Reg. No. :

Name :

M.Sc. Previous Degree Examination, August 2009 (I.D.E.) **Branch : MATHEMATICS** MM 1101 – Linear Algebra (Prior to 2006 admission)

Time: 3 Hours

Max. Marks: 85

Instructions: Answer either **A** or **B** of each question.

I. A) a) Let $A = \begin{vmatrix} -1 & i \\ -i & 3 \\ 1 & 2 \end{vmatrix}$. Prove that the system AX = 0 has only the trivial solution.

5

b) Suppose A, B, C are matrices such that the products BC, A (BC), AB and (AB) C are defined. Prove that A(BC) = (AB) C.

c) Discover whether $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ is invertible. If invertible find A⁻¹. 6

- B) a) Prove that the set of all numbers of the form $x + y\sqrt{2}$, where x and y are rationals is a subfield of the field of complex numbers.
 - b) Define raw equivalence of matrices. Suppose A and B are row equivalent $m \times n$ matrices over a field F. Prove that the homogeneous system of linear equations AX = 0 and BX = 0 have exactly the same solutions.
 - c) Define raw reduced echelon matrices. Give an example. Prove that every $m \times n$ matrix is raw-equivalent to a raw reduced echelon matrix.

(Pages: 4)

5

6

- II. A) a) Prove that the only subspaces of IR are IR and the zero space.
 - b) Suppose P is an $n \times n$ inverlible matrix over F. Let V be an n-dimensional vector space over F with an ordered basis *B*. Prove that there is a unique ordered \vec{B} of V such that $[\alpha]_B = P[\alpha]_{B'}$ and $[\alpha]_{B'} = P^{-1}[\alpha]_B$ for every vector α in V.
 - c) In \mathbb{C}^3 Let $\alpha_1 = (1, 0, -i), \alpha_2 = (1+i, 1-i, 1)$ and $\alpha_3 = (i, i, i)$. Prove that $\{\alpha_1, \alpha_2, \alpha_3\}$ is a basis for \mathbb{C}^3 . What are the coordinates of the vector (a, b, c) in this basis ?
 - B) a) Suppose V is a finite dimensional vector space over a field F. Prove that every non-empty linearly independent set of vectors in V can be extended to a basis for V.
 - b) Let V be an n-dimensional vector space over a field F with ordered bases *B* and *B'*. Prove that there is a unique, invertible by $n \times n$ matrix P with entries in F such that $[\alpha]_B = P[\alpha]_{B'}$ and $[\alpha]_{B'} = P^{-1}[\alpha]_B$ for every vector α in V.
 - c) Let W be the subspace of \mathbb{C}^3 spanned by (1, 0, i) and (1 + i, 1, -1). Prove that the vector (1, i, 1 + i) lie in W.
- III. A) a) State and prove the rank-nullity theorem.
 - b) Let T be a line an transformation from V into W. Prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
 - c) Suppose W_1 and W_2 are subspaces of a finite dimensional vector space V. Prove that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$. 5
 - B) a) Define the rank, nullity of a linear transformation consider the mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined as $T(x_1, x_2, x_3) = (x_1 x_2, 0, x_3)$. Prove that T is a linear transformation. Find its rank and nullity.

7

6

6

4 6

6

5

- b) Let $T : \mathbb{C}^3 \to \mathbb{C}^3$ be defined as $Te_1 = (1, 0, i)$, $Te_2 = (0, 1, 0)$, $Te_3 = (i, 1, 0)$ where (e_1, e_2, e_3) is the standard basis for \mathbb{C}^3 . Check whether T is invertible. If invertible, compute the inverse.
- c) Let V be a finite dimensional vector space over a field F. Prove that V is isomorphic to V^{*}.
- IV. A) a) Define the characteristic value, the characteristic vector and the characteristic space of a linear operater.
 - b) Let T be a linear operator on a finite dimensional vector space V with $C_1, ..., C_k$ as the distinct characteristic values and $W_1, ..., W_k$ the corresponding characteristic spaces. Prove the following are equivalent :
 - i) T is diagonalisable
 - ii) The characteristic polynomial for T is $f = (x - C_1)^{d_1} \dots (x - C_k)^{dk}$. With dim $W_i = d_i$, i = 1, ..., k.
 - iii) dim $W_1 + \dots + \dim W_k = \dim V.$
 - c) If $V = W_1 \oplus W_2 \oplus ... \oplus W_k$, prove that there exists k linear operators $E_1, ..., E_k$ on V such that :
 - i) each E_i is a projection

ii)
$$E_i E_j = 0, i \neq j$$

- iii) $I = E_1 + \dots + E_k$
- iv) Range of $E_i = W_i$, i = 1, ..., k.
- B) a) Define the characteristic value, the characteristic vector, the characteristic space of a linear operator.
 - b) Let T be a linear operator on an n-dimensional vector space V. Prove that the characteristic and the minimal polynomial for T have the same roots except for multiplicities.
 - c) State and prove a characterisation theorem for a linear operator on a finite dimensional space to be diagramalizable, in terms of the characteristic values and the projections.

6

6

4

7

6

4

6

V. A) a) Define T-admissible subspaces. State the cyclic decomposition theorem.	5
b) Describe when an n × n matrix A said to be in (i) rational form (ii) Jordan form. Give examples for each.	6
c) If A is a complex 5×5 matric with characteristic polynomial $(x - 2)^3 (x + 7)$ and minimal polynomial $(x - 2)^2 (x + 7)$, write down the Jordan form of A	<i>,</i>
B) a) Define the T-annihilator of a vector α in a vecter space. If P_{α} is t T-annihilator of α and degree of P_{α} is k, prove that the vectors	he
α , T α ,, T ^{k-1} α form a basis for $z(\alpha;T)$.	6
b) State and prove the Generalized Caryley-Hamilton theorem.	11