
Automation for the people: Manage dependencies
with Ivy
Use a common repository with Apache Ant to share other
projects' source code

Skill Level: Introductory

Paul Duvall (paul.duvall@stelligent.com)
CTO
Stelligent Incorporated

06 May 2008

Managing source-code dependencies among projects and tools is often a burden,
but it doesn't need to be. In this installment of Automation for the people, automation
expert Paul Duvall describes how you can use the Apache Ant project's Ivy
dependency manager to handle the myriad dependencies that every nontrivial Java
project must manage.

Virtually every software-development project must depend on the source code from
other projects. For instance, many of your projects probably rely upon a logging
utility such as log4j or a Web framework such as Struts. Your development team
doesn't maintain those other projects' source code, yet you rely on their APIs to
implement your project's custom software. The greater the number of other projects
your software depends on, including any of those projects' own dependencies, the
more complex building your software becomes.

About this series
As developers, we work to automate processes for users; yet, many
of us overlook opportunities to automate our own development
processes. To that end, Automation for the people is a series of
articles dedicated to exploring the practical uses of automating
software development processes and teaching you when and how
to apply automation successfully.

I've found that teams use various imperfect techniques to try to solve this dilemma:

• Placing all dependent projects (JAR files) in a directory that's checked into

Manage dependencies with Ivy
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 9

mailto:paul.duvall@stelligent.com
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=automation+people:
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=automation+people:
http://www.ibm.com/legal/copytrade.shtml


the project's version-control repository. This technique bloats the
repository unnecessarily, making it difficult to manage version differences.

• Allocating dependent JARs to a common file server, which prevents the
team from controlling version changes.

• Copying JAR files manually to a specific location on each developer's
workstation. This approach makes it difficult to determine missing files or
correct versions.

• Performing an HTTP Get to download files to a developer's workstation,
either manually or as part of the automated build. This technique requires
duplicate scriptlets and often leads to unmanaged JAR files.

I worked on a medium-sized project that contained 1,000 Java classes and more
than 100 dependent JAR files. (We chose the first imperfect technique: checking in
each of these JARs to the project's version-control repository.) Figure 1 shows a
small fraction of the types of dependencies you can expect to see in a such a
project:

Figure 1. Example dependencies for JARs in a Web development project

Transfixed on transitive dependencies
Transitive dependencies is a big phrase for a simple yet powerful
feature provided by Ivy. Some JAR files depend on other JARs in
order to work correctly. With Ivy, you declare a component's
dependencies only once. From that point on, you need to know only
the main JAR file for a project rather than all of its underlying JAR
file dependencies. If you've experienced the pain in manually
chasing down dependencies either through documentation or by
investigating code, you'll find that this feature alone is worth the time
in configuring Ivy in your project. See Depending on dependencies
in this article for details.

Figure 1 illustrates that the Brewery project's source code depends on Hibernate,

developerWorks® ibm.com/developerWorks

Manage dependencies with Ivy
Page 2 of 9 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Struts 2, MySQL Connector, and Cobertura. In turn, Cobertura depends on other
JARs, such as asm-2.2.1.jar, jakarta-oro-2.0.8.jar, and log4j-1.2.9.jar. Further,
asm-2.2.1.jar depends on asm-tree-2.2.1.jar. This is merely a simple example of the
types of nested dependencies that can occur. If even one of the JAR versions is
incorrect, you can experience problems that are difficult to troubleshoot, such as
compilation errors or unexpected behavior.

The Apache Maven build- and project-management tool has gained some traction
among Java developers. Maven introduces the concept of a common repository of
JAR files accessible through a publicly available Web server (called ibiblio). The
Maven approach reduces the JAR-file bloat that consumed most version-control
repositories. But using Maven encourages you to adopt its "convention over
configuration" approach to building software, which can limit your flexibility in
customizing your build scripts.

What if you've been using Apache Ant for years and want the benefits of using a
common repository? Are you forced into accepting Maven's build approach to get
these benefits? Fortunately, the answer is no, because of a tool called Apache Ivy —
an Ant subproject. Ivy offers a more consistent, repeatable, and easier-to-maintain
approach to managing all of your project's build dependencies (see Resources for a
comparison between Maven and Ivy). This article covers the basics of installing and
configuring Ivy to manage dependencies and points you to additional information
you can examine in greater detail.

Getting started

Getting started with Ivy is as simple as creating two Ivy-specific files and adding a
few Ant targets. The Ivy-specific files are ivy.xml and an Ivy settings file. The ivy.xml
file is where you list all of your project's dependencies. The ivysettings.xml file (you
can name this file anything you wish) is where you configure repositories that the
dependent JAR files will be downloaded from.

