

Computer Graphics and Visualization Laboratory

Subject Code: 06CSL67

Sl no: Description Pg no:

1. Introduction: OpenGL -- The Industry's Foundation for High

 1

 Performance Graphics

2. Getting started.

 2.1 On Windows 2

 2.2 On Redhat and Core Linux 11

3. Introductory Concepts

 Basics1 17

 Basics2 20

4. Lab1: Program to recursively subdivide a tetrahedron to from 3D

 22

 Sierpinski gasket. The number of recursive steps is to be

 specified by the user.

5. Lab2: Program to implement Liang-Barsky line clipping algorithm.

 26

6. Lab3: Program to draw a color cube and spin it using OpenGL

 34

 transformation matrices.

7. Lab4: Program to create a house like figure and rotate it about

 38

 a given fixed point using OpenGL functions.

8. Lab5: Program to implement the Cohen-Sutherland line-clipping

 42

 algorithm. Make provision to specify the input line, window

 for clipping and view port for displaying the clipped image.

9. Lab6: Program to create a cylinder and a parallelepiped by extruding

 49

 a circle and quadrilateral respectively. Allow the user to specify

 the circle and the quadrilateral.

10. Lab7: Program, using OpenGL functions, to draw a simple

 57

 shaded scene consisting of a tea pot on a table. Define suitably

 the position and properties of the light source along with the

 properties of the properties of the surfaces of the solid object

 used in the scene.

11. Lab8: Program to draw a color cube and allow the user to move the

 61

 camera suitably to experiment with perspective viewing. Use

 OpenGL functions.

12. Lab9: Program to fill any given polygon using scan-line area filling

 65

 algorithm. (Use appropriate data structures.)

13. Lab10: Program to display a set of values { fij } as a rectangular

 76

 mesh.

 Computer Graphics & Visualization Laboratory Manual 1

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

1.INTRODUCTION

OpenGL -- The Industry's Foundation for High Performance Graphics

OpenGL (Open Graphics Library) is a standard specification defining a cross-language,

cross-platform API for writing applications that produce 2D and 3D Computer

graphics. The interface consists of over 250 different function calls which can be used

to draw complex three-dimensional scenes from simple primitives.

OpenGL provides a powerful but primitive set of rendering commands, and all higher-

level drawing must be done in terms of these commands. Also, OpenGL programs

have to use the underlying mechanisms of the windowing system. A number of

libraries exist to allow you to simplify your programming tasks, including the

following:

 The OpenGL Utility Library (GLU) contains several routines that use lower-level

OpenGL commands to perform such tasks as setting up matrices for specific viewing

orientations and projections, performing polygon tessellation, and rendering surfaces.

GLU routines use the prefix glu.

 For every window system, there is a library that extends the functionality of that

window system to support OpenGL rendering. For machines that use the X Window

System, the OpenGL Extension to the X Window System (GLX) is provided as an

adjunct to OpenGL. GLX routines use the prefix glX. For Microsoft Windows, the

WGL routines provide the Windows to OpenGL interface. All WGL routines use the

prefix wgl. For IBM OS/2, the PGL is the Presentation Manager to OpenGL interface,

and its routines use the prefix pgl.

 The OpenGL Utility Toolkit (GLUT) is a window system-independent toolkit, written

by Mark Kilgard, to hide the complexities of differing window system APIs.

Provides functionality common to all window systems

 Open a window

 Get input from mouse and keyboard

 Menus

 Event-driven

Code is portable but GLUT lacks the functionality of a good toolkit for a specific

platform

 No slide bars

 Open Inventor is an object-oriented toolkit based on OpenGL which provides objects

and methods for creating interactive three-dimensional graphics applications. Open

Inventor, which is written in C++, provides prebuilt objects and a built-in event

model for user interaction, high-level application components for creating and editing

three-dimensional scenes, and the ability to print objects and exchange data in other

graphics formats. Open Inventor is separate from OpenGL.

 Computer Graphics & Visualization Laboratory Manual 2

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

2.GETTING STARTED.

2.1 On Windows:

2.1.1 Working with Visual C++ 

 Get glut.h, glut32.lib and glut32.dll from web.

 Copy and paste the glut.h file in the C:\ProgramFiles\MicrosoftVisual

studio\VC98\Include\GL folder.

 Copy and paste the glut32.lib file in the C:\ProgramFiles\MicrosoftVisual

studio\VC98\Lib folder.

 Copy and paste the glut32.dll file in the C:\WINDOWS\system32

 After following the above steps we can compile and edit a program on VC++ in the

usual way by creating a win32 console application project adding a c/ c++ source file

to it, editing our program and building it and later executing it.

2.1.2. Working with Dev C++ 

Find Dev C++ ‘s Beta version at this site>>

http://bloodshed-dev-c.en.softonic.com/

Click on the dev C++ set up icon the download will begin.

Here is the step by step guide to installation of Dev.

http://bloodshed-dev-c.en.softonic.com/

 Computer Graphics & Visualization Laboratory Manual 3

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Once clicked agree, you will prompted to choose between full or limited installs, the

drive in which you would like the installation, whether it should be available for all users

of your pc. And then you need to click on finish and ok.

 Computer Graphics & Visualization Laboratory Manual 4

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Then the following window will pop for the configuration, use English as the language

and click on next. Then you will asked for enabling certain features and generation of

cache, click yes and proceed by clicking next, Once configured click ok

 Computer Graphics & Visualization Laboratory Manual 5

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Now Dev C++ is ready to use, but can we still compile a glut program here??

The answer is NO!

Now we need to install the glut pack!

Find the DevPak downloads for Dev C++ here>>

You can download any version of glut Devpaks from here:

http://www.nigels.com/glt/devpak/

Save the package on your drive, to install

double-click on the package a window like

the one on right>> will pop up click install and

glut will be installed for use .

http://www.nigels.com/glt/devpak/

 Computer Graphics & Visualization Laboratory Manual 6

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Once the download completes click finish.

