2023 2024 Student Forum > Management Forum > Main Forum

 
  #2  
25th September 2014, 09:23 AM
Super Moderator
 
Join Date: Apr 2013
Re: GATE ECE Exam Syllabus

Here I am providing the syllabus of the GATE ECE Exam which you are looking for .
Networks:It is the connection of electrical elements together. It include topics-Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Network theorems: superposition, Wye-Delta transformation. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks. Thevenin and Norton’s maximum power transfer, Steady state sinusoidal analysis using phasors, Solution methods: nodal and mesh analysis

Electronic Devices: These are the physical entities in an electronic system use to affect the electrons.It include Topics- Carrier transport in silicon: diffusion current, mobility, and resistivity, drift current. Generation and recombination of carriers. p-n junction diode, , MOSFET, LED, p-I-n and avalanche photo diode, LASERs basics. Device technology includes integrated circuits fabrication process, diffusion ,oxidation, ion implantation, photolithography, p-tub,n-tub and twin-tub CMOS process, Energy bands in silicon, intrinsic and extrinsic silicon, Zener diode, tunnel diode, JFET, BJT, MOS capacitor
Analog Circuits:These are the circuits that uses continuous time voltages and current. It include topics-Small Signal Equivalent circuits of diodes, MOSFETs and analog CMOS , BJTs. Simple diode circuits, clamping, clipping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers includes single-and multi-stage, operational and differential, feedback, and power.. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations ,Frequency response of amplifiers, Function generators and 555 Timers,wave shaping circuits. Power supplies.
Digital circuits: These are made from analog components which represent signal by the help of discrete values.It include topics- minimization of Boolean functions; Boolean algebra ,logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits includes arithmetic circuits, multiplexers,code convertors, decoders, PLAs and PROMs. Sequential circuits includes counters and shift-registers, latches and flip-flops,. Sample and hold circuits, DACs, ADCs. Semiconductor memories. Microprocessor(8085): architecture, memory and I/O interfacing, programming.

Signals and Systems:Signal conveys information which is generally a function of independent variable and system is the physical set of components/parts that carries a signal. It include topics-Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, DFT and FFT, discrete-time and continous-time Fourier Transform, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems includes definitions and properties; causality, impulse response, stability ,convolution, poles and zeros, frequency response, cascade and parallel structure, phase delay,group delay. Signal transmission through the LTI systems.

Control Systemsevices that are meant to manage,order,direct or supervise the behavior of other devices or systems. It include topics- Basic control system components; reduction of block diagrams , block diagrammatic description. Open loop and closed loop (feedback) systems and stability analysis of these systems;steady state and transient analysis of LTI control systems and frequency response ,Signal flow graphs and their use in determining transfer functions of systems. Tools and techniques for LTI control system analysis: Routh-Hurwitz criterion, root loci,Nyquist and Bode plots. Control system compensators:elements of Proportional-Integral-Derivative (PID) control ,elements of lead and lag compensation. State variable representation & solution of state equation of LTI control systems.

Communication: Refers to interaction. It include topics- Random signals and noise: probability, probability density function, random variables , power spectral density, random variables. Analog communication systems includes spectral analysis of the following operations, amplitude and angle modulation and demodulation systems, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Digital communication system includes pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes includes amplitude, phase and frequency shift keying schemes (ASK, FSK, PSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of FDMA, TDMA and GSM and CDMA. Fundamentals of information theory and channel capacity theorem

Electromagnetics: It refers to electromagnetism. It include topics -Elements of vector calculus includes divergence and curl; Maxwell’s equations: differential and integral forms, Gauss’ and Stokes’ theorems. Poynting vector ,Wave equation. Plane waves includes propagation through various media; reflection and refraction; skin depth phase and group velocity . Transmission lines: characteristic impedance; Smith chart; impedance matching, impedance transformation; S parameters, pulse excitation. Waveguides includes: modes in rectangular waveguides; cut-off frequencies; boundary conditions, dispersion relations. Basics of propagation in optical fibers and dielectric waveguide. Basics of Antennas includes: radiation pattern; Dipole antennas, antenna gain.
  #3  
15th November 2014, 12:07 PM
Unregistered
Guest
 
GATE ECE Exam Syllabus

I am looking for the GATE ECE exam syllabus . Will you please provide it ?
  #4  
17th November 2014, 01:10 PM
Super Moderator
 
Join Date: Apr 2013
Re: GATE ECE Exam Syllabus

Here I am providing the GATE ECE exam syllabus which you are looking for.

