(**Pages : 3**)

Reg. No. :

Name :

M.Sc. Final Degree Examination, July 2009 (I.D.E.) Branch : MATHEMATICS MM 1211 – Elective – I : Operations Research and Computer Applications – I (Prior to 2006 admission)

Time : 3 Hours

Max. Marks: 85

Instructions: 1) Answer either Part – A or Part – B of each question. 2) All questions carry equal marks.

I. A) a) Invert the matrix
$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
 by using product-form. 7

b) Solve by revised simplex algorithm Maximize $Z = 6x_1 - 2x_2 + 3x_3$ Subject to $2x_1 - x_2 + 2x_3 \le 2$ $x_1 + 4x_3 \le 4$, $x_1, x_2, x_3 \ge 0$.

- B) a) Use product form of inverse to verify whether the equations $x_1 + 2x_2 = 3$; $x_1 + 4x_2 = 2$ have a unique solution or not.
 - b) Solve the following problem by the revised dual simplex method :

Minimize
$$Z = 2x_1 + 3x_2$$

Subject to $2x_1 + 3x_2 \le 30$
 $x_1 + 2x_2 \ge 10$
 $x_1, x_2 \ge 0.$ 10

P.T.O.

10

7

4146

II. A) a) Write the dual of the given primal

Minimize
$$Z = 6x_1 + 3x_2$$

Subject to $6x_1 - 3x_2 + x_3 \ge 2$
 $3x_1 + 4x_2 + x_3 \ge 5$,
 $x_1, x_2, x_3 \ge 0$. 5

b) Estimate a range for the optimal objective value for the LPP

Maximize $Z = x_1 + 5x_2 + 3x_3$ Subject to $x_1 + 2x_2 + x_3 = 3$ $2x_1 - x_2 = 4$, $x_1, x_2, x_3 \ge 0$.

B) Consider the LPP Z = $2x_1 + 3x_2$ Subject to $2x_1 + 2x_2 \le 30$ $x_1 + 2x_2 \ge 10$, $x_1, x_2 \ge 0$.

Solve this primal through its Dual.

III. A) Discuss the effect of changing the requirement vector b form $\begin{pmatrix} 6 \\ 4 \\ 24 \end{pmatrix}$ to $\begin{pmatrix} 6 \\ 2 \\ 12 \end{pmatrix}$

on the optimum solution of the LPP.

Minimize
$$Z = 3x_1 + 6x_2 + x_3$$

Subject to $x_1 + x_2 + x_3 \ge 6$
 $x_1 - 5x_2 - x_3 \ge 4$
 $x_1 + 5x_2 + x_3 \ge 24$,
 $x_1, x_2, x_3 \ge 0$.
17

- B) a) Explain the terms i) Simplex Optimality Condition, ii) Simplex Feasibility Condition.
 - b) Show that the set Q of all feasible solutions is convex.

17

7

10

12

IV. A) Solve by using Branch – and – Bound algorithm

Maximize
$$Z = 5x_1 + 4x_2$$

Subject to $x_1 + x_2 \le 5$
 $10x_1 + 6x_2 \le 45$
 $x_1 \le 3$,
 $x_1, x_2 \ge 0$.
B) Solve by the fractional algorithm

Maximize
$$Z = 3x_1 + x_2 + 3x_3$$

Subject to $-x_1 + 2x_2 + x_3 \le 4$
 $4x_2 - 3x_3 \le 2$
 $x_1 - 3x_2 + 2x_3 \le 3$,
 x_1, x_2, x_3 non-negative integers. 17

V. A) Solve by DPP

Maximize
$$Z = 2x_1 + 5x_2$$

Subject to $2x_1 + x_2 \le 430$
 $2x_1 \le 460$,
 $x_1, x_2 \ge 0$. 17

B) For the network given below, determine the shortest route between cities 1 to 7 and solve the problem using backward recursion. 17