The window shown below will pop, showing the

installation of the new package.

or

Open Dev C++ and go to "Tools > Check for Updates/Packages". This should bring you

to the update manager.

Click below the "Select devpack server" and select "devpacks.org community

devpacks".

Now click "check for updates" at the bottom of the page. Once its done loading, scroll

through the lists of packages until you find a glut package. Once you are ready, check the

small box to the left of the name. Download it, and then the computer will install it

automatically. Now you have opengl (opengl comes w/dev c++) and glut.

Once you download glut, dev c++ it even does you a favor by creating a template for glut

programs (isnt that cool!). To use the template, click the "multimedia" tab in the "create

a project" window. The glut template should be there for you to use. Clear the editor to

edit your own program and compile and run/execute it.

Note: Since you select the multimedia template, your project may not be provided with a

console when you run it. so before compiling or running it, Hold alt+p keys together you

will get the project options window select here console so next time you run your

program you will also receive the console, this is quiet helpful when your program takes

input through console.

 Computer Graphics & Visualization Laboratory Manual 7

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

2.1.3. Working with Eclipse CDT

 1. Download Eclipse SDK 3.2.2 or newer at Eclipse.org/downloads

 2. Install MinGW and the gcc/g++ compiler

 Eclipse CDT does not come with a compiler so you will have to install one. The

 easiest way is to use MinGW (Minimalist GNU for Windows) and the gcc/g++

 compiler. The compiler comes with the necessary header and library files for

 programming with OpenGL, but you will need to add several GLUT filesin step

 4.

 3. Install the C/C++ Development Tooling (CDT)

 CDT is an environment which allows you to develop in C/C++ using Eclipse. It's

 relatively easy to download the plug-in from inside Eclipse.

 a. Go to Help -> Software Updates -> Find and Install

 b. Choose "Search for New Features to Install" and click on both "Callisto

 Discovery Site" and "The Eclipse Project Updates"

 Computer Graphics & Visualization Laboratory Manual 8

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 c. Choose an "Update Site Mirror" and install any updates for Eclipse and

 then install "C and C++ Development" (CDT) from the Callisto Discovery

 site.

4. Download and setup GLUT

 a. Download GLUT MinGW

 b. Place glut32.dll in your C:\Windows\System32 folder

 c. Put glut.h in the folder C:\MinGW\include\GL folder and libglut32.a in

C:\MinGW\lib (These folders are relative to where MinGW was installed).

5. Start a new C/C++ Project in Eclipse

 a. Go to File -> New -> Project, and choose "Managed Make C++ Project"

from the wizard.

 Computer Graphics & Visualization Laboratory Manual 9

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 b. Name the project and press Next -> Finish.

 c. After you finish creating the project you need to change the project settings to include

the OpenGL and GLUT libraries. Highlight the new project and go to Project ->

Properties.

 Computer Graphics & Visualization Laboratory Manual 10

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 d. Choose "C/C++ Build" and select "Libraries" from under the "GCC C++ Linker"

 branch.

 You need to add glut32, glu32, and opengl32 to the list of libraries.

6. Create a simple GLUT C++ program

 a. Right click on the project name -> New -> Source File.

 b. Edit a glut program

 NOTE: When you create programs using GLUT, you need to include windows.h

 and any standard library header before the glut.h header file.

 c. Build the program by clicking at project->build. Run the program by right

 clicking on the Project Name -> Run As -> Run As Local C/C++ Application

 d. Now you have a basic GLUT OpenGL window which can be used to create

 2D/3D applications.

 Computer Graphics & Visualization Laboratory Manual 11

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

2.2 On Redhat and Core Linux

Glut is included in full installs of Redhat Linux 8 and 9 and Core 1 and 2. It is located in

the standard search paths. If your Redhat or Core Linux installation did not end up with a

working glut or your glut does not get on with ODE or the like, obtain the zipped file for

linux, This folder contains an rpm file, glut.h file and an example program cube.cpp and

its makefile.

Install the rpm file:

 rpm -i glut-3.7-8.i386.rpm

note:
1. If you already have a later glut, use rpm -i --force glut-3.7-8.i386.rpm

 Also in case it shows errors in installing due to dependencies use --nodeps like,

 rpm -i glut-3.7-8.i386.rpm –nodeps When rpm is searching for dependencies it

 only looks in the rpm database, It does not go looking through the file tree to see

 if the files are actually there. A file is registered in the rpm data base when the

 rpm package containing that file is installed. So it is possible for a file to exist but

 not be registered in the rpm data base if it was installed by any method other than

 rpm. What you do in this situation is to check to see if the missing dependencies

 really exist. If they do then you use the rpm --nodeps parameter to tell rpm to

 install the package anyway in spite of whatever dependencies that rpm thinks are

 missing.

2. Also during the install one should be logged in as the root user.

3. Also if there is error like : can't create transaction lock along with cannot open

 /var/lib/rpm/__db00 or any other __db**. You can resolve this by changing

 directory to /var/lib/rpm and delete the db files mentioned in the error. this should

 now run the command normally.

Move the file "glut.h" to "/usr/include/GL":

 mv glut.h /usr/include/GL

Change directories to "/usr/lib"

 cd /usr/lib

And, finally, if libglut.so is not the same file as libglut.so.3.7, copy libglut "libglut.so.3.7"

to "libglut.so"

 cp libglut.so.3.7 libglut.so

At this point,running the Makefile that was included should create the executable

"cubes", which can be run and should produce a spinning 3d cube.(note that to run make

file, type “make” at command prompt, you being in root directory and run it by typing

./cubes on the prompt)

 Computer Graphics & Visualization Laboratory Manual 12

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

After the installation is being done as instructed above, lets move on to compiling and

running a glut program:

2.2.1: Running a program on the command prompt->
1. Edit the program in any editor

2. At the prompt compile using gcc compiler

 eg: # gcc myprog.cpp –lGL -lGLU –lglut

3. If program contains no errors, prompt is returned immediately after the last

command, If it contains errors those will be displayed. Edit and remove the errors.