Listing 1 shows a simple Ant script that calls two Ivy tasks: ivy:settings and
ivy:retrieve:

Listing 1. Simple Ant script using Ivy

<target name="init-ivy" depends="download-ivy">
<ivy:settings file="${basedir}/ivysettings.xml" />
<ivy:retrieve />

</target>

In Listing 1, ivy:settings defines the Ivy settings file. The call to ivy:retrieve
retrieves the JAR files from one of the repositories declared in ivy.xml.

Installing Ivy

You have a couple of options for downloading and using Ivy. The first is to download
the Ivy JAR file manually to your Ant lib directory or to a different directory that you

ibm.com/developerWorks developerWorks®

Manage dependencies with Ivy
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 9

http://www.ibm.com/legal/copytrade.shtml


define in your Ant script's classpath. I'm a fan of automation, so I prefer the
automatic alternative: downloading Ivy's JAR and configuring the classpath in Ant
targets. Listing 2 shows an example of this technique:

Listing 2. Using Ant to install Ivy automatically

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="test-ivy" default="init-ivy" basedir="."

xmlns:ivy="antlib:org.apache.ivy.ant" xmlns="antlib:org.apache.tools.ant">
<property name="ivy.install.version" value="2.0.0-beta2" />
<property name="ivy.home" value="${user.home}/.ant" />
<property name="ivy.jar.dir" value="${ivy.home}/lib" />
<property name="ivy.jar.file" value="${ivy.jar.dir}/ivy.jar" />

<taskdef resource="org/apache/ivy/ant/antlib.xml"
uri="antlib:org.apache.ivy.ant" classpath="${ivy.jar.dir}/ivy.jar"/>

<target name="download-ivy">
<mkdir dir="${ivy.jar.dir}"/>
<get src="http://www.integratebutton.com/repo/

${ivy.install.version}/ivy-2.0.0-beta2.jar"
dest="${ivy.jar.file}" usetimestamp="true"/>

</target>

</project>

The second line in Listing 2 defines the XML namespace. antlib refers to a file
called antlib.xml in the ivy.jar file. The rest of the xmlns indicates the fully qualified
path for the ivy Ant task. The ivy.home value of ${user.home}/.ant is the
location where the ivy.jar file will be downloaded. The taskdef defines the ivy Ant
task, referring to its classpath location. The download-ivy target downloads
ivy-2.0.0-beta2.jar and renames it using the dest attribute.

Once you download and configure Ivy, you can use any of the Ivy Ant tasks (such as
the two tasks called in Listing 1).

Creating configuration scripts

The ivy.xml file, where you define all of your project's dependent JARs, is required.
Listing 3 shows an example:

Listing 3. Defining dependencies in ivy.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="./config/ivy/ivy-doc.xsl"?>
<ivy-module version="1.0">
<info organisation="com" module="integratebutton" />
<dependencies>

<dependency name="hsqldb" rev="1.8.0.7" />
<dependency name="pmd" rev="2.0" />
<dependency name="cobertura" rev="1.9"/>
<dependency name="checkstyle" rev="4.1" />
<dependency name="junitperf" rev="1.9.1" />
<dependency name="junit" rev="3.8.1" />

</dependencies>
</ivy-module>

Notice that Listing 3 includes no indication of file locations or URLs, letting you move

developerWorks® ibm.com/developerWorks

Manage dependencies with Ivy
Page 4 of 9 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


to different repository locations without needing to change the list of dependencies.
The organisation attribute in the info element identifies the organization type
(such as .net, .org, or .com). This is followed by the module name. The list of
dependencies for this module follows a naming convention that will become more
clear in the next listing. For now, just remember that dependency
name="cobertura" rev="1.9" translates to cobertura-1.9.jar.

Listing 4 is an example of a Ivy settings file. It defines the repository locations and
associated patterns used in the ivy.xml file in Listing 3.