General Aptitude(GA)- It’s a multiple choice test to judge the basic English knowledge of a person

This Paper Consists of Verbal Ability: English grammar, verbal analogies, instructions, critical reasoning and verbal deduction,Sentence completion,Word groups
Engineering Mathematics- It is said to be a branch of mathematics which contains mathematical methods and techniques that are used in industry and engineering.

Linear Algebra: Branch of mathematics which does study of operation and applying it to solve equations. It include following topics-Matrix Algebra, Eigen values and eigen vectors, System of Linear Equations
Calculus: It is mathematical study of change. It include topics-Theorems of integral calculus,Mean Value Theorem, Evaluation of definite and improper integrals, Maxima and minima,Partial Derivatives, Multiple integrals, Fourier series. Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems,Vector Identities

Differential equations: It deals with rate of change and slope of curves. It include topics-First order equation (linear and nonlinear), Cauchy’s and Euler’s equations, Method of Variation of parameters,Initial and boundary value problems, Partial Differential Equations and variable separable method, Higher order linear differential equations with constant coefficients

Complex variables: It comes under complex analysis category. It include topics-Analytic functions,Taylor’s and Laurent’ series, Residue theorem, solution integrals, Cauchy’s integral theorem and integral formula.
Probability and Statistics:They are of two different academic disciplines but studied together. It includes topics-Sampling theorems, Mean, median, Conditional probability, mode and standard deviation, Random variables, Discrete and continuous distributions, Correlation and regression analysis,Poisson, Normal and Binomial distribution
Numerical Methods: It is the study of step by step process that take help of numerical approximation. It include topics-Single and multi-step methods for differential equations,Solutions of non-linear algebraic equations
Transform Theory: It is the Study of transforms. It include topics-Fourier transform, Z-transform, Laplace transform
Electronics and Communication Engineering-

Networks:It is the connection of electrical elements together. It include topics-Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Network theorems: superposition, Wye-Delta transformation. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks. Thevenin and Norton’s maximum power transfer, Steady state sinusoidal analysis using phasors, Solution methods: nodal and mesh analysis

Electronic Devices: These are the physical entities in an electronic system use to affect the electrons.It include Topics- Carrier transport in silicon: diffusion current, mobility, and resistivity, drift current. Generation and recombination of carriers. p-n junction diode, , MOSFET, LED, p-I-n and avalanche photo diode, LASERs basics. Device technology includes integrated circuits fabrication process, diffusion ,oxidation, ion implantation, photolithography, p-tub,n-tub and twin-tub CMOS process, Energy bands in silicon, intrinsic and extrinsic silicon, Zener diode, tunnel diode, JFET, BJT, MOS capacitor

Analog Circuits:These are the circuits that uses continuous time voltages and current. It include topics-Small Signal Equivalent circuits of diodes, MOSFETs and analog CMOS , BJTs. Simple diode circuits, clamping, clipping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers includes single-and multi-stage, operational and differential, feedback, and power.. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations ,Frequency response of amplifiers, Function generators and 555 Timers,wave shaping circuits. Power supplies.
Digital circuits: These are made from analog components which represent signal by the help of discrete values.It include topics- minimization of Boolean functions; Boolean algebra ,logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits includes arithmetic circuits, multiplexers,code convertors, decoders, PLAs and PROMs. Sequential circuits includes counters and shift-registers, latches and flip-flops,. Sample and hold circuits, DACs, ADCs. Semiconductor memories. Microprocessor(8085): architecture, memory and I/O interfacing, programming.