4. After compilation is successful, i.e., no errors, Then run the ./a.out i.e, type it at

the prompt you will now have the output of your program on a separate window.

2.2.2: Running through an IDE->

 To run through an IDE like Kdevelop on any flavor of the Linux operating

system, again involves creating a project and changing its configuration settings to

include the glut, gl, glu library files. and editing and running as we did with other IDEs

on windows, we successfully run it here too!

1. For the Kdevelop IDE, On the menu bar, Click on project terminal c++

 Computer Graphics & Visualization Laboratory Manual 13

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

2. Click next and give name to the project. (here myfirst).

3. Go on clicking next (thrice) and finally click create. click ok on the pop up which

says about user documentation, wait till you get “READY” in the processes box , then

close this window. you will get the below window.

4. Clear the editor window to edit your own program

 Computer Graphics & Visualization Laboratory Manual 14

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

5. Go to project options

6. In the options window click on linker options

7. In linker options, in additional libraries field type –lGL –lGLU –lglut, click ok

8. Build the program, click on build compile file, if no errors exist and the build is

successful, click buildexecute.

 Computer Graphics & Visualization Laboratory Manual 15

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 Computer Graphics & Visualization Laboratory Manual 16

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

3.INTRODUCTORY CONCEPTS

Basics1: Drawing points

OpenGL function format :

 dimensions

 function name

 glVertex3f(x,y,z)

 x,y,z are floats

belongs to GL library

 glVertex3fv(p)

 p is a pointer to an array

OpenGL #defines:

• Most constants are defined in the include files gl.h, glu.h and glut.h

 Note #include <GL/glut.h> should automatically include the others

 Examples

 glBegin(GL_POLYGON)

 glClear(GL_COLOR_BUFFER_BIT)

• include files also define OpenGL data types: GLfloat, GLdouble,….

Program Structure

• Most OpenGL programs have a similar structure that consists of the following

functions

main():
• defines the callback functions

• opens one or more windows with the required properties

• enters event loop (last executable statement)

init(): sets the state variables

• Viewing

• Attributes

callbacks:

• Display function

• Input and window functions

 Computer Graphics & Visualization Laboratory Manual 17

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

#include<GL/glut.h> includes gl.h

#include<stdio.h>

void display()

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,0.0); /*fill/ draw in red*/

glPointSize(2.0); /* set size of the point*/

glBegin(GL_POINTS); /* type of object*/

glVertex2f(0.0,0.0); /*location of vertex*/

glVertex2f(0.0,0.5);

glEnd(); /*end of object definition*/

glFlush();

}

void myinit() opaque window

{

glClearColor(0.0,0.0,0.0,1.0); black clear color

gluOrtho2D(-1.0,1.0,-1.0,1.0); viewing volume

}

void main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0); define window properties

glutCreateWindow("Simple demo");

myinit();

glutDisplayFunc(display); set OpenGL state

 display callback

glutMainLoop();

 enter event loop

}

* Note that the program defines a display callback function named display

Every glut program must have a display callback

The display callback is executed whenever OpenGL decides the display must be

refreshed, for example when the window is opened

The main function ends with the program entering an event loop

GLUT functions

• glutInit allows application to get command line arguments and initializes system

• gluInitDisplayMode requests properties for the window (the rendering context)

 Computer Graphics & Visualization Laboratory Manual 18

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 RGB color

 Single buffering

 Properties logically ORed together

• glutWindowSize in pixels

• glutWindowPosition from top-left corner of display

• glutCreateWindow create window with title “simple demo”

• glutDisplayFunc display callback

• glutMainLoop enter infinite event loop

Output:

 Computer Graphics & Visualization Laboratory Manual 19

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Basics 2: Drawing lines, displaying text part of picture.

#include<GL/glut.h>

#include<stdio.h>

#include<string.h>

char *str= "My name";

void display()

{

int i;

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0,0.0,0.0);

glBegin(GL_LINES);

glVertex2f(0.0,0.0);

glColor3f(0.0,1.0,0.0);

glVertex2f(0.0,0.5);

glEnd();

glColor3f(1.0,0.0,0.0); position of the character

glRasterPos2f(0.0,0.0); two character types bitmap/ stroke

glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18,'c');

glColor3f(0.0,1.0,1.0);

glRasterPos2f(0.5,0.0); font type character to be displayed

for(i=0;i<strlen(str);i++)

glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24,str[i]);

glFlush();

}

void myinit()

{

glClearColor(0.0,0.0,0.0,1.0);

gluOrtho2D(-1.0,1.0,-1.0,1.0);

}

int main(int argc, char **argv)

{

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

glutInitWindowSize(500,500);

glutInitWindowPosition(0,0);

glutCreateWindow("Simple demo");

myinit();

glutDisplayFunc(display);

glutMainLoop();

 Computer Graphics & Visualization Laboratory Manual 20

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

}

Output:

 Computer Graphics & Visualization Laboratory Manual 21

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB1: Program to recursively subdivide a tetrahedron to from 3D

Sierpinski gasket. The number of recursive steps is to be specified by

the user.

Program Code:

#include<GL/glut.h>

#include<stdio.h>

typedef float point[3];

point v[4]={{0.0,0.0,1.0},{0.0,0.942809,-0.33333},{-0.816497,-0.471405,-

0.333333},{0.816497,-0.471405,-0.333333}};

int n;/*recursive steps*/

void triangle(point a,point b,point c)

{

 glBegin(GL_TRIANGLES);

 glNormal3fv(a);

 glVertex3fv(a);

 glVertex3fv(b);

 glVertex3fv(c);

 glEnd();

}

void tetrahedron(point a, point b, point c, point d)

{

 glColor3f(1.0,1.0,0.0);

 triangle(a,b,c);

 glColor3f(0.0,1.0,1.0);

 triangle(a,c,d);

 glColor3f(1.0,0.0,1.0);

 triangle(a,d,b);

 glColor3f(0.0,0.0,0.0);

 triangle(b,d,c);

