Sl. No.: 10017377

Register	
Number	+ -

2014 CIVIL ENGINEERING (Degree Standard)

Time Allowed: 3 Hours]

[Maximum Marks: 300

CVE08

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, your Answer Sheet will not be evaluated.
- 6. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 7. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 9. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 10. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 11. Do not tick-mark or mark the answers in the Question booklet.

1. Match List-I with List-II

List I

(a)

(Type of cement)

- high early strength of cement
- (b) initial setting time of cement
- (c) strength of cement at later age

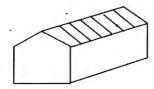
List II

(Compound in cement clinker)

- 1. C_3A
- C_2S
- 3. C_3S

- (a) (b) 1 2
- (A) 1 2 (B) 2 1
- (C) 3 2 1
- 3 1
- 2. Flooring material that is supplied in the form of rolls

(c)

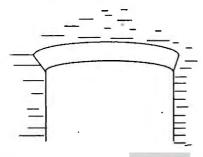

3

- (A) Glass
- · (B) Cork
- jes

Linoleum

(D) Mosaic

3. The type of roof shown in figure is


- (A) Lean to roof
- (B) Gambrel roof

Gable roof

- (D) Deck roof
- 4. The exposed edges of stones are bevelled for a depth of 2.5 cm in a
 - (A) Ashlar rough tooled masonry
- (B) Ashlar rock faced masonry

- (6)
- Ashlar changed masonry
- (D) Ashlar block in course
- 5. The arch indicated in the figure below is a

- (A) Semicircular arch
- (C) Horse-Shoe arch

- (B) Segmental arch
- (D) Stilted arch

6.	The c	lifference between the	true value of a	quantit	y and its observed value is					
	(A)	most probable value		(B)	true value					
	SOY	true error	,	(D)	most probable error					
7.	One (A) (B) (D)	of the following set of the parabola, hyperbola, angle, chord, centre lapex distance, unit cont, bitumen, tange	circle line hord and tange		rve setting in road network placing					
8.	Mapp	oing of spot heights in	a terrain with	(x,y) ob	oservation is possible with					
	(A)	Total station		(B)	EDM					
	Ses	Photogrammetry		(D)	Electronic theodolite					
9.	The s	ubstance bar has two	vases for meas	uremen	t of					
	(4)	one inclinded angle		(B)	one sighting					
	(C)	two linear observation	on ,	(D)	two vertical angles					
10.		condition necessary f ved through adjustme		ssessme:	nt of vertical angles using theod	olite is				
	(A)	plate bubbles			tightening screws					
	(C)	cross hair in diaphra	gm	D	trunmois axis					
11.	Super elevation on a curved road cannot be provided at									
	(A)	forward tangent		(B)	point of equilibrium					
	(C) .	point of tangent		D	point of reverse curvature					
12.	The a	allowable linear error o	of closure for m	inor the	odolite traverse for detailing is					
	(A)	1:5,000	1:300	(C)	1:50 (D) 1:10,000					
13.	To m	easure the magnetic b	earing of a line	, the the	eodolite should have					
	(A)	tape		(3)	trough compass					
	(C)	magnetic compass		(D)	total station					
14.	In ge	neral engineering surv	vey terminology	, LS an	. d CS survey means (w.r.t. leveling)					
	(A)	long staff and cross s								
	B	longitudinal section		n surve	ying					
	(C)	line of sight and cros								
	(D)	leveling survey and o	-							
	, ,									

- The maximum shear stress theory gives better results for 15.
 - brittle materials (A)

- ductile materials
- (C) brittle and ductile materials
- non-metallic materials
- Moment area method is used for determining the 16.
 - shear force at a point

bending at a point

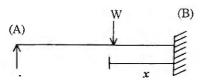
(C) deflection at a point

- slope and deflection at a point
- The strain energy due to sending is given by (where M-bending moment l-length of member, 17. E-Young's modulus and I-moment of inertia)

 - $\int_{0}^{t} \frac{M^{2}}{2EI} dx \qquad (B) \quad 2 \int_{0}^{t} \frac{M^{2}}{EI} dx \qquad (C) \quad \int_{0}^{t} \frac{M}{2EI} dx \qquad (D) \quad \int_{0}^{t} \frac{M}{EI} dx$
- The maximum principal stress theory is also known as 18.
 - (A) St. Vernant's theory

Beltrami's theory

Von Mises theory (C)


- Rankine's theory
- The maximum slope of a simply supported beam of length L carrying a uniformly 19. distributed load of w per unit length is
 - $wL^3/6EI$
- (B) $wL^3/16EI$
- $wL^{3}/24EI$ (D) $wL^{3}/48EI$
- The relation between, E, G and K is where E-Young's modulus, G-rigidity modulus, K-bulk 20. modulus
- $E = \frac{G + 3K}{3GK}$ (B) $E = \frac{3G + K}{9GK}$ (C) $E = \frac{G + 3K}{9GK}$ $E = \frac{9GK}{G + 3K}$
- The major and minor principal stress are σ_1 and σ_2 , maximum shear stress is given as 21.

- (A) $\frac{\sigma_1 + \sigma_2}{2}$ (B) $\frac{\sigma_1^2 + \sigma_2^2}{2}$ (D) $\left(\frac{\sigma_1 \sigma_2}{2}\right)^2$
- Materials are generally classified as brittle if the percentage of elongation is less than 22.
- 15%
- 25%
- 40% (D)

- Principal planes are separated by 23.
 - (A) 180°
- (B) 45°
- 90°
- (D)

24. Consider the following statements.

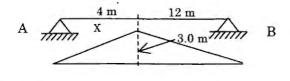
In the beam shown in Fig. for all positions of load W (except x = 0)

- 1. bending moment is maximum at B
- 2. bending moment is maximum under load
- 3. deflection is zero at A
- 4. deflection is zero at B
 Of these statements:
- (A) 1 and 3 are correct

(B) 2 and 4 are correct

(C) 1 and 4 are correct

- 1, 3 and 4 are correct
- 25. In a spherical dome the hoop stress due to a concentrated load at crown is
 - compressive everywhere
- (B) tensile everywhere


(C) zero

- (D) partly compressive and partly tensile
- 26. Consider the following statements...
 - I. In a two hinged semi-circular, the reaction locus is a straight line.
 - II. The distance of reaction locus from abutment is $\pi R/2$.
 - Both I and II are true

