

O.B. Sl. No.

152806

Hall Ticket Number

2251091

Signature of the Candidate

Gouse

Time: 2 Hours

Total Marks: 120

Note: Before answering the questions, read carefully the instructions given on the OMR sheet. త్ర్ములకు జూటులు ద్రాయుటకు ముందు OMR జవాబు ప్రత్రములో ఇవ్వబడిన సూచనలను జాగ్రత్తగా చదవండి.

SECTION-I: MATHEMATICS

- $m{\lambda}$. If the ratio of the sides of a triangle is $1:1:\sqrt{2}$, then their angles are in the ratio $\mathbf{\lambda}$ මණසනා බොහු ණසනාව ට්නුමු $1:1:\sqrt{2}$ වගාර, ගට වීතනාව ට්නුමු
 - (1) 1:1:2
- (2) $1:\sqrt{2}:1$
- (3) $1:\sqrt{3}:2$
- (4) $1:1:\sqrt{2}$
- 2. The angle of elevation of a top of the tower from a point 120 m from its foot is 45°. How much the tower is to be raised when the elevation is to be 60° at the same point?
 - 120 మీ. దూరము నుండి ఒక స్థంభాన్ని 45° ఊర్ర $_3$ కోణములు చూసిను. అదే ప్రదేశము నుండి దాని శిఖర**ము** 60° కోణములో చూడాలన్న స్థంభమును ఎంత పెంచవలెను
 - (1) 120√3 m
- (2) 120 m
- (3) $120(\sqrt{3}-1)$ m
- (4) $120(\sqrt{3} + 1)$ m

- 3. If $A + B = 135^\circ$, then $(1 + \cot A)(1 + \cot B) =$
 - $A + B = 135^{\circ}$ అయినదో, $(1 + \cot A)(1 + \cot B) =$
 - (1) 1
- (2) 1
- (3) 2
- (4) -2

4. Current generation computers are

స్రస్తుతం వాడుకలో గల కంప్యూటర్లు

- Babbage machines బబ్బగే మెషీన్లు
- (3) Leibnitz machines ອີດນາຊຶ່ງຜູ້ ລືນໍ່ລຸ່ນ

- (2) Numen machines మ్యామెన్ మెషీన్లు
- (4) Pascal machines పాస్కల్ మెషీన్లు
- 5. The main component in the 2nd generation computers is

రెండపతరం కంప్యూటర్లలో ప్రధానముగా ఉపయోగించబడినవి

- (1) transistor టాన్సిస్టర్లు
- (3) vacuum tube శూన్య నాలికలు

- (2) integrated circuit సమాకలత పలయాలు
- (4) None ఏవీ కాపు

- **5.** The centroid of the triangle whose vertices are (1, 4), (-1, -1), (3, -2) is (1, 4), (-1, -1), (3, -2) అను బిందువులు శీర్వాలుగా గల ట్రిభిజము యొక్క గురుత్వకేంద్రము
 - (1) (1, -3)
- (2) $(1, \frac{1}{3})$
- (3) $(1, -\frac{1}{3})$ (4) $(-1, \frac{1}{3})$
- 7. The area of a triangle whose vertices are A(3, 2), B(11, 8) and C(8, 12) is $A(3, 2), \ B(11, 8)$ ఘరియు C(8, 12) అను బిందువులు శీర్వలుగా గల త్రిభుజ పైశాల్యము
 - (1) 23
- (2) 24
- (3) 25
- (4) 26
- 8. The distance between the points ($a \cos 25^{\circ}$, 0) and (0, $a \cos 65^{\circ}$) is $(a \cos 25^{\circ}, 0)$ మరియు $(0, a \cos 65^{\circ})$ బిందువుల మధ్య దూరము TIM
 - (1)
- (4) 0
- 9. The coordinates of the point which divides the line joining the points (2, -4) and (5, 6) in the ratio 5:3 are
 - (2, -4) మరియు (5, 6) అను బిందువుల కలువు నరళరేఖను 5:3 నిష్పత్తిలో ఖండించు బిందువు

 - (1) $\left(\frac{19}{2}, -21\right)$ (2) $\left(-\frac{19}{2}, -21\right)$ (3) $\left(-\frac{19}{2}, 21\right)$ (4) $\left(\frac{19}{2}, 21\right)$

- 10. If 2x-3y+5=0 and 4x+ky-2=0 are two parallel lines, then the value of k is 2x - 3y + 5 = 0 పురియు 4x + ky - 2 = 0 అనునవి సమాంతరాలైతే k = 1
 - (1) -6
- (2) -3
- (3) 3
- (4) 6

- 11. The point on the line 2x 3y = 5 which is equidistant from $\{1, 2\}$ and $\{3, 4\}$ is (1, 2) మరియు (3, 4) బిందువులకు సమదూరములో వుంటూ 2x - 3y = 5 అను సరళరేఖపై గల బిందువు
 - (1) (2, 3)
- (2) (4, 1)
- (3) (1, -1)
- (4) (4, 6)
- 12. The triangle formed by the points (0, 5), (5, 0) and (0, 0) is a/an (0, 5), (5, 0) మరియు (0, 0) శీర్హలతో ఏర్పడు త్రిభుజము
 - (1) equivalent triangle సమబాహు త్రిభుజము

(2) isosceles triangle సమద్విబాహు త్రిభుజము

(3) scalene triangle విషమబాహు త్రిభుజము

- (4) right-angled triangle లంబకోణ త్రిభుజము
- 13. The slope intercept form of the line ax + by + c = 0 is ax + by + c = 0 సరళరేఖ యొక్క వాలు అంతర్గండ రూపము
 - (1) $y + \frac{ax}{b} + \frac{c}{b} = 0$ (2) $y \frac{ax}{b} + \frac{c}{b} = 0$
- (3) $y + \frac{ax}{b} \frac{c}{b} = 0$ (4) $y \frac{ax}{b} \frac{c}{b} = 0$