Listing 4. Ivy settings file

<ivysettings>
<settings defaultResolver="chained"/>
<resolvers>

<chain name="chained" returnFirst="true">
<filesystem name="libraries">

<artifact pattern="${ivy.conf.dir}/repository/[artifact]-[revision].[type]" />
</filesystem>
<url name="integratebutton">

<artifact pattern="http://www.integratebutton.com/repo/[organisation]/[module]/
[revision]/[artifact]-[revision].[ext]" />

</url>
<ibiblio name="ibiblio" />
<url name="ibiblio-mirror">

<artifact pattern="http://mirrors.ibiblio.org/pub/mirrors/maven2/[organisation]/
[module]/[branch]/[revision]/[branch]-[revision].[ext]" />

</url>
</chain>

</resolvers>
</ivysettings>

The filesystem element in Listing 4 defines the location pattern on your local
workstation. The two url elements define the multiple locations the JAR files can be
downloaded from: the first defines a custom repository at integratebutton.com that I
control, and the next defines an external Maven repository (not under my control)
that contains a plethora of open source JAR files. If Ivy is unable to download from
the first repository — if it's down, for example, or if the file isn't in the specified
location — it tries the next one. The beauty is that once Ivy downloads a JAR, it puts
the file on your local file system so that it doesn't need to download these files for
every build.

Depending on dependencies

It's typical for a module to have dependencies on other modules. In Figure 1, for
instance, you saw that the cobertura-1.9.jar file's multiple dependencies include
asm-2.2.1.jar, and that asm-2.2.1.jar has a dependency on asm-tree-2.2.1.jar.
Without a tool like Ivy, you would need to ensure the correct versions of these JARs
are in the classpath and that no conflicts exist among JAR versions. With Ivy, you
simply define the cobertura module and all of its dependent modules, as shown in
the example ivy.xml file in Listing 5. Keep in mind that this ivy.xml file resides in the
same directory as the cobertura-1.9.jar file.

Listing 5. Defining dependencies in ivy.xml

ibm.com/developerWorks developerWorks®

Manage dependencies with Ivy
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 9

http://www.ibm.com/legal/copytrade.shtml


<?xml version="1.0" encoding="UTF-8"?>
<ivy-module version="2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://ant.apache.org/ivy/schemas/ivy.xsd">
<info organisation="cobertura" module="cobertura" revision="1.9"/>
<configurations>

<conf name="master"/>
</configurations>

<publications>
<artifact name="cobertura" type="jar" conf="master" />

</publications>

<dependencies>
<dependency org="objectweb" name="asm" rev="2.2.1" conf="master"/>
<dependency org="jakarta" name="oro" rev="2.0.8" conf="master"/>
<dependency org="apache" name="log4j" rev="1.2.9" conf="master"/>

</dependencies>
</ivy-module>

The highlighted dependency in Listing 5 defines the objectweb org and the name
asm along with the particular revision to use. Ivy uses this information along with the
repository definitions in the ivysettings.xml file (as shown in Listing 4) to download
the JAR file dependencies.

Figure 2 illustrates the directory structure from a repository that conforms to the
configuration in the ivysettings.xml file from Listing 4:

Figure 2. Directory structure for asm module

Notice also that Figure 2 shows an ivy.xml file (described in Listing 6) that defines
the dependencies for asm. In Listing 6, a snippet of the ivy.xml for the asm module
demonstrates its single dependency — asm-tree-2.2.1.jar:

Listing 6. ivy.xml to define dependencies for asm

...
<dependencies>
<dependency org="objectweb" name="asm-tree" rev="2.2.1" conf="master"/>

</dependencies>
...

To recap, the cobertura module defines three dependent modules: asm,
jakarta-oro, and log4j, as shown in Listing 5. In turn, the asm module has a
single dependent module called asm-tree, as shown in Listing 6.

Notice how similar the directory structure for asm-tree in Figure 3 looks to the asm
module structure shown in Figure 2:

Figure 3. Directory structure for the asm-tree module

developerWorks® ibm.com/developerWorks

Manage dependencies with Ivy
Page 6 of 9 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The difference, of course, is that the JAR files contain different classes, and the
definition in the ivy.xml file in Figure 2 describes the asm-tree module. (As it
happens, the asm-tree module doesn't define any dependencies in its ivy.xml file.)

Growing with Ivy

Now that you have the basics of using Ivy, I'll go over some other useful Ant tasks.

