LOW. The recommended
default value is HIGH, although if AWREADY is HIGH then the slave must be able to
accept any valid address that is presented to it.

READY

VALID

INFORMATION

ACLK

READY

VALID

INFORMATION

ACLK

Channel Handshake

3-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

A default AWREADY value of LOW is possible but not recommended, because it
implies that the transfer takes at least two cycles, one to assert AWVALID and another
to assert AWREADY.

3.1.2 Write data channel

During a write burst, the master can assert the WVALID signal only when it drives valid
write data. WVALID must remain asserted until the slave accepts the write data and
asserts the WREADY signal.

The default value of WREADY can be HIGH, but only if the slave can always accept
write data in a single cycle.

The master must assert the WLAST signal when it drives the final write transfer in the
burst.

When WVALID is LOW, the WSTRB[3:0] signals can take any value, although it is
recommended that they are either driven LOW or held at their previous value.

3.1.3 Write response channel

The slave can assert the BVALID signal only when it drives a valid write response.
BVALID must remain asserted until the master accepts the write response and asserts
BREADY.

The default value of BREADY can be HIGH, but only if the master can always accept
a write response in a single cycle.

3.1.4 Read address channel

The master can assert the ARVALID signal only when it drives valid address and
control information. It must remain asserted until the slave accepts the address and
control information and asserts the associated ARREADY signal.

The default value of ARREADY can be either HIGH or LOW. The recommended
default value is HIGH, although if ARREADY is HIGH then the slave must be able to
accept any valid address that is presented to it.

A default ARREADY value of LOW is possible but not recommended, because it
implies that the transfer takes at least two cycles, one to assert ARVALID and another
to assert ARREADY.

Channel Handshake

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 3-5

3.1.5 Read data channel

The slave can assert the RVALID signal only when it drives valid read data. RVALID
must remain asserted until the master accepts the data and asserts the RREADY signal.
Even if a slave has only one source of read data, it must assert the RVALID signal only
in response to a request for the data.

The master interface uses the RREADY signal to indicate that it accepts the data. The
default value of RREADY can be HIGH, but only if the master is able to accept read
data immediately, whenever it performs a read transaction.

The slave must assert the RLAST signal when it drives the final read transfer in the
burst.

Channel Handshake

3-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

3.2 Relationships between the channels

The relationship between the address, read, write, and write response channels is
flexible.

For example, the write data can appear at an interface before the write address that
relates to it. This can occur when the write address channel contains more register stages
than the write data channel. It is also possible for the write data to appear in the same
cycle as the address.

When the interconnect must determine the destination address space or slave space, it
must realign the address and write data. This is required to assure that the write data is
signaled as valid only to the slave for which it is destined.

Two relationships that must be maintained are:

• read data must always follow the address to which the data relates

• a write response must always follow the last write transfer in the write transaction
to which the write response relates.

Channel Handshake

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 3-7

3.3 Dependencies between channel handshake signals

To prevent a deadlock situation, you must observe the dependencies that exist between
the handshake signals.

In any transaction:

• the VALID signal of one AXI component must not be dependent on the READY
signal of the other component in the transaction

• the READY signal can wait for assertion of the VALID signal.

Note
 While it is acceptable to wait for VALID to be asserted before asserting READY, it is
also acceptable to assert READY by default prior to the assertion of VALID and this
can result in a more efficient design.

Figure 3-4 and Figure 3-5 on page 3-8 show the handshake signal dependencies. The
single-headed arrows point to signals that can be asserted before or after the previous
signal is asserted. Double-headed arrows point to signals that must be asserted only after
assertion of the previous signal.

Figure 3-4 shows that, in a read transaction:

• the slave can wait for ARVALID to be asserted before it asserts ARREADY

• the slave must wait for both ARVALID and ARREADY to be asserted before it
starts to return read data by asserting RVALID.

Figure 3-4 Read transaction handshake dependencies

Figure 3-5 on page 3-8 shows that, in a write transaction:

• the master must not wait for the slave to assert AWREADY or WREADY before
asserting AWVALID or WVALID

• the slave can wait for AWVALID or WVALID, or both, before asserting
AWREADY

ARVALID

ARREADY

RVALID

RREADY

Channel Handshake

3-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

• the slave can wait for AWVALID or WVALID, or both, before asserting
WREADY

• the slave must wait for both WVALID and WREADY to be asserted before
asserting BVALID.

Figure 3-5 Write transaction handshake dependencies

Note
 It is important that during a write transaction, a master must not wait for AWREADY
to be asserted before driving WVALID. This could cause a deadlock condition if the
slave is conversely waiting for WVALID before asserting AWREADY.

WREADY

AWVALID

AWREADY

WVALID BVALID

BREADY

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 4-1

Chapter 4
Addressing Options

This chapter describes AXI burst types and how to calculate addresses and byte lanes
for transfers within a burst. It contains the following sections:

• About addressing options on page 4-2

• Burst length on page 4-3

• Burst size on page 4-4

• Burst type on page 4-5

• Burst address on page 4-7.

Addressing Options

4-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

4.1 About addressing options

The AXI protocol is burst-based, and the master begins each burst by driving transfer
control information and the address of the first byte in the transfer. As the burst
transaction progresses, it is the responsibility of the slave to calculate the addresses of
subsequent transfers in the burst.

Bursts must not cross 4KB boundaries to prevent them from crossing boundaries
between slaves and to limit the size of the address incrementer required within slaves.

Addressing Options

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 4-3

4.2 Burst length

The AWLEN or ARLEN signal specifies the number of data transfers that occur within
each burst. As Table 4-1 shows, each burst can be 1-16 transfers long.

For wrapping bursts, the length of the burst must be 2, 4, 8, or 16 transfers.

Every transaction must have the number of transfers specified by ARLEN or AWLEN.
No component can terminate a burst early to reduce the number of data transfers.
During a write burst, the master can disable further writing by deasserting all the write
strobes, but it must complete the remaining transfers in the burst. During a read burst,
the master can discard further read data, but it must complete the remaining transfers in
the burst.

Caution

 Discarding read data that is not required can result in lost data when accessing a
read-sensitive device such as a FIFO. A master must never access such a device using a
burst length longer than required.

Table 4-1 Burst length encoding

ARLEN[3:0]
AWLEN[3:0]

Number of
data transfers

b0000 1

b0001 2

b0010 3

.

.

.

b1101 14

b1110 15

b1111 16

Addressing Options

4-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

4.3 Burst size

Table 4-2 shows how the ARSIZE or AWSIZE signal specifies the maximum number
of data bytes to transfer in each beat, or data transfer, within a burst.

The AXI determines from the transfer address which byte lanes of the data bus to use
for each transfer.

For incrementing or wrapping bursts with transfer sizes narrower than the data bus, data
transfers are on different byte lanes for each beat of the burst. The address of a fixed
burst remains constant, and every transfer uses the same byte lanes.

The size of any transfer must not exceed the data bus width of the components in the
transaction.

Table 4-2 Burst size encoding

ARSIZE[2:0]
AWSIZE[2:0]

Bytes in
transfer

b000 1

b001 2

b010 4

b011 8

b100 16

b101 32

b110 64

b111 128

Addressing Options

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 4-5

4.4 Burst type

The AXI protocol defines three burst types described in:

• Fixed burst

• Incrementing burst

• Wrapping burst on page 4-6.

Table 4-3 shows how the ARBURST or AWBURST signal selects the burst type.

4.4.1 Fixed burst

In a fixed burst, the address remains the same for every transfer in the burst. This burst
type is for repeated accesses to the same location such as when loading or emptying a
peripheral FIFO.

4.4.2 Incrementing burst

In an incrementing burst, the address for each transfer in the burst is an increment of the
previous transfer address. The increment value depends on the size of the transfer. For
example, the address for each transfer in a burst with a size of four bytes is the previous
address plus four.

