TEST CODE: PMB

SYLLABUS

Convergence and divergence of sequence and series; Cauchy sequence and completeness;
Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability, directional derivatives, Jacobians, Taylor Expansion; integral calculus of one variable - existence of Riemann integral, Fundamental theorem of calculus, change of variable; elementary topological notions for metric space - open, closed and compact sets, connectedness; elements of ordinary differential equations.

Equivalence relations and partitions;
vector spaces, subspaces, basis, dimension, direct sum; matrices, systems of linear equations, determinants; diagonalization, triangular forms; linear transformations and their representation as matrices; groups, subgroups, quotients, homomorphisms, products, Lagrange's theorem, Sylow's theorems; rings, ideals, maximal ideals, prime ideals, quotients, integral domains, unique factorization domains, polynomial rings; fields, algebraic extensions, separable and normal extensions, finite fields.

SAMPLE QUESTIONS

1. Let k be a field and $k[x, y]$ denote the polynomial ring in the two variables x and y with coefficients from k. Prove that for any $a, b \in k$ the ideal generated by the linear polynomials $x-a$ and $y-b$ is a maximal ideal of $k[x, y]$.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Show that there is a line L such that $T(L)=L$.
3. Let $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}^{m}$ be a uniformly continuous function. If $\left\{x_{n}\right\}_{n \geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
4. Let $N>0$ and let $f:[0,1] \rightarrow[0,1]$ be denoted by $f(x)=1$ if $x=1 / i$ for some integer $i \leq N$ and $f(x)=0$ for all other values of x. Show that f is Riemann integrable.
5. Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be defined by

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}
$$

Show that F is a uniformly continuous function.
6. Show that every isometry of a compact metric space into itself is onto.
7. Let $\mathbf{T}=\{z \in \mathbf{C}:|z|=1\}$ and $f:[0,1] \rightarrow \mathbf{C}$ be continuous with $f(0)=0, f(1)=2$. Show that there exists at least one t_{0} in $[0,1]$ such that $f\left(t_{0}\right)$ is in \mathbf{T}.
8. Let f be a continuous function on $[0,1]$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x
$$

9. Find the most general curve whose normal at each point passes though $(0,0)$. Find the particular curve through $(2,3)$.
10. Suppose f is a continuous function on \mathbf{R} which is periodic with period 1 , that is, $f(x+1)=f(x)$ for all x. Show that
(i) the function f is bounded above and below,
(ii) it achieves both its maximum and minimum and
(iii) it is uniformly continuous.
11. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix such that $a_{i j}=0$ whenever $i \geq j$. Prove that A^{n} is the zero matrix.
12. Determine the integers n for which \mathbf{Z}_{n}, the set of integers modulo n, contains elements x, y so that $x+y=2,2 x-3 y=3$.
13. Let a_{1}, b_{1} be arbitrary positive real numbers. Define

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\sqrt{a_{n} b_{n}}
$$

for all $n \geq 1$. Show that a_{n} and b_{n} converge to a common limit.
14. Show that the only field automorphism of \mathbf{Q} is the identity. Using this prove that the only field automorphism of \mathbf{R} is the identity.
15. Consider a circle which is tangent to the y-axis at 0 . Show that the slope at any point (x, y) satisfies $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$.
16. Consider an $n \times n$ matrix $A=\left(a_{i j}\right)$ with $a_{12}=1, a_{i j}=0 \forall(i, j) \neq(1,2)$. Prove that there is no invertible matrix P such that $P A P^{-1}$ is a diagonal matrix.
17. Let G be a nonabelian group of order 39 . How many subgroups of order 3 does it have?
18. Let $n \in \mathbf{N}$, let p be a prime number and let $\mathbf{Z}_{p^{n}}$ denote the ring of integers modulo p^{n} under addition and multiplication modulo p^{n}. Let $f(x)$ and $g(x)$ be polynomials with coefficients from the ring $\mathbf{Z}_{p^{n}}$ such that $f(x) \cdot g(x)=0$. Prove that $a_{i} b_{j}=0 \forall i, j$ where a_{i} and b_{j} are the coefficients of f and g respectively.
19. Show that the fields $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{3})$ are isomorphic as \mathbf{Q}-vector spaces but not as fields.
20. Suppose $a_{n} \geq 0$ and $\sum a_{n}$ is convergent. Show that $\sum 1 /\left(n^{2} a_{n}\right)$ is divergent.

