(**Pages : 3**)

I			

Reg. No. :

Name :

M.Sc. (Final) Degree Examination, July 2009 I.D.E. Branch : MATHEMATICS MM 1210 : Functional Analysis – I (2006 admn. onwards)

Time : 3 Hours

Max. Marks: 85

Instructions: 1) Answer either Part A or Part B of each question. 2) All questions carry equal marks.

I.	A)	a)	Show that every finite dimensional subspace of a normed space X is closed in X.	6
		b)	Prove that if Y is a closed subspace of a normed space X, the quotient	
			space $\frac{X}{Y}$ is a normed space under the quotient norm.	6
		c)	Show by an example that an infinite dimensional subspace of a normed space X may not be closed in X.	5
	B)	a)	Let X and Y be normed spaces and $F: X \rightarrow Y$ be a linear map. Prove that F is continuous if and only if, F sends Cauchy sequences in X to Cauchy sequences in Y.	6
		b)	Suppose that X and Y are normed spaces and X is finite dimensional. Prove that every linear map from X to Y is continuous.	6
		c)	If X is an infinite dimensional normed space, show that there is a linear functional on X which is not continuous.	5
II.	A)	a)	Let X be a normed space. For every subspace Y of X and every $g \in Y'$ show that there is a unique Hahn Banach extension of g to X if and only if X' is strictly convex.	10
		1-)		10
		D)	Let Y be a subspace of a normed space X. Prove that $x \in \overline{Y}$ if and only if	7
			$x \in X$ and $f(x) = 0$, whenever $f \in X'$ and $f/Y = 0$. P.T	/ Г.О.

	B) a)	Show that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.	6
	b)	Give an example of a normed space which is not Banach. Justify your answer.	5
	c)	Prove that the dual X' of a normed space X is a Banach space.	6
III.	A) a)	Let X be a normed space and E be a subset of X. Show that E is bounded in X if and only if, $f(E)$ is bounded in K for every $f \in X'$.	6
	b)	Let X and Y be normed spaces and $F: X \to Y$ be linear. Prove that F is continuous if and only if g_0F is continuous for every $g \in Y'$.	6
	c)	If X is a normed space and $P: X \to X$ is a projection, prove that P is a closed map if and only if the subspaces $R(P)$ and $Z(P)$ are closed in X.	5
	B) a)	Let X and Y be Banach spaces and $F: X \rightarrow Y$ a closed linear map. Show that F is continuous.	8
	b)	Let X and Y be Banach spaces and $F \in BL(X, Y)$ be bijective. Show that	
		$F^{-1} \in BL(Y,X)$.	9
IV.	A) a)	Let X be a normed space and $A \in BL(X)$. Define the spectrum, eigen spectrum and approximate eigen spectrum of A.	5
	b)	Let $X = l^p$ with norm $ _p 1 \le p < \infty$. Let $A: X \to X$ be defined by	
		A (x(1), x(2)) = $\left(x(1), \frac{x(2)}{2}, \frac{x(3)}{3} \dots \right)$. Show that $A \in BL(X)$.	
		Compute $\sigma_{e}(A), \sigma_{a}(A)$ and $\sigma(A)$.	6
	c)	If $A \in BL(X)$ is invertible, show that $\sigma(A^{-1}) = \left\{k^{-1} : k \in \sigma(A)\right\}$.	6
	B) a)	Let X be a normed space. If X' is separable, prove that X is separable. Is the converse true ? Justify.	6
	b)	Let X and Y be normed spaces. If F' denote the transpose of $F \in BL(X, Y)$,	
		show that $\ F'\ = \ F\ = \ F''\ $.	6
	c)	If $A \in BL(X)$, show that $\sigma(A') \subset \sigma(A)$.	5

V. A) a)	Define reflexive normed space. Show that every closed subspace of a reflexive normed space is reflexive.	5
b)	Prove that a finite dimensional normed space is reflexive.	6
c)	If X is a normed space and Y is a Banach space, show that CL(X, Y) is closed in BL(X, Y).	6
B) a)	If X is a normed space and $A \in CL(X)$, prove that the eigen spectrum of A is countable.	6
b)	If X is an infinite dimensional normed space and $A \in CL(X)$, show that $0 \in \sigma_a(A)$.	6
c)	If X is an infinite dimensional normed space and $F \in CL(X)$, prove that F is not invertible.	5