PART 01 - MATHEMATICS

(Common to all candidates)
(Answer ALL questions)

1. The unit normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$ is
2. $-i+2 j+2 \bar{k}$
3. $\frac{1}{3}(-i+2 j+2 \bar{k})$
4. $\frac{1}{3}(i-2 j+2 \bar{k})$
5. $i-2 j-2 \bar{k}$
6. If $\mathbf{r}=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\mathrm{V}\left(\frac{1}{r}\right)$ is equal to
7. $\frac{\bar{r}}{r^{3}}$
8. $\frac{\bar{r}}{r^{2}}$
9. $\frac{-\bar{r}}{r^{2}}$
10. $\frac{-r}{r^{3}}$
11. If $\bar{A}=x^{2} z i-2 y^{3} z^{2} \bar{j}+x y^{2} z \bar{k}$, then $\operatorname{div} \bar{A}$ at $(1,-1,1)$ is
12. 0
13. -3
14. 3
15. 1
16. If $\quad \bar{A}=x^{2} y i-2 x z \bar{j}+2 y z \bar{k}$, then curlcurl \bar{A} is
17. $(x+2) \bar{j}$
18. $(2 x+2) \bar{j}$
19. $(2 x+1) \bar{j}$
20. $(2 x+2 y) \bar{j}$
21. If $\bar{V}=(x+2 y+a z) i+(b x-3 y-z) \bar{j}+$
$(4 x+\mathrm{cy}+2 z) \bar{k}$ is irrotational, then
22. $a=4, b=-1, c=2$
23. $a=2, b=-1, c=4$
24. $a=4, b=2, c=-1$
25. $a=4, b=-2, c=1$
26. Which of the following is a factor of the determinant?
$\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$
27. a
28. $a-b$
29. $a+b$
30. $a+b+c$
31. If $a+b+c=0$, one root of $\left|\begin{array}{ccc}a-x & c & b \\ c & b-x & a \\ b & a & c-x\end{array}\right|=0$ is
32. $x=1$
33. $x=2$
34. $x=a^{2}+b^{2}+c^{2}$
35. $x=0$
36. If \boldsymbol{A} is a 4×4 matrix. A second order minor of A has its value as 0 . Then the rank of \boldsymbol{A} is
37. <2
38. $=2$
39. >2
40. anything
41. Given $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8\end{array}\right)$, then the determinant value of A^{-1} is
42. 32
43. $\frac{1}{32}$
44. $\frac{1}{64}$
45. 64
46. If $\left(\begin{array}{ll}3 & 1 \\ 4 & 1\end{array}\right) X=\left(\begin{array}{cc}5 & -1 \\ 2 & 3\end{array}\right)$, then
47. $X=\left(\begin{array}{cc}-3 & 4 \\ 14 & 13\end{array}\right)$
48. $X=\left(\begin{array}{cc}3 & -4 \\ -14 & 13\end{array}\right)$
49. $X=\left(\begin{array}{cc}-3 & 4 \\ 14 & -13\end{array}\right)$
50. $X=\left(\begin{array}{cc}-3 & -4 \\ -14 & 13\end{array}\right)$
51. $C-\mathrm{R}$ equations for a function $\mathrm{w}=\mathrm{P}(r, \theta)+i Q(r, \theta)$ to be analytic, in polar form are
52. $\frac{\partial P}{\partial r}=\frac{1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r}=\frac{-1}{r} \frac{\partial P}{\partial \theta}$
53. $\frac{\partial Q}{\partial \theta}=\frac{1}{r} \frac{\partial P}{\partial r}, \frac{\partial P}{\partial \theta}=\frac{1}{r} \frac{\partial Q}{\partial r}$
54. $\frac{\partial P}{\partial r}=\frac{-1}{r} \frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial r}=\frac{1}{r} \frac{\partial P}{\partial \theta}$
55. $\frac{\partial P}{\partial \theta}=\frac{1}{r} \frac{\partial Q}{\partial r}, \frac{\partial Q}{\partial \theta}=\frac{-1}{r} \frac{\partial P}{\partial r}$
56. If $\mathbf{f}(z)=u+i v$ is an analytic function and u and v are harmonic, then u and v will satisfy
57. one dimensional wave equation
58. one dimensional heat equation
59. Laplace equation
60. Poisson equation
61. In the analytic function $\mathrm{f}(z)=u+i v$, the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ are orthogonal if the product of the slopes m_{1} and m_{2} are
62. $m_{1} m_{2}=0$
63. $m_{1} m_{2}=-\pi$
64. $m_{1} m_{2}=\frac{-\pi}{2}$
65. $m_{1} m_{2}=-1$
66. If the imaginary part of the analytic function $f(z)=u+i v$ is constant, then
67. u is not a constant
68. $f(z)$ is not a complex constant

3, $\mathrm{f}(z)$ is equal to zero
4. u is a constant
15. If $\mathrm{f}(z)=\mathrm{P}(r, \theta)+i \mathrm{Q}(r, 8)$ is analytic, then $\mathrm{f}^{\prime}(z)$ is equal to