}

void divide_tetrahedron(point a, point b, point c, point d, int n)

{

 int j;

 point v1,v2,v3,v4,v5,v6;/*variables to store six mid points*/

if(n>0)

 { /*the six mid-points of the six edges of a tetrahedron*/

 for(j=0;j<3;j++)v1[j]=(a[j]+b[j])/2;/*mid point of edge ab*/

 for(j=0;j<3;j++)v2[j]=(a[j]+c[j])/2;/*mid point of edge ac*/

 for(j=0;j<3;j++)v3[j]=(a[j]+d[j])/2;/*mid point of edge ad*/

 for(j=0;j<3;j++)v4[j]=(b[j]+c[j])/2;/*mid point of edge bc*/

 for(j=0;j<3;j++)v5[j]=(c[j]+d[j])/2;/*mid point of edge cd*/

 Computer Graphics & Visualization Laboratory Manual 22

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 for(j=0;j<3;j++)v6[j]=(b[j]+d[j])/2;/*mid point of edge bd*/

 divide_tetrahedron(a, v1,v2,v3,n-1);/*a tetrahedron formed from vertices a,mid

point of ab,ac,ad edge*/

 divide_tetrahedron(v1,b,v4,v6,n-1);/*a tetrahedron formed from vertices b,mid

point of ab,bc,bd edge*/

 divide_tetrahedron(v2,v4,c,v5,n-1);/*a tetrahedron formed from vertices c,mid

point of ac,bc,cd edge*/

 divide_tetrahedron(v3,v6,v5,d,n-1);/*a tetrahedron formed from vertices d,mid

point of ad,cd,bd edge*/

 }

 else

 tetrahedron(a,b,c,d);/*drawing the tetrahedrons*/

}

void display()

{

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glEnable(GL_DEPTH_TEST);

divide_tetrahedron(v[0],v[1],v[2],v[3],n);

glFlush();

}

void myreshape(int w,int h)

{

glViewport(0,0,w,h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if(w<=h)

{

glOrtho

(-2.0,2.0,-2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,-10.0,10.0);}

 else

glOrtho(-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,-2.0,2.0,-

10.0,10.0);

 glMatrixMode(GL_MODELVIEW);

 glutPostRedisplay();

}

void main(int argc,char **argv)

{

 printf("Enter the number of sub-divisons:\n");

 scanf("%d",&n);

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE|GLUT_DEPTH);

 glutInitWindowPosition(0,0);

 glutInitWindowSize(500,500);

 glutCreateWindow("3D sierpinski");

 Computer Graphics & Visualization Laboratory Manual 23

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 glutReshapeFunc(myreshape);

 glutDisplayFunc(display);

 glClearColor(0.0,0.0,0.0,1.0);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 24

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB2: Program to implement liang barsky line clipping algorithm.

Algorithm at work:

Parametric form

• A line segment with endpoints (x0, y0) and (xend, yend)

 we can describe in the parametric form

 x = x0 + uΔx

 y = x0 + uΔy 0 ≤ u ≤ 1

 where

 Δx = xend – x0

 Δy = yend – y0

• The parametric equation of the line segment:

– Defines a starting and ending point

– Defines a direction

– Can be easily extended to 3D

– Is better than the line equation for many computer graphics applications

Liang-Barsky Line-Clipping

• More efficient than Cohen-Sutherland

• A line is inside the clipping region for values of u such that:

 xwmin ≤ x0 + uΔx ≤ xwmax Δ x = xend – x0

 ywmin ≤ y0 + uΔy ≤ ywmax Δ y = yend – y0

• Can be described as

 u pk ≤ qk, k = 1, 2, 3, 4

The infinitely line intersects the clip region edges when:

• Where p and q are defined as:

 p1 = -Δx, q1 = x1 – xwmin (left , k=1)

 p2 = Δx, q2 = xwmax - x1 (right, k=2)

 p3 = -Δy, q3 = y1 – ywmin (bottom, k=3)

 p4 = -Δy, q4 = ywmax - y1 (top, k=4)

The 4 in equalities are

• xwmin <= x1 + uΔx

• x1 + uΔx <= xwmax

• ywmin <= y1 + uΔy

• y1 + uΔy <= ywmax

 Computer Graphics & Visualization Laboratory Manual 25

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

2P

1P

0u

1u

maxy

miny

minx maxx

Each of these four inequalities can be expressed as

upk <= qk, k = 1, 2, 3, 4

-uΔx= x1 - xwmin

uΔx = xwmax –x1

Thus, u pk ≤ qk

• Horizontal or vertical lines:

– Any line that is parallel to a boundary has pk = 0 for the value of k

corresponding to the boundary.

– If, for that value of k, qk < 0, then the line is completely outside and can

be eliminated.

– If qk >= 0, the line is inside the boundary.

• Lines entering or leaving the boundary:

– When pk<0, the infinite extension of the line proceeds from the outside to

the inside of the infinite extension of this particular clipping boundary

– When pk>0, the line proceeds from the inside to the outside

10

max1min

max1min







u

yyuyy

xxuxx

!! windowthe in contained is 21PP

 Computer Graphics & Visualization Laboratory Manual 26

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

– The value of u for the intersection with boundary k is

 u=qk/pk

• For each line, u1 and u2 define the part of the line that lies within the clip

rectangle.

– u1 correspond to edges for which the line proceeds from the outside to the

inside. u1 is the largest of 0 and the “entering” u values.

– u2 corresponds to edges for which the line proceeds from the inside to the

outside. u2 is the minimum of 1 and the “leaving” u values.

• If u1 > u2, the line lies completely outside of the clipping area.

• Otherwise the segment from u1 to u2 lies inside the clipping window.

1P

2P

2û

1û

rejected. if ,ˆˆ 21 uu 

 Computer Graphics & Visualization Laboratory Manual 27

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

In the program implementation that follows, u is referred as t . u1 and u2 referred as te

and tl. denom refers pk and num refers the uk terms given in the explanation.