TIM

- 14. The equation of the line passing through (1, 2) and perpendicular to x + y + 1 = 0 is x+y+1=0 అను సరభరేఖకు లంబంగా వుంటూ $(1,\ 2)$ బిందువు గుండా పోతున్న సరభరేఖా సమీకరణం ${m ?}$
 - (1) y-x+1=0
- (2) y-x-1=0
 - (3) y-x-2=0
- (4) y+x-2=0
- 15. The line joining (-1, 0) and (-2, $-\sqrt{3}$) makes an angle of with x-axis. (-1, 0) మరియు $(-2, -\sqrt{3})$ బిందువులను కలుపు సరళరేఖ x- అక్షంతో కోణము చేయును
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 75°

16. The inverse of $p \Rightarrow q$ is

 $p \Rightarrow q$ అను ప్రవరనము యొక్క విలోమము

- (1) $\sim p \Rightarrow \sim q$

- $(3) \quad p \Rightarrow \neg q \qquad \qquad (4) \quad \neg q \Rightarrow \neg p$
- 17. In a class, there are 26 students. In a survey, it is learnt that 8 would like to take tea but not coffee. If the number of students who like tea is 16, then the number of students who like only coffee but not tea is

ఒక తరగతిలో 26 మంది విద్యార్థులు కలరు. వీరిలో 8 మంది బీ డ్రాగెదరు కానీ కాఫీ డ్రాగరు. 16 మంది బీ డ్రాగుదురు. అయిన కాఫీ మాత్రమే త్రాగువారి సంఖ్య

- (1) 18
- (2) 8
- (3) 24
- (4) 10

18. If $A \cap B = \emptyset$, then $B \cap A'$ is

19. $f(x) = \frac{x^2 - 9}{x - 3}$ is defined, if its domain is

 $f(x) = \frac{x^2 - 9}{x - 3}$ అను భ్రమీయము యొక్క భ్రదేశము

- (1) $\{3\}$
- (2) $Z \{3\}$
- (3) $R \{3\}$
- (4) R

20. The range of $y = \tan x$ is

 $y = \tan x$ అను ప్రమేయము యొక్క వ్యాప్తి

- (1) [-1, 1]
- (2) [-∞, ∞]
- $(3) \quad \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
- (4) None (ఏదీ కాదు)

- 21. If $a^2 + b^2 + c^2 = 1$, then ab + bc + ca lies in the interval $a^2 + b^2 + c^2 = 1$ అయిన, ab + bc + ca ఏ అంతరములో నుండును
 - (1) $\left[\frac{1}{2}, 2\right]$
- (2) [-1, 2]
- (3) $\left[-\frac{1}{2}, 2\right]$
- (4) $\left[-1, \frac{1}{2}\right]$
- **22.** The value of the middle term in the expansion of $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$ is $\left(\frac{x}{a} + \frac{a}{x}\right)^{10}$ విస్తరణలోని మధ్య పదము
 - (1) 252
- (2) -252
- (3) $\frac{1}{252}$
- (4) $\frac{-1}{252}$

TIVI

- 23. If $x + y \ge 10$ and $x + 2y \ge 10$, then the least value of f = x + y is $x + y \ge 10$ మరియు $x + 2y \ge 10$ అయిన, f = x + y యొక్క కనిష్ఠ విలువ
 - (1) 3/20
- (2) 5
- (3) 3/2
- (4) 20/3

24. Which of the following is convex? క్రింది పటములలో ఏది కుంభాకార సమీతి

- (2)
- (3)
- (4)

- **25.** If $a^{1/3} + b^{1/3} + c^{1/3} = 0$, then $a + b + c = a^{1/3} + b^{1/3} + c^{1/3} = 0$ అయిస**ో**, a + b + c =
 - (1) 3 · ∛*abc*
- (2) ³√*abc*
- (3) 27abc
- (4) 3 · ∜*abc*

26. Lt
$$\frac{(x+1)^{1/2n}-1}{x}$$
 =

- (1) 1
- (2) -1
- (3) 2n
- (4) 1/2n

27. In the progression 16, 11, 6, 1, $\frac{1}{2}$, $t_{18} =$

 $16,\ 11,\ 6,\ 1,\ \cdots$ මතා ලිදීණ් t_{18} (18ක ක්රිකා) =

- (1) -12
- (2) 39
- (3) 69
- (4) 96
- **28.** If 2, 6, 18, 54, \cdots are in geometric progression, then 2^3 , 6^3 , 18^3 , 54^3 , \cdots are in

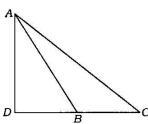
 $2, \, 6, \, 18, \, 54, \cdots$ లు గుణత్రేఢిలో కలపు, అయిన $2^3, \, 6^3, \, 18^3, \, 54^3, \cdots$ లులో గలపు

(1) AP అంక ලි්දී (2) GP රාස ල්දී

(3) HP హరాత్మక డేఢి

- (4) None ఏదీ కాదు
- 29. The angle in a major segment of a circle is

<mark>అధిక పృత్త ఖండములోని కోణము</mark>


(1) an obtuse angle ఒక అధిక కోణము

(2) a<mark>n ac</mark>ute angle ఒక అల్ప కోణము

TIM

(3) a right angle ఒక లంబ కోణము (4) None ఏదీ కాదు

30.

In the above figure, if $\angle B$ is an obtuse angle, then $AC^2 =$ పై పటములో $\angle B$ ఒక అధిక కోణమైలే, $AC^2 =$

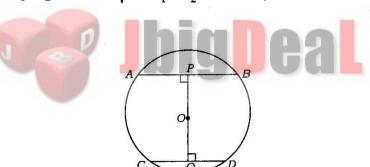
(1) $AB^2 + BC^2 - BD^2$

 $(2) \quad AB^2 + BC^2$

(3) $AB^2 + BC^2 + 2BC \cdot DB$

 $(4) \quad AB^2 + BC^2 - 2BC \cdot DB$

31. If the angles of a triangle are in the ratio 1:2:3, then the ratio of their corresponding sides


ఒక త్రిభుజములోని కోణముల నిష్పత్తి 1:2:3 అయిన, వాటి భుజముల నిష్పత్తి

- (1) $1:\sqrt{3}:2$
- (2) $1:2:\sqrt{3}$
- (3) $\sqrt{3}:1:1$
- (4) $2:\sqrt{3}:1$
- 32. If the median of a triangle divides it into two triangles, then the ratio of their areas is ఒక తిభుజములో గీయబడిన మధ్యగతము ఆ త్రిభుజమును రెండు త్రిభుజములుగా విభజించిన, ఆ త్రిభుజ వైశాల్యముల నిష్పల్తి
 - (1) 2:1
- (2) 1:1
- (3) 1:2
- (4) 3:1
- 33. The distance between the centres of two circles of radii r_1 and r_2 is d. The length of the transverse common tangent is