(B) I is true but II is false

(C) I is false but II is true

- (D) Both I and II are false
- 27. Euler buckling load can only represent column behaviour
 - of higher values of slenderness ratio
 - (B) of lower values of slenderness ratio
 - (C) both high value and lower values of slenderness ratio
 - (D) is not based on slenderness ratio
- 28. The influence line for bending moment at section $X(M_x)$ at a distance of 4 m from the left support of simply supported girder AB is shown in Fig. A udl of intensity 2t/m longer than the span crosses the girder from left to right. The maximum bending moment at section X is equal to

- (A) 12 t-m
- (B) 24 t-m
- **√€** 48 t-r
- (D) 96 t-m

	•		
29.	The line of optimum	generally corresponds	to percentage air voids of about

(A) zero percent 5 percent

(C) 10 percent

30. If c,γ and H_c are cohesion, unit weight of soil and critical height of slope, the stability number is given by

- (B) $\frac{H_c}{c\gamma}$ (C) $\frac{\gamma H_c}{c}$

31. The following assumption is not made for the friction circle method of slope stability analysis

- (A) friction is fully mobilised
- (B) total stress analysis is applicable
- (C) the resultant is tangential to the friction circle

the resultant passes through the centre of friction circle

- The pile designed to take care of uplift levels are called 32.
 - (A) compression pile

anchor pile

(C) end bearing pile

- 33. Pile cap in group pile is a
 - (A) structural member.
 - (B) connecting member of pile

member to transfer the column load uniformly for all piles

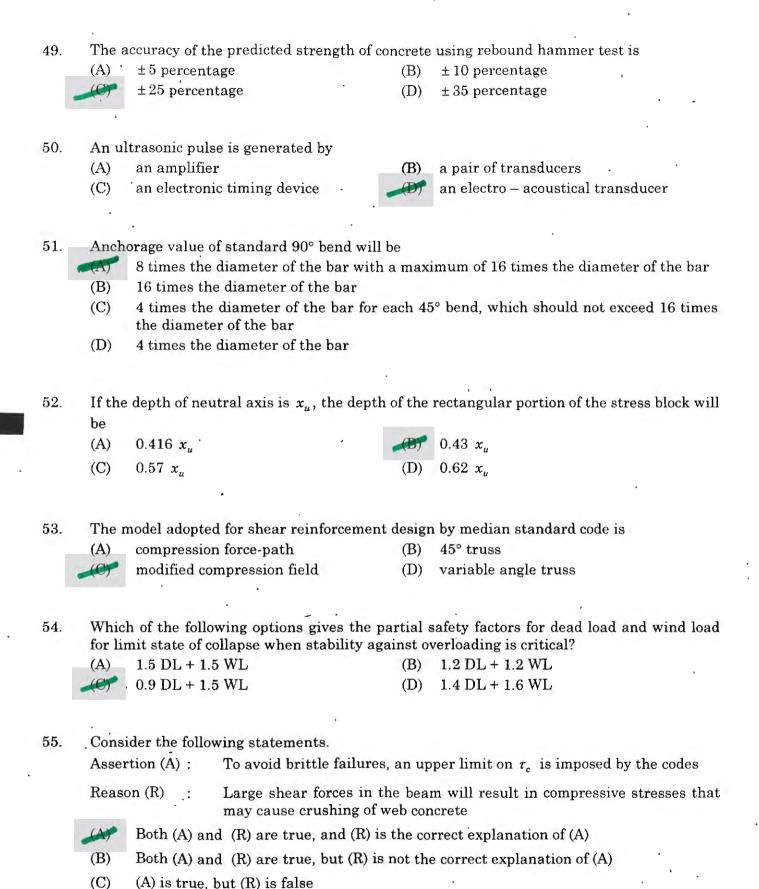
- member to reduce settlement of pile group (D)
- Two circular footing of diameters D_1 and D_2 are resting on the surface of the same purely 34. cohesive soil. The ratio of their gross ultimate bearing capacities is

The coefficient of subgrade reaction depends upon 35.

(A) the size of footing the size, shape of footing

(C) the depth of footing

the size, shape and depth of footing


36.	Match the following pairs. • A			В						
,	(0)		ual chlo	ino		1.	Orthoto	.lidias		
	(a)	COD	uai emoi	rine		2.		n solution		
•	(p)	Chlor	idoa			3.				
	(c) (d)	Hardi				ی. 4.	+	um chromate ome black T		
	(u)	Harui	11622			4.	, EFFICER	Ome black 1		
		(a)	(b)	(c)	(d)					
-	(A)	1	2	3	4 .			•	14	
	(B)	2	3	4	1					
	(C)	4	1	2	3			•		
	(D)	3	4	2	1					
37.				-				er having pH value of than Z?	of 4.5, 5.5 and 6.5	
	(A)	2 tim		ate now	many	times 7.	(B)	4 times		
							(1)	100 times		
	(C)	10 ti	mes			•		100 times		
					*		•			
38.	Air b	oinding	phenon	iena in r	apid sa	and filt	ers occur	due to	•	
	(A)	exces	ssive neg	gative he	ad		(B)	mud ball formation		
-	(C)	high	er turbic	lity in th	e efflu	ent	(D)	low temperature		
							•		•	
39.	Which one of the following is the purpose of providing a surge tank in a pipeline carrying water?									
	(A)	to ste	ore wate	r				•		
	(B)				ure thre	oughou	t the pip	peline		
	(C)			lowing v						
	(D)			_		st wate	er hamm	ier .		
									,	
40.			ed to the ethod giv	_	rical in	crease	method	of forecasting populati	on, the arithmetical	
7	(A)	lesse	r value				,			
	(B)	high	er value					•		
	(C)	equa	l value		•		•			
	(D)	may	vary as	it may d	epend (on the	populatio	on figures		

