1. Suil leleases ellelgy	• •				
A. nuclear fusion	B. nuclear disintegration	C. nuclear fission	D. spontaneous combustion		
2. The number of atom A. 1, 2 and 4 respectiv C. 1, 4 and 2 respectiv		c, and fcc are B. 8, 6 and 10 respective D. 2, 4 and 1 respective			
C. 1, 4 and 2 respective	СТУ	D. 2, 4 and 1 respective	erly and the second		
3. In a diode, at saturat	tion current, the plate resi	stance is	-071		
A. zero	B. constant and finite		D. variable but finite		
4. An <i>n</i> -type and a <i>p</i> -ty A. sodium and magnes C. indium and sodium	•	or can be obtained by dop B. phosphorous and bo D. boron and arsenic re	ron respectively		
5. When the plate voltage to 200 V, the contract to 200 V.	age of a triode is 150 V, i	ts cut off voltage is -5 V	. On increasing the plate		
A4.5V	B5.0V	C. + 2.3 V	D6.06 V		
	ube, the plate current is 5 e plate and cathode and a				
A. 20 mA 7. A long spring is stre potential energy is V. I by 10cm, its potential of A. V/25 B. V/5	If the spring is stretched	C. 4mA	D. 7.5mA		
	as measured by an observe observer with respect to		to it is half of its proper		
A. $3/2 c \text{ ms}^{-1}$	B. $c/2 \text{ ms}^{-1}$	C. $(\sqrt{3})/2 c \text{ ms}^{-1}$	D. $1/\sqrt{2} c \text{ ms}^{-1}$		
	a proper half-life of 1.8 x erver. The half-life of this	_	=		
is	V		C		
A. $1.8 \times 10^{-6} \text{ s}$	B. $1.8 \times \sqrt{0.19 \times 10^{-6}} \text{ s}$	C. $1.8/\sqrt{0.19} \times 10^{-6} \text{ s}$	D. $1.8 \times 0.19 \times 10^6 \text{ s}$		
10. The mass per nucle	eon in an ordinary hydrog	gen atom is			
	eon in an oxygen atom	•			
B. slightly greater than	the mass per nucleon in	an oxygen atom			
C. the same as mass pe	er nucleon in an oxygen a	tom			
D. slightly smaller than	n the mass per nucleon in	an oxygen atom			
11. Consider the following nuclear reaction					
$_{2}\text{He}^{4} + _{Z}X^{A} = _{Z+2}Y^{A+3} -$					
What particle does W	denote ?		www.examr		

A. electron	B. positron	C. proton	D. neutron
A. to produce neutro B. to slow down the C. to absorb the exce	ons and to shield the re neutrons and to absorb ess neutrons and to shi	ol rods in a nuclear read actor b the excess neutrons re eld the reactor respecti ergy of the neutrons re	espectively vely
13. In the first obsercould be represented ${}_{7}N^{14} + {}_{2}He^4 = X + {}_{1}H$ The element in this A. ${}_{8}O^{17}$	l as I ¹	N^{14} was bombarded with $C.\ _8N^{17}$	ith $lpha$ -particles. The reaction $D.\ _8Ne^{17}$
value determined by A. √5/4 c 15. When the mass i fixed point, its angulations A. the radius C. line at an angle of 45° to the plane of	B. √15/4 c s rotating in a plane ablar momentum is direc B. the tangent to c	eed of these β particles C. 1/4 c oout a ted orbit	ticles is found to be 1/4th of the is D. c
distance 25 cm. Who photo-cell A. carry 1/4th their	en the source is moved previous energy	I to a distance of 1 m, to B. are 1/16th as	nated by a point source from a he electrons emitted by the numerous as before
C. are 1/4th as nume 17. A convex lens of The power of combined1.5D	f focal length 40 cm is	•	ave lens of focal length 25 cm. D. 6.5 D
A. phase of differen	/	B. amplitude of	colours. This is so because different colours is different fferent colours is different
	fracting angle of 60° with viation. The angle of manager B. 60°		cident on its face at 45° , it D. 90°
20. A car driver sees driving mirror, which	s an image of a bus in l h has a radius of curva ch is 10 m long, is para	nis uture	www.examra

