SOLUTIONS \& ANSWERS FOR KERALA ENGINEERING
 ENTRANCE EXAMINATION-2011
 VERSION - A1

[PHYSICS \& CHEMISTRY]

1. Ans: 6%

Sol: $\frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+\frac{\Delta \mathrm{V}}{\mathrm{V}}$

$$
\begin{aligned}
& =\frac{0.05}{5} \times 100+\frac{0.05}{1} \times 100 \\
& =6 \%
\end{aligned}
$$

2. Ans: MLT^{-1} and MLT^{-4}

Sol: According to principle of homogeneity
$\left[\mathrm{MLT}^{-2}\right]=\mathrm{aT}^{-1}$
$\therefore \mathrm{a}=\left[\mathrm{MLT}^{-1}\right]$
$\left[\mathrm{MLT}^{-2}\right]=\mathrm{bT}^{2}$
$\therefore \mathrm{b}=\left[\mathrm{MLT}^{-4}\right]$
3. Ans: $30 \mathrm{~km} \mathrm{~h}^{-1}$

Sol: \quad Average velocity $=40 \mathrm{~km} \mathrm{~h}^{-1}$
$\frac{2 \mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{v}_{1}+\mathrm{v}_{2}}=40$
$\frac{2 \times 60 \times v_{2}}{60+v_{2}}=40$
Solving $\mathrm{v}_{2}=30 \mathrm{~km} \mathrm{~h}^{-1}$
4. Ans: 8 s

Sol: $\quad 48+\frac{1}{2} a t^{2}=10 t$
$48+\frac{1}{2} t^{2}=10$
Solving, $\mathrm{t}=8 \mathrm{~s}$
5. Ans: $\sqrt{\frac{u^{2}+v^{2}}{2}}$

Sol: Standard results.
6. Ans: $196.3 \mathrm{~m} \mathrm{~s}^{-1}$

Sol:

$\tan 30=\frac{10 \mathrm{v}}{3400}$
$v=\frac{340}{\sqrt{3}}=196.3 \mathrm{~m} \mathrm{~s}^{-1}$
7. Ans: 30°

Sol: $\quad H_{1}=H_{2}$

$$
\begin{aligned}
& \operatorname{un}^{2} \theta_{2}=\frac{u_{1}{ }^{2}{ }^{2}{ }_{2}{ }^{2}{ }^{2} \cdot \sin ^{2} 45}{}{ }^{2} \theta \\
& =\frac{1}{2} \cdot \frac{1}{2} \\
& \sin \theta= \\
& \frac{1}{2} \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

8. Ans: $\sqrt{\frac{a}{2 b}}$

Sol: $y=b x^{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{bx} \frac{\mathrm{dx}}{\mathrm{dt}} \quad$-(i)
$\frac{d y}{d t}=$ at $\quad\left(\Theta v_{y}=u_{y}+a_{y} t\right)$
$\Rightarrow \mathrm{at}=2 \mathrm{bx} \frac{\mathrm{dx}}{\mathrm{dt}}$
\Rightarrow atdt $=2 \mathrm{bx} \mathrm{dx}$
$\Rightarrow \int a t d t=\int 2 b x d x$
$\frac{a t^{2}}{2}=b x^{2}+c$
At, $\mathrm{t}=0, \mathrm{x}=0 \Rightarrow \mathrm{c}=0$
(ii) $\Rightarrow \frac{a t^{2}}{2}=b x^{2}$
$\Rightarrow x=\sqrt{\frac{a t^{2}}{2 b}}=\sqrt{\frac{a}{2 b}} t$
$\therefore \mathrm{v}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{\frac{\mathrm{a}}{2 \mathrm{~b}}}$
9. Ans: $40 \mathrm{~m} \mathrm{~s}^{-1}$

Sol:

Momentum of third piece $=p$
$=\sqrt{16^{2}+12^{2}}=20$
Velocity $=\frac{p}{m}=\frac{20}{0.5}=40 \mathrm{~m} \mathrm{~s}^{-1}$
10. Ans: $2: 1$

Sol:

$L=\frac{1}{2} g \cos 60 t_{1}{ }^{2}$
$L \cos \theta=\frac{1}{2} g t_{2}{ }^{2}$
$\frac{t_{1}{ }^{2}}{t_{2}{ }^{2}}=\frac{1}{\cos ^{2} 60}=4$
$\mathrm{t}_{1}: \mathrm{t}_{2}=2: 1$
11. Ans: $20 \mathrm{~m} \mathrm{~s}^{-1}$

Sol: $\quad v=\sqrt{\mathrm{gr}}=\sqrt{10 \times 40}=20 \mathrm{~m} \mathrm{~s}^{-1}$
12. Ans:

$\frac{2 m g(h+x)}{x^{2}}$

Sol: $\quad m g(h+x)=\frac{1}{2} k x^{2}$
Solving
$\mathrm{k}=\frac{2 \mathrm{mg}(\mathrm{h}+\mathrm{x})}{\mathrm{x}^{2}}$
13. Ans: 25

Sol: $\quad \frac{\mathrm{mg}(2-1.5)}{\mathrm{mg} .2} \times 100=25 \%$
14. Ans: The potential energy of the particle is zero.

Sol: In horizontal plane PE remains constant equal to zero, assuming surface to be the zero level.
15. Ans: $\sqrt{g h}$

Sol: $v^{2}=\frac{2 g h}{1+\frac{k^{2}}{r^{2}}}$ for ring $k^{2}=r^{2}$
$=\frac{2 g h}{2}=g h$
$v=\sqrt{g h}$
16. Ans: $\frac{L}{4}$

Sol: $\quad L^{2}=2 K I=2 K \frac{L}{\omega}$
$L=\frac{2 K}{\omega}$
$L^{\prime}=\frac{2\left(\frac{K}{2}\right)}{2 \omega}=\frac{L}{4}$
17. Ans: $\frac{20}{9} m$

Sol: $\quad a=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g=\frac{10}{3}$
$S=\frac{1}{2} a t^{2}=\frac{20}{3}$
$\mathrm{M}_{\mathrm{x}}=\frac{2 \times \frac{20}{3}-1 \times \frac{20}{3}}{3}=\frac{20}{9}$
18. Ans: 1.36%

Sol: $B=\frac{P}{\frac{\Delta V}{V}}$
$\frac{\Delta V}{V}=\frac{P}{B}=\frac{\rho g h}{B}$
Substituting $=1.36 \%$
19. Ans: $1: 8$

Sol: $\quad T^{2} \propto R^{3}$
$\frac{T_{1}^{2}}{T_{2}{ }^{2}}=\left(\frac{R}{4 R}\right)^{3}$

$$
\frac{T_{1}}{T_{2}}=\frac{1}{8}
$$

20. Ans: $\quad \sqrt{3} \times 11.2 \mathrm{~km} \mathrm{~s}^{-1}$

Sol: $\quad K E=\frac{1}{2} m v^{2}-\frac{1}{2} m \times(11.2)^{2}$

$$
=\frac{1}{2} m(2 \times 11.2)^{2}-\frac{1}{2} m \times(11.2)^{2}
$$

$\frac{1}{2} m V^{2}=3 \times \frac{1}{2} m \times 11.2^{2}$
$V=\sqrt{3} \times 11.2 \mathrm{~km} \mathrm{~s}^{-1}$
21. Ans: $0.1 \mathrm{~m} \mathrm{~s}^{-1}$

Sol: $\quad v=\frac{2}{9} \frac{(\rho-\sigma) r^{2} g}{\eta} \propto(\rho-\sigma)$
$\frac{v_{1}}{v_{2}}=\frac{\rho_{1}-\sigma}{\rho_{2}-\sigma}=0.1$
22. Ans: $\frac{a}{\sqrt{2 \pi}}$

Sol: $\quad v^{2}=\rho g x$
$a^{2} \sqrt{\rho g \mathrm{x}}=\pi r^{2} \sqrt{\rho g \mathrm{x}} \times 2$
$r=\frac{a}{\sqrt{2 \pi}}$
23. Ans: Liquid in B increases.