Program Code:

#include<GL/glut.h>

#include<stdio.h>

double xmin=50,xmax=100,ymin=50,ymax=100;

double xvmin=200,xvmax=300,yvmin=200,yvmax=300;

float xl[10],yl[10];

int n;

bool Clipt(float denom, float num, float *te,float *tl)

{

 double t;

 if(denom>0)

 {

 t=num/denom;

 if(t>*tl)

 return false;

 else if(t>*te)

 *te=t;

 }

 else if(denom<0)

 {

 t=num/denom;

 if(t<*te)

 return false;

 else if(t<*tl)

 *tl=t;

 }

 else if(denom==0.0) //line parallel to edge

 {

 if(num>0.0)

 {return false;}

 }

 return true;

}

bool ClipPoint(float x0,float y0)

{

 if((x0<=xmax||x0>=xmin)&&(y0<=ymax&&y0>=ymin))

 return true;

 else

 return false;

}

 Computer Graphics & Visualization Laboratory Manual 28

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void LiangBarskyLineClipper(float x0,float y0,float x1,float y1)

{

 float dx=x1-x0;

 float dy=y1-y0;

 float te=0.0;

 float tl=1.0;

 bool accept=false;

 if(dx==0&&dy==0&&ClipPoint(x0,y0))

 {//degenerate line and clipped as a point

 glPointSize(2.0);

 glBegin(GL_POINTS);

 glVertex2d(x0,y0);

 glEnd();

 }

 else{

 if(Clipt(dx,xmin-x0,&te,&tl))//left edge

 if(Clipt(-dx,x0-xmax,&te,&tl))//right edge

 if(Clipt(dy,ymin-y0,&te,&tl))//bottom edge

 if(Clipt(-dy,y0-ymax,&te,&tl))//top edge

 {

 if(tl<1.0)

 {

 x1=x0+tl*dx;

 y1=y0+tl*dy;

 }

 if(te>0.0)

 {

 x0=x0+te*dx;

 y0=y0+te*dy;

 }

 double sx=(xvmax-xvmin)/(xmax-xmin);

 double sy=(yvmax-yvmin)/(ymax-ymin);

 double vx0=xvmin+(x0-xmin)*sx;

 double vy0=yvmin+(y0-ymin)*sy;

 double vx1=xvmin+(x1-xmin)*sx;

 double vy1=yvmin+(y1-ymin)*sy;

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(xvmin,yvmin);

 glVertex2f(xvmax,yvmin);

 glVertex2f(xvmax,yvmax);

 glVertex2f(xvmin,yvmax);

 glEnd();

 Computer Graphics & Visualization Laboratory Manual 29

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINES);

 glVertex2f(vx0,vy0);

 glVertex2f(vx1,vy1);

 glEnd();

 }

 }

}

void display()

{

 int i;

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(0.0,1.0,0.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(xmin,ymin);

 glVertex2f(xmax,ymin);

 glVertex2f(xmax,ymax);

 glVertex2f(xmin,ymax);

 glEnd();

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINES);

 for(i=0;i<n*2;i=i+2)

 {

 glVertex2f(xl[i],yl[i]);

 glVertex2f(xl[i+1],yl[i+1]);

 }

 glEnd();

 for(i=0;i<n*2;i=i+2)

 {

 LiangBarskyLineClipper(xl[i],yl[i],xl[i+1],yl[i+1]);

 }

 glFlush();

}

void myinit()

{

 glClearColor(1.0,1.0,1.0,1.0);

 gluOrtho2D(0.0,499.0,0.0,499.0);

}

 Computer Graphics & Visualization Laboratory Manual 30

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

int main(int argc, char **argv)

{

 int c=0;

 printf("Enter the no of lines\n");

 scanf("%d",&n);

 printf("Enter the co-ordinates of the lines to be clipped\n");

 for(int i=0;i<n;i++)

 {

 printf("\nEnter the co ordinates of line %d\n",i+1);

 for(int j=0;j<2;j++)

 {

 scanf("%f%f",&xl[c],&yl[c]);c++;

 }

 }

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

 glutInitWindowPosition(0,0);

 glutInitWindowSize(500,500);

 glutCreateWindow("Liang Barsky Line Clipper");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 31

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 3: Program to draw a color cube and spin it using OpenGL

transformation matrices.

Program Code:

#include<stdlib.h>

#include<GL/glut.h>

GLfloat vertices[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-

1.0},{-1.0,-1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat normals[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-

1.0},{-1.0,-1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat

colors[][3]={{0.0,0.0,0.0},{1.0,0.0,0.0},{1.0,1.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0},{1

.0,0.0,1.0},{1.0,1.0,1.0},{0.0,1.0,1.0}};

void polygon(int a ,int b,int c, int d)

{

 glBegin(GL_POLYGON);

 glColor3fv(colors[a]);

 glNormal3fv(normals[a]);

 glVertex3fv(vertices[a]);

 glColor3fv(colors[b]);

 glNormal3fv(normals[b]);

 glVertex3fv(vertices[b]);

 glColor3fv(colors[c]);

 glNormal3fv(normals[c]);

 glVertex3fv(vertices[c]);

 glColor3fv(colors[d]);

 glNormal3fv(normals[d]);

 glVertex3fv(vertices[d]);

 glEnd();

}

void colorcube()

{

 polygon(0,3,2,1);

 polygon(2,3,7,6);

 polygon(0,4,7,3);

 polygon(1,2,6,5);

 polygon(4,5,6,7);

 polygon(0,1,5,4);

}

static GLfloat theta[]={0.0,0.0,0.0};

static GLint axis=2;

 Computer Graphics & Visualization Laboratory Manual 32

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void display()

{

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glRotatef(theta[0],1.0,0.0,0.0);

 glRotatef(theta[1],0.0,1.0,0.0);

 glRotatef(theta[2],0.0,0.0,1.0);

 colorcube();

 glFlush();

 glutSwapBuffers();

}

void spincube()

