ANSWERS TO PAPER - I

PHYSICS

1. As angle between voltage and current is 90°
$\therefore \quad$ Power $=0$
\therefore (d)
2. As they collide elastically so there velocity hence kinetic energy gets exchanged. So B will rise to $4 h$ and A will rise to h
$\therefore \quad$ (a)
3. Electric field $=1000 \mathrm{~N}, \quad d V=-E . d r=-1000 \times 1 \times 10^{-2}=10 \mathrm{~V}$
$\therefore \quad$ (a)
4. As in $+\beta$ particle emission proton is converted into neutron
$\therefore \quad$ neutron to proton ratio increases
$\therefore \quad$ (a)
5. Applying Kirchoff's voltage law in a loop

$$
\begin{aligned}
& 2-12 I=4 I=0 \\
& 2=16 I \\
& I=\frac{1}{8} \therefore \quad 3 I=\frac{3}{8} \mathrm{~A} \\
\therefore \quad & \text { (b) }
\end{aligned}
$$

6. (a)
7. For a pure inductor circuit potential, $V=V_{0} \sin \omega t V=V_{0} \sin \omega t$ and current

$$
i=i_{0} \sin \left(\omega t+\frac{\pi}{2}\right) \text { thus angle }=\frac{\pi}{2}
$$

$\therefore \quad$ (c)
8. Frequency of $1^{\text {st }}$ source $\left[\lambda_{1}=100 \mathrm{~cm}\right] f_{1}=\frac{v}{\lambda_{1}}$

Frequency of second source $\left[\lambda_{2}=90 \mathrm{~cm}\right] f_{2}=\frac{v}{\lambda_{2}}$
$\therefore \quad$ Beat frequency $=f_{1}-f_{2}=\frac{v}{\lambda_{1}}-\frac{v}{\lambda_{2}}$

$$
=396\left(\frac{1}{90}-\frac{1}{100}\right) \times 100=\frac{396 \times 10 \times 100}{90 \times 100}=44 \mathrm{~Hz}
$$

$\therefore \quad$ (d)
9. $v_{r m s .}=\sqrt{\frac{3 R T}{M}} \because M$ and R are constant for the same gas.

$$
\begin{aligned}
& \therefore v_{r m s} \propto \sqrt{T} \Rightarrow \frac{v}{2 v}=\sqrt{\frac{300}{T}}, \quad T=1200 \mathrm{~K} . \\
& \therefore \quad(\mathbf{d})
\end{aligned}
$$

10. We know that, $\frac{m v^{2}}{r_{n}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r_{n}^{2}} \ldots$ (i) and according to Bohr's model $m v r_{n}=\frac{n h}{2 \pi}$ putting $v=$ in (i) we get $\quad \frac{m n^{2} h^{2}}{4 \pi^{2} m^{2} r_{n}^{3}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r_{n}^{2}}$

$$
r_{n}=\frac{n^{2} \varepsilon_{0} h^{2}}{\pi m Z e^{2}} \Rightarrow r_{n} \propto n^{2}
$$

where $h=$ Plank's constant, $m=$ mass of electron $Z=$ atomic weight, $n=$ principal quantum number

$$
\therefore \quad \text { (d) }
$$

11. Refractive index, $\mu=A+\frac{B}{\lambda^{2}}$ (Cauchy's law)

So, refractive index depends upon the wavelength of the light.

$$
\begin{array}{ll}
\therefore & \text { (b) }
\end{array}
$$

12. We know that, $E=V / d$

$$
\therefore \quad E=\frac{0.5}{5.0 \times 10^{-7}}=1 \times 10^{6} \mathrm{~V} / \mathrm{m}
$$