Table 4-3 Burst type encoding

ARBURST[1:0]
AWBURST[1:0]

Burst type Description Access

b00 FIXED Fixed-address burst FIFO-type

b01 INCR Incrementing-address burst Normal sequential memory

b10 WRAP Incrementing-address burst that wraps
to a lower address at the wrap boundary

Cache line

b11 Reserved - -

Addressing Options

4-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

4.4.3 Wrapping burst

A wrapping burst is similar to an incrementing burst, in that the address for each transfer
in the burst is an increment of the previous transfer address. However, in a wrapping
burst the address wraps around to a lower address when a wrap boundary is reached.
The wrap boundary is the size of each transfer in the burst multiplied by the total
number of transfers in the burst.

Two restrictions apply to wrapping bursts:

• the start address must be aligned to the size of the transfer

• the length of the burst must be 2, 4, 8, or 16.

Addressing Options

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 4-7

4.5 Burst address

This section provides some simple formulas for determining the address and byte lanes
of transfers within a burst. The formulas use the following variables:

Start_Address The start address issued by the master.

Number_Bytes The maximum number of bytes in each data transfer.

Data_Bus_Bytes The number of byte lanes in the data bus.

Aligned_Address The aligned version of the start address.

Burst_Length The total number of data transfers within a burst.

Address_N The address of transfer N within a burst. N is an integer from 2-16.

Wrap_Boundary The lowest address within a wrapping burst.

Lower_Byte_Lane The byte lane of the lowest addressed byte of a transfer.

Upper_Byte_Lane The byte lane of the highest addressed byte of a transfer.

INT(x) The rounded-down integer value of x.

Use these equations to determine addresses of transfers within a burst:

• Start_Address = ADDR

• Number_Bytes = 2SIZE

• Burst_Length = LEN + 1

• Aligned_Address = (INT(Start_Address / Number_Bytes)) x Number_Bytes.

Use this equation to determine the address of the first transfer in a burst:

• Address_1 = Start_Address.

Use this equation to determine the address of any transfer after the first transfer in a
burst:

• Address_N = Aligned_Address + (N – 1) x Number_Bytes.

For wrapping bursts, the Wrap_Boundary variable is extended to account for the wrapping
boundary:

• Wrap_Boundary = (INT(Start_Address / (Number_Bytes x Burst_Length)))
x (Number_Bytes x Burst_Length).

If Address_N = Wrap_Boundary + (Number_Bytes x Burst_Length), use this equation:

• Address_N = Wrap_Boundary.

Addressing Options

4-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Use these equations to determine which byte lanes to use for the first transfer in a burst:

• Lower_Byte_Lane = Start_Address - (INT(Start_Address / Data_Bus_Bytes))
x Data_Bus_Bytes

• Upper_Byte_Lane = Aligned_Address + (Number_Bytes - 1) -
(INT(Start_Address / Data_Bus_Bytes)) x Data_Bus_Bytes.

Use these equations to determine which byte lanes to use for all transfers after the first
transfer in a burst:

• Lower_Byte_Lane = Address_N – (INT(Address_N / Data_Bus_Bytes))
x Data_Bus_Bytes

• Upper_Byte_Lane = Lower_Byte_Lane + Number_Bytes – 1.

Data is transferred on:

• DATA[(8 x Upper_Byte_Lane) + 7 : (8 x Lower_Byte_Lane)].

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 5-1

Chapter 5
Additional Control Information

This chapter describes AXI protocol support for system-level caches and protection
units. It contains the following sections:

• Cache support on page 5-2

• Protection unit support on page 5-5.

Additional Control Information

5-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

5.1 Cache support

Support for system level caches and other performance enhancing components is
provided by the use of the cache information signals, ARCACHE and AWCACHE.
These signals provide additional information about how the transaction can be
processed.

The ARCACHE[3:0] or AWCACHE[3:0] signal supports system-level caches by
providing the bufferable, cacheable, and allocate attributes of the transaction:

Bufferable (B) bit, ARCACHE[0] and AWCACHE[0]

When this bit is HIGH, it means that the interconnect or any component
can delay the transaction reaching its final destination for an arbitrary
number of cycles. This is usually only relevant to writes.

Cacheable (C) bit, ARCACHE[1] and AWCACHE[1]

When this bit is HIGH, it means that the transaction at the final
destination does not have to match the characteristics of the original
transaction.

For writes this means that a number of different writes can be merged
together.

For reads this means that a location can be pre-fetched or can be fetched
just once for multiple read transactions.

To determine if a transaction should be cached this bit should be used in
conjunction with the Read Allocate (RA) and Write Allocate (WA) bits.

Read Allocate (RA) bit, ARCACHE[2] and AWCACHE[2]

When the RA bit is HIGH, it means that if the transfer is a read and it
misses in the cache then it should be allocated.

The RA bit must not be HIGH if the C bit is low.

Write Allocate (WA) bit, ARCACHE[3] and AWCACHE[3]

When the WA bit is HIGH, it means that if the transfer is a write and it
misses in the cache then it should be allocated.

The WA bit must not be HIGH if the C bit is low.

Additional Control Information

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 5-3

Table 5-1 shows the encoding of the ARCACHE[3:0] and AWCACHE[3:0] signals.

In the case of write transactions, the AWCACHE signal can be used to determine which
component provides the write response. If a write transaction is indicated as bufferable
then it is acceptable for a bridge or system level cache to provide the write response. If,
however, the transaction is indicated as being non-bufferable then the write response
must be provided from the final destination of the transaction.

Table 5-1 Cache encoding

ARCACHE[3:0]
AWCACHE[3:0]

Transaction attributesWA RA C B

0 0 0 0 Noncacheable and nonbufferable

0 0 0 1 Bufferable only

0 0 1 0 Cacheable, but do not allocate

0 0 1 1 Cacheable and bufferable, but do not allocate

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 Cacheable write-through, allocate on reads only

0 1 1 1 Cacheable write-back, allocate on reads only

1 0 0 0 Reserved

1 0 0 1 Reserved

1 0 1 0 Cacheable write-through, allocate on writes only

1 0 1 1 Cacheable write-back, allocate on writes only

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Cacheable write-through, allocate on both reads and writes

1 1 1 1 Cacheable write-back, allocate on both reads and writes

Additional Control Information

5-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

The AXI protocol does not determine the mechanism by which buffered or cached data
reaches its destination. For example, a system-level cache might have a controller to
manage cleaning, flushing, and invalidating cache entries. Another example is a bridge
containing a write buffer, which might have control logic to drain the buffer if it receives
a nonbufferable write with a matching transaction ID.

Additional Control Information

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 5-5

5.2 Protection unit support

To support complex system designs, it is often necessary for both the interconnect and
other devices in the system to provide protection against illegal transactions. The
AWPROT or ARPROT signal gives three levels of access protection:

Normal or privileged, ARPROT[0] and AWPROT[0]

• LOW indicates a normal access

• HIGH indicates a privileged access.

This is used by some masters to indicate their processing mode. A
privileged processing mode typically has a greater level of access within
a system.

Secure or non-secure, ARPROT[1] and AWPROT[1]

• LOW indicates a secure access

• HIGH indicates a non-secure access.

This is used in systems where a greater degree of differentiation between
processing modes is required.

Note
 This bit is configured so that when it is HIGH then the transaction is

considered non-secure and when LOW, the transaction is considered as
secure.

Instruction or data, ARPROT[2] and AWPROT[2]

• LOW indicates a data access

• HIGH indicates an instruction access.

This bit gives an indication if the transaction is an instruction or a data
access.

Note

 This indication is provided as a hint and is not accurate in all cases. For
example, where a transaction contains a mix of instruction and data
items. It is recommended that, by default, an access is marked as a data
access unless it is specifically known to be an instruction access.