రెండు వృత్త వ్యాసార్థములు r_1 మరియు r_2 . కేంద్రముల మధ్య దూరం d అయిన, వాటికి గీయబడిన తిర్యాక్ ఉమ్మడి స్పర్ఫరేఖ పొడపు

- (1) $\sqrt{d^2 (r_1 r_2)^2}$ (2) $\sqrt{d^2 r_1^2 r_2^2}$ (3) $\sqrt{d^2 (r_1 + r_2)^2}$ (4) $\sqrt{d^2 + (r_1 r_2)^2}$

34.

In the given figure, the radius of the circle is 5 cm, AB = 8 cm, CD = 6 cm. If OP makes right angle at P on AB and OQ makes right angle at Q on CD, then PQ =

పటములో వృత్త వ్యాసార్థము $5~{
m cm},~AB=8~{
m cm},~CD=6~{
m cm}.~OP,~AB$ కి లంబంగాను, OQ,~CD కి లంబంగాను ఉండి, AB, CD లు సమాంతరాలైతే, PQ =

- (1) 7 cm
- (2) 6 cm
- (3) 5 cm
- (4) 4 cm
- 35. Which of the following are the sides of a right-angled triangle? కింది వానిలో ఏవి లంబకోణ త్రిభుజము యొక్క భుజములు?
 - (1) 5, 8, 11
- (2) 6, 8, 12
- (3) 56, 33, 65
- (4) 3, 4, 6

36. If
$$A = \begin{bmatrix} k & 2l \\ m & 2n \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -6 \\ 4 & 2 \end{bmatrix}$ and $A + B = 0$, then $A = 0$

$$A = \begin{bmatrix} k & 2l \\ m & 2n \end{bmatrix}, \ B = \begin{bmatrix} 3 & -6 \\ 4 & 2 \end{bmatrix}$$
 మరియు $A + B = 0$ అయినచో, $A = -6$

$$(1) \quad \begin{bmatrix} 3 & -3 \\ 4 & 1 \end{bmatrix}$$

$$(2) \begin{bmatrix} 3 & -3 \\ 4 & -1 \end{bmatrix}$$

(3)
$$\begin{bmatrix} -3 & 6 \\ 4 & 1 \end{bmatrix}$$

(1)
$$\begin{bmatrix} 3 & -3 \\ 4 & 1 \end{bmatrix}$$
 (2) $\begin{bmatrix} 3 & -3 \\ 4 & -1 \end{bmatrix}$ (3) $\begin{bmatrix} -3 & 6 \\ 4 & 1 \end{bmatrix}$ (4) $\begin{bmatrix} -3 & 6 \\ -4 & -2 \end{bmatrix}$

37. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \end{bmatrix}$, then the order of ABC is

$$A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix},\;B=\begin{bmatrix}1\\2\\3\end{bmatrix}$$
 మరియు $C=\begin{bmatrix}1&2\end{bmatrix}$ అయినచో, ABC యొక్క తరగతి

(1)
$$2 \times 3$$

38. Given
$$A = \begin{bmatrix} 1 & -2 \\ 3 & -5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be the matrix such that $A = BX$, then $X = BX$

$$A = \begin{bmatrix} 1 & -2 \\ 3 & -5 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 మరియు X మాత్రిక, $A = BX$ అగునట్లుగా, మాత్రిక $X = \begin{bmatrix} 1 & -2 \\ 3 & -5 \end{bmatrix}$ (2) $\frac{1}{2} \begin{bmatrix} -2 & 4 \\ 3 & -5 \end{bmatrix}$ (3) $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ (4) $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ -3 & -5 \end{bmatrix}$

$$(1) \quad \frac{1}{2} \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}$$

(2)
$$\frac{1}{2}\begin{bmatrix} -2 & 4\\ 3 & -5 \end{bmatrix}$$

(3)
$$\frac{1}{2}\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$$

(4)
$$\frac{1}{2}\begin{bmatrix} 2 & 4 \\ -3 & -5 \end{bmatrix}$$

39. If
$$R = \begin{bmatrix} xy & y^2 \\ x^2 & -xy \end{bmatrix}$$
, then $R^2 =$

$$R = \begin{bmatrix} xy & y^2 \\ x^2 & -xy \end{bmatrix}$$
 అయినరో, $R^2 =$

(1)
$$-2xy \cdot I$$

(3)
$$-2x^2y^2 \cdot I$$
 (4) $2x^2y^2 \cdot I$

(4)
$$2x^2y^2 \cdot I$$

40. The average of 100 numbers is calculated as 60. While calculating the average, two numbers are taken as 72 and 28 instead of 54 and 26. If this error is corrected, then the corrected mean is

100 నంఖ్యల సరాసరి 60. సగబు కనుగొనుటలో పారపాటున 54, 26 విలువలకు బదులుగా 72, 28గా తీసికొనబడి లెక్కించబడినవి. సరి చేసిన తరువాత అంకగణిత సగబు

41. The formula for finding mode is బహుళము కనుగొనుటకు సూత్రము

(1)
$$l + \frac{f - f_1}{2f - (f_1 + f_2)} \cdot C$$

(2)
$$l - \frac{f - f_1}{2f - (f_1 + f_2)} \cdot C$$

(3)
$$l + \frac{f - f_1}{2f + (f_1 + f_2)} \cdot C$$

(4)
$$l + \frac{f + f_1}{2f + (f_1 + f_2)} \cdot C$$

42. For a given data, mode = a and median = b, then mean = ಇವ್ಯಬಡಿನ ದత್ತಾಂಕಮುನಕು ಬಾಸುಳಕಮು a, ಮಧ್ಯಗತಮು b ಅಯಿನ, ಅಂಕಗಣಿತ ನಗಲು =?