to and following the car in front of the bus 18 refrom the mirror. The apparent length of the bus as seen in the mirror is A. 700 mm B. 670 mm C. 800 cm D. 800 mm	s		
21. A single slit of width d is placed in the path of principal maximum obtained is	h of a beam of wave	length λ . The angular w	[,] idth
A. d/λ B. λ/d	C. $2\lambda/d$	D. $2d/\lambda$	20
22. A closed tube, partly filled with a liquid & passing through its centre. In the process, the rewould A. increase always	noment of inertia of B. decrease alway	the system about its axis	
C. remain constant	D. increase if tube decrease otherwis	e is less than half filled, e	
23. In an A.C. circuit the instantaneous current represented as $I = I_0 \sin (\omega t + \pi/4)$ and $v = V_0 \sin (\omega t + \pi/4)$ are voltage by			s the
A. $\pi / 4$ B. $3\pi / 8$	C. $\pi/2$	D. π /8	
24. A transformer having 2100 turns in the prinsource of 120 V, 10 A connected to its primary A. 240 V and 5 A B. 120 V and 10 A 25. When a magnet falls through a metal ring, through the metal ring during the free falls is A. less than g throughout its fall B. less than g when it is above the ring and mowhen it is below the ring C. more than g throughout its fall D. more than g when it is above the ring and lewhen it is below the ring 26. A copper rod is suspended in a non-homogequilibrium, will then align itself A. in the region where the magnetic field is str B. in the direction in which it was originally sufficient there D. none of these	Then the secondary C. 240 V and 10 A acceleration ore than g geneous magnetic field congest uspended	y voltage and current are A D. 120 V and 20	e A
27. The substance which shows permanent ma	gnetism is called		
A. anti-ferromagnetic B. paramagnetic	C. diamagnetic	D. ferromagnetic	
28. A magnetic substance is heated to 800 K as	nd then cool down a	owly to 300 K than it	

28. A magnetic substance is heated to 800 K and then cool down slowly to 300 K, then it A. retains its magnetism B. retains its magnetism below curie points.examrace.com

	4000		matain	***	netism
U.	uoes	поі	retain	mas	meusn

D. none of these

29. Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is

A. 2:1

B. 1:2

C.4:1

D.1:4

30. A galvanometer with a coil resistance of 100Ω gives a full-scale deflection when a current of 1 mA is passed through it. The resistance of the shunt needed to convert this galvanometer into an ammeter 5 of range 10 A is nearly

 $A. 0.01\Omega$

B. 0.001Ω

 $C. 0.1\Omega$

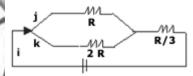
D. 0.099Ω

31. The resistance of a 50 cm long wire is 10Ω . The wire is stretched to uniform wire of length 100 cm. The resistance now will be

Α. 15Ω

B. 30O.

 $C.20\Omega$


32. In the given circuit, the currents i, j, and k are in the ratio

A. 1:2:3

B. 3:2:1

C. 2:1:3

D. 3:1:2

33. A conducting sphere of radius R is given a charge Q. Consider three points B at the surface, A at centre and C at a distance R/2 from the center. The electric potential at these points are such that

A.
$$V_A = V_B = V_C$$

B.
$$V_A = V_B \neq V_C$$
 C. $V_A \neq V_B \neq V_C$

C.
$$V_A \neq V_B \neq V_C$$

D.
$$V_A \neq V_B = V_C$$

34. The mass of a proton is 1847 times that of an electron.

An electron and a proton are projected into a uniform electric field in a direction of right angles to the direction of the field with the same initial kinetic energy. Then

A. both the trajectories will be equally curved

B. the proton trajectory will be less curved than the electron trajectory

C. the electron trajectory will be less curved than the proton trajectory

D. the relative curving of the trajectories will be dependent on the value of initial kinetic energy

35. The wavelength of maximum radiation from the moon is 14×10^{-6} m. If the value of the constant in Wein's displacement law is 0.00293 mK, the surface temperature of moon is

A. 207 K

B. 146 K

C. 227 K

D. 103.5 K

36. A given mass of gas is subjected to an external pressure of 0.5 x 10^{10} N/m². If $K = 10^{10}$ Nm⁻², the ratio of the density before and after applying the pressure is

A. 1:1

B.1:2

C.2:1

D.1:4

37. The heat reservoir of an ideal Carnot engine is at 800 K and its sink is at 400 K. The amount of heat taken in it in one second to produce useful mechanical work at the rate of 750 K www.examrace.com