Additional Control Information

5-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Table 5-2 summarizes the encoding of the ARPROT[2:0] and AWPROT[2:0] signals.

Table 5-2 Protection encoding

ARPROT[2:0]
AWPROT[2:0]

Protection level

[0] 1 = privileged access
0 = normal access

[1] 1 = nonsecure access
0 = secure access

[2] 1 = instruction access
0 = data access

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 6-1

Chapter 6
Atomic Accesses

This chapter describes how the AXI protocol implements exclusive access and locked
access mechanisms. It contains the following sections:

• About atomic accesses on page 6-2

• Exclusive access on page 6-3

• Locked access on page 6-7.

Atomic Accesses

6-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

6.1 About atomic accesses

To enable the implementation of atomic access primitives, the ARLOCK[1:0] or
AWLOCK[1:0] signal provides exclusive access and locked access. Table 6-1 shows
the encoding of the ARLOCK[1:0] and AWLOCK[1:0] signals.

Table 6-1 Atomic access encoding

ARLOCK[1:0]
AWLOCK[1:0] Access type

b00 Normal access

b01 Exclusive access

b10 Locked access

b11 Reserved

Atomic Accesses

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 6-3

6.2 Exclusive access

The exclusive access mechanism enables the implementation of semaphore type
operations without requiring the bus to remain locked to a particular master for the
duration of the operation. The advantage of exclusive access is that semaphore type
operations do not impact either the critical bus access latency or the maximum
achievable bandwidth.

The ARLOCK[1:0] or AWLOCK[1:0] signal selects exclusive access, and the
RRESP[1:0] or BRESP[1:0] signal (see Table 7-1 on page 7-2) indicates the success
or failure of the exclusive access.

The slave must have additional logic to support exclusive access. The AXI protocol
provides a fail-safe mechanism to indicate when a master attempts an exclusive access
to a slave that does not support it.

6.2.1 Exclusive access process

The basic process for an exclusive access is:

1. A master performs an exclusive read from an address location.

2. At some later time, the master attempts to complete the exclusive operation by
performing an exclusive write to the same address location.

3. The exclusive write access of the master is signalled as:

• Successful if no other master has written to that location between the read
and write accesses.

• Failed if another master has written to that location between the read and
write accesses. In this case the address location is not updated.

Note
 A master might not complete the write portion of an exclusive operation. The

exclusive access monitoring hardware must monitor only one address per
transaction ID. Therefore, if a master does not complete the write portion of an
exclusive operation, a subsequent exclusive read changes the address that is being
monitored for exclusivity.

6.2.2 Exclusive access from the perspective of the master

A master starts an exclusive operation by performing an exclusive read. This usually
returns the EXOKAY response from the slave, indicating that the slave recorded the
address to be monitored.

Atomic Accesses

6-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Note
 If the master attempts an exclusive read from a slave that does not support exclusive
accesses, the slave returns the OKAY response instead of the EXOKAY response. The
master can treat this as an error condition indicating that the exclusive access is not
supported. It is recommended that the master not perform the write portion of this
exclusive operation.

At some time after the exclusive read, the master tries an exclusive write to the same
location. If the location has not changed since the exclusive read, the exclusive write
operation succeeds. The slave returns the EXOKAY response, and the exclusive write
updates the memory location.

If the address location has changed since the exclusive read, the exclusive write attempt
fails, and the slave returns the OKAY response instead of the EXOKAY response. The
exclusive write attempt does not update the memory location.

A master might not complete the write portion of an exclusive operation. If this
happens, the slave continues to monitor the address for exclusivity until another
exclusive read initiates a new exclusive access.

A master must not commence the write portion of an exclusive access until the read
portion is complete.

6.2.3 Exclusive access from the perspective of the slave

A slave that is not capable of supporting exclusive accesses can ignore the
ARLOCK[1:0] and AWLOCK[1:0] signals. It must provide an OKAY response for
both normal and exclusive accesses.

A slave that supports exclusive access must have monitor hardware. It is recommended
that such a slave has a monitor unit for each exclusive-capable master ID that can access
it. A single-ported slave can have a standard exclusive access monitor external to the
slave, but multiported slaves might require internal monitoring.

The exclusive access monitor records the address and ARID value of any exclusive read
operation. Then it monitors that location until either a write occurs to that location or
until another exclusive read with the same ARID value resets the monitor to a different
address.

When an exclusive write occurs with a given AWID value then the monitor checks to
see if that address is being monitored for exclusivity. If it is, then this implies that no
write has occurred to that location, and the exclusive write proceeds, completing the
exclusive access. The slave returns the EXOKAY response to the master.

Atomic Accesses

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 6-5

If the address is no longer being monitored at the time of an exclusive write, this implies
one of the following:

• the location has been updated since the exclusive read

• the monitor has been reset to another location.

In both cases the exclusive write must not update the address location, and the slave
must return the OKAY response instead of the EXOKAY response.

6.2.4 Exclusive access restrictions

The following restrictions apply to exclusive accesses:

• The size and length of an exclusive write with a given ID must be the same as the
size and length of the preceding exclusive read with the same ID.

• The address of an exclusive access must be aligned to the total number of bytes
in the transaction.

• The address for the exclusive read and the exclusive write must be identical.

• The ARID field of the read portion of the exclusive access must match the AWID
of the write portion.

• The control signals for the read and write portions of the exclusive access must be
identical.

• The number of bytes to be transferred in an exclusive access burst must be a power
of 2, that is, 1, 2, 4, 8, 16, 32, 64, or 128 bytes.

• The maximum number of bytes that can be transferred in an exclusive burst is
128.

• The value of the ARCACHE[3:0] or AWCACHE[3:0] signals must guarantee
that the slave that is monitoring the exclusive access sees the transaction. For
example, an exclusive access being monitored by a slave must not have an
ARCACHE[3:0] or AWCACHE[3:0] value that indicates that the transaction is
cacheable.

Failure to observe these restrictions causes Unpredictable behavior.

The minimum number of bytes to be monitored during an exclusive operation is defined
by the length and size of the transaction. It is acceptable to monitor a larger number of
bytes, up to 128 which is the maximum of an exclusive access. However, this might
result in occasions when the exclusive access is actually successful but is indicated as
failing because a neighboring byte was updated.

Atomic Accesses

6-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

6.2.5 Slaves that do not support exclusive access

The response signals, BRESP[1:0] and RRESP[1:0], include an OKAY response for
successful normal accesses and an EXOKAY response for successful exclusive
accesses. This means that a slave that does not support exclusive accesses can provide
an OKAY response to indicate the failure of an exclusive access.

Note

 An exclusive write to a slave that does not support exclusive access always updates the
memory location.

An exclusive write to a slave that supports exclusive access updates the memory
location only if the exclusive write is successful.

Atomic Accesses

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 6-7

6.3 Locked access

When the ARLOCK[1:0] or AWLOCK[1:0] signals for a transaction show that it is a
locked transfer then the interconnect must ensure that only that master is allowed access
to the slave region until an unlocked transfer from the same master completes. The
arbiter within the interconnect is used to enforce this restriction.

When a master starts a locked sequence of either read or write transactions it must
ensure that it has no other outstanding transactions waiting to complete.

Any transaction with ARLOCK[1:0] or AWLOCK[1:0] set to indicate a locked
sequence forces the interconnect to lock the following transaction. Therefore, a locked
sequence must always complete with a final transaction that does not have
ARLOCK[1:0] or AWLOCK[1:0] set to indicate a locked access. This final
transaction is included in the locked sequence and effectively removes the lock.

When completing a locked sequence a master must ensure that all previous locked
transactions are complete before issuing the final unlocking transaction. It must then
ensure that the final unlocking transaction has fully completed before any further
transactions are commenced.