41.	Pyro	lysis is suitable for							
	(A)	inorganic material	B	organic materials					
,	(C)	metal scraps	(D)	radioactive wastes					
42.	Pars	hall flume is provided to control velo	city of flo	ow in					
	(A)	trickling filter	(B)	grit chamber					
	(C)	activated sludge	(D)	slow sand filter					
43.	As a	result of a stabilization of sewage ef	fluent, th	ne most appropriate end product					
	(A)	chloride	plant nutrients						
	(C)	alkalinity	(D)	hardness					
4 4.	BOD exerted of waste water — with time, while BOD remaining — with time.								
	· (A)	decrease, decrease	(B)	increase, decrease					
	(C)	decrease, increase	(D)	increase, increase					
45.	The r	population equivalent factor for BOD) is						
45.	(A)	0.08 kg of BOD ₅ /day/person	(B)	0.06 kg of BOD5/day/person					
	(C)	0.8 kg of BOD ₅ /day/person	(D)	0.6 kg of BOD5/day/person					
46.	Exter	rnal heating devices are sometimes p	orovided'	to control temperature in					
	(A)	trickling filter	(B)	activated sludge process					
	1et	sludge digestion tank		oxidation ditch					
45	(TI)	,		4:					
47.		colour of sewage changes from Grey t		idicates					
	(A)	presence of oxygen and aerobic con		•					
-	(0)	zero dissolved oxygen and anaerob		on					
	(C)	low strength sewage and aerobic co							
	(D)	fresh sewage with dissolved oxyger	า						
48.	In the	e design of storm sewers, "Time of co	ncentrati	ion' is relevant to determine the					
	(A)	rainfall intensity	(B)	velocity in the sewer					
	(C)	time of travel	(D)	area served by the sewer					

9

CVE08

[Turn over

10

	•			•					
56.	The mo	st efficien	t and econ	nomical secti	on used as	a beam is			
	-	section			(B)	Circular se	ction		
	(C) A	Angle secti	on		(D)	H section			
	. 1								
57.				sidered in a tance betwe			ected to u	niformly distri	buted.
	(A)	wl^2 .	0	wl^2	(C)	$\frac{\dot{w}l^2}{}$	(D)	wl^2	
	(11)	8	(2)	10	(0)	12	(D)	16	
			•		•,			•	
58.		gning pres		oncrete flex	ural memb	ers, the brea	adth of co	mpression fla	nge is
	(A) 1	ıltimate sh	ear stren	gth	(10)	ultimate fle	xural stre	ength .	
	(C) 1	ıltimate te	nsile stre	ngth	(D)	ultimate co	mpressive	strength	
59.	The cor	npression	member u	sed in roof t	russes and	bracings are	e called as		
		Rafters	(B)	Booms	107	Struts	(D)	Knee braces	
	(/		(-)				()		
0.0	m) 00		1 0.1 (933 . 13 ·	•			•	
60.				illet weld is		•			
				wice the thr					
				wice the wel	d size				
	(C) C	0.7 times to	tal length	1					
	(D) T	Cotal lengt	h minus 0	.7 times the	weld size				
				•		•			
61.						column with ds are fixed		nds is 100 kN	ſ. The
	(A) 5	00 kN	(B)	70 kN	(C)	200 kN	(25)	400 kN	
			•				8		
62.	Conside	er the follo	wing state	ements.					
b	Asserti		The eng	ineering str		curve does no a metal in te		rue indication	of the
	Reason		entirely	on the o	original di		f the sp	n tension is ecimen and	
	(A) I	Both (A) an	d (R) are	true, and (I	R) is the con	rect explana	ation of (A	.)	

11 CVE08 [Turn over

Both (A) and (R) are true, but (R) is not a correct explanation of (A)

(B)

β

(C) (A) is true, but (R) is false(D) (A) is false, but (R) is true

63.	Unit hydrograph theory was first enunciated by								
	(A)	Clark	B	Sherman	(C)	Nash	(D)	Bernard	
64.	Base	period of a crop	o is the	time between					
	(A)	the instant of	sowing	to its harvesti	ing			•	
	(B)	first watering	at the	time of sowing	to its la	st watering befo	re har	evesting	
	(C)	sowing to last	wateri:	ng					
	(D)	none of the al	oove						
65.	A lan	d is considered	prone t	co water loggin	ng when	water table is	•		
	(A)	within 1.5 m	of groun	nd surface	(B)	within 2 m of g	round	surface	
	(C)	within 3 m of	ground	surface	(D)	within 3.5 m of	grour	nd surface	
66.	The I	Exchangeable S	odium l	Percentage (ES	SP) of a s	saline soil is			
	(A)	>15	·(B)	15	(C)	none of them	(D)	<15	
67.	In a S	Syphon-aquedu	ct, the 1	nost severe co	ndition o	of uplift on the fl	loor oc	curs when	
	(A)	Canal runs fu	ıll and d	lrain is dry		•			
-	(B)	Canal is dry a	and drai	in is with high	flood lev	vel .		,	
	· (C)	Canal runs di	ry and d	lrain is dry					
	(D)	Both canal ar	id drain	run full				•	
68.	Irriga	ation potential	of the co	ountry is abou	t.				
	(A)	87 M. ha	(B)	100 M. ha	JES	113 M. ha	(D)	125 M. ha	
69.	The c	ptimum capaci	ity of an						
	(A)	0.07 cumec	(B)	0.08 cumec	(C)	0.05 cumec	(D)	0.10 cumec	
70.	The f	all when flume	d functi	oning satisfac	torily as	a meter is			
	(A)	Sharp crested	l fall		(B)	Vertical fall			
	(C)	Inglis fall			(D)	Broad crested	weir		
71.	The c	co-efficient of R	ugosity	(N_a) for an ea	arthen ca	ınal in excellant	condi	tion is	
	(A)	0.015	(B)	0.020	(C)	0.025	(D)	0.030	
72.	The v	vater applicatio	on effici	ency of sprink	ler irriga	ition method in	moder	ate climate is	
	A	70%	(B)	60% .	(C)	80%	(D)	90%	

73.	The	below figure indi	cates		\wedge				
			—С						
	(1)	Informatory si	gn		(B)	Regulatory	y sign		
	(C)	Warning sign			(D)	Route mar	ker sign		
74.	High	way capacity is	defined	l as the total n	umber o	of vehicles			•
	(4)	that can pass a							
	(B)	that can pass a	-		•		;	•	
	(C)	that can be acc		•					
	(D)	that can pass a	given	length of the r	oad in l	km			
75.		er Indian Roads nuously during l					is carried	out for rur	al roads
	(A)	14 days	(B)	28 days	150	7 days	(D).	21 days	
76.		overall road dens ear 2001 accordi First twenty ye	ng to ear roa	d plan	(B)	Second two	enty year i	road plan	area by
		Third twenty y	ear ro	ad pian	(D)	Fourth two	enty year i	oau pian	
77.	Arter	rial road come ur	nder ca	itegory of whicl	h road				
	(A) .	Secondary rura	al	•	(B)	Rural .			
	101	Urban			(D)	Primary ru	ıral		
78.		e stopping sigh	it dist	ance for a hi	ghway	is 91.4 m,	then its	intermediat	te Sight
•	(A)	91.4 m	CO	182.8 m	(C)	45.7 m	(D) ·	274.2 m	
79.		is the design spe be assumed as			•			L. V	
	(A) -	(V–13) kmph	(B)	(V–14) kmph	(C)	(V-15) km	ph - 😕	(V-16) km	ρ h
80.	If the	e cross slope of a	partic	ular terrain is	15%, th	en it is class	sified as	•	
	(A)	Plain	(3)	Rolling	(C)	Mountaine	ous (D)	Steep	
β .	-			1	13		, .	fTui	CVE08