A. 2250 J	B. 1125 J	C.1500 J	D. 750 J
0	ith its cold body at 17°C		
3	the temperature of its hot		
•	by 145°C, the efficiency		
becomes	C 400/ D 450/		
A. 55% B. 60%	C. 40% D. 45%		. 10
	n increases in length by 1		gh 10 ² degree celsius.
	me expansion of the wire		1800
A. 2×10^{-6}	B. 1 x 10 ⁻⁶	C. 3×10^{-6}	D. 4×10^{-6}
40. The pitch of a sound	d wave is related to its		CA AL
A. frequency	B. amplitude	C. velocity	D. beats
	o a string. After some tim	ne, it was observed that r	nass m moves up from
its initial position; this			7100
A. decrease in	B. increase in	C. the statement is	D. change in humidity
temperature	temperature	wrong	10
42. A light spring of for	rce constant 8 Nm ⁻¹ is cu	t into two equal halves a	nd the two are connected
	ent force constant of the s	W - W	na the two are connected
A. 16 Nm ⁻¹	B. 32 Nm ⁻¹	C. 8 Nm ⁻¹	D. 24 Nm ⁻¹
13 A light spring of co	onstant k is cut into two eq	and parts. The spring co	netant of each part is
A. <i>k</i>	B. 2 <i>k</i>	C. $k/2$	D. 4k
	hich gives the displaceme		D. 4K
	= 10^{-4} sin $(60t + x)$ where		
	in seconds. This represent		
	ocity of 300 ms ⁻¹ in the -v		
direction	111		
B. of wavelength π met	ters		
C. of frequency $30/\pi$ he	ertz		
D. of amplitude 10 ⁴ me	eter travelling along the pe	ositive <i>x</i> -	
direction			
(V		
	T of a simple pendulum a		t length l . If a graph of
	otted, the slope of the gra	ph 18 B. 1/2	
A. 2 C. √2		D. $1/\sqrt{2}$	
C. 12		D. 1/ \ \ Z	
46. Ordinarily, the valu	e of coefficient of restitu	tion varies from	
A. 0 to1	B. 0 to 0.5	C. –1 to +1	D0.5 to +0.5
47. In a gravitational fie	eld, if a body is bound wi	ith earth, then total mech	anical energy it has is
A. <i>a</i> +ve value	B. a zero value	C. a -ve value	D. K.E. less than P.E.

www.examrace.com

48. The mass of a planet is twice the mass of earth and diameter of the planet is thrice the diameter of the earth, then the acceleration due to gravity on the planet's surface is

A. g/2

B. 2g

C. 2g/9

D. $3g/\sqrt{2}$

49. A stationary bomb explodes into two parts of masses 3 kg and 1 kg. The total K.E. of the two parts after explosion is 2400J. The K.E. of the smaller part is

A 600 J

B 1800 J

C 1200 J

D 2160 J

50. In a perfectly elastic collision

A. both momentum and K.E. are conserved

B. only momentum is conserved

C. only K.E. is conserved

D. neither K.E. nor momentum is conserved

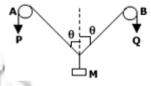
51. A bullet of mass 7g is fired at a velocity of 900 ms⁻¹ from a rifle of mass 3.5 kg. What is the recoil velocity of the rifle?

A 0.9 ms⁻¹

B 180 ms⁻¹

C 900 ms⁻¹

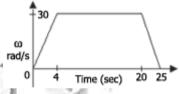
D 1.8 ms⁻¹


52. In the arrangement shown in the figure, P and Q are in inflexible strings moving downward with uniform speed U, pulleys A and B are fixed. Mass M move upwards with a speed of

A. 2 U cos θ

B. U/cos θ

C. $2U/\cos\theta$


D. U cos θ

53. The figure shows the angular velocity-time graph of a flywheel. The angle, in radians, through which the flywheel turns during 25 sec is

A. 75 B 480

54. A ball is dropped from the top of a building 100m high. At the same instant another ball is thrown upwards with a velocity of 40 ms⁻¹ from the bottom of the building. The two balls will meet after

A. 5 sec

B. 2.5 sec

C. 2 sec

D. 3 sec

55. A train accelerating uniformly from rest attains a maximum speed of 40 ms⁻¹ in 20 seconds. It travels at this speed for 20 seconds and is brought to rest with uniform retardation in further 40 seconds. What is the average velocity during this period?