Sol: Let M gram of ice is floating in liquid of density 1.2. Its displaced volume is $\frac{\mathrm{m} \mathrm{c.c}}{1.2}<\mathrm{m}$ c.c .
When it melts it occupies mcc
24. Ans: Alloys have larger values of Young's modulus than metals.

Sol: Knowledge based.
25. Ans: 600 K

Sol: $\quad \frac{T_{1}-T_{2}}{T_{1}}=0.4$
$\mathrm{T}_{1}-\mathrm{T}_{2}=0.4 \mathrm{~T}_{1}$
$\mathrm{T}_{2}=0.6 \mathrm{~T}_{1}$
$\frac{\mathrm{T}_{1}^{\prime}-\mathrm{T}_{2}}{\mathrm{~T}_{1}^{\prime}}=0.5$
$\mathrm{T}_{1}{ }^{\prime}=\frac{0.6}{0.5} \mathrm{~T}_{1}=600 \mathrm{~K}$
26. Ans: $\frac{7}{5}$

Sol:
$C_{P}=\frac{7}{2} R$
$C_{V}=\frac{5}{2} R$
$\therefore r=\frac{C_{P}}{C_{V}}=\frac{7}{5}$
27. Ans: Isochoric process

Sol: $\quad W=0$
$\therefore \mathrm{dV}=0$
$\therefore \mathrm{V}=\mathrm{constant}$
28. Ans: $80^{\circ} \mathrm{C}$

Sol: $\quad \frac{1}{2} \times \frac{1}{2} m v^{2}=\frac{1}{4} m \times 4 \times 10^{4}$

$$
=125 \times \Delta \mathrm{T} \times \mathrm{m}
$$

$\Delta \mathrm{T}=\frac{4 \times 10^{4}}{500}=80^{\circ} \mathrm{C}$
29. Ans: 6.25 cm

Sol: $\quad T=2 \pi \sqrt{\frac{m}{K}}$
$\mathrm{mg}=\mathrm{Kx}$
Solving $x=6.25 \mathrm{~cm}$
30. Ans: 3^{3}

Sol: $A=A e^{\frac{-b t}{2 m}}$
\therefore Amplitude becomes $\frac{1}{27}$ times after 6 seconds
31. Ans: $1: 2$

Sol: $\quad m g=2 K x_{A}=K x_{B}$
$\frac{x_{A}}{x_{B}}=\frac{1}{2}$
$\frac{W_{A}}{W_{B}}=\frac{F x_{A}}{F x_{B}}=\frac{1}{2}$
32. Ans: $2: 1$

$$
\text { Sol: } \frac{v_{0}}{v_{c}}=\frac{\frac{v}{2 \lambda}}{\frac{v}{4 \lambda}}=2
$$

33. Ans: $\sqrt{\frac{P}{\rho}}$
Sol.
$c=\sqrt{\frac{\gamma P}{\rho}}$
34. Ans. No correct answer. Data is inconsistent.
35. Ans: $\frac{100 \mathrm{Q}}{\epsilon_{0}}$

Sol: Charge per metre $=100 \mathrm{Q}$
$\phi=\frac{1}{\epsilon_{0}} q=\frac{100 Q}{\epsilon_{0}}$
36. Ans: $\frac{r}{4}$

Sol:

$\frac{\mathrm{KQq}}{\mathrm{r}}=\frac{1}{2} m v^{2}$
$\frac{1}{2} \mathrm{~m} \cdot 4 \mathrm{v}^{2}=\frac{\mathrm{KQq}}{\mathrm{r}^{\prime}}$
$4=\frac{r}{r^{\prime}} \Rightarrow r^{\prime}=\frac{r}{4}$
37. Ans: π

Sol: $\quad U=-p E \cos \theta$
For U to maximum
$\cos \theta=-1 \Rightarrow \theta=\pi$
38. Ans: $\frac{1}{3} \times 10^{-9} \mathrm{~N}$