{

 theta[axis]+=1.0;

 if(theta[axis]>360.0)theta[axis]-=360.0;

 glutPostRedisplay();

}

void mouse(int btn,int state,int x,int y)

{

 if(btn==GLUT_LEFT_BUTTON&&state==GLUT_DOWN)axis=0;

 if(btn==GLUT_MIDDLE_BUTTON&&state==GLUT_DOWN)axis=1;

 if(btn==GLUT_RIGHT_BUTTON&&state==GLUT_DOWN)axis=2;

}

void myreshape(int w,int h)

{

 glViewport(0,0,w,h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 if(w<=h)

 glOrtho(-2.0,2.0,-2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,-

10.0,10.0);

 else

 glOrtho(-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,-2.0,2.0,-

10.0,10.0);

 glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

 glutCreateWindow("Rotating Cube");

 glutDisplayFunc(display);

 glutIdleFunc(spincube);

 glutMouseFunc(mouse);

 Computer Graphics & Visualization Laboratory Manual 33

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 glutReshapeFunc(myreshape);

 glEnable(GL_DEPTH_TEST);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 34

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 4: Program to create a house like figure and rotate it about a given

fixed point using OpenGL functions.

Program Code:
#include<GL/glut.h>

#include<math.h>

#include<stdio.h>

#define pi 3.142

GLfloat house[3][9]={{10.0,10.0,35.0,60.0,60.0,20.0,20.0,50.0,50.0},

 {10.0,35.0,50.0,35.0,10.0,10.0,20.0,20.0,10.0},

 {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}};

GLfloat rot_mat[3][3]={{0.0},{0.0},{0.0}};

GLfloat result[3][9]={{0},{0},{0}};

GLfloat h=10.0;

GLfloat k=10.0;

GLfloat theta=0.0;

float c=pi/180.0;

void multiply()

{

 int i,j,l;

 for(i=0;i<3;i++)

 for(j=0;j<9;j++)

 {

 result[i][j]=0;

 for(l=0;l<3;l++)

 result[i][j]=result[i][j]+rot_mat[i][l]*house[l][j];

 }

}

void rotate()

{

 float thetar=theta*c;

 GLfloat m,n;

 m=h*(1-cos(thetar))+k*(sin(thetar));

 n=k*(1-cos(thetar))-h*(sin(thetar));

 rot_mat[0][0]=cos(thetar);

 rot_mat[0][1]=-sin(thetar);

 rot_mat[0][2]=m;

 rot_mat[1][0]=sin(thetar);

 rot_mat[1][1]=cos(thetar);

 rot_mat[1][2]=n;

 rot_mat[2][0]=0;

 rot_mat[2][1]=0;

 rot_mat[2][2]=1;

 multiply();

}

 Computer Graphics & Visualization Laboratory Manual 35

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void drawhouse()

{

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(house[0][0],house[1][0]);

 glVertex2f(house[0][1],house[1][1]);

 glVertex2f(house[0][3],house[1][3]);

 glVertex2f(house[0][4],house[1][4]);

 glEnd();

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(house[0][5],house[1][5]);

 glVertex2f(house[0][6],house[1][6]);

 glVertex2f(house[0][7],house[1][7]);

 glVertex2f(house[0][8],house[1][8]);

 glEnd();

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(house[0][1],house[1][1]);

 glVertex2f(house[0][2],house[1][2]);

 glVertex2f(house[0][3],house[1][3]);

 glEnd();

}

void drawrotatehouse()

{

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(result[0][0],result[1][0]);

 glVertex2f(result[0][1],result[1][1]);

 glVertex2f(result[0][3],result[1][3]);

 glVertex2f(result[0][4],result[1][4]);

 glEnd();

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(result[0][5],result[1][5]);

 glVertex2f(result[0][6],result[1][6]);

 glVertex2f(result[0][7],result[1][7]);

 glVertex2f(result[0][8],result[1][8]);

 glEnd();

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(result[0][1],result[1][1]);

 glVertex2f(result[0][2],result[1][2]);

 glVertex2f(result[0][3],result[1][3]);

 glEnd();

}

 Computer Graphics & Visualization Laboratory Manual 36

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_LINES);

 glVertex2f(0.0,100.0);

 glVertex2f(0.0,-100.0);

 glVertex2f(100.0,0.0);

 glVertex2f(-100.0,0.0);

 glEnd();

 glColor3f(1.0,1.0,1.0);

 glBegin(GL_POINTS);

 glVertex2f(0.0,0.0);

 glVertex2f(0.0,0.0);

 glEnd();

 drawhouse();

 rotate();

 drawrotatehouse();

 glFlush();

}

void myinit()

{

 glClearColor(1.0,1.0,1.0,1.0);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(-100.0,100.0,-100.0,100.0);

 glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char **argv)

{

 printf("Enter the angle of rotation\n");

 scanf("%f",&theta);

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

 glutInitWindowSize(400,400);

 glutInitWindowPosition(0,0);

 glutCreateWindow("rotating a house figure");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

 Computer Graphics & Visualization Laboratory Manual 37

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Output:

 Computer Graphics & Visualization Laboratory Manual 38

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 5: Program to implement the Cohen-Sutherland line-clipping

algorithm. Make provision to specify the input line, window for clipping

and viewport for displaying the clipped image.

Algorithm at work:

Line-Clipping

In computer graphics, line clipping is the process of removing lines or portions of lines

outside of an area of interest. Typically, any line or part thereof which is outside of the

viewing area is removed.

Cohen-Sutherland Line-Clipping algorithm:

This algorithm divides a 2D space into 9 parts, of which only the middle part (viewport)

is visible. The algorithm includes, excludes or partially includes the line based on where

the two endpoints are:

 Both endpoints are in the viewport (bitwise OR of endpoints == 0): trivial accept.

 Both endpoints are in the same part, which is not visible (bitwise AND of

endpoints != 0): trivial reject.