$$(1) \quad \frac{a-b}{2} \qquad \qquad (2) \quad \frac{a+b}{2}$$

(2)
$$\frac{a+b}{2}$$

$$(3) \quad \frac{3b-a}{2}$$

- (4) None (ఏదీ కాదు)
- **43.** The median of the scores -4, -6, -5, 3, 0, $\frac{5}{4}$ and 11 is -4, -6, -5, 3, 0, 5 మరియు 11 ల మధ్యగతము

(4) 5

TIM

44. The arithmetic mean (AM) of the data $\frac{1}{3}$, $\frac{3}{4}$, $\frac{5}{6}$, $\frac{1}{2}$, $\frac{7}{12}$ is

$$\frac{1}{3}, \frac{3}{4}, \frac{5}{6}, \frac{1}{2}, \frac{7}{12}$$
 along, wostres with

(1)
$$\frac{2}{5}$$

(2)
$$\frac{3}{5}$$

(3)
$$\frac{4}{5}$$

- (4) $\frac{1}{5}$
- 45. The mean and median of a unimodal grouped data are 28.2 and 30.5, so mode is ఒక యూనీ మోడల్ విభాజన సగలు 28.2 మరియు మధ్యగతము 30.5 అయిన, దాని బాహుళకము
 - (1) 35·1
- (2) 34.6
- (3) 29.5
- (4) 32.6

46. If the mean of the following distribution is 2.6, then the value of 'y' is క్రింది పౌన:పున్య విభాజన సగలు 2.6 అయిన, 'y' విలుప

Variable (x) ೨೮ರಾಕಿ	1	2	3	4	5
Frequency హాస:పుస్వము	4	5	у	1	2

- (1) 3
- (2) 8
- $(3) \cdot 13$
- (4) 24

- 47. The median of the following distribution is
 - ఈ క్రింది విభాజనముకు మధ్యగతము

Class interval తరగతి అంతరము	0-9	10–19	20-29	30-39
Frequency పాన:పున్నము	10	16	24	29

- (1) 23.75
- (2) 23.25
- (3) 23
- (4) 22.25

48. If $A + B = 90^{\circ}$ and $\tan A = \frac{3}{4}$, then $\cot B = \frac{3}{4}$

 $A+B=90^{\circ}$ మరియు $\tan A=\frac{3}{4}$ అయిన, $\cot B=$

- (1) $\frac{4}{3}$
- (2) $\frac{-4}{3}$
- (3) $\frac{3}{4}$
- (4) $\frac{-3}{4}$

- **49.** $\sin A \cos (90^\circ A) + \cos A \sin (90^\circ A) =$
 - (1) $\sin^2 A$
- (2) $\cos^2 A$
- (3) 0
- (4) 1

- $50. \frac{1-\tan^2\theta}{\cot^2\theta-1} =$
 - (1) $\tan^2 \theta$
- (2) $\cot^2 \theta$
- (3) $\sin^2\theta$
- (4) $\cos^2\theta$

- **51.** In a $\triangle ABC$ if $\angle B=90^\circ$ and $\tan C=\frac{5}{12}$, then the length of the hypotenuse is ఒక త్రిభుజం ABC లో $\angle B=90^\circ$, $\tan C=\frac{5}{12}$ అయినచో, ఆ త్రిభుజము యొక్క కర్ణము
 - (1) 6
- (2) 13
- (3) 21
- (4) 17

- **52.** $\sin^2 29^\circ + \cos^2 61^\circ =$
 - (1) $2\sin^2 29^\circ$
- (2) cos² 61°
- (3) 1
- (4) None (ఏదీ కాడు)
- 53. $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} =$ (1) $\sec\theta + \tan\theta$ (2) $\sec\theta \tan\theta$ (3) $\sec^2\theta + \tan^2\theta$ (4) $\sec^2\theta \tan^2\theta$
- 54. If $a\cos\theta + b\sin\theta = 4$ and $a\sin\theta b\cos\theta = 3$, then $a^2 + b^2 = a\cos\theta + b\sin\theta = 4$ మరియు $a\sin\theta b\cos\theta = 3$ అయిన, $a^2 + b^2 = a\cos\theta + b\sin\theta$
 - (1) 7
- (2) 12
- (3) 25
- (4) None (ఏదీ కాడు)

- 55. tan 1° tan 2° tan 3° · · · tan 89° =
 - (1) ∞
- (2) 0
- (3) 1
- (4) None (ఏదీ కాడు)

56.
$$\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ + 5\cos^2 90^\circ =$$

- (1) 7
- (2) 8
- (3) 9
- (4) 10

57. If
$$\tan 35^\circ = k$$
, then the value of $\frac{\tan 145^\circ - \tan 125^\circ}{1 + \tan 145^\circ \tan 125^\circ}$ is $\tan 35^\circ = k$ అయినహే, $\frac{\tan 145^\circ - \tan 125^\circ}{1 + \tan 145^\circ \tan 125^\circ}$ వీలుప =

- (1) $\frac{2k}{1-k^2}$ (2) $\frac{2k}{1+k^2}$ (3) $\frac{1-k^2}{2k}$

- (4) $\frac{1-k^2}{1+k^2}$

58. If
$$\cos \theta = \frac{2\sqrt{mn}}{m+n}$$
, then $\sin \theta =$

TIVI

- 1 రేడియన్ =
- (1) 56° 16′
- (2) 50° 16′
- (3) 56° 15′
- (4) None (ఏదీ కాదు)

60. If
$$\theta$$
 is an acute angle, then $\cot(\theta-1170^\circ)=$ θ ఒక అల్పకోణము, అయిన $\cot(\theta-1170^\circ)=$

- $\{1\}$ $\tan \theta$
- (2) $tan \theta$
- (3) $\cot \theta$
- (4) $-\cot\theta$