Sol: $\quad \frac{\mathrm{KQ}_{1}}{3}=10, \frac{\mathrm{KQ}_{2}}{1}=10$
$K Q_{1}=30 \times 10^{-2}, K Q_{2}=10 \times 10^{-2}$
$\frac{K Q_{1} Q_{2}}{10^{-2}}=\frac{\left(30 \times 10^{-2}\right)\left(10 \times 10^{-2}\right)}{K \times 10^{-2}}$
$F=\frac{1}{3} \times 10^{-9} \mathrm{~N}$
39. Ans: 0.5

Sol: Standard result.
40. Ans: 15.6Ω

Sol: $\quad R=\frac{\rho \lambda}{A}$
$R \propto \lambda^{2}$ for given volume
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\lambda_{1}{ }^{2}}{\lambda_{2}{ }^{2}}$
$R_{2}=15.6 \Omega$
41. Ans: 2×10^{20}

Sol: $\quad \mathrm{q}=\mathrm{It}=\mathrm{n} \times 2 \mathrm{e}$
$\mathrm{n}=\frac{\mathrm{It}}{2 \mathrm{e}}$

$$
=2 \times 10^{20}
$$

42. Ans: 1, 1.2 and 1.5

Sol: $\quad V_{A}+V_{B}+V_{C} \propto 740$
$V_{A}+V_{B} \propto 440$
$V_{B}+V_{C} \propto 540$
Solving $\mathrm{V}_{\mathrm{A}}: \mathrm{V}_{\mathrm{B}}: \mathrm{V}_{\mathrm{C}}=1: 1.2: 1.5$
43. Ans: The resistance of carbon decreases with the increase of temperature.

Sol: Knowledge based.
44. Ans: $\pm 5 \%$

Sol: Knowledge based
45. Ans: $\frac{e}{2 m} \lambda$

Sol: $\frac{\mu}{L}=\frac{1}{2} \frac{e}{m}$

$$
\mu=\frac{1}{2} \frac{\mathrm{eL}}{\mathrm{~m}}=\frac{\mathrm{eL}}{2 \mathrm{~m}}
$$

46. Ans: The radii of the wires

Sol: Knowledge based
47. Ans: $\sqrt{3} \mathrm{~W}$

Sol: $\quad W=m B \cos 60=m B \times \frac{1}{2}$
$\tau=\mathrm{mB} \sin 60=\sqrt{3} \mathrm{~W}$
48. Ans: $\sqrt{20} \times 10^{-7} \mathrm{~T}$

Sol: $B=\left\{\left[\frac{2 P}{\left(\frac{d}{2}\right)^{3}}\right]^{2}+\left[\frac{P}{\left(\frac{d}{2}\right)^{3}}\right]^{2}\right\}^{1 / 2} \times 10^{-7}$

$$
\begin{aligned}
& \sqrt{\left(4^{2}+4\right)} \times 10^{-7} \\
& \sqrt{20} \times 10^{-7}=2 \sqrt{5} \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

49. Ans: $1: \sqrt{2}: 1$

Sol: $\quad R=\frac{m v}{q B}=\frac{\sqrt{2 K E \cdot m}}{q B}$
$R \propto \frac{\sqrt{m}}{q}$
$=1: \sqrt{2}: 1$
50. Ans: $=50 \mu \mathrm{~V}$

Sol: $e=\frac{1}{2} B \lambda^{2} \omega$

$$
=50 \mu \mathrm{~V}
$$

51. Ans: $70.7 \mathrm{~V}, 70.7 \mathrm{~mA}$

Sol: $\quad E_{r m s}=\frac{E_{0}}{\sqrt{2}}, \quad I_{r m s}=\frac{I_{0}}{\sqrt{2}}$
Each $=70.7$
52. Ans: Eddy current

Sol: Standard result
53. Ans: $\frac{1}{2} \mathrm{E}_{0} \mathrm{I}_{0} \cos \phi$

Sol: Standard result
54. Ans: $\frac{k}{\omega}$

Sol: $\frac{k}{\omega}=\frac{\frac{2 \pi}{\lambda}}{2 \pi f}=\frac{1}{C}$
55. Ans: 8.86×10^{-12}

Sol: $\quad U=\frac{1}{2} \times \frac{1}{2} \epsilon_{0} E^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times 8.854 \times 10^{-12} \times(4) \\
& =8.86 \times 10^{-12}
\end{aligned}
$$