$$
\therefore \quad \text { (a) }
$$

13. As the capacitors are identical, they will finally have charge $Q / 2$ each.

Initial energy of the system $=E_{i}=\frac{Q^{2}}{2 C}$
Final energy of the system $=E_{f}=2\left[\frac{(Q / 2)^{2}}{2 C}\right]=\frac{Q^{2}}{4 C}$
Heat produced $=$ loss in energy $=E_{i}-E_{f}=\frac{Q^{2}}{4 C}$
\therefore (b)
14. $E=-\frac{d V}{d x}=-8 x \quad$ at $\quad(1,0,2) \vec{E}=-8 \hat{i}$
$\therefore \quad$ (a)
15. Equation of trajectory, $y=x \tan \theta-\frac{1}{2} \frac{g x^{2}}{u^{2} \cos ^{2} \theta}$
$\tan \theta=1$
$u \cos \theta=\sqrt{g}$
$T=\frac{2 u \sin \theta}{g}=\frac{2 \sqrt{g}}{g}=\frac{2}{\sqrt{g}}$
$\therefore \quad$ (b)
16. Pressure at depth $h=P+h g d$
$\therefore \quad$ Pressure inside the bubble will be $P+h \rho d+\frac{2 T}{r}$
\therefore (b)
17. (c)
18. As $T \propto R^{3 / 2}, \quad T_{1}=K R^{3 / 2}, \quad T_{2}=K R^{3 / 2}(1.01)^{3 / 2}, \quad \frac{T_{2}-T_{1}}{T_{1}} \times 100=1.5 \%$

$$
\therefore \quad \text { (b) }
$$

19. $m g^{\prime}=m g-m \omega^{2} R$
$\frac{3}{5} m g=m g-m \omega^{2} R$
$m \omega^{2} R=\frac{2 m g}{5}$
$\omega=\sqrt{\frac{2 g}{5 R}}$
$\therefore \quad$ (a)
20. When the end A is stopped, reaction force is acted upon end A hence angular momentum about end A is conserved

$$
\begin{array}{ll}
\therefore & m v a=\frac{4 m a^{2}}{3} \omega \\
& \omega=\frac{3 v}{4 a} \\
\therefore & \text { (d) }
\end{array}
$$

21. $r_{1}=\frac{m_{2} r}{m_{1}+m_{2}}$ and $r_{2}=\frac{m_{1} r}{m_{1}+m_{2}}$

$$
\begin{aligned}
& I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2} \\
& I=\left[\frac{m_{1} m_{2}^{2}}{\left(m_{1}+m_{2}\right)^{2}}+\frac{m_{2} m_{1}^{2}}{\left(m_{1}+m_{2}\right)^{2}}\right] r^{2}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} r^{2} \\
& \therefore \quad \text { (a) }
\end{aligned}
$$

22.
(c)
23. $\frac{2 v^{2} \sin \theta \cos \theta}{g}=\frac{2 \times v^{2} \sin ^{2} \theta}{2 g}$

$$
\tan \theta=2
$$

Range $=\frac{v^{2} \sin 2 \theta}{g}=\frac{2 v^{2} \sin \theta \cos \theta}{g}=\frac{4 v^{2}}{5 g}$

$$
\therefore \quad \text { (a) }
$$

24. As $C=\frac{5 F}{9}-\frac{5 \times 32}{9} \quad \therefore \quad \frac{d C}{d F}=\frac{5}{9}$

\therefore (b)

25. As internal energy can be increased by doing work also.

$\therefore \quad$ (c)

26.

(c)
27. As temperature and surface area is same
$\therefore \quad$ (a)
28. As density is maximum at $4^{\circ} \mathrm{C}$ and volume in both case increases
$\therefore \quad$ (a)
29. $f^{\prime}=\frac{v \pm v_{0}}{v \pm v_{s}}, f^{\prime}=\frac{332-10}{332-10} f=1000$

$\therefore \quad$ (c)
30. \quad The particle may move along x-axis and y-axis
\therefore (a)
31. Intensity $=\frac{40}{\pi r^{2}}, \quad \frac{40}{\pi(25)^{2}} \times 3=\frac{40}{\pi(50)^{2}} \times t \quad t=3 \times(2)^{2}=12 \mathrm{~s}$

$$
\therefore \quad \text { (c) }
$$

32. As $P_{1}+P_{2}=P_{e q}, \quad \frac{100}{80}=\frac{100}{20}+P_{2}, \quad P_{2}=100\left[\frac{1}{80}-\frac{1}{20}\right]=100\left[\frac{-3}{80}\right]=-3.75 \mathrm{D}$
$\therefore \quad$ (d)
33.