The master must ensure that all transactions within a locked sequence have the same
ARID or AWID value.

Note
 Locked accesses require that the interconnect prevents any other transactions occurring
while the locked sequence is in progress and can therefore have an impact on the
interconnect performance. It is recommended that locked accesses are only used to
support legacy devices.

The following restrictions are recommended but not mandatory:

• keep all locked transaction sequences within the same 4KB address region

• limit locked transaction sequences to two transactions.

Atomic Accesses

6-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 7-1

Chapter 7
Response Signaling

This chapter describes the four slave responses in AXI read and write transactions. It
contains the following sections:

• About response signaling on page 7-2

• Response types on page 7-4.

Response Signaling

7-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

7.1 About response signaling

The AXI protocol allows response signalling for both read and write transactions. For
read transactions the response information from the slave is passed alongside the read
data itself, however for writes the response information is conveyed along the write
response channel.

The AXI protocol responses are:

• OKAY

• EXOKAY

• SLVERR

• DECERR.

Table 7-1 shows the encoding of the RRESP[1:0] and BRESP[1:0] signals.

For a write transaction, there is just one response given for the entire burst and not for
each data transfer within the burst.

In a read transaction, the slave can give different responses for different transfers within
a burst. In a burst of 16 read transfers, for example, the slave might return an OKAY
response for 15 of the transfers and a SLVERR response for one of the transfers.

The protocol defines that the required number of data transfers must be performed, even
if an error is reported. For example, if a read of 8 transfers is requested from a slave but
the slave has an error condition then the slave must perform 8 data transfers, each with
an error response. The remainder of the burst is not cancelled if the slave gives a single
error response.

Table 7-1 RRESP[1:0] and BRESP[1:0] encoding

RRESP[1:0]
BRESP[1:0] Response Meaning

b00 OKAY Normal access okay indicates if a normal access has been successful. Can also indicate
an exclusive access failure.

b01 EXOKAY Exclusive access okay indicates that either the read or write portion of an exclusive access
has been successful.

b10 SLVERR Slave error is used when the access has reached the slave successfully, but the slave
wishes to return an error condition to the originating master.

b11 DECERR Decode error is generated typically by an interconnect component to indicate that there
is no slave at the transaction address.

Response Signaling

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 7-3

This protocol places restrictions on masters that can issue multiple outstanding
addresses and that must also support precise error signaling. Such masters must be able
to handle an error response for an earlier transfer while later transfers are already
underway.

Response Signaling

7-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

7.2 Response types

This section describes the four AXI protocol response types:

• Normal access success

• Exclusive access

• Slave error

• Decode error.

7.2.1 Normal access success

The OKAY response indicates:

• the success of a normal access

• the failure of an exclusive access

• an exclusive access to a slave that does not support exclusive access.

OKAY is the response for most transactions.

7.2.2 Exclusive access

The EXOKAY response indicates the success of an exclusive access. Chapter 6 Atomic
Accesses describes this response.

7.2.3 Slave error

The SLVERR response indicates an unsuccessful transaction. Examples of slave error
conditions are:

• FIFO/buffer overrun or underrun condition

• unsupported transfer size attempted

• write access attempted to read-only location

• timeout condition in the slave

• access attempted to an address where no registers are present

• access attempted to a disabled or powered-down function.

To simplify system monitoring and debugging, it is recommended that error responses
are used only for error conditions and not for signaling normal, expected events.

7.2.4 Decode error

In a system without a fully-decoded address map, there can be addresses at which there
are no slaves to respond to a transaction. In such a system, the interconnect must provide
a suitable error response to flag the access as illegal and also to prevent the system from
locking up by trying to access a nonexistent slave.

Response Signaling

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 7-5

When the interconnect cannot successfully decode a slave access, it effectively routes
the access to a default slave, and the default slave returns the DECERR response.

An implementation option is to have the default slave also record the details of decode
errors for later determination of how the errors occurred. In this way, the default slave
can significantly simplify the debugging process.

The AXI protocol requires that all data transfers for a transaction are completed, even
if an error condition occurs. Therefore any component giving a DECERR response must
meet this requirement.

Response Signaling

7-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 8-1

Chapter 8
Ordering Model

This chapter describes how the AXI protocol uses transaction ID tags to enable the
issuing of multiple outstanding addresses and out-of-order transaction processing. It
contains the following sections:

• About the ordering model on page 8-2

• Transfer ID fields on page 8-3

• Read ordering on page 8-4

• Normal write ordering on page 8-5

• Write data interleaving on page 8-6

• Read and write interaction on page 8-8

• Interconnect use of ID fields on page 8-9

• Recommended width of ID fields on page 8-10.

Ordering Model

8-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

8.1 About the ordering model

The AXI protocol enables out-of-order transaction completion and the issuing of
multiple outstanding addresses. These features enable the implementation of a
high-performance interconnect, maximizing data throughput and system efficiency.

The ID signals support out-of-order transactions by enabling each port to act as multiple
ordered ports. All transactions with a given ID must be ordered, but there is no
restriction on the ordering of transactions with different IDs. The five transaction IDs
are:

AWID The ID tag for the write address group of signals.

WID The write ID tag for a write transaction. Along with the write data, the
master transfers a WID to match the AWID of the corresponding address.

BID The ID tag for the write response. The slave transfers a BID to match the
AWID and WID of the transaction to which it is responding.

ARID The ID tag for the read address group of signals.

RID The read ID tag for a read transaction. The slave transfers an RID to
match the ARID of the transaction to which it is responding.

Note
 There is no requirement for slaves and masters to use these advanced features. Simple
masters and slaves can process one transaction at a time in the order they are issued.

The ability to issue multiple outstanding addresses means that masters can issue
transaction addresses without waiting for earlier transactions to complete. This feature
can improve system performance because it enables parallel processing of transactions,.

The ability to complete transactions out of order means that transactions to faster
memory regions can complete without waiting for earlier transactions to slower
memory regions. This feature can also improve system performance because it reduces
the effect of transaction latency.

Note

 The reordering of transactions is always with respect to other transactions. There is no
facility for the reordering of data transfers within a burst. The address and control
signals that define the burst control the order of transfers within the burst.

Ordering Model

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 8-3

8.2 Transfer ID fields

The AXI protocol provides an ID field to enable a master to issue a number of separate
transactions, each of which must be returned in order.

A master can use the ARID or AWID field of a transaction to provide additional
information about the ordering requirements of the master. The rules governing the
ordering of transactions are as follows:

• Transactions from different masters have no ordering restrictions. They can
complete in any order.

• Transactions from the same master, but with different ID values, have no ordering
restrictions. They can complete in any order.

• The data for a sequence of write transactions with the same AWID value must
complete in the same order that the master issued the addresses in.

• The data for a sequence of read transactions with the same ARID value must be
returned in order that:

— when reads with the same ARID are from the same slave then the slave
must ensure that the read data returns in the same order that the addresses
are received.

— when reads with the same ARID are from different slaves, the interconnect
must ensure that the read data returns in the same order that the master
issued the addresses in.

• There are no ordering restrictions between read and write transactions with the
same AWID and ARID. If a master requires an ordering restriction then it must
ensure that the first transaction is fully completed before the second transaction is
issued.

Ordering Model

8-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

8.3 Read ordering

At a master interface, read data from read transactions with the same ARID value must
arrive in the same order in which the master issued the addresses. Data from read
transactions with different ARID values can return in any order and it is also acceptable
to interleave the read data of transactions with different ARID fields.

A slave must return read data from a sequence of read transactions with the same ARID
value in the same order in which it received the addresses. In a sequence of read
transactions with different ARID values, the slave can return the read data in a different
order than that in which the transactions arrived.

The slave must ensure that the RID value of any returned read data matches the ARID
value of the address to which it is responding.