56. Ans: $\frac{3}{4}$

Sol: $\quad \phi=\frac{360}{6}=60^{\circ}$
$\mathrm{I}=\mathrm{I}_{0} \cos ^{2} 30=\mathrm{I}_{0} \times \frac{3}{4}$
$\frac{\mathrm{I}}{\mathrm{I}_{0}}=\frac{3}{4}$
57. Ans: 40 cm

Sol: $\quad \frac{f_{w}}{f_{a}}=\frac{\mu-1}{\frac{\mu_{w}}{\mu_{a}}-1}$
$f_{w}=\frac{10 \times 0.5}{\frac{1}{8}}=40 \mathrm{~cm}$
58. Ans:

Sol: $I=\frac{I_{0}}{2} \cdot \frac{1}{4^{4}}=\frac{1}{512} \mathrm{I}_{0}$
59. Ans: $\sin \theta>8 / 9$

Sol: $\quad \mu_{g}=\frac{9}{8}$
$\sin C=\frac{1}{w_{\mu_{g}}}=\frac{8}{9}$
$C=\sin ^{-1}\left(\frac{8}{9}\right)$

$$
\theta>\sin ^{-1} \frac{8}{9}
$$

60. Ans: 0.5 mm

Sol: Separation $=\frac{2 \lambda}{b} \times d=0.5 \mathrm{~mm}$
61. Ans: $500 \mathrm{~km} \mathrm{~s}^{-1}$

Sol: $\quad e V=\frac{1}{2} m v^{2}$
$v=\sqrt{2 \frac{e}{m} v}$
$=\sqrt{2 \times 1.76 \times 10^{11} \times 0.71}$
$=5 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
$=500 \mathrm{~km} \mathrm{~s}^{-1}$
62. Ans: $0.4 \log _{\mathrm{e}} 2$

Sol: $\quad R=R_{0} e^{-\lambda t}$
$1250=5000 e^{-\lambda \times 5}$
$\lambda=0.4 \lambda n 2$
63. Ans: $\frac{r}{4}$

Sol: $r \propto \frac{1}{p^{2}}$

$$
\frac{r^{\prime}}{r}=\left(\frac{p}{2 p}\right)^{2}=\frac{1}{4}
$$

64. Ans: 0.0024

Sol: $\bar{B}=\frac{2 \times 1.115}{931}$

$$
=0.0024 u
$$

65. Ans: $0,1,0$

Sol: X goes to zero.
Y, Z remain unchanged.
66. Ans: 240Ω

Sol: $\quad P=\beta^{2} \frac{R_{0}}{R_{i}}$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{i}} & =\frac{\beta^{2} \mathrm{R}_{0}}{\mathrm{P}} \\
& =240
\end{aligned}
$$

67. Ans: 3.33 mA

Sol: $\quad \mathrm{V}_{\mathrm{R}_{2}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{R}_{2}}=6.67 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{R}_{1}}=\frac{5}{500}=10 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{Z}}=10-6.67=3.33 \mathrm{~mA}$
68. Ans: Only (i) and (iii) are correct Sol: Knowledge based.
69. Ans: 12.8 m

Sol: $h=\frac{d^{2}}{2 R}$

$$
=12.8 \mathrm{~m}
$$

70. Ans: 50\%

Sol: $\quad m=\frac{E_{m}}{E_{c}}=50 \%$
71. Ans: Ground wave propagation is for high frequency transmission.

