TEST CODE: PMB

SYLLABUS

Convergence and divergence of sequence and series;
Cauchy sequence and completeness;
Bolzano-Weierstrass theorem;
continuity, uniform continuity, differentiability,
directional derivatives, Jacobians, Taylor Expansion;
integral calculus of one variable – existence of Riemann integral,
Fundamental theorem of calculus, change of variable;
elementary topological notions for metric space – open, closed and
compact sets, connectedness;
elements of ordinary differential equations.

Equivalence relations and partitions; vector spaces, subspaces, basis, dimension, direct sum; matrices, systems of linear equations, determinants; diagonalization, triangular forms; linear transformations and their representation as matrices; groups, subgroups, quotients, homomorphisms, products, Lagrange's theorem, Sylow's theorems; rings, ideals, maximal ideals, prime ideals, quotients, integral domains, unique factorization domains, polynomial rings; fields, algebraic extensions, separable and normal extensions, finite fields.

SAMPLE QUESTIONS

- 1. Let k be a field and k[x,y] denote the polynomial ring in the two variables x and y with coefficients from k. Prove that for any $a,b \in k$ the ideal generated by the linear polynomials x-a and y-b is a maximal ideal of k[x,y].
- 2. Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be a linear transformation. Show that there is a line L such that T(L)=L.
- 3. Let $A \subseteq \mathbb{R}^n$ and $f: A \to \mathbb{R}^m$ be a uniformly continuous function. If $\{x_n\}_{n\geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim_{n\to\infty} f(x_n)$ exists.
- 4. Let N > 0 and let $f : [0,1] \to [0,1]$ be denoted by f(x) = 1 if x = 1/i for some integer $i \le N$ and f(x) = 0 for all other values of x. Show that f is Riemann integrable.

5. Let $F: \mathbf{R}^n \to \mathbf{R}$ be defined by

$$F(x_1, x_2, \dots, x_n) = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$$

Show that F is a uniformly continuous function.

- 6. Show that every isometry of a compact metric space into itself is onto.
- 7. Let $\mathbf{T} = \{z \in \mathbf{C} : |z| = 1\}$ and $f : [0,1] \to \mathbf{C}$ be continuous with f(0) = 0, f(1) = 2. Show that there exists at least one t_0 in [0,1] such that $f(t_0)$ is in \mathbf{T} .
- 8. Let f be a continuous function on [0,1]. Evaluate

$$\lim_{n \to \infty} \int_0^1 x^n f(x) dx.$$

- 9. Find the most general curve whose normal at each point passes though (0,0). Find the particular curve through (2,3).
- 10. Suppose f is a continuous function on \mathbf{R} which is periodic with period 1, that is, f(x+1) = f(x) for all x. Show that
 - (i) the function f is bounded above and below,
 - (ii) it achieves both its maximum and minimum and
 - (iii) it is uniformly continuous.
- 11. Let $A = (a_{ij})$ be an $n \times n$ matrix such that $a_{ij} = 0$ whenever $i \geq j$. Prove that A^n is the zero matrix.
- 12. Determine the integers n for which \mathbf{Z}_n , the set of integers modulo n, contains elements x, y so that x + y = 2, 2x 3y = 3.
- 13. Let a_1, b_1 be arbitrary positive real numbers. Define

$$a_{n+1} = \frac{a_n + b_n}{2}, b_{n+1} = \sqrt{a_n b_n}$$

for all $n \geq 1$. Show that a_n and b_n converge to a common limit.

- 14. Show that the only field automorphism of \mathbf{Q} is the identity. Using this prove that the only field automorphism of \mathbf{R} is the identity.
- 15. Consider a circle which is tangent to the y-axis at 0. Show that the slope at any point (x, y) satisfies $\frac{dy}{dx} = \frac{y^2 x^2}{2xy}$.
- 16. Consider an $n \times n$ matrix $A = (a_{ij})$ with $a_{12} = 1, a_{ij} = 0 \ \forall (i, j) \neq (1, 2)$. Prove that there is no invertible matrix P such that PAP^{-1} is a diagonal matrix.

- 17. Let G be a nonabelian group of order 39. How many subgroups of order 3 does it have?
- 18. Let $n \in \mathbb{N}$, let p be a prime number and let \mathbb{Z}_{p^n} denote the ring of integers modulo p^n under addition and multiplication modulo p^n . Let f(x) and g(x) be polynomials with coefficients from the ring \mathbb{Z}_{p^n} such that $f(x) \cdot g(x) = 0$. Prove that $a_i b_j = 0 \,\forall i, j$ where a_i and b_j are the coefficients of f and g respectively.
- 19. Show that the fields $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{3})$ are isomorphic as \mathbf{Q} -vector spaces but not as fields.
- 20. Suppose $a_n \ge 0$ and $\sum a_n$ is convergent. Show that $\sum 1/(n^2a_n)$ is divergent.