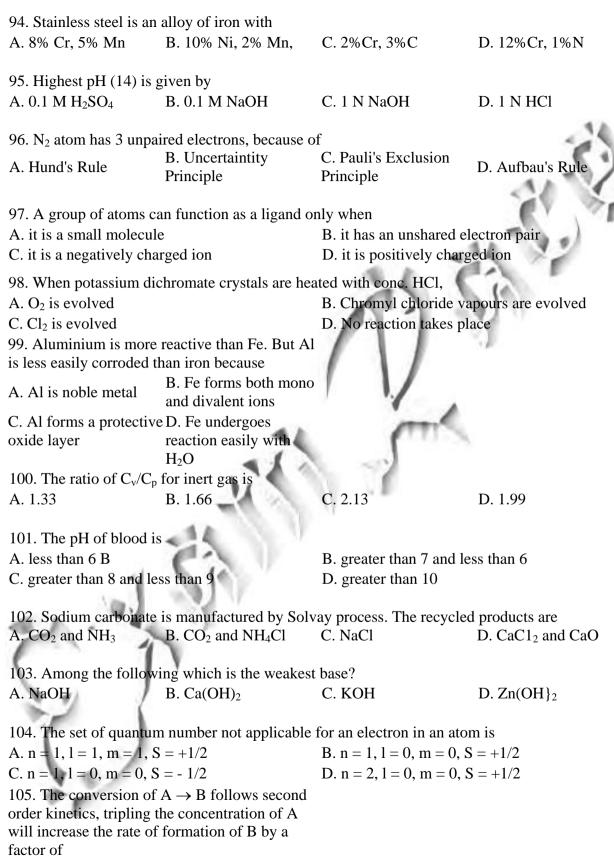
A. 80/3 ms⁻¹

B. 40 ms⁻¹

C. 25 ms⁻¹

D. 30 ms⁻¹

56. Two bodies are held and separated by 19.8m vertically one above the other. They are released simultaneously to fall freely under gravity. After 2 seconds, the relative distance between them is:


www.examrace.com

A. 14.9m	B. 19.6m	C. 19.8m	D. 39.2m
57. A particle starts wit	th a velocity of 2 ms ⁻¹ and	d	
	with a retardation of 0.1		
ms ⁻² . The time at which	the particle is 1.5 m far		
from the starting point	is		
A. 10 sec B. 20 sec	C. 30 sec D. 40 sec		
			42
58. The units of current	t in C.G.S. system is		
A. 1 A	B. 1/10 A	C. 1/100 A	D. 1/1000 A
			20.0
59. The units of electric	c field are		W. 1.
A. volt/metre	B. volt ² /metre	C. volt x metre	D. metre ²
		4	
60. The unit of moment	t of inertia is	20 6	-
A. kg-m	B. kg-m ²	C. kg/m	D. kg/m^2
_	_		W. T.
61. Fischer Tropsch pro	ocess is used for the		23
manufacture of		/ / /	
A. B.		/ //	
synthetic thermosetti	ng C. ethanol D. benzen	ie .	
petrol plastics			
	44	(TT)	
62. Brown ring test is u	ised to detect		
A. iodide	B. nitrate	C. iron	D. bromide
	M	10 10	
63. Carbohydrates are u	used by body mainly	34	
A. for obtaining vitami	ns	B. as source of energy	
C. for all its developme	ental needs	D. for building muscles	
-41	6		
64. The polymer contain			
A. Nylon	B. Polythene	C. Polystyrene	D. Terylene
4			
	und used as antiknock ag	gent in petroleum is	
A. $(C_2H_5)_4Pb$	B. TNT	C. CH ₃ MgBr	D. $(C_2H_5)_2Hg$
1			
66. Carbyl amine test is	s used in the detection of	•	
A. aliphatic 2° amine		B. aromatic 1° amine	
C. aliphatic 1° amine		D. both aliphatic and ar	romatic 1° amines
67. Aromatic primary a	mine when treated with		
cold HNO ₂ gives			
A. benzyl B. nitro	D.		
alcohol benzene	C. benzene diazonium		
diconor ochizene	salt		

68. Which of petroleum	n corresponds to kerosen	e oil?	
A. C_{15} - C_{18}	B. C_{10} - C_{12}	$C. C_5 - C_9$	D. $C_1 - C_4$
69. Aldehydes and keto	ones can be distinguished	. by	
A. bromoform	B. solubility in water	C. Tollen's test	D. Mollich test
5 0 4 4 4 4 4 4 4			4.4
	by the reaction of CH ₃ CO		ъпп ба
A. phenol	B. benzoic Acid	C. benzaldehyde	D. salicylic acid
71. Correct order of the	size of iodine species is		ALT.
A. $I > I^- > I^+$	B. $I^- > I > I^+$	C. $I^{+} > I > I^{-}$	$D.I^->I^+>I$
72 Nitualia is a name a			-0.1
72. Nitrolin is a name g		$C_{\infty}(CN)$	$D_{\alpha}C_{\alpha}(NO_{\alpha})$
A. $CaCN_2 + C$	B. $Ca_3(PO_4)_2$	C. Ca(CN) ₂	D. $Ca(NO_3)_2$
73 The pair of compou	nd, which cannot exit to	gether is	(6)
	B. Na ₂ CO ₃ and NaOH		D NaHCO2 and NaCl
		/ / /	18
74. One of the constitue	ents of the german silver		
A. Ag	B. Cu	C. Mg	D. Al
77 XXII : 1 : 1 :	11	-	
75. Which compound is		D 201 4 1 1 1 1	
A. 4-chloro, l-hydroxy	40.00	B. 3° butyl alcohol	
C. Secondary butyl ami	ine	D. n-butyl alcohol	
76 Plumbo solvancy in	nplies dissolution of lead	lin	
A. bases	B. acids	C. ordinary water	D. CuSO ₄ sol
THE CUSCS		or ordinary water	2. 245 04 501
77. Indigo dye belongs	to		
A. Vat dye	B. Mordant dye	C. Direct dye	D. Ingrain dye
0.1			
78. Dipole moment is s			
A. 1, 4-dichloro benzen		B. cis, 1, 2-dichloro eth	
C. trans, -1, 2-dichloro,	2-pentene	D. trans, -1, 2-dichloro	ether
70. Wilson a setulous is a	accord through II CO acc	ntoining Haco it airea	
	bassed through H ₂ SO ₄ co		
A. ethyl alcohol 80. The compound, whi	B. acetic Acid	C. acetaldehyde	D. ethylene
residue on heating, is	ich does not leave any		
	3 C. CuSO ₄ D. AgNO ₃		
100		0 17 0	
	ving alloys contain only		D D II 1
A. Bronze	B. Brass	C. Gun metal	D. Bell metal