Sol: Knowledge based.
72. Ans: 8 kHz

Sol: \quad Band width $=2 x f_{m}$

$$
=8 \mathrm{k} \mathrm{~Hz}
$$

73. Ans: II < I < III < IV

Sol: $\quad I=16 \times 1.66 \times 10^{-24} \mathrm{~g}$
II $=14 \times 1.66 \times 10^{-24} \mathrm{~g}$
III $=32 \times 1 \times 10^{-10} \mathrm{~g}$
IV $=63 \times 1 \times 10^{-10} \mathrm{~g}$
74. Ans: $\mathrm{n}=2$ to $\mathrm{n}=1$

Sol: $\mathrm{He}^{+}(\mathrm{Z}=2) \mathrm{n}=4$ to $\mathrm{n}=2$
$H(Z=1) n=\frac{4}{2}$ to $n=\frac{2}{2}$
75. Ans: $\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$

Sol: B.O
$\mathrm{C}_{2}=2 \quad \mathrm{C}_{2}^{2-}=3$
$\mathrm{B}_{2}^{+}=1.5 \quad \mathrm{~B}_{2}=2$
$\mathrm{Li}_{2}^{+}=0.5 \quad \mathrm{Li}_{2}=1$
$\mathrm{N}_{2}^{+}=2.5 \quad \mathrm{~N}_{2}=3$
$\mathrm{O}_{2}=2 \quad \mathrm{O}_{2}^{-}=1.5$
76. Ans: o-nitrophenol

Sol: Because of the proximity of the -OH and $-\mathrm{NO}_{2}$ groups.
77. Ans: 0.67, 0.33

Sol: $\quad \mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\frac{7}{2} x+3(1-x)=\frac{10}{3}$
$x=\frac{2}{3}$

Mole fraction of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ are 0.67 and 0.33
78. Ans: $\mathrm{H}_{2} \mathrm{O}$

Sol: $\mathrm{H}_{2} \mathrm{O}$ is diamagnetic
79. Ans: $\mathrm{F}>\mathrm{N}>\mathrm{C}>\mathrm{Be}>\mathrm{B}$

Sol: $\mathrm{F}>\mathrm{N}>\mathrm{C}>\mathrm{Be}>\mathrm{B}$
80. Ans: $\mathrm{H}_{2} \mathrm{~S}$ is a reducing agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ is an oxidizing agent

Sol: $\quad \underset{-2}{\mathrm{H}_{2} \mathrm{~S}}+\underset{-1}{\mathrm{H}_{2} \mathrm{O}_{2}} \rightarrow \underset{0}{\mathrm{~S}}+\underset{-2}{2 \mathrm{H}_{2} \mathrm{O}}$
$\mathrm{H}_{2} \mathrm{~S}$ is oxidized and $\mathrm{H}_{2} \mathrm{O}_{2}$ is reduced.
81. Ans: (iii) only

Sol: Carbides of Al \& Be give methane with water.
82. Ans: NaO_{2}

Sol: $\quad 2 \mathrm{NaO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$
83. Ans: BiH_{3}

Sol: Stability of group 15 hydride decrease down the group.
84. Ans: NO_{2}

Sol: NO_{2} dimerises on cooling to colourless $\mathrm{N}_{2} \mathrm{O}_{4}$
85. Ans: six equivalent $\mathrm{Cr}-\mathrm{O}$ bonds and one
$\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond
Sol:- $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ has the structure

There are six equivalent $\mathrm{Cr}-\mathrm{O}$ bonds and one $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ bond
86. Ans: (II) and (III)

Sol: Zr^{+4} \& Hf^{+4} is similar in size due to lanthanide contraction
Ce^{+4} is an oxidizing agent. $\mathrm{La}(\mathrm{OH})_{3}$ is the most basic among lanthanide hydroxides.
87. Ans: 1.0 kJ

Sol: $\quad Q=n C \Delta t$

$$
\begin{aligned}
& =2 \times 25 \times 20 \mathrm{~J} \\
& =1.0 \mathrm{~kJ}
\end{aligned}
$$

88. Ans: $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and AgI

Sol:

	Solubility
AgCl	10^{-5}
AgI	10^{-8}
PbCrO_{4}	2×10^{-7}
$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1.26×10^{-4}

89. Ans: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Sol: $\quad \Delta T f=K f \times m$
$0.465=1.86 \times \frac{1.8}{M} \times \frac{1000}{40}$
$M=180$
$\therefore \mathrm{MF}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
90. Ans: 16.89

Sol: $\quad \mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}_{2}$
$+50$
Eq. mass $=\frac{84.45}{5}=16.89$
91. Ans: $\frac{2}{3}$