The interconnect must ensure that a sequence of read transactions with the same ARID
value from different slaves complete in order.

The read data reordering depth is the number of addresses pending in the slave that can
be reordered. A slave that processes all transactions in order has a read data reordering
depth of one. The read data reordering depth is a static value that must be specified by
the designer of the slave.

Ordering Model

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 8-5

8.4 Normal write ordering

If a slave does not support write data interleaving (see Write data interleaving on
page 8-6), the master must issue the data of write transactions in the same order in
which it issues the transaction addresses.

Most slave designs do not support write data interleaving and consequently these types
of slave design must receive write data in the same order that they receive the addresses.
If the interconnect combines write transactions from different masters to one slave, it
must ensure that it combines the write data in address order.

These restrictions apply even if the write transactions have different AWID values.

Ordering Model

8-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

8.5 Write data interleaving

Write data interleaving enables a slave interface to accept interleaved write data with
different AWID values. The slave declares a write data interleaving depth that indicates
if the interface can accept interleaved write data from sources with different AWID
values. The write data interleaving depth is statically configured. By default, the write
data interleaving depth of any interface is one.

Note
 It is not permitted to interleave the write data of different transactions that have the same
AWID.

The write data interleaving depth is the number of different addresses that are currently
pending in the slave interface for which write data can be supplied. For example, a slave
with a write data interleaving depth of two that has four different addresses, all with
different AWID values, pending can accept data for either of the first two pending
addresses.

The order in which a slave receives the first data item of each transaction must be the
same as the order in which it receives the addresses for the transactions.

Write data interleaving can prevent stalling when the interconnect combines multiple
streams of write data destined for the same slave. The interconnect might combine one
write data stream from a slow source and another write data stream from a fast source.
By interleaving the two write data streams, the interconnect can improve system
performance.

Note
 If two write transactions with different AWID values access the same or overlapping
address locations then the processing order is not defined. A higher-level protocol must
ensure the correct order of transaction processing.

A master interface that is capable of generating write data with only one AWID value
generates all write data in the same order in which it issues the addresses. However, a
master interface can interleave write data with different WID values if the slave
interface has a write data interleaving depth greater than one.

For most masters that can internally control the generation of the write data, write data
interleaving is not necessary. Such a master can generate the write data in the same order
in which it generates the addresses. However, a master interface that is passing write
data from multiple sources with different speeds can interleave the sources to make
maximum use of the interconnect.

Ordering Model

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 8-7

To avoid a deadlock situation, a slave interface must have a write interleaving depth
greater than one only if it can continuously accept interleaved write data. The slave
interface must never stall the acceptance of write data in an attempt to change the order
of the write data.

Ordering Model

8-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

8.6 Read and write interaction

There are no ordering restrictions between read and write transactions and they are
allowed to complete in any order.

If a master requires a given relationship between read and write transaction then it must
ensure that the earlier transaction is complete before issuing the later transaction. In the
case of reads the earlier transaction can be considered complete when the last read data
is returned to the master. In the case of writes the transaction can only be considered
complete when the write response is received by the master, it is not acceptable to
consider the write transaction complete when all the write data is sent.

For address regions occupied by peripherals this typically means waiting for earlier
transactions to complete when switching between read and write transactions that
require an ordering restriction.

For memory regions, it is possible for a master to implement an address check against
outstanding transactions, to determine if a new transaction could be to the same, or
overlapping, address region. If the transactions do not overlap then the new transaction
can commence without waiting for earlier transactions to complete.

Ordering Model

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 8-9

8.7 Interconnect use of ID fields

When a master interface is connected to an interconnect, the interconnect appends
additional bits to the ARID, AWID and WID fields that are unique to that master port.
This has two effects:

• masters do not have to know what ID values are used by other masters, because
the interconnect makes the ID values unique when it appends the master number
to the field

• the width of the ID field at a slave interface is wider than the ID field at a master
interface.

For read data, the interconnect uses the additional bits of the RID field to determine
which master port the read data is destined for. The interconnect removes these bits of
the RID field before passing the RID value to the correct master port.

Ordering Model

8-10 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

8.8 Recommended width of ID fields

To take advantage of the AXI out-of-order transaction capability, use the following
recommendations:

• implement a transaction ID up to four bits in master components

• implement up to four additional bits of transaction ID for master port numbers in
the interconnect

• implement eight bits of ID support in slave components.

Note
 For masters that support only a single ordered interface, it is acceptable to tie the ID
outputs to a constant value, such as 0.

For slaves which do not make use of the ordering information and simply process all
transactions in order, it is possible to use a standard off-the-shelf module to add the ID
functionality to the slave, therefore making it possible to design the base functionality
of the slave without the ID signaling present.

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 9-1

Chapter 9
Data Buses

This chapter describes transfers of varying sizes on the AXI read and write data buses
and how the interface uses byte-invariant endianness to handle mixed-endian transfers.
It contains the following sections:

• About the data buses on page 9-2

• Write strobes on page 9-3

• Narrow transfers on page 9-4

• Byte invariance on page 9-5.

Data Buses

9-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

9.1 About the data buses

The AXI protocol has two independent data buses, one for read data and one for write
data. Because these data buses have their own individual handshake signals, it is
possible for data transfers to occur on both buses at the same time.

Every transfer generated by a master must be the same width as or narrower than the
data bus for the transfer.

Data Buses

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 9-3

9.2 Write strobes

The write strobe signals, WSTRB, enable sparse data transfer on the write data bus.
Each write strobe signal corresponds to one byte of the write data bus. When asserted,
a write strobe indicates that the corresponding byte lane of the data bus contains valid
information to be updated in memory.

There is one write strobe for each eight bits of the write data bus, so WSTRB[n]
corresponds to WDATA[(8 × n) + 7: (8 × n)]. Figure 9-1 shows this relationship on a
64-bit data bus.

Figure 9-1 Byte lane mapping

A master must ensure that the write strobes are asserted only for byte lanes that can
contain valid data as determined by the control information for the transaction.

7 6 5 34 2 1 0

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Data Buses

9-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

9.3 Narrow transfers

When a master generates a transfer that is narrower than its data bus, the address and
control information determine which byte lanes the transfer uses. In incrementing or
wrapping bursts, different byte lanes transfer the data on each beat of the burst. In a fixed
burst, the address remains constant, and the byte lanes that can be used also remain
constant.

Figure 9-2 and Figure 9-3 give two examples of byte lanes use.

In Figure 9-2:

• the burst has five transfers

• the starting address is 0

• each transfer is eight bits

• the transfers are on a 32-bit bus.

Figure 9-2 Narrow transfer example with 8-bit transfers

In Figure 9-3:

• the burst has three transfers

• the starting address is 4

• each transfer is 32 bits

• the transfers are on a 64-bit bus.

Figure 9-3 Narrow transfer example with 32-bit transfers

DATA[7:0]

DATA[15:8]

DATA[23:16]

DATA[31:24]

DATA[7:0]

Byte lane used

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

DATA[63:32]

DATA[31:0]

DATA[63:32]

Byte lane used

1st transfer

2nd transfer

3rd transfer

Data Buses

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 9-5

9.4 Byte invariance

To access mixed-endian data structures that reside in the same memory space, the AXI
protocol uses a byte-invariant endian scheme.

Byte-invariant endianness means that a byte transfer to a given address passes the eight
bits of data on the same data bus wires to the same address location.

Components that have only one transfer width must have their byte lanes connected to
the appropriate byte lanes of the data bus. Components that support multiple transfer
widths might require a more complex interface to convert an interface that is not
naturally byte-invariant.

Most little-endian components can connect directly to a byte-invariant interface.
Components that support only big-endian transfers require a conversion function for
byte-invariant operation.

