Unit 7 - Week 6

Course
 outline

How to access
the portal

Week1

Week 2

Week 3

Week 4

Week 5

Week 6

Lecture 17:
Auto
Transformers

Lecture 18:
Three Winding
Transformers
Lecture 19:
Scott
Connected
Transformers
Lecture 20:
Potential and
Current
Transformers
Feedback for Week 6

Quiz : Week 6: Assignment

Week 6 :
Assignment
Solution

Week 7

Week 8

Week 9

Week 10

Week 6: Assignment

1) A $440 / 220 \mathrm{~V}$ transformer rated 100 kVA is reconnected as an auto-transformer with voltage 10 points ratio of 660/220V. What will be the power rating of the reconnected transformer?

100kVA
150kVA
66.67kVA
33.33kVA

Accepted Answers:

150 kVA
2) A $110 / 440 \mathrm{~V}$ transformer is reconnected as an auto-transformer having voltage ratio

10 points $110 / 550 \mathrm{~V}$ and loaded with 500 kW at unity power factor on the secondary side. What are the line currents?

Primary Line current $=4545.45 \mathrm{~A}$, Secondary Line current $=1136.36 \mathrm{~A}$
Primary Line current $=4545.45 \mathrm{~A}$, Secondary Line current $=3636.36 \mathrm{~A}$
Primary Line current $=4545.45 \mathrm{~A}$, Secondary Line current $=909.09 \mathrm{~A}$
Primary Line current $=3636.36 \mathrm{~A}$, Secondary Line current $=4545.45 \mathrm{~A}$

Accepted Answers:

Primary Line current $=4545.45 \mathrm{~A}$, Secondary Line current $=909.09 \mathrm{~A}$
3) A $15 \mathrm{kVA}, 400 \mathrm{~V} / 200 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase ideal two winding transformer is 10 points used to step up a voltage of 400 V to 600 V by connecting it like an auto transformer. Calculate the maximum kVA that can be handled by the autotransformer without over loading any of the HV and LV coil?

30kVA
-45kVA
15kVA
30kVA

Accepted Answers:
45kVA
4) For the auto-transformer formed in problem -3, how much of the kVA is transferred by electrical conduction when it is operating at maximum kVA without overloading any coils?

30kVA
-15kVA
-45kVA
-20kVA

Accepted Answers:
 30kVA

5) An autotransformer has a coil with total number of turns $N_{C D}=400$ between 10 points terminals C and D. It has got one tapping at A such that $N_{A C}=200$ and another tapping at B such that $N_{B A}=80$. Across $A C$ a 440 V supply is connected. Two resistive loads of 80Ω and 120Ω are connected across BC and DC respectively. What is the current through 80Ω load?

Accepted Answers:

7.7A
6) Two single-phase loads are connected to 200 V two phase supply formed by 10 points Scott connected transformers from a 4400V, 3-phase mains. Calculate the current in each line of the 3-phase mains if each load draws 240 kW at 0.8 power factor. Neglect losses in the transformers.
$78.72 \mathrm{~A}, 118.08 \mathrm{~A}, 39.36 \mathrm{~A}$
$78.72 \mathrm{~A}, 78.72 \mathrm{~A}, 78.72 \mathrm{~A}, \mathrm{~A}$
68.175A, 68.175A, 68.175A
118.08A, 118.08A, 118.08A

Accepted Answers:

78.72A, 78.72A, 78.72A, A
7) Two single-phase loads are connected to a 200 V two phase supply formed by 10 points Scott connected transformers from a 4400V 3-phase mains. Calculate the current in each line of the 3-phase mains if one load takes 300 kW at 0.707 (lag) pf and the other one 360 kW at 0.8(lag). Neglect losses in the transformers.
$112.5 \mathrm{~A}, 109.5 \mathrm{~A}, 123.5 \mathrm{~A}$102.26A, 112.5A, 123.5A
$102.26 \mathrm{~A}, 109.5 \mathrm{~A}, 54.75 \mathrm{~A}$
112.5A, 118.6A, 120A

Accepted Answers:

```
112.5A, 109.5A, 123.5A
```

8) A potential transformer rated $2000 / 120 \mathrm{~V}$ and a current transformer rated 10 points 80/4A are used to measure the voltage and current in a transmission line. If the voltmeter indicates 108 V and the ammeter indicates 1.5 A . Calculate the voltage and current in the line.

180 V and 30 A
1800 V and 3 A
1800 V and 30A
1800 and 300A

Accepted Answers:

1800V and 30A
9) Which of the following transformers cannot be operated with their secondary open

10 points circuited?

Potential Transformer
Current Transformer
Pulse Trasnformer
All of the above

Accepted Answers:

Current Transformer

> Previous Page

Funded by

Government of India Ministry of Human Resource Development

Powered by

Assignment - 6 : Solution

Q1.Solution

Q2.Solution

> Secondary line current $=\frac{500 k}{550}=\mathbf{9 0 9 . 0 9 A}$
> Primary line current $=\frac{500 k}{110}=\mathbf{4 5 4 5 . 4 5 A}$

Q3.Solution

The transformer has to step up the voltage from 400 V to 600 V . Hence, the input must be connected to the HV side of the transformer. Then, the induced voltage in the LV side would be 200 V . In order to get 600 V at the output, the two windings should be connected in additive series. The connection is shown in

Figure 1:

Fig.1.

$$
\begin{gathered}
\text { Now, the rated current of HV side coil }=\frac{15,000}{400}=37.5 \mathrm{~A} \\
\text { The rated current of LV side coil }=\frac{15,000}{200}=75 \mathrm{~A}
\end{gathered}
$$