Sol: $\quad 9=\left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^{n}$
$9=\left(3^{3}\right)^{2 / 3}$
92. Ans: sodium stearate

Sol: Soaps and detergents are examples for associated colloids.
93. Ans: Have tetrahedral and square planar geometry respectively

Sol: $\quad \mathrm{Ni}(\mathrm{CO})_{4}$ is tetrahedral whereas $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar
94. Ans: 0.50

Sol: $\quad \mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$\frac{2}{4} \quad \frac{2}{4} \quad \frac{2}{4}$
$\mathrm{K}_{\mathrm{c}}=\frac{1}{2}$
95. Ans: 72

Sol: $\quad \frac{5}{180}=\frac{2}{M}$
$M=72$
96. Ans: 2

Sol: $\quad \mathrm{C}_{1} \alpha_{1}^{2}=\mathrm{C}_{2} \alpha_{2}^{2}$
$0.1 \times\left(10^{-2}\right)^{2}=0.025 \times \alpha_{2}^{2}$
$\alpha_{2}=2 \times 10^{-2}$
$\%=2$
97. Ans: I and IV only

Sol: For a zero order reaction rate and rate constant are independent of reactant concentration.
98. Ans: $\left[\mathrm{CoF}_{6}\right]^{3-}$

Sol: $\left[\mathrm{CoF}_{6}\right]^{3-}$ is a high spin complex containing four unpaired electrons in it.
99. Ans: -0.28 V

Sol

	E°	nE°
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$	-1.18	-2.36 V
$\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$	1.51	1.51 V
$\mathrm{Mn}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$	-0.28	-0.85 V

100.Ans: 0.02

Sol: $\quad \alpha=\frac{\wedge_{c}}{\wedge_{0}}$

$$
=\frac{7.8}{390}=0.02
$$

101.Ans: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

Sol: No. of moles of AgCl obtainable from 1 mole of the complex $=\frac{430.5}{143.5}=3$

3 replaceable chlorines
102.Ans: 3-Methyl-2-butanone

Sol:

3-Methyl-2-butanone
103. Ans: Acetylene and benzene

Sol: $\mathrm{HC} \equiv \mathrm{CH}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ have the same empirical formula and percentage composition.
104.Ans: n-pentane > 2-methylbutane >

2, 2-dimethylpropane
Sol: As branching increases among isomeric alkanes, boiling point decreases.
105.Ans: Electrolysis

Sol: It is Kolbe's electrolytic synthesis.
106. Ans: $\mathrm{C}_{6} \mathrm{H}_{5}-\dot{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$

Sol: It is benzylic secondary radical.
107. Ans: electromeric effect

Sol: Definition of electromeric effect.
108.Ans: Cis-2-butene and trans-2-butene

Sol: Cis-2-butene and trans-2-butene are geometrical isomers.
109. Ans: geometric, optical, position and functional isomerism

Sol: It can exhibit geometrical, optical, position and functional isomerism.
110. Ans: $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{AgF} \rightarrow$

Sol: It is Swarts reaction
111. Ans: 1-bromo-3-phenylpropane

Sol:

112. Ans: 2-methyl-2-butanol

Sol:

113. Ans: 2-methyl-2-butanol

Sol:

2-Methyl-2-butanol (3º ${ }^{\circ}$ lcohol)

114. Ans: Reimer - Tiemann reaction Sol:

115. Ans: III $<$ II $<$ I

Sol: Order of boiling point is $1^{\circ}>2^{\circ}>3^{\circ}$
116. Ans: Isopropylamine is a secondary amine

Sol:

117. Ans: glycine and amino caproic acid

Sol: glycine and amino caproic acid are the monomers used for the preparation of Nylon-2-nylon-6.
118. Ans: High density polythene

Sol: HDPE is formed by the polymerization of ethane in presence of Zeigler - Natta catalyst.
119. Ans: cetyltrimethyl ammonium bromide

Sol: cetyltrimethyl ammonium bromide is a cationic detergent used in hair conditioners.
120. Ans: Food preservatives

Sol: Salts of sorbic acid and propionic acid are used as food preservatives.