51.	Garba	age dumping is not	t allowed around t	ne areas	is closer to airport for the reason	
	(A)	To avoid ugly view	ws for passengers	while er	entering the city	
	(B)	To avoid foul sme	ell affecting passer	ngers wa	aiting in terminals.	
	(C)	To avoid rats and	l such menace to a	irport b	ouildings that may come from garbage are	a
	(D)	To avoid BIRD m	enace – birds hitt	ing the p	planes during takeoff and landing	
82.	The p		fall of sea water l	levels ba	ased on the influence of moon on earth	is
•	(A)	Wave .		(3)	Tide	
	(C)	Current	•	(D)	Tsunami	
83.	The f	igure below illustr	ates the type of ve	ertical w	vall adopted in	
			ZIIIIIIIII			
				'n		
			Sea level	c <i>m</i>		
	(A)	Britain beach		(B)	Scandinavia beach	
	JOY .	Miami beach	•	(D)	U.S.A. beach	
84.	The p	oart of an airport w	vhere planes are p	arked fo	or repairs, maintenance, etc is called as	
	(A)	Apron		(B)	ATC	
	Jes .	Hangar	•	(D)	Taxiway	
85.		n rails are welded, o thermal stresses		for expa	ansion joint. Still the deformations of ra	ils
٠	W	Locking effect on etc	longitudinal ther	mal stre	esses due to resistance by sleepers, balles	st,
	(B)	Welds absorb the	thermal stresses			
	(C)	Thermal stresses	are lesser than th	ne weld s	stress	
	(D)	Thermal stresses	are negligible con	npared t	to stresses from high speed trains	
CVE	208			14		β

				·							
86.	The	Poisson's ratio is defined as	-								
-	(A)	Linear strain/Lateral stra	nin								
	D	Lateral strain/Linear stra	nin								
	(C) ·	Shear strain/Linear strain	n ·								
	(D)	Linear strain/Shear strain	n ·								
				·							
87.	If the	If the earliest finish time of activity is 18 days and its duration is 8 days, then its earliest									
	start	is									
	(A)	8	(25)	10 .							
	(C)	18	(D)	26	_						
88.	In Pl	ERT technique the critical p	ath has slack equ	al to							
	(A)	Zero or Positive	(B)	Negative							
	(C)	Positive	100	Zero or Negative	1= -						
89.	Whe	,	ositive then it is	called as							
	(A)	Super critical activity									
	(B)	Critical activity	,								
	(1)	Sub-critical activity									

- (D) Hyper-critical activity
- Which one of the following is not an application of CPM? 90.
 - Crashing (A)
 - (B) Resource levelling
 - (C) Resource allocation
 - Linear scheduling

91.	wna	t key hardware item ties a CAD/CA	w system	togetner:					
	(A)	Keyboard	(B)	Graphics workstation					
	(C)	Digitiser	(D)	Plotter					
				,					
92.	The '	snap' command feature in both Aut	o CAD an	d versa CAD ensures that :					
-	(A)	template lines can be removed							
	(B)	objects are entered at specific inte	ervals						
	(C)	definable center markers are ente	red	· · · · · · · · · · · · · · · · · · ·					
	(D)	identified data are automatically	segmente	d 					
93.	A technique for displaying applications where complex 3-D geometrics are required for the exterior shall of a product is called								
	(A)	2 – D modelling	(B)	Solid modelling					
	(C)	3 – D modelling	- CON	Surface modelling					
,94.	What datal		base that	contains description of the data in the					
	(A)	Metadata	(B)	Data dictionary					
	(C)	Table .	(D)	Name space					
95.	The method of solid modeling that defines the topology of faces, edges and vertices as well as data that defines the surface in which each face line is called								
	(A)	Layering							
	(B)	Constructive solid geometry							
	(0)	Boundary representation		·					
·	(D)	Isometric							
96.	A me	ans of storing large amounts of data	a outside	the main memory is					
	(A)	Magnetic memory	(B)	Primary memory					
	SOP.	Auxiliary memory	(D)	Cache memory					
CVE	08		16	· · · β					

97.		ease in fineness						•	
	(A)	reduces the ra	ate of s	trength develop	ment a	nd leads to hig	gher sh	rinkage	
	(B)	increases the	rate of	strength develo	pment	and reduces th	ne rate	of deterioratio	a
6	(C)	decreases the	rate of	strength develo	pment	and increases	the ble	eding of cemer	it
		increases the	rate of	strength develo	pment	and leads to h	igher s	hrinkage	
98.	Moh'	s scale for stone	s is us	ed to determine					
	(A)	toughness	B	hardness	(C)	durability	(D)	specific grav	ity
99.	Befor	re testing settin	g time	of cement one s	hould t	est for	·		
	(A)	soundness			(B)	strength			
•	(C)	fineness			(D)	consistency			
100.	Whic	h of the followir	ng is us	ed for making e	lectric	al switches?			
	(A)	polyvinyl chlor	ride		(B)	polypropylene	Э		
	(6)	bakelite		• .	(D)	polyvinyl acet	tate		
101.	Trade	• e name of polyst	tryene :	is					'
	SAS	Thermocol			(B)	Asbestos			
	(C)	Cork ·	j.	•	(D)	Glass wool			
102.	Marb	ole is quarried by	y						
	(A)	heating			(B)	excavating			
	198	wedging		٠	(D)	blasting			
103.	Cons	ider the followir	ng state	ements.					
	Asser	rtion (A) :	Finer	the cement, mor	e is th	e strength.			
	Rease	on (R) :	Surfac	e area for hydra	tion is	less for finer c	ements	\$	
	(A)	Both (A) and (R) are	true and (R) is t	he cor	rect explanation	n of (A)		
	(B)	Both (A) and (R) are	true, but (R) is i	not a co	orrect explanat	ion of (A) "	
	(0)	(A) is true, but	t(R) is	false		-			
	(D)	(A) is false, bu	t (R) is	true .					
104.	The p	process of adding	g watei	to lime to conv	ert it i	nto hydrated li	me is k	nown as	
•	(A)	quenching	(B)	crystallisation	(6)	slaking	(D)	calcination	
105.	The s	specific gravity o	of most	of the stones lie	e betwe	een			
	(A)	1.8 to 2.2	(B)	2.5 to 3.0	(C)	3.0 to 3.5	(D)	3.5 to 4.5	
ß				1'			, ,		VEO