SECTION-II: PHYSICS

61. Positron is an anti-particle of పాజ్మిబాస్ అనునది దేనికి ప్రతికణం

> (1) neutrino న్యూటినో

(2) proton ప్రోటాను

(3) neutron న్యూటాను

(4) electron ఎలక్షాను

62. Ionizing powers of α , β and γ rays are respectively in the ratio lpha,~eta మరియు γ కిరణాలు అయనీకరణ శక్తుల నిష్పత్తి పరుసగా

- (1) $1:10^3:10^6$ (2) $1:10^6:10^3$ (3) $10^6:10^3:1$ (4) $10^3:10^6:1$

63. At room temperature, the energy gap for pure germanium is

గది ఉష్ణోగ్రత వర్ద, స్వవృమైన జెర్మేనియం యొక్క శక్తి అంతరం (ఎలక్షాను వోల్ములలో)

TIM

- (1) 0.72 eV
- (2) 1 · 1 eV
- 1.21 eV
- 1.4 eV

64. The process of 'mixing' messages to rf carrier waves is called rf వాహక తరంగాలకు, సమాచార తరంగాలను కలిపే ప్రక్రియ

(1) transmission సమాచార ప్రసారం

(2) modulation మాడ్యులేషన్

(3) demodulation డీ–మాడ్యులేషన్

(4) scanning స్కానింగ్

65. BCD stands for

BCD అను సాంకేతిక భాషకు పూర్తి వాక్యము

(1) Binary Computer Digit బైనరీ కంప్యూటర్ డిజిట్

(2) Binary Computer Decimal బైనరీ కంప్యూటర్ డెసిమల్

(3) Binary Coded Decimal బైనరీ కోడెడ్ డెసిపుల్

(4) Binary Coded Data భైనరీ కోడెడ్ డాలా

66. The relation better particle in simple	ween acceleration 'a' : e harmonic motion (SI	and displacement 'x' fi HM) is given by	rom the mean	position of a
సరళ హరాత్మక చలసంలో సంబంధం	ీ ఉన్న ఒక కణం యొక్క త్వరణ	o (a) మరియు విరామస్థానము	నుండి గల స్థాన్మభంశ	శము $ig(xig)$ ల మధ్య
(1) $a \propto x$	(2) $a \propto -x$	(3) $a \propto \frac{1}{x}$	(4) a ∞ -	$-\frac{1}{r}$

67. The ratio of intensity of magnetization and the intensity of applied magnetic field is called ఒక పదార్థపు అయస్కాంతీకరణ తీద్రత, ద్రయోగించిన అయస్కాంత క్షేత్ర తీద్రతల నిష్పత్తి

(1)	permeability ప్రవేశ్యశీలత	(2)	susceptibilit ససెస్టిబిలిటీ	У
131	ratantivit.	400,000		

(3) retentivity (4) ferromagnetism **ರಪಂಟಿವಿಟ್** ఫెర్రోఅయస్కాంతత్వము

68. The property that change in velocity of light takes place at the boundary of two media is found in case of

పరాపర్షనము

కాంతి క<mark>ిరణం యొక్క పేగం</mark> ఒక య<mark>ానక</mark>ం నుండి మరియొక <mark>యానక</mark>మునకు మార్పు చె<mark>ంద</mark>డాన్ని తెలియచేయు ధర్మము (1) refraction (2) reflection ప్రక్రీభవనం

(3) interference (4) polarization వ్యతికరణం దృవణం

69. The working principle of a transformer is based on ట్రాన్స్ఫ్ ఫార్మర్ ఏ సూత్రాన్ని (ధర్మాన్ని) ఆధారవడు వని చేస్తుంది

(1) Ohm's law (2) Fleming's left-hand rule ఓమ్ నియమము ఫ్లెమింగ్ ఎడమచేతి నియమము (3) self-induction (4) mutual induction స్వయం (పేరణ అన్యోన్య (పేరణ

70. The angular momentum of an electron is given by ఎలక్ర్వాన్ యొక్క కోణీయ ద్రవ్యవేగం

(1)

71.	The	long	thin	metallic	strip	fixed	at	the	back	of	vernier	calipers	can	be	used	to	measure
	పెర్చియ	సర్ కాట) ක්රි _ට ක	సుక భాగాన	ඩුබංධ (ఉన్నటువ	ంటి	ಒಕ ವಿ	ాడపై న త	ే హ	పు బద్ధను శ	దీనిని కౌల ప ం	ానికి ఉ	ವ ವ	ూగిస్తారు		

(1) thickness of a wire తీగమందము

- (2) internal diameter of a hollow cylinder
 ఖాళీ స్థూవపు అంతర్ వ్యానం
- (3) depth of a hollow cylinder ఖారీ స్థూపపు లోతు
- (4) external diameter of a solid sphere
 గోళపు బాహ్య వ్యాసము

72. What is the value of acceleration due to gravity (g) at a height of 1000 km from the earth's surface (radius of the earth =
$$6.4 \times 10^6$$
 m; 'g' on the earth = 9.8 m/s²)?

భూమి ఉపరితలం నుండి 1000 కి.మీ. ఎత్తులో గురుత్వ త్వరణం (g) విలువ (భూమి వ్యాసార్థము = 6.4×10^6 మీ, 'g' = 9.8 మీ/సె 2)

- (1) 6.74 m/s^2
- (2) $8.27 \,\mathrm{m/s}^2$
- (3) $9.8 \,\mathrm{m/s^2}$
- (4) Zero

- 6·74 మి/స²
- 8·27 మి/సె²
- 9·8 మీ/స²
- ్లసున్న

73. If the distance between two objects is halved, then the gravitational force '
$$F$$
' changes to రెండు వన్నవుల మధ్యదూరం నగానికి తగ్గించినవుడు, వాటి మధ్య గురుత్వాకర్షణ బలం (F) ఎలా మారుతుంది