Figure 9-4 is an example of a data structure requiring byte-invariant access. It is
possible that the header information, such as the source and destination identifiers, is in
little-endian format, but the payload is a big-endian byte stream.

Figure 9-4 Example mixed-endian data structure

Byte invariance ensures that little-endian access to parts of the header information does
not corrupt other big-endian data within the structure.

PacketSourceDesti-

-nationChecksum

Data itemsPayload

Payload

Payload

Payload

31 072324 8

Data Buses

9-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 10-1

Chapter 10
Unaligned Transfers

This chapter describes how the AXI protocol handles unaligned transfers. It contains the
following sections:

• About unaligned transfers on page 10-2

• Examples on page 10-3.

Unaligned Transfers

10-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

10.1 About unaligned transfers

The AXI protocol uses burst-based addressing, which means that each transaction
consists of a number of data transfers. Typically, each data transfer is aligned to the size
of the transfer. For example, a 32-bit wide transfer is usually aligned to four-byte
boundaries. However, there are times when it is desirable to begin a burst at an
unaligned address.

For any burst that is made up of data transfers wider than one byte, it is possible that the
first bytes that have to be accessed do not align with the natural data width boundary.
For example, a 32-bit (four-byte) data packet that starts at a byte address of 0x1002 is not
aligned to a 32-bit boundary.

The AXI protocol enables a master to use the low-order address lines to signal an
unaligned start address for a burst. The information on the low-order address lines must
be consistent with the information contained on the byte lane strobes.

Note

 The AXI protocol does not require the slave to take special action based on any
alignment information from the master.

The master can also simply provide an aligned address and, in a write transaction, rely
on the byte lane strobes to provide the information about which byte lanes the data is
using.

Unaligned Transfers

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 10-3

10.2 Examples

Figure 10-1, Figure 10-2 on page 10-4, and Figure 10-3 on page 10-4 show examples
of aligned and unaligned transfers on buses with different widths. Each row in the
figures represents a transfer. The shaded cells indicate bytes that are not transferred,
based on the address and control information.

Figure 10-1 Aligned and unaligned word transfers on a 32-bit bus

Figure 10-2 on page 10-4 shows three bursts of 32-bit transfers on a 64-bit bus.

0

0

6 5 4

Address: 0x00
Transfer size: 32 bits

Burst type: incrementing

Burst length: 4 transfers

3 2 1 0

7 6 5 4

B A 9 8

F E D C

3 2 1

7 6 5 4

B A 9 8

F E D C

Address: 0x01
Transfer size: 32 bits

Burst type: incrementing

Burst length: 4 transfers

3 2 1

7 6 5 4

B A 9 8

F E D C

Address: 0x01
Transfer size: 32 bits

Burst type: incrementing

Burst length: 5 transfers

13 12 11 10

7

B A 9 8

F E D C

13 12 11 10

17 16 15 14

Address: 0x07
Transfer size: 32 bits

Burst type: incrementing

Burst length: 5 transfers

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

0715 816232431

Unaligned Transfers

10-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Figure 10-2 Aligned and unaligned word transfers on a 64-bit bus

Figure 10-3 shows a wrapping burst of 32-bit transfers on a 64-bit bus.

Figure 10-3 Aligned wrapping word transfers on a 64-bit bus

4

4

Address: 0x00
Transfer size: 32 bits

Burst type: incrementing

Burst length: 4 transfers

7 6 5 4

7 6 5 4

F E D C

F E D C

7 6 5

F E D C

F E D C

17 16 15 14

Address: 0x07
Transfer size: 32 bits

Burst type: incrementing

Burst length: 4 transfers

7 6 5

F E D C

F E D C

17 16 15 14

Address: 0x07
Transfer size: 32 bits

Burst type: incrementing

Burst length: 5 transfers

17 16 15 14

3 2 1 0

3 2 1 0

B A 9 8

B A 9 8

03 2 1

B A 9 8

B A 9 8

13 12 11 10

03 2 1

B A 9 8

B A 9 8

13 12 11 10

13 12 11 10

1st transfer

2nd transfer

3rd transfer

4th transfer

5th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

Address: 0x04
Transfer size: 32 bits

Burst type: wrapping

Burst length: 4 transfers

7 6 5 4

F E D C

F E D C

7 6 5 4

3 2 1 0

B A 9 8

B A 9 8

3 2 1 0

1st transfer

2nd transfer

3rd transfer

4th transfer

0715 816232431323947 4048555663

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 11-1

Chapter 11
Clock and Reset

This chapter describes the timing of the AXI clock and reset signals. It contains the
following section:

• Clock and reset requirements on page 11-2.

Clock and Reset

11-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

11.1 Clock and reset requirements

This section gives the requirements for implementing the ACLK and ARESETn
signals.

11.1.1 Clock

Each AXI component uses a single clock signal, ACLK. All input signals are sampled
on the rising edge of ACLK. All output signal changes must occur after the rising edge
of ACLK.

There must be no combinatorial paths between input and output signals on both master
and slave interfaces.

11.1.2 Reset

The AXI protocol includes a single active LOW reset signal, ARESETn. The reset
signal can be asserted asynchronously, but deassertion must be synchronous after the
rising edge of ACLK.

During reset the following interface requirements apply:

• a master interface must drive ARVALID, AWVALID, and WVALID LOW

• a slave interface must drive RVALID and BVALID LOW.

All other signals can be driven to any value.

A master interface must begin driving ARVALID, AWVALID, or WVALID HIGH
only at a rising ACLK edge after ARESETn is HIGH. Figure 11-1 shows the first point
after reset that ARVALID, AWVALID, or WVALID, can be driven HIGH.

Figure 11-1 Exit from reset

ARESETn

VALID

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 12-1

Chapter 12
Low-power Interface

This chapter describes the AXI protocol clock control interface during entry into and
exit from a low-power state. It contains the following sections:

• About the low-power interface on page 12-2

• Low-power clock control on page 12-3.

Low-power Interface

12-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

12.1 About the low-power interface

The low-power interface is an optional extension to the data transfer protocol that
targets two different classes of peripherals:

• Peripherals that require a power-down sequence, and that can have their clocks
turned off only after they enter a low-power state. These peripherals require an
indication from a system clock controller to determine when to initiate the
power-down sequence.

• Peripherals that have no power-down sequence, and that can independently
indicate when it is acceptable to turn off their clocks.

Low-power Interface

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 12-3

12.2 Low-power clock control

The low-power clock control interface consists of the following signals:

• a signal from the peripheral indicating when its clocks can be enabled or disabled

• two handshake signals for the system clock controller to request exit or entry into
a low-power state.

The primary signal in the clock control interface is CACTIVE. The peripheral uses this
signal to indicate when it requires its clock to be enabled. The peripheral asserts
CACTIVE to indicate that it requires the clock, and the system clock controller must
enable the clock immediately. The peripheral deasserts CACTIVE to indicate that it
does not require the clock. The system clock controller can then determine whether to
enable or disable the peripheral clock.

A peripheral that can have its clock enabled or disabled at any time can drive
CACTIVE LOW permanently. A peripheral that must have its clock always enabled
must drive CACTIVE HIGH permanently.

This simple interface to the system clock controller is sufficient for some peripherals
with no power-down or power-up sequence.

For a more complex peripheral with a power-down or power-up sequence, entry into a
low-power state occurs only after a request from the system clock controller. The AXI
protocol provides a two-wire request/acknowledge handshake to support this request:

CSYSREQ To request that the peripheral enter a low-power state, the system clock
controller drives the CSYSREQ signal LOW. During normal operation,
CSYSREQ is HIGH.

CSYSACK The peripheral uses the CSYSACK signal to acknowledge both the
low-power state request and the exit from the low-power state.

Figure 12-1 shows the relationship between CSYSREQ and CSYSACK.