A. stability of a colloida C. coagulating power of	al system	B. efficiency of a protective colloidsD. size of the colloidal particle		
83. Whose name is not A. Prout's	associated with the deve B. Newlands	lopment of Periodic Tab C. Rutherford	le? D. Loother Meyer	
	ide ions increases in the GB. Cl -, Br -, I -, F		D. F -, Cl -, Br -, I -	
85. Acetylene molecule	es contain		- N. W.	
A. 5σ bond	B. 4σ bond and 1π bond	C. 3σ and 2π	D. 3σ and 3π	
A. mole-B.	ber of S in NO ₂ S ₄ O ₆ is B. 2.5 n, the dimension of R is C. litre- D. erg/K atm/K/mole	C 10	D. + 10	
88. An element X which	h occurs in the first short nd acid-base character of		etronic structure s ² p ¹ .	
A. XO ₃ , basic	B. X ₂ O ₃ , basic	C. X ₂ O ₃ , acidic	D. XO ₂ , acidic	
uncertainty in its veloci		S. 52		
A. $5.2 \times 10^{-28} \text{m/sec}$	B. $3.0 \times 10^{-28} \text{m/sec}$	C. $5.2 \times 10^{-22} \text{m/sec}$	D. $3 \times 10^{-22} \text{m/sec}$	
90. Which is not param. A. O ₂	agnetic? B. O ₂ ⁺	C. O_2^{2-}	D. O ₂ -	
A. It is the representation reduction potential B. It does not compare	ated about electrochemics on of element in order of the relative reactivity of strengths of oxidising ag d element	increasing or decreasing metals	g standard electrode	
92. Which pairs of ions A. F and Cl 93. The ionization energy of O ₂ because	are isoelectronic? B. F ⁻ and O ⁻ gy of N_2 is more than tha	C. Na ⁺ and K ⁺	D. Na ⁺ and Mg ⁺²	
A. of the extra stability of half filled p-orbitals in N_2	B. of the smaller size of N_2	f		
C. the former contains less number of	D. the former is less electronegative			
electrons	Ciccionegative		www.e	

www.examrace.com

A. 1/4 B. 2	C.	. 1/2	D. 9		
106. Amino grou	ip in the b	enzene gro	oup can be p	protected by	
A. arylation	В.	. salfoniati	on	C. chlorination	D. acetylation
107. The light ra	diation wi	ith discrete	quantities	of energy is called	
A. electron	B.	. photon		C. positron	D. meson
108. How many	primary a	mines are	possible for	the formula C ₄ H ₁₁ N?	100
A. 1	B.	. 2		C. 3	D. 4
109. Base cataly	sed aldol o	condensati	on occurs w	vith	40 10
A. propanaldehy	de			B. benzaldehyde	E. A.
C. 2, 2-dimethyl	propional	dehyde		D. none of the above	100
110. A sample of	f chlorofoi	rm before	being used	as an anaesthetic is teste	ed by
A. Fehling's solu				3.6	(4)
B. ammonical cu	_	oride		100	91.4
C. silver nitrate s		C. 1 111			
				olic potassium hydroxid	le /
111. 1-chlorobut potash gives	ane on rea	iction with	alconone	1 1/	
A. 1-butene B. 1-	- C.	. 2-butene	D. 2-	1/	
buta			butanol	president .	
112. The haloger	n which is	most reac	tive in the h	nalogenation of alkanes	under sunlight is
A. chlorine	B.	bromine	4/4	C. iodine	D. fluorine
113. The highest	hn ic ov	nagted for	1	(V V V	
A. iso octane	•	pected for . only keto		C. n-octane	D. n-butane
	-	3.6	15 SE		
involves the hyb		roon atom	(1) and car	bon atom (2) in compou	$\text{IId } N \equiv \text{C-CH} = \text{CH}_2$
A. sp^3 and sp^2	В.	. sp ³ and sp)	C. sp and sp^2	D. sp and sp
1	2.1	10 Y			
	ounds hav	ve the sam	e empirical	formula but different m	olecular formula, they
must have A. different perc	entage cor	mnosition		B. different molecular	waight
C. same viscosity	9	mposition		D. same vapour density	· ·
c. same viscosit	1			D. same vapour density	
116. Optical isor	nerism is	shown by			
A. Butanol-1	B.	. Butanol-2	2	C. Butene-1	D. Butene-2
117. The ion that	t cannot be	e precipita	ted by both	HCl and H ₂ S is	
A. Pb ²⁺	B.	. Cu ⁺		C. Ag ⁺	D. Sn ²⁺
118. The aqueou			owing salts		
will be coloured			D A C!		
A. B. L	iNO ₃ C.	•	D. ArCl ₃		