(c)
34. Let F is the upward force then $M g-F=M \alpha$

In second case

$$
\begin{array}{ll}
& F-(M-m) g=(M-m) \alpha, \\
& M g-(M-m) g=(2 M-m) \alpha, \\
& m=\frac{2 M \alpha}{g+\alpha} \\
\therefore & \text { (b) }
\end{array}
$$

35. As force is maximum at extreme position $\therefore \quad$ Acceleration is maximum at that point $\therefore \quad$ (a)
36. $7 \beta_{1}=d_{1}=7 \frac{\lambda_{1} D}{2 d} \quad$ and $7 \beta_{2}=d_{2}=7 \frac{\lambda_{2} D}{2 d} \quad \therefore \quad \frac{d_{1}}{d_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$

$$
\therefore \quad \text { (a) }
$$

37. Work done is area under $P V$ diagram $=P V$

$\therefore \quad$ (a)

$38 . \quad$ (b)
39. $\quad V_{D}=4 i, \quad V_{M}=4 j, \quad V_{D M}=4 i-3 j, \quad\left|V_{D M}\right|=5$
\therefore (c)
40. As net external force on the system is zero hence centre of mass does not move \therefore (b)
41. Current through loop $=n e$
$\therefore \quad$ Magnetic field at centre $=\frac{\mu_{0} n e}{2 r}$
$\therefore \quad$ (b)
42. As $\frac{V_{1}}{V_{2}}=\frac{n_{1}}{n_{2}}, \quad V_{2}=\frac{n_{2}}{n_{1}} V_{1}=240 \mathrm{~V}$

$$
\therefore \quad \text { (a) }
$$

43.

(d)
44. Taking potential of point A to be zero

Potential of $E=-1 \mathrm{~V}$
Potential of $C=-1+2=1 \mathrm{~V}$
Potential of $D=1+3=4 \mathrm{~V}$

$$
\therefore \quad \text { (a) }
$$

45. As $e V=\frac{h c}{\lambda}, \quad \lambda=\frac{h c}{e V}$

So if voltage is doubled cut off wavelength is halved.

\therefore (b)

46. Let N_{0} is initial no of nucleus of X
$X_{t}=\frac{N_{0}}{(2)^{t / 2}}$,
$Y_{t}=N_{0}\left[1-\frac{1}{(2)^{t / 2}}\right]$,
$N_{0}\left[1-\frac{1}{(2)^{t / 2}}\right]=7 \frac{N_{0}}{(2)^{t / 2}}$
$1=\frac{8}{(2)^{t / 2}}$,
$(2)^{t / 2}=8$,
$t=6$
$\therefore \quad$ (a)
47. $\lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-34}}{10^{-31} \times 10^{5}}=6.6 \times 10^{-8} \mathrm{~m}$

$$
\therefore \quad \text { (b) }
$$

48. As K.E. of an electron does not depend on intensity

$$
\therefore \quad \text { (b) }
$$

49. Drawing the phasor diagram, potential drop across

Resistor $=100 \mathrm{~V}$

$$
\begin{array}{ll}
\therefore & I=2 \mathrm{amp} \\
\therefore & \text { (a) }
\end{array}
$$

50. If I_{1} is the current in coil of radius R_{1} then magnetic field at the centre of small coil = $\frac{\mu_{0} I_{1} N_{1}}{2 R_{1}}$
Flux through circular coil $\phi=\frac{\mu_{0} I_{1} N_{1}}{2 R_{1}} \times \pi R_{2}^{2} N_{2}$
$M=\frac{\phi}{I_{1}}=\frac{\mu_{0} N_{1} N_{2} \pi R_{2}^{2}}{2 R_{1}}$
\therefore (b)
51. Potential difference across the ring of radius x and width $d x$

$$
=\int_{0}^{R} B d x \omega x=\frac{B \omega R^{2}}{2}
$$

$\therefore \quad$ (d)

52. \quad As $M \propto \frac{1}{T^{2}}, M$ is pole strength and T is time period

$$
\begin{aligned}
& M_{1} T_{1}^{2}=4 M_{1} T_{2}^{2}, \quad M_{1} \times 4=4 M_{1} T_{2}^{2}, \quad T_{2}=1 \\
& \therefore \quad \text { (c) }
\end{aligned}
$$