[Turn over

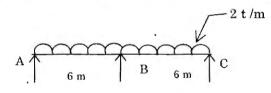
106.	A slo	ping member v	vhich su	ipports the steps	in a s	tair		
	M	Stringer	(B)	Carriage	(C)	Flight	(D)	Landing .
107.		of all the rules ck masonry	and spe	ecifications, choos	se the	most import	tant requi	rement with respect
	(A)	all bricks sho	ould be o	of uniform shape	and s	ize	•	
	(B) '	the mortal jo	ints sho	uld be as thin as	possi	ble	•	
	Ser	the vertical j	joints sh	nould not be con	tiguov	is and should	d be stagg	ered in consecutive
-	(D) ·	the entire wa	all heigh	t should be const	tructe	d without sto	ppage in l	between
108.		ns who went to		e the best qualit	y and	best workm	anship in	brick masonry, will
	(A)	single layer's	scaffoldi	ng with crea sup	ports	on the wall it	tself	
	(B)	double layer	scaffold	ing which does n	ot req	uire the wall	for its sup	pport
	(C)	steel scaffold	ing inst	ead of timber sca	affold	•		
	(D)	moving scaffe	old					
109.		e of scaffoldin c on road	g that o	ean be provided o	on sid	e of a busy s	street with	nout obstructing the
	(A)	Single scaffol	lding		(B)	Mason's sca	affolding	
	(C)	Ladder scaffo	olding	٠.	(D)	Needle scaf	folding	
110.	A sen	ni tight materi	al whicl	n forms an excell	ent in	pervious lay	er for dan	p-proofing is called
	(A)	bitumen	(B)	bituminous felt	(C)	aluminal	JOS .	mastic asphalt
111.	In Ar	ches, the botto	m most	starting point at	t both	ends is calle	d as	
	SAY	Springer	(B)	Crown	(C)	Closer	(D)	Bearing .
112.		SON'S rule to ll area is that	calcula	te area-to apply	this r	rule, then the	condition	to divide the given
	(A)	no special con	ndition,	the whole area c	an be	divided any	way	
	B	divide the e			divis	ions so that	there ar	e ODD number of
	(C)	divide the en	tire are	a into ODD divis	ions s	o that there a	are EVEN	ordinates
	(D)	both ODD or	EVEN 1	number of division	ons ar	e acceptable		

113.	One o	cubic metre of	mild ste	eel weighs abo	ut			1		
,	(A) ·	1000 kg	(B)	3625 kg	(5)	7850 kg	(D)	12560 kg		
114.	The o	i quantity of par	tition w	alls and hone	y comb w	alls are worke	d out in			
	(A)	M	(B)	M^3	10	M^2	(D)	Lumpsum		
115.	The s	scheduled of ra	te is pre	epared on the	basis of					
	(A)	labour			(B)	material				
- 8	100)	analysis of ra	ites		(D)	rough estima	.te			
116.	The a	annual periodic	: payme	nts made for t	the repay	ment of the ca	pital inv	vested is known as		
٠.,	(1)	annuity		7. Y	(B)	sinking fund		, .		
	(C)	out going		•	(D)	depreciation				
		•		of A						
117.	The e	expected task for	or 12 m	m plastering v	with ceme	ent mortar per	mason	is		
	(Å)	3 cu.m	(B)	3 sq.m	(C)	6 sq.m	(0)	8 sq.m		
118.	The b	orick work is no	ot meas	ured in cu.m i	n the cas	e :		•		
	(A)	one or more t	han one	e brick wall	(B)	brick work in	arches			
	(C)	reinforced bri	ick worl	K	JOS .	thin partition	n wall			
119.	The expected out turn for earth work in excavation in ordinary soil per mazdoor per d									
	(A)	1.00 cu.m	(B)	2.00 cu.m ·	Jes .	3.00 cu.m	(D)	.4.00 cu.m		
120.	The e	expected out tu	rn of 2.	5 cm cement c	oncrete f	loor per mason	per day	,		
	(A)	2.5 sq.m	(B)	4.0 sq.m	(C)	6.0 sq.m	(8)	7.5 sq.m		
121.	In an	alysis of rates	contrac	tor profit is ta	ken at th	e rate of				
	(A)	10 times of to	tal cost	of material a	nd labour					
•	(B)	5 times of tot	al cost o	of material an	d labour	.)				
	(C)			t of material a		r				
	(D)	0.1 times of to	otal cos	t of material a	nd labou	r .				
122.	The a	amount require	d to be	deposited by a	contract	tor while subm	itting a	tender is known as		
		fixed deposit			(B)	caution depos		•		
	(C)	security depo	sit		- 655	earnest mone		it		
	, -/		•	•			- 10-333			

- 123. Energy stored in a material during its deformation is known as
 - (A) elastic energy

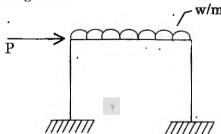
(B) plastic energy

- strain energy


- potential energy
- 124. The moment required to rotate the near end of a prismatic beam through unit angle without translation, when the far end is fixed
- (B) $\frac{2EI}{l}$ (C) $\frac{3EI}{l}$

- The moment distribution method in structural analysis can be treated as 125.
 - force method (A)

displacement method


(C) flexibility method

- unit load method
- 126. A two span continuous beam ABC is simply supported at A & C is continuous over support B. Span AB = 6 m and span BC = 6 m. The beam carries a udl of 2 t/m over both the spans. EI is constant for the entire beam. The fixed end moment at B in span BA or BC would be.