$Zn(NO_3)_2$	
Zn(NU3)2	

119. The highest degree of paramagnetism per mole of the compound at 25°C will be shown by

A. MnSO₄.7H₂O

B. COCl₂.6H₂O

 $CO(NO_3)_2$

C. FeCl₃.4H₂O

D. NiCl₂.6H₂O

120. Bromine can be liberated from KBr solution by the action of

A. iodine solution

B. chlorine water

C. sodium chloride

D. potassium iodide

121. If A and B be any two sets, then $(A \cup B)'$ is equal to

 $A. A \cap B$

 $B. A \cup B$

 $C. A' \cap B'$

D. A' ∪ B'

122. If $A = \{1, 2, 3, 4\}$ then which of the following are functions from A to itself?

A.
$$f_4 = \{ (x, y) : x + y = 5 \}$$

B.
$$f_3 = \{ (x, y) : y < x \}$$

C.
$$f_2 = \{ (x, y) : x + y > 4 \}$$

D.
$$f_1 = \{ (x, y) : y = x + 1 \}$$

123. The solution of $6 + x - x^2 > 0$ is

A. -1 < x < 2

B. -2 < x < 3

C. -2 < x < -1

D. none of the above

1 - iz

124. If z = x + iy and ______, then $|\omega| = 1$ implies that in the complex $\omega =$ plane,

z - i

A. z lies on the unit circle

B. z lies on the imaginary axis

C. z lies on the real axis

D. none of the above

125. The first term of a G.P., whose second term is 2 and sum to infinity is 8, will be

A. 6

B. 3

C. 4

D. 1

126. Equation of circle having diameters 2x - 3y

= 5 and 3x - 4y = 7, and radius 8 is

A.
$$x^2 + y^2 - 2x + 2y - 62$$
 B. $x^2 + y^2 + 2x + 2y - 2$

=0

$$62 = 0$$

D. none of the above

127. A and B are points in the plane such that PA/PB = K (constant) for all P on a circle. The value of K cannot be equal to

A. -1/2

B. 1/2

C. -1

D. 1

128. If the centroid and circumcentre of a triangle are (3, 3) and (6, 2) respectively, then the orthocentre is

A. (-3, 5)

B. (-3, 1)

C.(3,-1)

D.(9,5)

B. 4/3

C. 4/5

D. none of the above

130. If r_1 , r_2 , r_3 in a triangle be in H.P., then the sides are in

A. H.P.

B. A.P.

C. G.P.

D. none of the above

131. cot $\theta = \sin 2\theta$ ($\theta \neq n\pi$, n integer) if θ equals

A. 45° and 90°

B. 45° and 60°

C. 90° only

D. 45°

132.

If a

= (b)- c) -sin-

sec

θ,

then

b - **c**

2

A. $\cos \theta$ B. $\cot \theta$ C. $\tan \theta$

D. $\sin \theta$

133. The average of n numbers $x_1, x_2, x_3, \dots, x_n$ is M. If x_n is replaced by x', then new average

$$A.\overline{\hspace{1cm} M - x_n + x'}$$

$$nM - x_n + x'$$

n

D. M -
$$x_n + x'$$

134. In an entrance test, there are multiple choice questions. There are four possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was guessing is

A. 1/9

B. 36/37

C. 1/37

D. 47/40

135. The value of $\tan \left[\cos^{-1}(4/5) + \tan^{-1}(2/3)\right]$

is

A. 16/7

B. 6/17

C. 7/16

D. none of the above

Lt x - [x], where k is an integer, is equal 136.