- (1) F/2
- (2) 2F
- (3) 4F
- (4) F/4

- (1) 2 m 2 మీ
- (2) 4·9 m 4·9 మీ
- (3) 9·8 m 9·8 మీ
- (4) 19·6 m 19·6 మీ

స్వేచ్ఛగా క్రిందకు పడే వస్తువు తన 1వ, 3వ మరియు 5వ సెకెనులలో ప్రయాణం చేయు దూరాల నిష్మత్తి

- (1) 1:3:5
- (2) 1:5:9
- (3) 1:9:25
- (4) 5:3:1

- 76. If the velocity of an artificial satellite is greater than 11 km/s, then it ಒಕ ಕೃಣಿಮ గ్రహం యొక్క వేగం $11~{
 m km/s}$ ಕಂಬೆ ఎక్కువగా ఉంಬే, ಅದಿ
 - (1) returns to the ground తిరిగి భూమిని చేరుతుంది

- (2) rotates around the earth భూమి చుట్కా తిరుగుతుంది
- (3) escapes from the ground భూ గురుత్వ కేంద్రం నుండి తప్పించుకుంటుంది
- (4) moves on the earth's surface భ ఉపరితలంపై కదులుతూ ఉంటుంది
- 77. A pendulum of length 50 cm has a time period of 1 s. If the length changes to 100 cm, then the time period is
 - 50 సెం.మీ. పొడపు కలిగిన ఒక లోలకపు ఆవర్తన కాలం 1 సె. దాని పొడపు 100 సెం.మీ. అయితే, అపుడు ఆవర్తన కాలం
 - (1) 0.5s0.5%
- (2) 1 s 1 %
- (3) 2 s
- (4) $\sqrt{2}$ s $\sqrt{2}$ \approx
- 78. The heat energy produced by completely burning a unit mass of a fuel is called ద్రమాణ ద్రవ్యరాశి గల ఒక ఇంధనం, సంపూర్ణంగా మండి విడుదల చేయు ఉష్టకక్తిని ఏమందురు
 - (1) calorific value (2) specific heat కెలోరిఫిక్ విలువ
 - (3) latent heat of vaporization (4) thermal efficiency బాప్పీభవన గుప్తోష్టం ఉష్ణ దక్షత
- 79. The pair of physical quantities having the same unit is క్రింది వాటిలో ఒకే ప్రమాణం కలిగి ఉన్న జంట భౌతికరాశులు
 - (1) force, pressure బలం, పీడనం

(2) thrust, pressure అభబలం, పీడనం

(3) thrust, weight అభబలం, భారము

- (4) weight, pressure భారము, పీడనం
- 80. A train moves in a curved path of radius 49 m with a velocity of 4.9 m/s. The angle of banking to avoid accident is

ఒక రైలు 49 మీ వ్యాసార్థం గల పృత్రాకార మార్గంలో $4\cdot 9$ మీ/సె పేగంతో కదులుతున్నది. ప్రమాదాన్ని నివారించడానికి కావలసిన గట్టు Simo

- (1) $\tan^{-1}\left(\frac{1}{98}\right)$
- (2) $\tan^{-1}\left(\frac{1}{10}\right)$ (3) $\tan^{-1}\left(\frac{1}{20}\right)$ (4) $\tan^{-1}\left(1\right)$

81.	Whi	ch among the following rays has the lea	st w	avelength?
	ල්ංධ	కిరణాలలో కనిష్ట తరంగదైర్హ్యం కలది		
	(1)	γ-rays	(2)	X-rays
		γ–ತೆರಣ್ಉ		X-ತೆರ್ಬಾಲು
	(3)	Microwaves	(4)	Ultraviolet rays
		ప్పె క్రోతరంగాలు		అతినీలలోహిత కిరణాలు
82.	Wor	king of a stethoscope uses the property	of s	ound called
UZ.		్క్ ప్ అను పరికరం ధ్వని యొక్క ఏ ధర్మంపై ఆధారపడి పని చే		
	(1)		(2)	dispersion
	(+)	అసునాదం		పర్ణ విశ్లేషణ
	(3)	refraction	(4)	reflection
	(0)	పడ్రీభవనం	3.7	పరావర్తనం
	seco room 425 అనువ (1)	ond resonances occur at 20 cm and 60 cm temperature is హెస్ట్ల్ ప <mark>ోసుపుస్యం కలిగిన శృతిదండాన్ని ఉపయోగించి</mark> ఆస్తువాదాలు పరుసగా 20 సెం.మీ. మరియు 60 సెం.మీ. వర్గ వ	m re సునా <mark>ద</mark> సినిపించ (3)	340 m/s (4) 345 m/s 340 ໝ/ັນ 345 ໝ/ັນ
OT.		బ్ చూసినపుడు ఒక కాంతి జనకం నుండి ఒక సెకెను కాలంలో		
				candlepower
	(1)	luminous flux కాంతి అభివాహం	(4)	కాండిల్ సామర్థ్యం
	(3)	4	(4)	solid angle
		కాంతి తీద్రత	2 5	ఘనకోణం
85.	. Wh	ich among the following is not a charact	erist	ic property of laser?
		వాటిలో లేజర్ కాంతి లక్షణము కానిదేది		
	(1)	Low intensity	(2)	Directionality
	* *	కనిష్ట తీవ్రత		దిశనీయత
	(3)	Monochromaticity	(4)	Coherence
		ఏకపర్లీయత		సంబధ్ధత