- (A) 12 t m

- 127.In a two hinged arch an increase in temperature induces
 - (A) no bending moment in the arch rib
 - (B) uniform bending moment in the arch rib
 - maximum bending moment at the crown (C)
 - minimum bending moment at the crown (D)
- 128. The frame shown in the figure has

- (A) one unknown reaction component
- · (B) two unknown reaction component
- three unknown reaction component (C)
- six unknown reaction component

129.	Bouss (A) (B) (D)	depth of the magnitude modulus of	e point be of the load elasticity	at a point for low the point d and Poisson's point from th	of applic	ation of the	load ·	ndent of			
130.	Vane	shear test is	applicabl	e for							
	(A)	dense sand			(B)	loose sand					
	CO	soft clay		,	- (D)	stiff clay	•				
131.		der the followition (A) :	The cond	ements. quick sand lea ition occuring sure is reduce il amounts of	g within d to zero	a cohensi	onless soil	when its ex	ffective		
	pressure of the submerged soil mass are acting. Select the answer to the above questions using the codes given below:										
	Select			-		•					
	(4.3)			true and (R) is							
	(B) Both (A) and (R) are true but (R) is not a correct explanation of (A)										
	(C)	(A) is true b	out (R) is f	alse				•			
	(D)	(A) is false l	out (R) is	true				٠	÷		
132.	The maximum vertical stress on a vertical line at a constant radial distance 'r' from the axis of vertical load is induced at the point of intersection of the vertical line with a radial line at an angle of ———————————————————————————————————										
	(A)	0° 13'	S	39° 13'	(C)	45°	(D) ·	60°			
133.	The void ratio and discharge velocity of a soil are 1.0 and 1×10^{-5} cm/s respectively. Its seepage velocity in cm/s is										
	(A)	4×10^{-5}	DA	2×10^{-5} .	(C)	1×10^{-5}	(D)	0.5×10^{-5}			
134.	200 K	Pa to a scale	. If the po	of Mohr circle ore pressure a drawn to the s	t failure	is 50 KPa,	the diamet				
	(A)	150 KPa	(2)	200 KPa	(C)	250 KPa	(D)	300 KPa			
135.	The le	agt count of	dial anua	· e to be used ir	the lab	nratory cons	olidation t	est is			
TOU.	(A)	0.01 mm		0.002 mm		•	(D)	0.1 mm			
	(23)	o.o. mm		0.002 mm		uim co.c	. (D)	v.i mm			

CVE08 [Turn over

136.	Mini	mum centre to	centre s	spacing of fr	riction piles	of diamete	r (D) as per BIS code is	
•	(A)	1.5 D	(B)	2.5 D	(C)	2.0 D	3 D	
137.	Cons	ider the follow	ving state	ements.		,	• • • • • • • • • • • • • • • • • • • •	
	1.	Coulombs ea	arth pres	sure theory	does not ta	ke the roug	hness of soil into conser	vation
	2.	In case of pressure at			the coeffici	ents of act	ive earth pressure and	earth
	3.	Any movem		etaining wa	all away fr	rom the ful	ll corresponds to active	earth
1	Of th	ese statement	ts:				•	
·	(A)	only 1 is con	rect		(B)	1 and 2 ar	e correct	
	(C)	only 2 is cor	rect		D	only 3 is c	orrect .	
138.		bearing capac located at a d		_			fected by the presence o	f water
	(A)	1.0 m	P	3.0 m	(C)	1.5 m	(D) 6.2 m	
139.	Whic	h of the follow	ing pile	will have hi	gh level car	rrying capa	city, for ideal conditions	· ?
	(A)	driven pile			(B)	bored piles		
	(0)	driven and o	ost-in-si	tu piles	(D)		cost-in-situ piles	
140.	For t	he design of s	trap foot	ing the follo	nwing assu	mption is n	ot made	
		the strap is			, , , , , , , , , , , , , , , , , , ,		,	
	(B)	the interior			ocated			
	(C)	the strap is				pressure		
	DY	the soil pres					•	•
14 1.	Settle	ement of foun	dation ca	n be minim	ized if			
	(4)	bearing capa	acity is in	nproved	(B)	void ratio	is increased	
	(C)	water conte		-	(D)		oad is increased	
142.	The o	devices which	are insta	alled for dra	wing water	from the s	ources are called	
		' aquifers	(B)	aquiclude	(C)	filters	intakes	

β

143.	Whi	ch of th	e followi	ng caus	es a dec	rease in	per ca	apita consump	tion?				
	(-1)	use o	f meteri	ng syste	em								
	(B)	good	quality o	of water				•		•			
	(C)	bette	r standa	rd of liv	ing of t	he peopl	e						
	(D)	hotte	r climat	е	-		٠.			· .			
	٠,			*.	1		•			-	•		
144.	The	ratio of	the viel	d of wat	er from	a rapid	sand f	ilter to that fi	om a slo	w sand filte:	r is		
	(A)	5	J	(B)	20		(C)	100	ON.	30			
				(2)			(-)			8.0			
						611 11				:	a		
145.	The	permis		nit of li l respec		Chlorid	les in	drinking wat	er are -	·	— mg/l,		
	(A)	0.8, 8		(B)	1.3, 60		(C)	0.03, 1200	Con	0.3, 250			
	(11)	0.0, 0		(D)	1.0, 00			0.00, 1200		0.0, 200			
		•											
146.				-	-		ution i	n river water	4				
	(A)	Bioch	emical o	xygen d	lemand		(3)	Dissolved ox					
	(C) _.	MPN				•	(D)	Total dissolv	ved solid	S	_		
									•	1	–		
147.	The role of algae is significant in — treatment unit for treating sewage or												
	biodegradable industrial waste.												
	(A)	aerat	ed lagoo	n	ï		(B)	oxidation di	tch ·				
	(C) trickling filter stabilization pond												
		٠				٠.		-	- '				
148.	Mate	ch the fo	ollowing			-	•		•				
140.	Man	A	_	•		В	1 .			. •	:		
	(a)	Acid w		,	1.	Volcano	es · · ·	• • • • • • • • • • • • • • • • • • • •					
	(b)	SO_2			2.	Automo		•		•	a'		
	(c)	CO			3.	Therma	al pow	er station		•			
	(d)	Fly asl	h		4.					- •			
		3	,							•			
-		(a)	(b)	(c)	(d)								
	(A)	1	2	3	4								
	(B)	2	. 3	4	1		٠,	•					
	(7)	4 .	1	2	3,			***	-P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	· . · . · · ·			
	(D)	3	4 .	1	2	•		,		Tar 4			

