Reg. No. :
Name : \qquad

M.Sc. Previous Degree Examination, August 2009
 (I.D.E.)
 Branch : MATHEMATICS
 MM 1101 - Linear Algebra
 (Prior to 2006 admission)

Time : 3 Hours
Max. Marks : 85
Instructions: Answer either \boldsymbol{A} or \boldsymbol{B} of each question.
I. A) a) Let $A=\left[\begin{array}{rr}-1 & \mathrm{i} \\ -\mathrm{i} & 3 \\ 1 & 2\end{array}\right]$. Prove that the system $\mathrm{AX}=0$ has only the trivial solution.
b) Suppose A, B, C are matrices such that the products $\mathrm{BC}, \mathrm{A}(\mathrm{BC}), \mathrm{AB}$ and $(A B) C$ are defined. Prove that $A(B C)=(A B) C$.
c) Discover whether $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4\end{array}\right]$ is invertible. If invertible find A^{-1}.
B) a) Prove that the set of all numbers of the form $x+y \sqrt{2}$, where x and y are rationals is a subfield of the field of complex numbers.
b) Define raw equivalence of matrices. Suppose A and B are row equivalent $\mathrm{m} \times \mathrm{n}$ matrices over a field F. Prove that the homogeneous system of linear equations $A X=0$ and $B X=0$ have exactly the same solutions.
c) Define raw reduced echelon matrices. Give an example. Prove that every $\mathrm{m} \times \mathrm{n}$ matrix is raw-equivalent to a raw reduced echelon matrix.
II. A) a) Prove that the only subspaces of \mathbb{R} are \mathbb{R} and the zero space.
b) Suppose P is an $\mathrm{n} \times \mathrm{n}$ inverlible matrix over F . Let V be an n -dimensional vecter space over F with an ordered basis \mathcal{B}. Prove that there is a unique ordered \mathcal{B} of V such that $[\alpha]_{\mathcal{B}}=\mathrm{P}[\alpha]_{\mathcal{B}^{\prime}}$ and $[\alpha]_{\mathcal{B}^{\prime}}=\mathrm{P}^{-1}[\alpha]_{\mathcal{B}}$ for every vecter α in V .
c) In \mathbb{C}^{3} Let $\alpha_{1}=(1,0,-i), \alpha_{2}=(1+i, 1-i, 1)$ and $\alpha_{3}=(i, i, i)$. Prove that $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is a basis for \mathbb{C}^{3}. What are the coordinates of the vector (a,b,c) in this basis?
B) a) Suppose V is a finite dimensional vecter space over a field F. Prove that every non-empty linearly independent set of vectors in V can be extended to a basis for V .
b) Let V be an n -dimensional vecter space over a field F with ordered bases \mathcal{B} and \mathcal{B}^{\prime}. Prove that there is a unique, invertible by $\mathrm{n} \times \mathrm{n}$ matrix P with entries in F such that $[\alpha]_{\mathcal{B}}=\mathrm{P}[\alpha]_{\mathcal{B}^{\prime}}$ and $[\alpha]_{\mathcal{B}^{\prime}}=\mathrm{P}^{-1}[\alpha]_{\mathcal{B}}$ for every vector α in V .
c) Let W be the subspace of \mathbb{C}^{3} spanned by $(1,0, i)$ and $(1+\mathrm{i}, 1,-1)$. Prove that the vector $(1, i, 1+\mathrm{i})$ lie in W .
III. A) a) State and prove the rank-nullity theorem.
b) Let T be a line an transformation from V into W . Prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W .
c) Suppose W_{1} and W_{2} are subspaces of a finite dimensional vector space V. Prove that $\mathrm{W}_{1}=\mathrm{W}_{2}$ if and only if $\mathrm{W}_{1}^{0}=\mathrm{W}_{2}^{0}$.
B) a) Define the rank, nullity of a linear transformation consider the mapping $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, 0, \mathrm{x}_{3}\right)$. Prove that T is a linear transformation. Find its rank and nullity.
b) Let $\mathrm{T}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be defined as $\mathrm{Te}_{1}=(1,0, \mathrm{i}), \mathrm{Te}_{2}=(0,1,0), \mathrm{Te}_{3}=(\mathrm{i}, 1,0)$ where $\left(e_{1}, e_{2}, e_{3}\right)$ is the standard basis for \mathbb{C}^{3}. Check whether T is invertible. If invertible, compute the inverse.
c) Let V be a finite dimensional vector space over a field F . Prove that V is isomorphic to V^{*}.
IV. A) a) Define the characteristic value, the characteristic vector and the characteristic space of a linear operater.
b) Let T be a linear operator on a finite dimensional vector space V with $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ as the distinct characteristic values and $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{k}}$ the corresponding characteristic spaces. Prove the following are equivalent :
i) T is diagonalisable
ii) The characteristic polynomial for T is

$$
\begin{equation*}
\mathrm{f}=\left(\mathrm{x}-\mathrm{C}_{1}\right)^{\mathrm{d}_{1}} \ldots\left(\mathrm{x}-\mathrm{C}_{\mathrm{k}}\right)^{\mathrm{dk}} \text {. With } \operatorname{dim} \mathrm{W}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{k} . \tag{7}
\end{equation*}
$$

iii) $\operatorname{dim} \mathrm{W}_{1}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}}=\operatorname{dim} \mathrm{V}$.
c) If $\mathrm{V}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}}$, prove that there exists k linear operators $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}$ on V such that :
i) each E_{i} is a projection
ii) $\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}=0, \mathrm{i} \neq \mathrm{j}$
iii) $\mathrm{I}=\mathrm{E}_{1}+\ldots . .+\mathrm{E}_{\mathrm{k}}$
iv) Range of $\mathrm{E}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{k}$.
B) a) Define the characteristic value, the characteristic vector, the characteristic space of a linear operator.
b) Let T be a linear operator on an n -dimensional vector space V . Prove that the characteristic and the minimal polynomial for T have the same roots except for multiplicities.
c) State and prove a characterisation theorem for a linear operator on a finite dimensional space to be diagramalizable, in terms of the characteristic values and the projections.
V. A) a) Define T-admissible subspaces. State the cyclic decomposition theorem.
b) Describe when an $n \times n$ matrix A said to be in (i) rational form (ii) Jordan form. Give examples for each.
c) If A is a complex 5×5 matric with characteristic polynomial $(x-2)^{3}(x+7)^{2}$ and minimal polynomial $(x-2)^{2}(x+7)$, write down the Jordan form of A.
B) a) Define the T-annihilator of a vector α in a vecter space. If P_{α} is the T-annihilator of α and degree of P_{α} is k , prove that the vectors $\alpha, T \alpha, \ldots, T^{k-1} \alpha$ form a basis for $z(\alpha ; T)$.
b) State and prove the Generalized Caryley-Hamilton theorem.