Figure 12-1 CSYSREQ and CSYSACK handshake

CSYSREQ

CSYSACK

T1 T2 T3 T4

Low-power Interface

12-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

At the start of the sequence in Figure 12-1 on page 12-3, both CSYSREQ and
CSYSACK are HIGH for normal clocked operation. At time T1, the system clock
controller deasserts CSYSREQ, indicating a request to put the peripheral in a
low-power state. The peripheral acknowledges the request at time T2 by deasserting
CSYSACK. At T3, the system clock controller asserts CSYSREQ to indicate the exit
from the low-power state, and the peripheral asserts CSYSACK at T4 to acknowledge
the exit.

This relationship between CSYSREQ and CSYSACK is a requirement of the AXI
protocol.

The peripheral can accept or deny the request for a low-power state from the system
clock controller. The level of the CACTIVE signal when the peripheral acknowledges
the request by deasserting CSYSACK indicates the acceptance or denial of the request.

12.2.1 Acceptance of low-power request

Figure 12-2 shows the sequence of events when a peripheral accepts a system
low-power request.

Figure 12-2 Acceptance of a low-power request

In Figure 12-2, the sequence begins at T1 when the system clock controller deasserts
CSYSREQ to request that the peripheral enter a low power state. After the peripheral
recognizes the request, it can then perform its power-down function and deassert
CACTIVE. The peripheral then deasserts CSYSACK at T3 to complete the entry into
the low-power state.

At T4, the system clock controller begins the low-power state exit sequence by asserting
CSYSREQ. The peripheral then asserts CACTIVE at T5 and completes the exit
sequence at T6 by asserting CSYSACK.

Normal

operation

CSYSACK

T1 T2 T3 T4 T5 T6

Normal

operation

CACTIVE

CSYSREQ

Entry to

low power

Low

power

Exit from

low power

CLK

Low-power Interface

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 12-5

12.2.2 Denial of a low-power request

Figure 12-3 shows the sequence of events when a peripheral denies a system low-power
request.

Figure 12-3 Denial of a low-power request

In Figure 12-3, the peripheral denies a low-power request by holding CACTIVE HIGH
when it acknowledges the low-power request. After that point, the system clock
controller must complete the low-power request handshake by asserting CSYSREQ
before it can initiate another request.

12.2.3 Exiting a low-power state

Either the system clock controller or the peripheral can request to exit the low-power
state and restore the clock. By definition, both CACTIVE and CSYSREQ are LOW
during the low power state, and driving either of these signals HIGH initiates the exit
sequence.

The system clock controller can initiate the exit from the low-power state by enabling
the clock and driving CSYSREQ HIGH. The peripheral can then perform a power-up
sequence in which it drives CACTIVE HIGH. Then it completes the exit by driving
CSYSACK HIGH.

The peripheral can initiate the exit from a low-power state by driving CACTIVE HIGH.
The system clock controller must then immediately restore the clock. It must also drive
CSYSREQ HIGH to continue the handshake sequence. The peripheral then completes
the sequence by driving CSYSACK HIGH while exiting the low-power state. The
peripheral can keep CSYSACK LOW for as many cycles as it requires to complete the
exit sequence.

CSYSREQ

T1 T2 T3 T4

CSYSACK

CACTIVE

CLK

Low-power Interface

12-6 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

12.2.4 Clock control sequence summary

Figure 12-4 shows the typical flow for entering and exiting a low-power state.

Figure 12-4 Low-power clock control sequence

Normal

clocked

operation

Low -pow er

unclocked

operation

Peripheral or system

clock controller initiates

low -pow er exit

Peripheral

Peripheral drives

CACTIVE HIGH

System clock controller

immediately enables

clocks

System clock

controller

System clock controller

drives CSYSREQ low to

request low -pow er entry

Peripheral denies or

accepts request

Peripheral keeps

CACTIVE HIGH

Peripheral performs

pow er-dow n

Peripheral drives

CSYSACK LOW to

acknow ledge request

Peripheral drives

CACTIVE LOW

System clock controller

samples CACTIVE

Peripheral drives

CSYSACK LOW to

acknow ledge request

System clock controller

drives CSYSREQ HIGH

System clock controller

samples CACTIVE

System clock controller

disables clocks

Deny Accept

Peripheral drives

CSYSACK HIGH to

complete handshake

Peripheral drives

CSYSACK HIGH to

complete handshake

Peripheral drives

CSYSACK HIGH to

complete handshake

System clock controller

drives CSYSREQ HIGH

Peripheral drives

CACTIVE HIGH

System clock controller

immediately enables

clocks

System clock controller

drives CSYSREQ HIGH

Low-power Interface

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. 12-7

12.2.5 Combining peripherals in a low-power domain

The system clock controller can combine a number of different peripherals within the
same low-power clock domain. Then the clock domain can be treated in the same way
as a single peripheral if the following rules are observed:

• The clock domain CACTIVE signal is the logical OR of all the CACTIVE
signals within the clock domain. This means that the system clock controller can
disable the clocks only when all peripherals indicate that they can be disabled.

• The system clock controller can use a single CSYSREQ signal that is routed to
all peripherals within the clock domain.

• The clock domain CSYSACK signal is generated as follows:

— the falling edge of CSYSACK occurs when the last falling edge from all of
the peripherals occurs

— the rising edge of CSYSACK occurs when the last rising edge from all of
the peripherals occurs.

Low-power Interface

12-8 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order with references to page numbers.

A
ACLK

description 2-2
Address channel 1-3

definition 1-4
handshake 1-4, 3-2

Address ID tag
see ARID and AWID

Addressing options 4-2
Allocate attribute 1-11
AMBA

architecture xiv
interface 1-2
Specification xvii

ARADDR 2-6
timing example 1-7, 1-8

ARBURST 2-6
encoding 4-5

ARCACHE 2-6
encoding 5-3
in exclusive accesses 6-5

ARESETn
description 2-2
timing 11-2

ARID 2-6
in exclusive accesses 6-4, 6-5
out-of-order transactions 8-2
uniqueness 8-9

ARLEN 2-6
encoding 4-3

ARLOCK 2-6
encoding 6-2

ARPROT 2-6
encoding 5-6

ARREADY 2-6
timing example 1-7, 1-8

ARSIZE 2-6
encoding 4-4

ARVALID 2-6
reset 11-2
timing example 1-7, 1-8

Atomic access encoding 6-2
AWADDR 2-3

timing example 1-9

AWBURST 2-3
encoding 4-5

AWCACHE 2-3
encoding 5-3
in exclusive accesses 6-5

AWID 2-3
in exclusive accesses 6-5
out-of-order transactions 8-2
uniqueness 8-9

AWLEN 2-3
encoding 4-3

AWLOCK 2-3
encoding 6-2

AWPROT 2-3
encoding 5-6

AWREADY 2-3
timing example 1-9

AWSIZE 2-3
encoding 4-4

AWVALID 2-3
reset 11-2
timing example 1-9

Index

Index-2 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

AXI protocol
features 1-2

B
BID 2-5

out-of-order transactions 8-2
Big-endian data structures 9-5
BREADY 2-5

default value 3-4
timing example 1-9

BRESP 2-5
encoding 7-2
in exclusive accesses 6-6
timing example 1-9

Bufferable attribute 1-11
selecting 5-2

Burst
address 4-7
length 4-7

Burst length 4-3
encoding 4-3

Burst size 4-4
encoding 4-4

Burst type 4-5
encoding 4-5
fixed 4-5
incrementing 4-5
wrapping 4-6

BVALID 2-5
reset requirements 11-2
timing example 1-9

Byte lane strobes 1-5
see also WSTRB

Byte lanes
eight-bit transfer example 9-4
32-bit transfer example 9-4

Byte-invariant endianness 9-5

C
Cache

support 5-2
Cache encoding 5-3
Cacheable attribute 1-11

selecting 5-2

CACTIVE 2-8
timing example 12-4, 12-5

Channel register insertion 1-6
Clock 11-2
Completion signaling 1-5, 7-2, 7-4, 7-5

see also BRESP
see also RRESP

Conventions
signal naming xvii
timing diagram xvi
typographical xv

CSYSACK 2-8
timing example 12-4, 12-5

CSYSREQ 2-8
timing example 12-4, 12-5

D
Data bus

narrow transfers 9-4
width 1-5

DECERR response 7-2, 7-5
Decode error

see DECERR response
Direct memory access

see DMA
DMA, support 1-2

E
Exclusive access

selecting 6-2
slave support logic 6-3

Exclusive access response
see EXOKAY response

EXOKAY response 6-3, 6-5, 7-2, 7-4

F
Fixed bursts 4-5

byte lanes 4-4, 4-8
start address 4-7

G
Global signals 2-2

H
Handshake

address channel 3-2
read address channel 3-4
read data channel 3-2, 3-5
signal dependencies 3-7
timing example 3-3
write address channel 3-3
write data channel 3-2, 3-4
write response channel 3-2, 3-4