149.	LVDT	Γisʻa	•							
	(A)	Linear Varia	ble Diffe	rential Tr	ansduc	er				
	(B)	Linear Veloc	ity Dopp	ler Transr	nitter				•	
	(C)	Low Velocity	Differer	ntial Trans	forme	r			ı	
	(D)	Linear Varia	ble Dam	ping Teste	er .	·				
		•								
150.		property of fre ce while placin					the water i	n the mix	tends to rise to t	he
	(A)	segregation	CBY .	bleeding		(C)	creep	(D)	bulking .	
151.	The s	lump (in mm)	required	I in the tre	ench fil	l-in si	itu piling wi	ll be		
•	(A)	25 – 75	(B)	50 – 100		(C)	75 – 100	JON .	100 - 150	
152.	In the standard central point loading test of occur at						rete prism,	the maxim	uum fibre stress w	/ill
	(A)	the left end s	upport			(B)	the right e	nd support		
	(C)	one-third poi	nt			(D)	the loading	point		
	,		•							
153.	The quantity of water required for setting time test of cement is — times the quantity of water required for normal consistency test									
	(A)	0.85	(B)	0.78		(C)	0.65	(D)	0.52	
154.	The v	olume of stane	lard gan	ge hoy use	ed for v	oluma	e hatching o	f concrete :	ia	
101.	(A)	25 litres	B	35 litres	d lot v	(C)	42 litres	(D)	50 litres	
	()					,		(,		
155.	The	tandard roto c	of applied	stion of log	ding t	, o bo o	dantad in th	o concreto	cube testing is	
100.	THE S	14 N/mm² pe			tuing a	(B)			_	
	(C)	7 N/mm ² per	•	7		(D)	10 N/mm² per minute 5 N/mm² per minute			
	(0)	7 TWIRIN per	·			(D)	o 14/mm p	er minute		
156.		ces of member ure condition?		dal zones	will o	come	under which	ch categor	y of environmen	tal
	(A)	moderate	(B)	severe		(C)	very severe	188	extreme	

o		•	0.5		CVF08
	(C)	live loads and d	lead loads	(D)	cost of purlins and live loads
	(A)	cost of purlins ar	nd cost of root covering	(B)	cost of roofing and dead loads
164.	The e	conomic spacing	of roof trusses depend	ds on	
	` /			,	·
	(C) ·	0.2% residual s	•	(D)	0.1% residual strain
	(A)	0.7% residual s		(B)	0.4% residual strain
163.	The p	proof stress of hig	h tensile wires are m	easure	ed at
	, .	10.0 11111	,	(0)	
	weld (A)	18.5 mm	(B) 17.5 mm	(C)	15.5 mm 12.5 mm
162.	_		d 14 mm are jointed	by the	fillet weld. the maximum size of the fillet
	(D)	will be subjecte	a to a trapezoraar non	diiio	in product
	(D)		d to a trapezoidal non		
	(C)		num pressure near the		
	(A)		ssure near the middle		footing
101.	(A)		ting is loaded, the clay d to uniform soil pres	_	i under the looting
161.	Whom	the isolated for	fing is looded the elec-		1 under the facting
	(C)	balanced failure	e 		tension – controlled ductile failure
	· (A)	on set of cracki		(B)	compression – controlled failure
-		5, it denotes the		(T)\	11 12 6 12
160.			xtreme layer of tensi	le stee	el in a column is greater than or equal to
	(A)	0.002	(B) 0.003	ser	0.0035 (D) 0.004
159.	The u	ultimate strain in	concrete in bending	will be	taken as
	(C)	0.1 percent of t		(D)	0.1 percent of gross area
	(A)	· 0.3 percent of t	he web area	(B)	0.3 percent of gross area
158.		total area of side	face reinforcement p	rovide	d along the two faces of a beam should not
	(C)	Two – way slab)	(D)	Two – way continuous slab
٠	(A)	One – way slab		(B)	One – way continuous slab

157. A square slab panel is supported on only two parallel sides. It will act as

165.	An agricultural land is known as water logged when (A) gravity drainage has ceased												
	(B)	permanent w	_		1								
	(C)	the soil becon						••					
	(D)	capillary fring				plants							
166.	The to	otal water resc	urces av	vailable in Inc	dia is								
	(A)	1850 cubic kn	n		(B)	1580 cubic km							
	(C)	1350 eubie kn	n		. (D)	1530 cubic km	•	•					
167.	The s	tandard projec	t flood is	s ·									
	(A)	the same as t	he maxi	mum probabl	le flood								
	(B)	the same as t	he desig	n flood									
	(C)	larger than th						•.					
	(D)	about 50% of	the max	timum probab	ole flood								
168.	Out o	f the total wat	er prese	nt on the glob	e the sal	ine water of oce	ans accounts for						
	(A)	95.2%	(B)	97.2%	(C)	96.2%	(D) 98.2%						
169.	The li	ive storage req	uiremen	nt for a reserv	oir is to b	e determined by	y	,					
,	(A) topographical survey				(B)	double mass cu	ırve analysis						
	(0)	annual dema	nd		(D)	mass curve and	alysis						
170.	Ombrometer is used to measure												
-	(A)	soil moisture	state of	a plant	rainfall depth								
	(C)	root zone dep	th		(D)	leaf area							
171.	What origin	1?					unit Hydrograph	from the					
	(A)	n/K	(B)	n/K^2 .	JOS	nK	(D) nK^2						
172.		off coefficient					l remaining 40% nt to be used in						
	(A) _.	0.24	(B)	0.48	(C)	0.5	(D) 0.6						
173.	The r		which	the turbine r	eaches it	s peak efficienc	ey at synchronou	s speed is					
	(A)	rated head			(B)	gross head							
	(C)	operating hea	ıd		DY								
CVE	08				26		•	. β.					