53. (c)
54. As cyclotron frequency $f_{0}=\frac{q B}{2 \pi M}$

$$
\therefore \quad(\mathbf{c})
$$

55. $I=2 q \frac{\omega}{2 \pi}$

$$
M=\frac{2 q \omega}{2 \pi} \times \pi R^{2}=\frac{2 q \omega R^{2}}{2}
$$

Angular momentum $L=2 \times \omega R \times m R=2 m \omega R^{2}$
$\therefore \quad \frac{M}{L}=\frac{q \omega R^{2}}{2 m \omega R^{2}}=\frac{q}{2 m}$
\therefore (a)
56. Magnetic field can change only direction
\therefore (b)
57. If T_{i} is inversion temperature then $T_{i}-270=270-20, \quad T_{i}=520^{\circ} \mathrm{C}$

$$
\therefore \quad \text { (b) }
$$

58. As potential difference across each resistance is same

$$
\begin{aligned}
& \therefore \quad 3663 \times \frac{I}{34}=\frac{33 I}{34} \times R_{s}, \quad \frac{3663}{33}=R_{s} \\
& \therefore \quad R_{s}=111 \Omega \\
& \therefore \quad \text { (b) }
\end{aligned}
$$

59. Assuming potential at C to be zero

Potential at $A=3 \mathrm{~V}$
Potential at $B=2 \mathrm{~V}$
$V_{A}-V_{B}=1 V$

60. Let internal resistance be r_{i}

Current in loop $I=\frac{E}{r+r_{i}}$

$$
\begin{array}{ll}
& V=E-I r_{i} \\
& V=E-\frac{E r_{i}}{r+r_{i}} \\
\therefore \quad & r_{i}=\left(\frac{E-V}{V}\right) r \\
\therefore \quad & \text { (c) }
\end{array}
$$

61. (d)
62. (a)

63. (b)
64. (c) $\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$

65. (a) In ionic reactions only ions are exchanged and oxidation states remain same.
$\underset{(+2)(+4)(-2)}{\mathrm{CaCO}_{3}(\mathrm{~s})} \longrightarrow \underset{(+2)(-2)}{\mathrm{CaO}(\mathrm{s})}+\underset{(+4)}{\mathrm{CO}_{2}(\mathrm{~g})}$
66. (d)
67. (b) $\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\mathrm{n}_{2}}}=\sqrt{\frac{2}{32}}$
$\frac{125}{\mathrm{x}}=\frac{1}{4}$
$\mathrm{x}=0.5, \mathrm{wH}_{2}=0.5 \times 2=1 \mathrm{gm}$
68. (a)
69. (b) Greater the ' s ' character, more acidic is the hybridised carbon atom.
70. (c) Alkali metals form oxides, peroxides and superoxides. Reactivity with water increases due to rapid decrease in ionisation energy on moving down the group.
71. (c)
72. (c)
73. (b)
74. (a)
75. (d) Conjugated diene are generally highly stable; hence in the case of such types of diene heat of hydrogenation is minimum.
76. (b) Terminal alkynes react with amm. AgNO_{3} or $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \mathrm{OH}^{-}$to give white precipitate.
77.

78. (b)
79. (b)
80. (a)
81. (b)
82. (c) \quad In $\mathrm{AgNO}_{3}+\mathrm{NaCl} \longrightarrow \mathrm{AgCl} \downarrow+\mathrm{NaNO}_{3}$, only ions are exchanged hence this reaction is an ionic reaction.
83. (a)
84. (a)
85. (a)
86. (b)
87. (b)
88. (a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ $\mathrm{K}_{2} \mathrm{CrO}_{4}$

$$
\begin{array}{rlrl}
2+2 x+4 & =0 & 2+x-8 & =0 \\
x & =+6 & x & =+6
\end{array}
$$