I
Incrementing bursts

byte lanes 4-4, 4-8
increment value 4-5
narrow 4-4
start address 4-7

Interconnect
combining data streams 8-6
implementations 1-6
locked accesses 6-7
out-of-order transactions 1-9, 8-6
realigning address and data 3-6

Interleaved transactions
see Out-of-order transactions

L
Little-endian data structures 9-5
Locked access

interconnect 6-7
selecting 6-2

Low-power interface
signals 2-8

M
Master slave handshake 1-4, 1-7, 3-2

timing example 3-2, 3-3

Index

ARM IHI 0022B Copyright © 2003, 2004 ARM Limited. All rights reserved. Index-3

N
Normal access success

see OKAY response

O
OKAY response 6-4, 6-5, 7-2, 7-4
Out-of-order transactions 1-3, 1-9

from one master 8-3
interconnect 1-9, 8-2
write reorder depth 8-6

P
Parallel transaction processing 1-6,

1-8, 8-2
Peripheral clock control 12-3
Protection

encoding 5-6
Protection level

selecting 5-5

R
RDATA 2-7

timing example 1-7, 1-8
Read address channel

handshake 3-4
signals 2-6

Read allocate attribute
selecting 5-2

Read data channel 1-3
definition 1-5
handshake 1-4, 3-2, 3-5
signals 2-7

Read ID tag
see RID

Register insertion 1-6
Reset 11-2
Response signaling 7-2
RID 2-7

out-of-order transactions 8-2
uniqueness 8-9

RLAST 2-7
timing example 1-7, 1-8

RREADY 2-7
default value 3-5
timing example 1-7, 1-8

RRESP 2-7
encoding 7-2
in exclusive accesses 6-6

RVALID 2-7
reset requirements 11-2
timing example 1-7, 1-8

S
Signal naming conventions xvii
Signals

global 2-2
low-power interface 2-8
read address channel 2-6
read data channel 2-7
write address channel 2-3
write data channel 2-4
write response channel 2-5

Slave error response
see SLVERR response

SLVERR response 7-2, 7-4

T
Timing diagram conventions xvi
Transaction attributes 1-11
Transaction ID tag 1-9, 1-10

interconnect 8-9
see also ARID and AWID
see also RID
see also WID

Transaction order
read transactions 8-4
rules 8-3
see also Out-of-order transactions
write data interleaving 8-6
write reorder depth 8-6
write transactions 8-5

Typographical conventions xv

U
Unaligned transfers 10-1

examples 10-3, 10-4
signaling unaligned start address

10-2

V
Virtual masters 1-10

W
WDATA 2-4

timing example 1-9
WID 2-4

out-of-order transactions 8-2
uniqueness 8-9

WLAST 2-4
timing example 1-9

Wrapping bursts
byte lanes 4-4, 4-8
length 4-3, 4-6
narrow 4-4
start address 4-6, 4-7
wrap boundary 4-6, 4-7

WREADY 2-4
timing example 1-9

Write address channel
handshake 3-3
signals 2-3

Write allocate attribute
selecting 5-2

Write data channel 1-3
byte lane strobes 1-5
definition 1-5
handshake 1-4, 3-2, 3-4
signals 2-4

Write data interleaving depth 8-6
Write ID tag

see WID
Write response channel 1-3

definition 1-5
handshake 1-4, 3-2, 3-4
signals 2-5

Write strobe signals
see WSTRB

Index

Index-4 Copyright © 2003, 2004 ARM Limited. All rights reserved. ARM IHI 0022B

Write transactions
completion signaling 1-5

WSTRB 2-4
byte lane mapping 9-3

WVALID 2-4
reset requirements 11-2
timing example 1-9

	AMBA
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Using this specification
	Conventions
	Typographical
	Timing diagrams
	Signals

	Further reading
	ARM publications

	Feedback
	Feedback on this product
	Feedback on this specification

	Introduction
	1.1 About the AXI protocol
	1.2 Architecture
	1.2.1 Channel definition
	Read and write address channels
	Read data channel
	Write data channel
	Write response channel

	1.2.2 Interface and interconnect
	1.2.3 Register slices

	1.3 Basic transactions
	1.3.1 Read burst example
	1.3.2 Overlapping read burst example
	1.3.3 Write burst example
	1.3.4 Transaction ordering

	1.4 Additional features

	Signal Descriptions
	2.1 Global signals
	2.2 Write address channel signals
	2.3 Write data channel signals
	2.4 Write response channel signals
	2.5 Read address channel signals
	2.6 Read data channel signals
	2.7 Low-power interface signals

	Channel Handshake
	3.1 Handshake process
	3.1.1 Write address channel
	3.1.2 Write data channel
	3.1.3 Write response channel
	3.1.4 Read address channel
	3.1.5 Read data channel

	3.2 Relationships between the channels
	3.3 Dependencies between channel handshake signals

	Addressing Options
	4.1 About addressing options
	4.2 Burst length
	4.3 Burst size
	4.4 Burst type
	4.4.1 Fixed burst
	4.4.2 Incrementing burst
	4.4.3 Wrapping burst

	4.5 Burst address

	Additional Control Information
	5.1 Cache support
	5.2 Protection unit support

	Atomic Accesses
	6.1 About atomic accesses
	6.2 Exclusive access
	6.2.1 Exclusive access process
	6.2.2 Exclusive access from the perspective of the master
	6.2.3 Exclusive access from the perspective of the slave
	6.2.4 Exclusive access restrictions
	6.2.5 Slaves that do not support exclusive access

	6.3 Locked access

	Response Signaling
	7.1 About response signaling
	7.2 Response types
	7.2.1 Normal access success
	7.2.2 Exclusive access
	7.2.3 Slave error
	7.2.4 Decode error

	Ordering Model
	8.1 About the ordering model
	8.2 Transfer ID fields
	8.3 Read ordering
	8.4 Normal write ordering
	8.5 Write data interleaving
	8.6 Read and write interaction
	8.7 Interconnect use of ID fields
	8.8 Recommended width of ID fields

	Data Buses
	9.1 About the data buses
	9.2 Write strobes
	9.3 Narrow transfers
	9.4 Byte invariance

	Unaligned Transfers
	10.1 About unaligned transfers
	10.2 Examples

	Clock and Reset
	11.1 Clock and reset requirements
	11.1.1 Clock
	11.1.2 Reset

	Low-power Interface
	12.1 About the low-power interface
	12.2 Low-power clock control
	12.2.1 Acceptance of low-power request
	12.2.2 Denial of a low-power request
	12.2.3 Exiting a low-power state
	12.2.4 Clock control sequence summary
	12.2.5 Combining peripherals in a low-power domain

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