A. -1

B. 1

C. 0

D. 2

 $\tan x [\log (x-2)]$

137. The values of x where the function f is discontinuous are given by $(\mathbf{x}) =$

$$x^2 - 4x + 3$$

A. $(-\infty, 2) \cup \{3, n\pi, n \ge 1\}$

B. $(-\infty, 2)$

C. $(-\infty, 2) \cup \{2n\pi, \pi/2, n = 1\}$

D. none of the above

 $\mathbf{d}^2\mathbf{x}$

138.

If y

= x is

 $+e^{x}$

then

- $A. \frac{dy^2}{1}$ $(1 + e^x)^2$
- $B.-\frac{e^{x}}{(1+e^{x})^{2}}$
- $C.-\frac{e^{x}}{(1+e^{x})^{3}}$
- D. e^x

139. At $x = 5\pi/6$, $f(x) = 2 \sin 3x + 3 \cos 3x$ is

A. zero

- B. maximum
- C. minimum
- D. none of the above

140. If a < 0, the function $(e^{ax} + e^{-ax})$ is a strictly monotonically decreasing function for values of x is given by

A. x < 1

B. x > 1

C. x < 0

D. x > 0

141. $\int [\sin(\log x) + \cos(\log x)] dx$ is equal to

A. $\sin(\log x) + \cos(\log x) + c$

B. $\sin(\log x) + c$

C. x cos (log x) + c

D. none of the above

- **A**. 0

B. 1

C. $(\pi\sqrt{2} + D)$. none of $4\sqrt{2} - 8/\pi^2$ the above

143. Solution of differential equation xdy - ydx = 0 represents

A. parabola whose vertex is at origin

B. circle whose centre is at origin

C. a rectangular hyperbola

D. straight line passing through origin

144. If h(x) = f(x) + f(-x), then h(x) has got an extreme value at a point where f'(x) is

- A. even function
- B. odd function
- C. zero

D. none of the above

145. If x = 1/3, then the greatest term in the expansion of $(1 + 4x)^8$ is

- A. 3rd term
- B. 6th term
- C. 5th term
- D. 4th term

146. Roots of $x^2 + k$	= 0, k < 0 are		
A. real and equal	B. rational	C. real and distinct	D. equal
147. In a quadratic e	equation with leading		
coefficient 1, a stude	ent reads the coefficient	: 16	
of x strongly as 19 a	nd obtains the roots as	-15	
and - 4. The correct	roots are		
A. 8, 8 B. 6, 10	C 6, - 10i D 8,	- 8	
148. The value of m magnitude but oppo	-	$x^2 - mx^2 + 3x - 2 = 0$ has tw	wo roots eq
Δ 1/5	B 3/A	$C_{2/3}$	D 1/2

oots equal in

A. 4/3

B. 3/4

D. 1/2

149. If 1/(b-a) + 1/(b-c) = 1/a + 1/c, then a, b, c are in

A. H.P.

B. G.P.

C. A.P

D. none of the above

150. If every term in G.P. is positive and also every term in the sum of two proceeding terms, then the common ratio of the G.P. is

A. $(1 - \sqrt{5})/2$

B. $(\sqrt{5} + 1)/2$

D. 1

151. If $y = -(x^3 + x^6/2 + x^9/3 +)$, then

A. $x^3 = 1 - e^y$

B. $x^3 = \log(1 + y)$

C. $x^3 = e^y$

D. $x^3 = 1 + e^y$

152. Vinay, Manish, Rahul, and Sumit have to give speeches in a class. The teacher can arrange the order of their presentation in

A. 12 ways B. 24 ways C. 4 ways

153. There are n (>2) points in each of two parallel lines. Every point on one line is joined to every point on the other line by a line segment drawn within the lines. The number of points (between the lines) in which these segments intersect is

A. ${}^{n}C_{2} \times {}^{n}C_{2}$

B. ${}^{2n}C_2 - 2({}^{n}C_2)$

 $C_{1}^{2n}C_{2} - 2(^{n}C_{1}) + 2$

D. none of the above

154. The number of ways in which 7 persons can sit around a table so that all shall not have the same neighbours in any two arrangements is