174.	The c	common method	, l of irri	gating row crops	is		•						
	(A)	Contour farm	ing		(3)	Furrow meth	od						
	(C)	Flooding meth	nod		(D),	Sprinkler irri	gation						
175.	Traff	Traffic density is											
	(A)	Number of vel	hicles p	passing in one ho	ur								
	Of	Number of vehicles per unit length											
	(C)	Number of vel	nicles i	n specific directi	on per	hour							
-	(D)	Number of vel	nicles p	oer lane in specif	ic dire	ection .							
176.	An in	strument used	to stud	ly 'spot speeds' ii	n Traf	fic Engineering	is	•					
	W	Enoscope	(B)	Speed recorder	(C)	Lux meter	(D)	Sound level meter					
177.	Major	r reason for high	h level	of road accident	s in In	dia is due to							
	(A)	Lack of knowl	edge w	ith people		•		•					
	(B)	3) Lack of fund availability											
X	(0)	Lack of proper enforcement of traffic rules											
	(D)	Lack of traffic	contro	ol devices									
178.	The b	The basic root cause of today's traffic problem is											
	(A)	Lack of commi	itment	s of professionals	3								
	(B)	Lack of fund a	vailab	ility									
	(C)	Lack of land u	se trai	nsport interaction	n in pl	anning urban a	ireas	•					
	(D)	Lack of time a	vailab	ility									
179.		volume of traffic affic is known as		would immediat	ely us	e a new or an i	mprove	ed road when opened					
	(1)	Current traffic	2		(B)	Generated tra	ıffic	,•					
	(C)	Development	traffic		(D)	Future traffic		•					

180. The instantaneous speed of a vehicle as it passes a point on a highway is known as

(A) Journey speed (B) Running speed (C) Design speed Spot speed

181. The theoretical capacity (C) of a highway is given by

(A) $C = \frac{1000 \, S}{V}$ (B) $C = \frac{100 \, V}{S}$ (D) $C = \frac{1000 \, V}{2S}$

27

182.	The 1	minimum widt	h of sho	ılder recomm	ended by	the IRC is				
	`(A)	2.2 m	(B)	2.3 m	(C)	2.4 m		2.5 m		
183.	In hi	ghway geometi	ric desig	n, the desiral	ble length	'. of overtakii	ng jone is k	tept at		
	(A)	5 times overt			(B).	6 times ove		-	ce	
	(C)	7 times overt	aking si	ght distance	(D)	8 times ove	ertaking si	ght distan	ce	
184.	Over	taking sight di	stance is	s also called a	as					
	(A)	Stopping sigh	nt distan	ice	(B)	Headlight	sight dista	nce		
	(C)	Non passing	sight dis	stance	D	Passing sig	ght distance	e		
185.	The p	orimary road s	ystem cl	assification c	omprises	of				
	(A)	Expressways	and Na	tional Highw	ays					
	(B)	State Highwa	ays and	Major Distric	t Roads					
	(C)	Other Distric	t Roads	and Village l	Roads	•				
	(D)	Major Distric	t Roads	and Other D	istrict Ro	ads		. ,		
186.	The f	ïrst 20-year ro	ad devel	opment plan	for India	was called a	ıs			
	(A)	Bombay Road	l Plan		(B)	Nagpur Ro	ad Plan			
	(C)	Lucknow Roa	id Plan		(D)	Delhi Road	Plan			
187.	A runway is aligned such that it is exactly laid along EAST-WEST direction. Then for that runway, choose the correct pair of RUNWAY number									
,	(A)	0 – 90	(B)	90 - 180	(C)	90 - 270		9 - 27		
188.	In cu	rved portions c	of railwa	y tracks, the	gradient	of track layi	ng is			
	(A)	slightly lesse:	r (reduce	ed) than the g	gradient i	n straight p	ortions			
٠,	(B)	slightly HIGI	HER tha	n the gradier	nt in strai	ght portions	3			
	(C)	gradient in cu	ırves ma	ay be higher o	or lesser t	han the gra	dient in str	raight trac	ks	
•	(D)	gradient in cu	irves sh	ould be same	as the gr	adient in sti	raights		•	
189.	Conir	ng of wheels is	done for	the purpose	of	·	4 ,			
	(A)	reducing cont	act area	between wh	eel and ra	ail				
	(B)	to prevent SI	IPPING	or SKIDDIN	IG of who	eels while ro	olling on th	e curved ti	racks	
	(C)	reducing the	noise du	e to wheel r	olling vibi	ration				
	(D)	to reduce cen	trifugal	force while to	avelling	on curves				
				•						

28

β

CVE08

- 190. The type of rail piece which move left and right within the main rails and which are sharp ended are called as
 - (A) Stock Rail

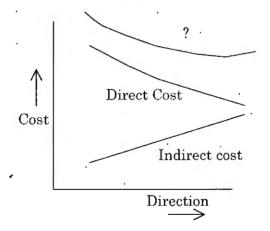
Tongue Rail

- (B) Check Rail
- (D) · Stretcher Bar
- · 191. With respect to transition curves, choose the odd one out
 - (A) Cubic parabola curve -
- Simple circular curve

(C) Spiral curve

- (D) Bernoulli's Lemniscate curve
- 192. Expected time of an activity is calculated in PERT using the formula

$$(A) \qquad \frac{4a+4m+4b}{6}$$


(B)
$$\frac{a+m+b}{6}$$

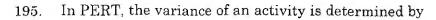
$$\frac{a+4m+6}{6}$$

(D) $\frac{a+6m+b}{4}$

193. In the figure, name the curve marked (?)

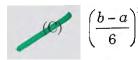
(A) Crash cost curve

(B) Normal cost curve


C

Total cost curve

- (D) Other cost curve
- 194. In a time scaled version of network, critical activities are shown along
 - (A) an inclined path


- (B) an oblique path
- (C) a vertical straight path
- DI

a horizontal straight path

(A) $\frac{b-a}{6}$

(B) $\frac{(b-a)^2}{6}$

(D) $\frac{b^2 - a^2}{6}$.

196. The critical path duration of a project is 15 months with a standard deviation of 3 months. What is the probability of completing the project in 15 months?

(A) 25%

B 50%

(C) 75%

(D) 100%

197. RAM is used as a short memory because it

(A) . is very expensive

(B) has small capacity

(C) is programmable

is volatile

198. One of the major benefits of using CAD in tool design is that

- (A) product design represents approximately one-half the engineering costs
- tool motions can be checked to see if there is interference between the tool and the object
 - (C) there is better coordination in the materials handling area
 - (D) it simplifies the trial-and-error method

199. What kind of capability is required for one plane to interface with a plotter or printer?

(A) Graphics cable

(B) RGB monitor

(e)

Graphics board

(D) Co-processor

200. Status indicators are located on the

(A) Vertical scroll bar

53

(B) Horizontal scroll bar

JES .

Formula bar

(D) Standard tool bar