86. The relative permeability (μ_r) of a diamagnetic material is

	డయ	రూ అయస్కాంత పదార్థ	సాపేక్ష ప్రవే) ఇక్టిల్యత (µ,)	8	material is			
	(1)	$\mu_r > 1$	(2)	$\mu_r \leq 1$	(3)	$\mu_r >> 1$	(4)	None	(ఏదీ కాదు)
8	7 . The	force of attrac	tion or	repulsion b	etween two	magnetic male		94 - 25 <u>-</u> 25	
	వెంర్	ు అయస్కాంత దృవాల	మధ్య ఆక	ජූ ස ව් යා බුඡුජූස	బలం దేనిపె ఆర	magnetic pole హారపడదు	s does no	ot depe	end on
	(1)	medium in wh యానకము	ich the	y exist		pole strength దృవసత్వాలు	S		
	(3)	distance of seg మధ్యదూరం	paration	ì	(4)	- 1000 -			
88		piece of copper a resistance							rature, then
	ಒತ ತಾ	పర్ ముక్క మరియు సి	లీకాన్ ము	క్కల యొక్క ఉష్ణి	(గ్రతలను గది ఉ	క్టోగ్రత కన్నా తగ్గించిను	కుడు. వాటి ని	రోదము	
	(-)	decreases both కావర్, సిలికాన్ రెండిఁ	in copi	per and silie	con			Ψ	ai .
	(3) i	increases both కావర్, సిలికాన్ రెండిం ncreases in cop కావర్ లో పెరుగు ను, సి	ຍຢ້ອ້າກາ oper an	పరుగును d decreases		aL	1		Э
	(4) o	lecreases in cop ాపర్లో తగ్గును, సిలిక	per an ాన్లో పెర	d increases ుగును	in silicon				
	2 మీ	esistance of a m l of same mater పాడపు గల మాంగనిన్ ఆ కలిగిన తీగ నిరోధం		CONTRACTOR DE LA CONTRA	a. c. 000-00	CHOIL IS			
	(1) 4		222	Ω		00 Ω		Ω Ω	.,, 0
		sistances x and x , then the value		- J CO					
7	రెండు విర	స్యత్ నిరోధాలు $oldsymbol{x}$ మరి	యు y లస	రు నమాంతర నం	ధానం చేశారు. ۽	ాటి ఫలిత నిరోధం 0	.8 <i>x</i> అయివే	లకుడు :	U Dorry
((1) 8 <i>x</i>	:	$(2) \frac{x}{2}$	報	(3) x	55 • Order	(4) 4x		y www
og - 11 - 4		SPACE	FOR RO	DUGH WORK	🤇 / చిత్తుపనికి	కేటాయించబడిన స్థల	ుము		

SECTION—III: CHEMISTRY

91.	The	bond	angle	in	diamond	is
	వ్యజన	ులో బం	ధకోణమ	3		

- (1) 109·5°
- (2) 120°
- (3) 90°
- (4) 104°

TM

92. Alkanes generally show

ఆల్కేసులు సాధారణంగాలను ప్రదర్శించును

 addition reaction సంకలన చర్యలు (2) condensation reaction సంఘనన చర్యలు

(3) substitution reaction డ్రుతిక్షేవన చర్యలు (4) polymerization పాలిమరీకరణం

93. The gas used in artificial ripening of fruits is కాయలను కృతిమంగా త్వరగా పండ్లుగా మార్పుటకు వాడే వాయువు

(1) methane మిథేన్ (2) ethane ఈథేన్

(3) ethylene ఇథిలీన్

- (4) acetylene ఎసిటిలీన్
- 94. The metal used to test alcohol functional group is ఆల్కహాల్ స్టమేయ సమూహాన్ని గుర్తించుటకు వాడే లోహము
 - (1) Na
- (2) Mg
- (3) Ca
- (4) Cu

- 95. The functional group of aldehyde is ఆర్థిహైడ్ యొక్క స్టమీయ సమూహము
 - (1) —C—O—C—
- (2) —CHO
- (3) —CO—NH₂
- (4) -CO-C-

96.	The	reaction	that	takes	place	when	glucose	is	treated	with	Tollens	reagent	is
	ಗ್ದುಕ್	క్ర్ బోలెన్స్	కారకమ	బతో కలిపి	నవో జర	ుగు చర్య						,	

- $(1) \quad Ag^+ \rightarrow Ag \qquad \qquad (2) \quad Cu^{2+} \rightarrow Cu \qquad \qquad (3) \quad Ag \rightarrow Ag^+ \qquad \qquad (4) \quad Cu^+ \rightarrow Cu^{2+}$
- 97. The enzyme that breaks down glucose to alcohol and CO_2 is గ్లూకోజ్సు ఆల్కహాల్ మరియు ${
 m CO_2}$ గా విడగొబ్బే ఎస్జెమ్
 - (1) invertase ఇన్వర్టేజ్

(2) maltase మాల్టేజ్

(3) zymase జైమేజ్

- (4) diastase డైయాస్టేజ్
- 98. Which one of the following is peptide bond? క్రింది వానిలో పెప్టెడ్ బంధము

- 99. Which one of the following is unsaturated fatty acid? క్రింది వానిలో అసంతృప్త ఫ్యాటీ ఆమ్లము
 - (1) Lauric acid లారిక్ ఆమ్లము

(2) Stearic acid స్టీరిక్ ఆమ్లము

(3) Oleic acid ఓలియిక్ ఆమ్లము

- (4) Palmitic acid పామిటిక్ ఆప్లము
- 100. Which one of the following is not an addition polymer? ఈ క్రింది వానిలో సంకలన పాలిమర్ కానిది
 - (1) Polythene పాలిథీన్

(2) PVC పివిసి

(3) Polyacrylonitrile పాలిఅక్రెల్స్ట్రేబ్రెల్

(4) Phenol formaldehyde resin ఫీనాల్ ఫార్మాల్డిహైడ్ రెజిన్

- 101. Which one of the following is the isobar of $_6{\rm C}^{14}$? ర $_4$ క్రింది వాటిలో $_6{\rm C}^{14}$ యొక్క ఐసోబార్
 - (1) 6C¹³
- (2) 6C¹²
- (3) $_{7}N^{14}$
- (4) 7N¹⁵

- 102. The orbital which does not lie along the axis is ఈ క్రింది ఆర్బిబాల్లలో అక్ష్యం పైన లేని ఆర్బిబాల్
 - (1) p_x
- (2) $d_{x^2-y^2}$
- (3) d_{xy}
- $(4) \quad p_y$
- 103. The number of electrons that can be accommodated in an orbit is given by ఒక కక్ష్మలో అత్యధికంగా వుండగల ఎలడ్హ్రాస్ట్ల సంఖ్యమ ఇచ్చునది
 - (1) n^2 (2) $2n^2$ (3) n^3 (4) $2n^2$
- 104. The number of unpaired electrons present in sulphur is సల్ఫర్ (గంధకము)లో గల ఒంటరి ఎలక్ష్మాస్ల సంఖ్య
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 105. Ionic compounds are generally formed between అయానిక పదారాలు సాధారణంగాల కలయిక పల్ల ఏర్పడును
 - (1) two metals రెండు లోహాలు