Rendering reports

Ivy provides a task for reporting the dependent files in a project. Listing 7
demonstrates calling Ivy's report Ant task to create a list of dependencies:

Listing 7. Generating an Ivy dependency report from Ant

<target name="ivy-report" depends="init-ivy">
<ivy:report todir="${target.dir}/reports/ivy"/>

</target>

An HTML report generated by the script in Listing 7 displays a list of the project's
dependent files. Figure 4 shows the report:

Figure 4. HTML report showing project dependencies

Additional tasks

ibm.com/developerWorks developerWorks®

Manage dependencies with Ivy
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 9

http://www.ibm.com/legal/copytrade.shtml


Many more Ant tasks for Ivy are available for you to use — from generating a POM
file for Maven to cleaning the local file-system cache. Table 1 shows some of Ivy's
Ant tasks and their purposes:

Table 1. Other Ivy Ant tasks

Task Purpose

settings Most useful for authenticating to a host
containing a repository

cachepath Overrides the default cache path where
downloaded files are hosted on a local file
system

repreport Generates reports among several modules in the
repository

install Installs a module and all of its dependencies

makepom Creates a pom.xml file from an ivy.xml file for
Maven's use

cleancache Cleans the local file-system cache to force a
reretrieve of JAR files from repository on next
build

See Resources to learn about other Ant tasks available in Ivy.

It all depends

Versioning binaries
Ivy does not obviate the need to version-control JAR files. I've often
seen that teams provided with an HTTP-accessible repository forget
to place the files in a version-control system at all. If you need to
recreate the software a year from now and your HTTP repository
isn't centrally managed, it could be extremely difficult to do so.
Using an HTTP-accessible version control repository such as
Subversion makes this less of a burden because you can manage
centrally and provide HTTP access.

Ivy centralizes dependent files and reduces the bloat that can occur when
development teams copy JAR files from one version-control repository to the next. If
you're working a simple project, it probably won't slow you down too much to check
in JAR files to your version-control system or use some of the other techniques I
listed at the start of this article. But as your project gets larger or if you work in an
enterprise environment that uses common files, a common approach becomes
necessary. In either case, Ivy makes defining project dependencies more consistent
and approachable, so it's worth your time to investigate the use of Ivy in your
projects.

developerWorks® ibm.com/developerWorks

Manage dependencies with Ivy
Page 8 of 9 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• Apache Ivy: Visit the Ivy project site for documentation, tutorials, and community
resources.

• "Ivy in 4.2 steps" (Andrew Glover, testearly.com, June 2007): Get up and
running with Ivy in a few steps.

• Ivy / Maven2 Comparison (Apache Ant Ivy Project): A discussion of the
differences between Ivy and Maven 2 dependency management.

• Ant in Action (Steven Loughran and Erik Hatcher, Manning, 2007): Chapter 11
in this excellent book is dedicated to dependency management using Ivy.

• Automation for the people (Paul Duvall, developerWorks): Read the complete
series.

• Browse the technology bookstore for books on these and other technical topics.

• developerWorks Java technology zone: Hundreds of articles about every aspect
of Java programming.

Get products and technologies

• Ant: Download Ant and start building software in a predictable and repeatable
manner.

• Ivy: Download Ivy.

Discuss

• Improve Your Code Quality discussion forum: Regular developerWorks
contributor Andrew Glover brings his considerable expertise as a consultant
focused on improving code quality to this moderated discussion forum.

• Accelerate development space: Regular developerWorks contributor Andrew
Glover hosts a one stop portal for all things related to developer testing,
Continuous Integration, code metrics, and refactoring.

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Paul Duvall
Paul Duvall is the CTO of Stelligent Incorporated, an Agile consultancy that helps
development teams deliver production-ready software. He is the co-author of the
Addison-Wesley Signature Series book Continuous Integration: Improving Software
Quality and Reducing Risk (Addison-Wesley Professional, 2007; Jolt Award 2008
winner). He also contributed to the UML 2 Toolkit (Wiley, 2003) and the No Fluff Just
Stuff Anthology (Pragmatic Programmers, 2007).

ibm.com/developerWorks developerWorks®

Manage dependencies with Ivy
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 9

http://ant.apache.org/ivy/
http://www.testearly.com/2007/06/24/ivy-in-42-steps/
http://ant.apache.org/ivy/m2comparison.html
http://www.manning.com/loughran/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=automation+people:
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/java/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/ivy/download.cgi
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=812&cat=10
http://www-128.ibm.com/developerworks/spaces/accelerate
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.stelligent.com/
http://www.amazon.com/gp/product/0321336380/?tag=integratecom-20
http://www.amazon.com/gp/product/0321336380/?tag=integratecom-20
http://www.amazon.com/gp/product/0471463612/?tag=integratecom-20
http://www.amazon.com/No-Fluff-Just-Stuff-Anthology/dp/0978739280/?tag=integratecom-20
http://www.amazon.com/No-Fluff-Just-Stuff-Anthology/dp/0978739280/?tag=integratecom-20
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Getting started
	Depending on dependencies
	Growing with Ivy
	It all depends
	Resources
	About the author