 Both endpoints are in different parts: In case of this non trivial situation the

algorithm finds one of the two points that are outside the viewport (there is at

least one point outside). The intersection of the outpoint and extended viewport

border is then calculated (i.e. with the parametric equation for the line) and this

new point replaces the outpoint. The algorithm repeats until a trivial accept or

reject occurs.

Steps for Cohen-Sutherland Algorithm

1. End-points pairs are checked for trivial acceptance or rejection using outcode (region

code, each of the 9 parts are assigned a 4 bit code indicating their location with

respect to the window/ region of interest).

2. If not trivially accepted or rejected, divide the line segment into two at a clip edge;

3. Iteratively clipped by test trivial-acceptance or trivial-rejection, and divided into two

segments until completely inside or trivial-rejection.

 Computer Graphics & Visualization Laboratory Manual 39

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

0000

0101

0001

1001 1000 1010

0010

0100 0110
A2

B2

C2

A1

C1

B1

E2

D2

A3

B3

D3

C3

Alternate description of the algorithm:

1. Encode end points

 Bit 0 = point is left of window

 Bit 1 = point is right of window

 Bit 2 = point is below window

 Bit 3 = point is above window

2. If C0 Cend ≠ 0 then P0Pend is trivially rejected

3. If C0  Cend = 0 thenP0Pend is trivially accepted

4. Otherwise subdivide and go to step 1 with new segment

C0 = Bit code of P0

Cend = Bit code of Pend

Clip order: Left, Right, Bottom, Top

1) A1C1 1) A2E2 1) A3D3

2) B1C1 2) B2E2 2) A3C3

3) reject 3) B2D2 3) A3B3

 4) B2C2 4) accept

 5) accept

 Computer Graphics & Visualization Laboratory Manual 40

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Program Code:

#include<GL/glut.h>

#include<stdio.h>

double xmin=50,xmax=100,ymin=50,ymax=100;

double xvmin=200,xvmax=300,yvmin=200,yvmax=300;

float xc[10],yc[10];

int n;

typedef int outcode;

const int TOP=8;

const int BOTTOM=4;

const int RIGHT=2;

const int LEFT=1;

/*computing/ assigning region codes to end points of line*/

outcode ComputeCode(double x, double y)

{

 outcode code=0;

 if(y>ymax)

 code|=TOP;

 else if(y<ymin)

 code|=BOTTOM;

 if(x>xmax)

 code|=RIGHT;

 else if(x<xmin)

 code|=LEFT;

 return code;

}

void CohenSutherlandLineClipper(double x0,double y0,double x1,double y1)

{

 outcode outcode0,outcode1,outcodeout;

 double x,y;

 bool accept=false,done=false;

 outcode0=ComputeCode(x0,y0);

 outcode1=ComputeCode(x1,y1);

 do

 {

 if(!(outcode0|outcode1))

 {accept=true;done=true;}

 else if(outcode0& outcode1)done=true;

 else

 {

 outcodeout=outcode0?outcode0:outcode1;

 if(outcodeout&TOP)

 {

 y=ymax;

 Computer Graphics & Visualization Laboratory Manual 41

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 x=x0+(x1-x0)*(ymax-y0)/(y1-y0);

 }

 else if(outcodeout&BOTTOM)

 {

 y=ymin;

 x=x0+(x1-x0)*(ymin-y0)/(y1-y0);

 }

 else if(outcodeout & RIGHT)

 {

 x=xmax;

 y=y0+(y1-y0)*(xmax-x0)/(x1-x0);

 }

 else

 {

 x=xmin;

 y=y0+(y1-y0)*(xmin-x0)/(x1-x0);

 }

 if(outcodeout==outcode0)

 {

 x0=x;

 y0=y;

 outcode0=ComputeCode(x0,y0);

 }

 else

 {

 x1=x;

 y1=y;

 outcode1=ComputeCode(x1,y1);

 }

 }

 }while(done==false);

 if(accept)

 {

 double sx=(xvmax-xvmin)/(xmax-xmin);

 double sy=(yvmax-yvmin)/(ymax-ymin);

 double vx0=xvmin+(x0-xmin)*sx;

 double vy0=yvmin+(y0-ymin)*sy;

 double vx1=xvmin+(x1-xmin)*sx;

 double vy1=yvmin+(y1-ymin)*sy;

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(xvmin,yvmin);

 glVertex2f(xvmax,yvmin);

 glVertex2f(xvmax,yvmax);

 glVertex2f(xvmin,yvmax);

 glEnd();

 Computer Graphics & Visualization Laboratory Manual 42

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINES);

 glVertex2f(vx0,vy0);

 glVertex2f(vx1,vy1);

 glEnd();

 }

}

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(0.0,1.0,0.0);

 glBegin(GL_LINE_LOOP);

 glVertex2f(xmin,ymin);

 glVertex2f(xmax,ymin);

 glVertex2f(xmax,ymax);

 glVertex2f(xmin,ymax);

 glEnd();

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINES);

 for(int i=0;i<n*2;i=i+2)

 {

 glVertex2f(xc[i],yc[i]);

 glVertex2f(xc[i+1],yc[i+1]);

 }

 glEnd();

 for(i=0;i<n*2;i=i+2)

 CohenSutherlandLineClipper(xc[i],yc[i],xc[i+1],yc[i+1]);

 glFlush();

}

void myinit()

{

 glClearColor(1.0,1.0,1.0,1.0);

 gluOrtho2D(0.0,499.0,0.0,499.0);

}

void main(int argc, char **argv)

{

 int c=0;

 printf("Enter the no of lines\n");

 scanf("%d",&n);

 printf("Enter the co-ordinates of the lines to be clipped\n");

 Computer Graphics & Visualization Laboratory Manual 43

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

for(int i=0;i<n;i++)

 {

 printf("\nEnter the co ordinates of line %d\n",i+1);

 for(int j=0;j<2;j++)

 {

 scanf("%f%f",&xc[c],&yc[c]);c++;

 }

}

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

 glutInitWindowPosition(0,0);

 glutInitWindowSize(500,500);

 glutCreateWindow("Cohen-Sutherland Line Clipper");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 44

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

20220 22

2 y

20120 22

1 y

20020 22

0 y

61920 22

19 y

02020 22

20 y

LAB 6: Program to create a cylinder and parallelopipd by extruding

circle and quadilaterals, allow the user to specify the cicle and

quadrilateral respectively.