Signals and Systems:Signal conveys information which is generally a function of independent variable and system is the physical set of components/parts that carries a signal. It include topics-Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, DFT and FFT, discrete-time and continous-time Fourier Transform, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems includes definitions and properties; causality, impulse response, stability ,convolution, poles and zeros, frequency response, cascade and parallel structure, phase delay,group delay. Signal transmission through the LTI systems.

Control Systemsevices that are meant to manage,order,direct or supervise the behavior of other devices or systems. It include topics- Basic control system components; reduction of block diagrams , block diagrammatic description. Open loop and closed loop (feedback) systems and stability analysis of these systems;steady state and transient analysis of LTI control systems and frequency response ,Signal flow graphs and their use in determining transfer functions of systems. Tools and techniques for LTI control system analysis: Routh-Hurwitz criterion, root loci,Nyquist and Bode plots. Control system compensators:elements of Proportional-Integral-Derivative (PID) control ,elements of lead and lag compensation. State variable representation & solution of state equation of LTI control systems.

Communication: Refers to interaction. It include topics- Random signals and noise: probability, probability density function, random variables , power spectral density, random variables. Analog communication systems includes spectral analysis of the following operations, amplitude and angle modulation and demodulation systems, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Digital communication system includes pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes includes amplitude, phase and frequency shift keying schemes (ASK, FSK, PSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of FDMA, TDMA and GSM and CDMA. Fundamentals of information theory and channel capacity theorem

Electromagnetics: It refers to electromagnetism. It include topics -Elements of vector calculus includes divergence and curl; Maxwell’s equations: differential and integral forms, Gauss’ and Stokes’ theorems. Poynting vector ,Wave equation. Plane waves includes propagation through various media; reflection and refraction; skin depth phase and group velocity . Transmission lines: characteristic impedance; Smith chart; impedance matching, impedance transformation; S parameters, pulse excitation. Waveguides includes: modes in rectangular waveguides; cut-off frequencies; boundary conditions, dispersion relations. Basics of propagation in optical fibers and dielectric waveguide. Basics of Antennas includes: radiation pattern; Dipole antennas, antenna gain.
  #5  
30th March 2015, 03:18 PM
Unregistered
Guest
 
Re: GATE ECE Exam Syllabus

I have completed B. Tech in ECE and want to prepare for GATE so please provide me GATE Electronics & Communications Engineering – ECE Syllabus?
  #6  
30th March 2015, 03:18 PM
Super Moderator
 
Join Date: Apr 2013
Re: GATE ECE Exam Syllabus

Here I am providing you GATE Electronics & Communications Engineering – ECE Syllabus for your preparation.

GATE ECE Syllabus:

Engineering Mathematics


Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory: Fourier transform, Laplace transform, Z-transform.


GENERAL APTITUDE(GA):


Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.

Electronics and Communication Engineering

Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.

Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies.

Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.

Communications: Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Electromagnetics: Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.
  #7  
19th May 2015, 11:32 AM
Unregistered
Guest
 
Re: GATE ECE Exam Syllabus

Will you provide me the syllabus of the GATE exam for Electronics and Communication Engineering – ECE course ?
  #8  
19th May 2015, 11:33 AM
Super Moderator
 
Join Date: Apr 2013
Re: GATE ECE Exam Syllabus

As you want I am here providing you syllabus of the GATE exam for Electronics and Communication Engineering – ECE course.

Syllabus:

Engineering Mathematics

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems.

Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method.

Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis.

Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations.

Transform Theory: Fourier transform, Laplace transform, Z-transform.

GENERAL APTITUDE(GA):
Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.

Electronics and Communication Engineering

Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.

Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.

Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies.

Digital circuits: Boolean algebra, minimization of Boolean functions; logic GATEs; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems.

Communications: Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Electromagnetics: Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.


Quick Reply
Your Username: Click here to log in

Message:
Options




All times are GMT +5. The time now is 12:52 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
SEO by vBSEO 3.6.0 PL2

1 2 3 4