89. (d) Electronegativity difference for $-\mathrm{O}-\mathrm{H}$ bond is maximum among given compounds.
90. (d) Decreasing order of stability of free radicals obtained in halogenation of alkanes is $\left(3^{\circ}>2^{\circ}>1^{\circ}\right.$).
91. (a)
92. (c)
93. (b)
94. (c)
95. (c) $\quad \stackrel{+2}{\mathrm{FeC}_{2}} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{MnO}_{4}^{-} \xrightarrow{\mathrm{H}^{+}} \stackrel{3++4}{\mathrm{Fe}} \mathrm{CO}_{2}+\mathrm{Mn}^{2+}$
$\mathrm{n}=3 \quad \mathrm{n}=5$
$\therefore 5 \times$ mole of $\mathrm{MnO}_{4}^{-}=3 \times$ mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$
\therefore Mole of $\mathrm{MnO}_{4}^{-}=\frac{3}{5} \times 1=\frac{\mathbf{3}}{\mathbf{5}}$.
96. (c) $\mathrm{Fe}^{+2} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{e}^{-}$

$$
\frac{\mathrm{S}_{2}^{-2} \longrightarrow 2 \mathrm{~S}^{+4}+10 \mathrm{e}^{-}}{\mathrm{FeS}_{2} \longrightarrow 2 \mathrm{~S}^{+4}+\mathrm{Fe}^{+3}+11 \mathrm{e}^{-}}
$$

\therefore Equivalent mass of $\mathrm{FeS}_{2}=\frac{\text { molar mass }}{11}$.
97. (d)
98. (b)
99. (b) For a bcc structure, $Z=2$

$$
\mathrm{M}=\frac{\rho \times \mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}{\mathrm{Z}}=\frac{8.0 \times\left(250 \times 10^{-10}\right) \times 6.02 \times 10^{23}}{2}=\mathbf{3 7 . 6} \mathbf{g ~ m o l}^{-1}
$$

100.

$$
\text { (a) } \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{Cl}_{2}} \times \mathrm{P}_{\mathrm{PCl}_{3}}}{\mathrm{P}_{\mathrm{PCl}_{5}}}
$$

Since, at equilibrium moles of each component is same, so partial pressure be same
i.e. $\mathrm{P}_{\mathrm{Cl}_{2}}=\mathrm{P}_{\mathrm{Cl}_{3}}=\mathrm{P}_{\mathrm{Cl}_{5}}=\frac{2}{6} \times 3=1$
$\therefore \mathrm{K}_{\mathrm{p}}=1$.
101. (b)
102.
(c) $\mathrm{t}=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{a}_{\mathrm{o}}}{\mathrm{a}_{\mathrm{t}}}=\frac{2.303}{\mathrm{~K}} \log \frac{20}{2.5}=\frac{2.303}{0.0693} \log 8=\mathbf{3 0} \mathbf{~ m i n}$.
103.
(c) $\because \frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{0}}=\mathrm{X}_{\text {solute }}$ or $1-\left(\frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{0}}\right)=1-\mathrm{X}_{\text {solute }}=\mathrm{X}_{\text {solvent }}=\frac{\mathrm{P}}{\mathrm{P}^{0}}$.
105. (a) $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} R T$
$\Rightarrow \Delta \mathrm{H}-\Delta \mathrm{U}=\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}=\frac{-3 \times 8.314 \times 298}{1000}=-\mathbf{7 . 4 3} \mathbf{~ k J ~ m o l}^{\mathbf{- 1}}$.
106. (d) $\quad \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{1}{0.1} ; \quad \mathrm{E}_{\text {cell }}^{\mathrm{o}}=\mathbf{0 . 5 4 V}$.
107. (b) $\mathrm{Mn}^{7+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}$

Thus, 5 moles of electron $=5$ faraday.
108. (a) Using the relation rate \propto (conc. of reactant) ${ }^{n}$ where ' n ' is order of the reaction.

In the question, since rate is directly proportional to the conc. of reactant, hence the reaction is of first order.
109. (b) Total geometrical isomers $=2^{n}=2^{2}=4$.
110. (c)
111. (d)
112. (b) H^{+}will attack the double bond and would give

which would be resonance stabilized.
113. (d)
114. (c)
115. (b)
116. (c)
118. (c)
119. (b)
120. (c)