(2) metal and non-metal లోహము మరియు అలోహము

(3) two non-metals రెండు అలోహాలు (4) noble gases జడ వాయువులు

SPACE FOR ROUGH WORK / ವಿಶ್ವವನಿತಿ ತೆಟ್ಯಾಂವಬಡಿನ ಸ್ಥಲಮು

	106. The number of σ (sigma) bonds present in ethylene is ఇథిలీన్ గల సిగ్మా (σ) బంధాల సంఖ్య										
(1)	4	(2)	5		(3)	2	(4)	1			
ბ ∙ (ich one of the follo కింది వానిలో పిరమిడల్ ఆక్ష NH ₃	్రతి లేని		: having py	/ram (3)		(4)	РН ₃			
	ch one of the follo వానిలో డాబర్స్ ర్టియాడ్			a Doberei	ner	triad?					
109. The	Cl, Br, I	able		structed ba		S, Se, Te	(4) //	N, Na, K			
(1)	ఆవర్తన పట్టి <mark>క</mark> పై ల atomic radius వరమాణు వ్యాసార్థము	ఆధారప	డ నిర్మితమై	<u>ල</u> නධ්	(2)	atomic weight పరమాణు భారము					
	atomic number పరమాణు సంఖ్య				(4)	atomicity అబామిసిటీ					
	th of the following ూటిలో పీరియడ్లో ఎడమ				righ	nt for a given peri	od?				
	Atomic radius వరమాణు వ్యాసార్థము				(2)	Oxidizing propert ఆక్సికరణం గావించు వ్యభా	2.50				
	Electropositive cha నన విద్యుధాత్మకథ స్వభావవ		er			Reducing property క్షయకరణము గావించు స్త)			
	SPACE	FOR	ROUGH	WORK /	ఏత్తువ	నికి కేటాయించబడిన స్థలక	ఘ				

111. Atomic size in a period from left to right ఒక పీరియడ్లో పరమాణు పరిమాణము ఎడమ పైపు నుండి కుడి	పైపునక	3
(1) increases పెరుగును	(2)	decreases తగ్గను
(3) remains same ఆలాగే ఉండును	(4)	initially increases then decreases మొదట పెరిగి తరువాత తగ్గును
112. The formula of magnesite is ప్యూగ్నసైట్ ఫార్ములా		
(1) MgCO ₃	(2)	CaCO ₃ ·MgCO ₃
(3) $MgC\ell_2 \cdot KC\ell \cdot 6H_2O$	(4)	$MgSO_4 \cdot 7H_2O$
113. Which of the following is covalent in nature త్రింది వానిలో సమయోజనీయ స్వభావము కలది (1) CaC ℓ_2 (2) BeC ℓ_2	e? (3)	NaCl (4) MgCl ₂
114. Stream of coal gas is passed over floating	Mg	during electrolysis of $\mathrm{MgC}\ell_2$ to prevent
MgC ℓ_2 ఏద్యుత్ విశ్లేషణలో తేలుతున్న Mg పై నుండి కోల్ వ	యుష	స్తును నిరోధించుటకు పంపుతారు
(1) oxidation of Mg Mg ఆక్సీకరణము	(2	reduction of Mg Mg క్షయకరణము
(3) vaporization బాప్పీభవనము	(4	l) solidification နားဂ်ီစုသည်သ
115. If n moles of solute are dissolved in 500 500 మిర్జీరీబర్ల ద్రావణంలో ఫుండే డ్రావిర మోల్ల్ సంఖ్య n	ml o ఆయిన	f a solution, what is its molarity? చో ఆ ద్రావణ మొలారిచీ
(1) n (2) $n/2$	(3) 2n (4) 5n

116	The	mole fraction of l	H_2O	when one mole of	HC	ℓ is dissolved in	three	moles	of water i
	3 3	ూల్ల నీటిలో 1 మోలు HC	2ℓ ను	క ට්රීටේක් ප ලාක නිර	3 మోం	ర్ భాగము			
	٠								
	(1)	0.25	(2)	0.33	(3)	0.66	(4)	0.75	
							320.0		
117.	Wh	ich one of the follo	win	z is acidic in nati	ire?				•
				5 worden in mane					
	(၉ဝယ	వానిలో ఆప్లు స్వభావము క	ಅದ						
	(1)	SiO_2	(0)	NITT	(2)	N- O	7.4%		
	(1)	3102	(2)	NH ₃	(3)	Na ₂ O	(4)	MgO	
						T	IVI		
		0		In it out					
118.	The	colour of methyl	oran	ge in NaOH soluti	on i	s			
	Nac)H ద్రావణ <mark>ంలో మిశ్</mark> తెల్ ఆరె	ంజ్ రం	אלי					
	(1)				(2)	orange			
		పసుపు				ఆరెంజ్ రంగు			
	(0)	« •							
	(3)	red			(4)	blue			
		ఎరుపు				నీలం			
119.	$K_{\mathbf{w}}$	of water at 25 °C	in n	nole ² /litre ² is					
	25 °	$\mathbb C$ పద్ద నీటి యొక్క $K_{\mathbf w}$	อีครรร	375 ² /h 5 ² 05					
		o wa na aassg mw	~~~	2 7020 00					,
	(1)	1×10^{-14}	(2)	1×10^{-13}	(3)	1×10 ⁻¹⁵	(4)	0	
	1-1	17.14	(4)	17.10	(0)	17.10	(7)	U	
100	mı.			Bassia Bassisson, 18 ms					
120.	The	pH of 0.001 NHC	€ SO.	lution is					
	0.00	01 <i>N</i> HCℓ ಯುಕ್ಕ pH .	విలుప						

(3) 1

(4) 3

(1) 2

(2) 0.01