2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
27th June 2016, 08:17 AM
Super Moderator
 
Join Date: Apr 2013
Re: VTU Maths Syllabus

The Engineering Mathematics I syllabus for the Visvesvaraya Technological University

ENGINEERING MATHEMATICS – I

5
ENGINEERING MATHEMATICS – I
Sub Code : 10MAT11 IA Marks : 25
Hrs/ Week : 04 Exam Hours : 03
Total Hrs. : 52 Exam Marks : 100

PART-A
UNIT – 1

Differential Calculus - 1
Determination of nth derivative of standard functions-illustrative examples*.
Leibnitz’s theorem (without proof) and problems.
Rolle’s Theorem – Geometrical interpretation. Lagrange’s and Cauchy’s
mean value theorems. Taylor’s and Maclaurin’s series expansions of function
of one variable (without proof).
6 Hours

UNIT – 2
Differential Calculus - 2
Indeterminate forms – L’Hospital’s rule (without proof), Polar curves: Angle
between polar curves, Pedal equation for polar curves. Derivative of arc
length – concept and formulae without proof. Radius of curvature - Cartesian,
parametric, polar and pedal forms.
7 Hours

UNIT – 3
Differential Calculus - 3
Partial differentiation: Partial derivatives, total derivative and chain rule,
Jacobians-direct evaluation.
Taylor’s expansion of a function of two variables-illustrative examples*.
Maxima and Minima for function of two variables. Applications – Errors and
approximations.
6 Hours

UNIT – 4
Vector Calculus
Scalar and vector point functions – Gradient, Divergence, Curl, Laplacian,
Solenoidal and Irrotational vectors.
Vector Identities: div (øA), Curl (øA) Curl (grad ø ) div (CurlA) div (A x B )
& Curl (Curl A) .
Orthogonal Curvilinear Coordinates – Definition, unit vectors, scale factors,
orthogonality of Cylindrical and Spherical Systems. Expression for Gradient,
Divergence, Curl, Laplacian in an orthogonal system and also in Cartesian,
Cylindrical and Spherical System as particular cases – No problems
7 Hours
6

PART-B

UNIT – V

Integral Calculus
Differentiation under the integral sign – simple problems with constant
limits. Reduction formulae for the integrals of
sin , cos , n n x x s i n c o s m n x x and evaluation of these integrals with
standard limits - Problems.
Tracing of curves in Cartesian, Parametric and polar forms – illustrative
examples*. Applications – Area, Perimeter, surface area and volume.
Computation of these in respect of the curves – (i) Astroid:
2 2 2
3 3 3 x y a + =
(ii) Cycloid: ( ) ( ) sin , 1 cos x a y a q q q = - = - and (iii) Cardioid:
( ) 1 cos r a q = +
6 Hours

UNIT – VI
Differential Equations
Solution of first order and first degree equations: Recapitulation of the
method of separation of variables with illustrative examples*. Homogeneous,
Exact, Linear equations and reducible to these forms. Applications -
orthogonal trajectories.
7 Hours

UNIT – VII
Linear Algebra-1
Recapitulation of Matrix theory. Elementary transformations, Reduction of
the given matrix to echelon and normal forms, Rank of a matrix, consistency
of a system of linear equations and solution. Solution of a system of linear
homogeneous equations (trivial and non-trivial solutions). Solution of a
system of non-homogeneous equations by Gauss elimination and Gauss –
Jordan methods.
6 Hours

UNIT – VIII:
Linear Algebra -2
Linear transformations, Eigen values and eigen vectors of a square matrix,
Similarity of matrices, Reduction to diagonal form, Quadratic forms,
Reduction of quadratic form into canonical form, Nature of quadratic forms
7 Hours


Quick Reply
Your Username: Click here to log in

Message:
Options




All times are GMT +5. The time now is 11:43 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4