A. 360

B. 720

C. 270

D. 180

155. The length of sub normal to the parabola $y^2 = 4ax$ at any point is equal to

A. $a\sqrt{2}$

B. $2\sqrt{2}a$

C. $a/\sqrt{2}$

D. 2a

156. The expansion of $(8 - 3x)^{3/2}$ in terms of power of x is valid only if

A. x > 8/3

B. |x| < 8/3

C. x < 3/8

D. x < 8/3

157. If $y = -(x^3/2 + x^3 - x^4/4 +)$, then x is

B. $\log(1 + C.e^{y} + 1)$

www.examrace.com

158. If a, b, c are in G.P., then log_am, log_bm, log_cn are in

A. G.P.

B. H.P.

C. A.P.

D. none of the above

159. If A is a matrix of order 3 x 4, then each row of A has

- A. 12 elements
- B. 3 elements
- C. 7 elements
- D. 4 elements

160. If A $\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, $n \in \mathbb{N}$, then A^{4n} equals

161. If α , β , γ are the roots of the equation x^2 + px + q = 0, then the value of the determinant

- A. q
- B. 0
- C. p D. $p^2 2q$

162 If A R	C are any	three matrices,	then A'	⊥ R' ⊥	C' is equal to
102. II A, D,	C arc arry	unice manices.	$uicii \Lambda$	\top \mathbf{D} \top	C is equal it

A.A+B+C

B.
$$(A + B + C)$$

B.
$$(A + B + C)'$$
 C. $-(A + B + C)$

D. a null matrix

163. If A is any matrix, then the product A.A, i.e., A² is defined only when A is a matrix of order

A.
$$m > n$$

$$B. m = n$$

D.
$$m \ge n$$

164. The area of

parallelogram of i andi+ j

are adjacent

which A. $\sqrt{2}$

- B. 1/2
- C. 2
- D. 1

165. If the direction cosines of line are (1/c, 1/c, 1/c), then

A.
$$0 < c < 1$$

D.
$$\pm \sqrt{3}$$

166. The sine of the angle between the straight line

5

and

the plane 2x - 2y + z = 5 is

A.
$$10/(6\sqrt{5})$$

B.
$$4/(5\sqrt{2})$$

C.
$$\sqrt{2/10}$$

D.
$$(2\sqrt{3})/5$$

167. Constant term in the expansion of $(x - 1/x)^{10}$ is

168. The latus rectum of the ellipse $5x^2 + 9y^2$ =45 is

C.
$$(2\sqrt{5})/3$$

D.
$$\sqrt{5/3}$$

169.
$$i^2 + i^4 + i^6 + \dots (2n + 1)$$
 terms =

170. If the sum of the series 2, 5, 8, 11, is 60100, then n is

171. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then

A.
$$(b + d)(ad + be) + (e - a)^{2}(a + c + e) = 0$$

A.
$$(b+d)(ad+be) + (e-a)^2(a+c+e) = 0$$
 B. $(b+d)(ad+be) + (e+a)^2(a+c+e) = 0$

C.
$$(b - d)(ad - be) + (e - a)^{2}(a + c + e) = 0$$

C.
$$(b-d)(ad-be) + (e-a)^2(a+c+e) = 0$$

D. $(b-d)(ad-be) + (e+a)^2(a+c+e) = 0$

172. The probability that an event A happens on trial of an experiment is 0.4. Three independent trials of the experiment are formed. The probability that the event A happens at least once is

A. 0.936

B. 0.784

C. 0.904

D. 0.984

173. The numbers are selected at random from 1, 2, 3, 100 and are multiplied, then the

probability correct to two places of decimals that the product thus obtained is divisible by 3, is

A. 0.55

B. 0.44

C. 0.22

D. 0.33

174. If $p^2 + q^2 = 1$ and $m^2 + n^2 = 1$, then

A. $| p_m + q_n B. | p_m + q_n C. | p_q + mn D. | p_q +$ $|\leq 0$ $1 \le 1$ 1 > 1 $mn \mid < 2$

175. In a football championship, there were played 153 matches. Every two team played one match with each other. The number of teams participating in the championship is

A. 9

B. 11

C. 13

D. 18

176. The solution of |(x-1) + 2| = 1 is

A. 1

B. 2

C. 5

177. The equation $\log_e x + \log_e (1 + x) = 0$ can be written as

- A. $x^2 + x e = 0$
- B. $x^2 + x 1 = 0$
- C. $x^2 + x + 1$

178. Both the roots of the equation (x - b)(x - c) + (x - a)(x - c) + (x - a)(x - b) = 0 are always

- A. positive
- B. negative
- C. real

D. imaginary

179. The value of tan x/tan 3x whenever defined never lies between

- A. 1/3 and B. 1/4 and C. 1/5 and
- 5
- D. 5 and 6

180. Given (a + d) > (b + c) where a, b, c, d are real numbers, then

A. a, b, c, d are in A.P.

- B. 1/a, 1/b, 1/c, 1/d are in A.P.
- C. (a + b), (b + c), (c + d), (a + d) are in A.P.
- D. 1/(a + b), 1/(b + c), 1/(c + d), 1/(a + d) are in A.P.