Since, the load is in series with the LV side coils, the current drawn by the load should be limited to 75A, in order to avoid overloading of the transformer coils.
Hence, the maximum kVA that can be handled by the transformer without over loading any of the HV and LV side coils is $=600 \times 75=\mathbf{4 5} \mathbf{k V A}$

Q4.Solution

For the transformer in problem.3,

The current through the LV coils, when delivering maximum $\mathrm{kVA}=75 A$
Current drawn from the supply, when delivering maximum $\mathrm{kVA}=\frac{45,000}{400}=112.5 \mathrm{~A}$
Hence, the current through the HV coils, when delivering maximum $\mathrm{kVA}=112.5-75=37.5 \mathrm{~A}$
The relative direction of current in HV and LV side coil currents are shown in Fig.1. The direction of currents are such that, the mmf is balanced in the magnetic circuit always.
kVA transferred magnetically $=\mathrm{kVA}$ handled by any of HV or LV side coils

$$
=400 \times 37.5=200 \times 75=\mathbf{1 5} \mathbf{k V A}
$$

kVA transferred electrically $=$ Total $\mathrm{kVA}-\mathrm{kVA}$ transferred magnetically

$$
=45 k V A-15 k V A=\mathbf{3 0 k} \mathbf{V A}
$$

Q5.Solution

Figure 2:

Supply voltage across AC, $\quad V_{A C}=440 \mathrm{~V}$
Number of turns between A and C, $\quad N_{A C}=200$

$$
\text { Voltage per turn }=\frac{440}{200}=2.2 \mathrm{~V}
$$

Since, voltage per turn in a transformer remains constant
Voltage across 80Ω load $=\quad N_{B C} \times 2.2=(200+80) \times 2.2=616 V$
Hence, current through 80Ω load $=\frac{616}{80}=7.7 \mathrm{~A}$

Q6.Solution

$$
\begin{aligned}
\text { Main transformer turns ratio, } a & =\frac{200}{4400}=0.04545 \\
\text { The secondary side current, } \quad I_{2} & =\frac{240,000}{200 \times 0.8}=1500 A
\end{aligned}
$$

Both the loads are same, hence, both the load currents are same.
Since, the two phase loads are balanced, the three phase side is also balanced.
The primary side current, $\quad I_{1}=\frac{2 a}{\sqrt{3}} \times I_{2}=78.72 \mathrm{~A}$
Since, the phase current at the primary side is equal to the line current,

$$
\text { The line current }=\mathbf{7 8 . 7 2} \mathrm{A}
$$

Q7.Solution

$$
\begin{gathered}
\frac{N 2}{N_{1}}=\frac{200}{4400}=.04545 \\
\frac{2 N_{2}}{\sqrt{3} N_{1}}=.053
\end{gathered}
$$

Load currents are,

$$
\begin{aligned}
I_{a} & =\frac{300,000}{200 \times 0.707}=2121.64 A ; \quad 45^{o} \text { lagging } \\
I_{b} & =\frac{360,000}{200 \times 0.8}=2250 A ; \quad 36.86^{\circ} \text { lagging }
\end{aligned}
$$

Figure 3:

The phase currents at the 3-phase side are

$$
\begin{aligned}
& I_{A}=2121.64 \times 0.053=112.446 A \\
& I_{B C}=2250 \times 0.04545=102.2625
\end{aligned}
$$

From Fig.3, the line currents are given by

$$
\begin{gathered}
I_{A}=\mathbf{1 1 2 . 4 4 6} \angle-\mathbf{4 5} \\
I_{B}=102.2625 \angle-(90+36.86)-(0.5 \times 112.446) \angle-45=\mathbf{1 0 9 . 5} \angle-\mathbf{1 5 7 . 4 0} \\
I_{C}=102.2625 \angle(53.14)-(0.5 \times 112.446) \angle-45=\mathbf{1 2 3 . 4 7 8} \angle \mathbf{7 9 . 9 3}
\end{gathered}
$$

Q8.Solution

The voltage on the line is

$$
V=108 \times\left(\frac{2000}{120}\right)=\mathbf{1 8 0 0} \mathbf{V}
$$

The current in the line is

$$
I=1.5 \times\left(\frac{80}{4}\right)=\mathbf{3 0 A}
$$

Q9.Solution

Current transformer (CT) cannot be operated with the secondary open. This is because whenever a current is flowing in the primary of the CT, and if there is no current in the secondary MMF balance will not take place. Also this huge current will effectively saturate the core as there is no current in the secondary to counter the flux. Hence the secondary voltage will rise drastically. This can cause damage of insulation or electric shock.

Q10.Solution

$$
\begin{gathered}
\text { Turn ratio error }=\frac{\mid \text { Excitation current } \mid}{\mid \text { Actual current in the primary winding } \mid} \times 100 \\
\text { Excitation Current }=(15-20 j) \mathrm{A}=25 \angle-53.13 \mathrm{~A}
\end{gathered}
$$

$$
\mid \text { Excitation current } \mid=25 \mathrm{~A}
$$

Actual current in the primary winding $=$ Current in primary winding - Excitation current

$$
=600-(15-20 j)=585.34 \angle 1.96 \mathrm{~A}
$$

|Actual current in the primary winding $=585.34 \mathrm{~A}$
\therefore Current in secondary winding $=\frac{585.34}{300}=1.95 \mathrm{~A}$
\therefore Actual turns ratio $=1.95 / 600=3.252 \times 10^{-3}$
Nominal turns ratio $=1 / 300=3.33 \times 10^{-3}$
Turn ratio error $=\frac{\text { Nominal Turns ratio-Actual turns ratio }}{\text { Actual turns ratio }}$

$$
\frac{3.33 \times 10^{-3}-3.252 \times 10^{-3}}{3.252 \times 10^{-3}} \times 100=\mathbf{2 . 4} \%
$$