1. $e^{i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial \theta}\right)$
2. $e^{-i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial \theta}\right)$
3. $e^{-i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right)$
4. $e^{+i \theta}\left(\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right)$
5. The formula for the radius of curvature in cartesian coordinate is
6. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{1 / 2}}{y^{\prime \prime}(x)}$
7. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}{y^{\prime \prime}(x)}$
8. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}{\left(y^{\prime \prime}\right)^{2}}$
9. $\frac{\left(1+\left(y^{\prime}\right)^{2}\right)^{1 / 2}}{\left(y^{\prime \prime}(x)\right)^{2}}$
10. The condition for the function $z=f(x, y)$ to have a extremum at (a, a) is $\frac{\partial z}{\partial x}=0$ and $\frac{\partial z}{\partial y}=0 . \quad A=\frac{\partial^{2} z}{\partial x^{2}}, B=\frac{a^{2} z}{\partial x \partial y}, C=\frac{a^{2} z}{\partial y^{2}}$. $A=A C-\mathrm{B}^{2}$. Then the function z has a maximum value at (a, a) if
11. $\Delta>0, A<0$
12. $\Delta>0, A=0$
13. $\Delta<0, A<0$
14. $\Delta>0, A>0$
15. The stationary point of $f(x, y)=x^{2}-x y+y^{2}-2 x+y$ is
16. $(0,1)$
17. $(1,0)$
18. $(-1,0)$
19. $(1,-1)$
20. $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$ is
21. $\frac{\pi}{2}$
22. π
23. $\frac{\pi}{4}$
24. 2π
25. $\int x \cos x d x$ is
26. $x \sin x-\cos x$
27. $x \sin x+\cos x$
28. $x \sin x-x \cos x$
29. $x \sin x+x \cos x$
30. For the following data:

$$
\begin{array}{ccccc}
x: & 0 & 2 & 4 & 6 \\
y: & -1 & 3 & 7 & 11
\end{array}
$$

the straight line $y=m x+c$ by the method of least square is

1. $y=-2 x-1$
2. $y=x-1$
3. $y=1-2 x$
4. $y=2 x-1$
5. The velocity $v(\mathrm{~km} / \mathrm{min})$ of a train which starts from rest, is given at fixed intervals of time t (min) as follows:

$\mathrm{t}:$	2	4	6	8	10	12	14	16	18	20
$\mathrm{v}:$	10	18	25	29	32	20	11	5	2	0

The approximate distance covered by Simpson's $1 / 3$ rule is

1. $\quad 306.3$
2. 309.3
3. 310.3
4. 307.3
5. Find the cubic polynomial by Newton's forward difference which takes the following
x: $\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$
$f(x): \begin{array}{llll}1 & 2 & 1 & 10\end{array}$
Then $f(4)$ is
6. 40
7. 41
8. 39
9. 42
10. The first derivative $\frac{d y}{d x}$ at $x=0$ for the given data

$$
\begin{array}{ccccc}
\mathrm{x}: & 0 & 1 & 2 & 3 \\
f(x): & 2 & 1 & 2 & 5
\end{array}
$$

is

1. 2
2. -2
3. -1
4. 1
5. Error in Simpson's $\frac{1}{3}$ rule is of the order
6. $-h^{2}$
7. h^{3}
8. h^{4}
9. $\frac{2 h^{3}}{3}$
10. A lot consists of ten good articles, four with minor defects and two with major defects. Two articles are chosen from the lot at random (without replacement). Then the probability that neither of them good is
11. $\frac{5}{8}$
12. $\frac{7}{8}$
13. $\frac{3}{8}$
14. $\frac{1}{8}$
15. If A, B, C are any three events such that
$P(A)=P(B)=P(C)=\frac{1}{4}$;
$P(A \cap B)=P(B \cap C)=0, \quad P(C \cap A)=\frac{1}{8}$.
Then the probability that atleast one of the events A, B, C occurs, is
16. $\frac{1}{32}$
17. $\frac{3}{32}$
18. $\frac{7}{8}$
19. $\frac{5}{8}$
20. To establish the mutual independence of n events, the equations needed are
21. $2^{n}+n+1$
22. $n^{2}+n+1$
23. $2^{n}-(n+1)$
24. $2^{n}+2(n+1)$
25. If atleast one child in a family with two children is a boy, then the probability that both children are boys is
26. $3 / 4$
27. $1 / 3$
28. $1 / 4$
29. $1 / 2$
30. A discrete random variable X takes the values $a, a r, a r^{2}, \cdots, a r^{n-1}$ with equal probability. Then Arithmetic Mean (A.M) is
31. $a\left(1-r^{n}\right)$
32. $\frac{1}{n} a\left(1-r^{n}\right)$
33. $\frac{a}{n} \frac{\left(1-r^{n}\right)}{1-r}$
34. $\frac{a}{n} \frac{\left(r^{n}-1\right)}{1-r}$
