I B.Tech Examinations,June 2011
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Examine the convergence of $\sum 3^{\mathrm{n}+1} /(\mathrm{n}+1) 2^{\mathrm{n}}$
(b) Examine the convergence or divergence of $\sum \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}+1} \quad,(\mathrm{x}>0) \quad[6+10]$
2. (a) Find the centre of curvature of $x^{3}=a^{2} y$ at (a, a).
(b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, considering it as the envelope of normals.
3. Verify Green's theorem in the xy-plane for $\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y$ where C is the closed curve of the region bounded $y=x^{2}$ and $y^{2}=x$.
4. (a) Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$.
(b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years?
5. (a) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+2\right) \mathrm{y}=e^{-x}+\sin 2 \mathrm{x}$
(b) Solve the equation $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$.
6. (a) Verify Lagrange's Mean Value Theorem for $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-7 \mathrm{x}+10$ in $[0,5]$.
(b) Find the Jacobian of x , y with respect to θ, ϕ given that $x=\sin \theta \sqrt{1-a^{2} \sin ^{2} \phi}$, $y=\cos \theta \cos \phi$.
7. (a) Find L[f(t)] where $f(t)$ is given by

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{t}) & =\mathrm{t}, & 0<\mathrm{t}<\mathrm{b} \\
& =2 \mathrm{~b}-\mathrm{t}, \mathrm{~b}<\mathrm{t}<2 \mathrm{~b},
\end{array}
$$

$2 b$ being the period of $f(t)$.
(b) Find $\mathrm{L}^{-1}\left[(2 \mathrm{~s}+3) /\left(\mathrm{s}^{3}-6 \mathrm{~s}^{2}+11 \mathrm{~s}-6\right)\right]$
8. Evaluate $\iiint \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and contained in the first octant.

I B.Tech Examinations,June 2011
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+2\right) \mathrm{y}=e^{-x}+\sin 2 \mathrm{x}$
(b) Solve the equation $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$.
2. (a) Examine the convergence of $\sum 3^{n+1} /(n+1) 2^{n}$
(b) Examine the convergence or divergence of $\sum \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}+1} \quad,(\mathrm{x}>0) \quad[6+10]$
3. (a) Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$.
(b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years?
[8+8]
4. Verify Green's theorem in the xy-plane for $\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y$ where C is the closed curve of the region bounded $y=x^{2}$ and $y^{2}=x$.
5. (a) Find the centre of curvature of $x^{3}=a^{2} y$ at (a, a).
(b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, considering it as the envelope of normals.
6. (a) Verify Lagrange's Mean Value Theorem for $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-7 \mathrm{x}+10$ in $[0,5]$.
(b) Find the Jacobian of x , y with respect to θ, ϕ given that $x=\sin \theta \sqrt{1-a^{2} \sin ^{2} \phi}$, $y=\cos \theta \cos \phi$.
7. Evaluate $\iiint \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and contained in the first octant.
8. (a) Find L[f(t)] where $f(t)$ is given by

$$
\begin{aligned}
\mathrm{f}(\mathrm{t}) & =\mathrm{t}, & 0<\mathrm{t}<\mathrm{b} \\
& =2 \mathrm{~b}-\mathrm{t}, & \mathrm{~b}<\mathrm{t}<2 \mathrm{~b},
\end{aligned}
$$

$2 b$ being the period of $f(t)$.
(b) Find $\mathrm{L}^{-1}\left[(2 \mathrm{~s}+3) /\left(\mathrm{s}^{3}-6 \mathrm{~s}^{2}+11 \mathrm{~s}-6\right)\right]$

I B.Tech Examinations,June 2011
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+2\right) \mathrm{y}=e^{-x}+\sin 2 \mathrm{x}$
(b) Solve the equation $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$.
2. (a) Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$.
(b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years?
[8+8]
3. (a) Find L[f(t)] where $f(t)$ is given by

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{t}) & =\mathrm{t}, & 0<\mathrm{t}<\mathrm{b} \\
& =2 \mathrm{~b}-\mathrm{t}, \mathrm{~b}<\mathrm{t}<2 \mathrm{~b},
\end{array}
$$

$2 b$ being the period of $f(t)$.
(b) Find $\mathrm{L}^{-1}\left[(2 \mathrm{~s}+3) /\left(\mathrm{s}^{3}-6 \mathrm{~s}^{2}+11 \mathrm{~s}-6\right)\right]$
4. (a) Verify Lagrange's Mean Value Theorem for $f(x)=2 x^{2}-7 x+10$ in $[0,5]$.
(b) Find the Jacobian of x, y with respect to θ, ϕ given that $x=\sin \theta \sqrt{1-a^{2} \sin ^{2} \phi}$, $y=\cos \theta \cos \phi$.
[8+8]
5. (a) Examine the convergence of $\sum 3^{n+1} /(n+1) 2^{n}$
(b) Examine the convergence or divergence of $\sum \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}+1} \quad,(\mathrm{x}>0) \quad[6+10]$
6. Verify Green's theorem in the xy-plane for $\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y$ where C is the closed curve of the region bounded $y=x^{2}$ and $y^{2}=x$.
7. (a) Find the centre of curvature of $x^{3}=a^{2} y$ at (a, a).
(b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, considering it as the envelope of normals.
8. Evaluate $\iiint \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and contained in the first octant.

I B.Tech Examinations,June 2011
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Examine the convergence of $\sum 3^{\mathrm{n}+1} /(\mathrm{n}+1) 2^{\mathrm{n}}$
(b) Examine the convergence or divergence of $\sum \mathrm{n}^{2} \mathrm{x}^{\mathrm{n}+1} \quad,(\mathrm{x}>0) \quad[6+10]$
2. Evaluate $\iiint \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$ where the integral is taken over the region of space bounded by the coordinate planes and sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and contained in the first octant.
3. (a) Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$.
(b) If a population is increasing exponentially at the rate of 2 percent per year, what will be the percentage increase over a period of 10 years?
[8+8]
4. Verify Green's theorem in the xy-plane for $\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y$ where C is the closed curve of the region bounded $y=x^{2}$ and $y^{2}=x$.
5. (a) Find the centre of curvature of $x^{3}=a^{2} y$ at (a, a).
(b) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, considering it as the envelope of normals.
6. (a) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+2\right) \mathrm{y}=e^{-x}+\sin 2 \mathrm{x}$
(b) Solve the equation $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$.
7. (a) Find L[f(t)] where $f(t)$ is given by

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{t}) & =\mathrm{t}, & 0<\mathrm{t}<\mathrm{b} \\
& =2 \mathrm{~b}-\mathrm{t}, \mathrm{~b}<\mathrm{t}<2 \mathrm{~b},
\end{array}
$$

$2 b$ being the period of $f(t)$.
(b) Find $L^{-1}\left[(2 s+3) /\left(s^{3}-6 s^{2}+11 s-6\right)\right]$
8. (a) Verify Lagrange's Mean Value Theorem for $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-7 \mathrm{x}+10$ in $[0,5]$.
(b) Find the Jacobian of x, y with respect to θ, ϕ given that $x=\sin \theta \sqrt{1-a^{2} \sin ^{2} \phi}$, $y=\cos \theta \cos \phi$.