Algorithm at work:

A Simple Circle Drawing Algorithm

The equation for a circle is:

where r is the radius of the circle

So, we can write a simple circle drawing algorithm by solving the equation for y at unit x

intervals using:

However, unsurprisingly this is not a brilliant solution!

Firstly, the resulting circle has large gaps where the slope approaches the vertical

Secondly, the calculations are not very efficient

– The square (multiply) operations

– The square root operation – try really hard to avoid these!

22 xry 

222 ryx 

 Computer Graphics & Visualization Laboratory Manual 45

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

(x, y)

(y, x)

(y, -x)

(x, -y) (-x, -y)

(-y, -x)

(-y, x)

(-x, y)

2

R

We need a more efficient, more accurate solution

The first thing we can notice to make our circle drawing algorithm more efficient is that

circles centred at (0, 0) have eight-way symmetry

 Similarly to the case with lines, there is an incremental algorithm for drawing

circles – the mid-point circle algorithm

In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the

points for the top right eighth of a circle, and then use symmetry to get the rest of the

points

Assume that we have

just plotted point (xk, yk)

The next point is a

choice between (xk+1, yk)

and (xk+1, yk-1)

We would like to choose

the point that is nearest to

the actual circle

So how do we make this choice?

 Computer Graphics & Visualization Laboratory Manual 46

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Let’s re-jig the equation of the circle slightly to give us:

The equation evaluates as follows:

By evaluating this function at the midpoint between the candidate pixels we can make our

decision

Assuming we have just plotted the pixel at (xk,yk) so we need to choose between

(xk+1,yk) and (xk+1,yk-1)

Our decision variable can be defined as:

If pk < 0 the midpoint is inside the circle and and the pixel at yk is closer to the circle

Otherwise the midpoint is outside and yk-1 is closer

To ensure things are as efficient as possible we can do all of our calculations

incrementally

First consider:

or:

where yk+1 is either yk or yk-1 depending on the sign of pk

The first decision variable is given as:

222),(ryxyxfcirc 















,0

,0

,0

),(yxfcirc

boundary circle theinside is),(if yx

boundary circle on the is),(if yx

boundary circle theoutside is),(if yx

222)
2

1()1(

)
2

1,1(

ryx

yxfp

kk

kkcirck





 

  2
2

1

2

111

2
1]1)1[(

2
1,1

ryx

yxfp

kk

kkcirck









1)()()1(2 1

22

11   kkkkkkk yyyyxpp

r

rr

rfp circ







4
5

)
2

1(1

)
2

1,1(

22

0

 Computer Graphics & Visualization Laboratory Manual 47

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Then if pk < 0 then the next decision variable is given as:

If pk > 0 then the decision variable is:

MID-POINT CIRCLE ALGORITHM

1. Input radius r and circle centre (xc, yc), then set the coordinates for the first point

on the circumference of a circle centred on the origin as:

2. Calculate the initial value of the decision parameter as:

3. Starting with k = 0 at each position xk, perform the following test. If pk < 0, the

next point along the circle centred on (0, 0) is (xk+1, yk) and:

 Otherwise the next point along the circle is (xk+1, yk-1) and:

4. Determine symmetry points in the other seven octants

5. Move each calculated pixel position (x, y) onto the circular path centred at (xc, yc)

to plot the coordinate values:

6. Repeat steps 3 to 5 until x >= y

12 11   kkk xpp

1212 11   kkkk yxpp

),0(),(00 ryx 

rp 
4

5
0

12 11   kkk xpp

111 212   kkkk yxpp

cyyy 
cxxx 

 Computer Graphics & Visualization Laboratory Manual 48

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Program Code:

#include<GL/glut.h >

#include<stdio.h>

GLint xc,yc,r;

GLint x[5],y[5];

void draw_pixel(GLint cx,GLint cy)

{

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_POINTS);

 glVertex2i(cx,cy);

glEnd();

}

void plot_pixels(GLint h,GLint k,GLint x,GLint y)

{

 draw_pixel(x+h,y+k);

 draw_pixel(-x+h,y+k);

 draw_pixel(x+h,-y+k);

 draw_pixel(-x+h,-y+k);

 draw_pixel(y+h,x+k);

 draw_pixel(-y+h,x+k);

 draw_pixel(y+h,-x+k);

 draw_pixel(-y+h,-x+k);

}

void circle_draw(GLint h,GLint k,GLint r)

{

 GLint d=1-r,x=0,y=r;

 while(y>x)

 {

 plot_pixels(h,k,x,y);

 if(d<0)d+=2*x+3;

 else

 {

 d+=2*(x-y)+5;

 --y;

 }

 ++x;

 }

 plot_pixels(h,k,x,y);

}

 Computer Graphics & Visualization Laboratory Manual 49

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void cylinder_draw()

{

 GLint i,n=50;

 for(i=0;i<n;i+=3)

 circle_draw(xc,yc+i,r);

}

void parallelopiped()

{

 GLint i,j,n=40;

 glColor3f(0.0,0.0,1.0);

 glPointSize(2.0);

 for(i=0;i<n;i+=2)

 {

 glBegin(GL_LINE_LOOP);

 for(j=0;j<4;j++)

 glVertex2i(x[j]+i,y[j]+i);

 glEnd();

 }

}

void myinit()

{

 glClearColor(1.0,1.0,1.0,1.0);

 glMatrixMode(GL_PROJECTION);

 gluOrtho2D(0.0,400.0,0.0,400.0);

}

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0,0.0,0.0);

 glPointSize(2.0);

 cylinder_draw();

 parallelopiped();

 glFlush();

}

void main(int argc,char** argv)

{

 printf("Enter the centre and radius of cylinder\n");

 scanf("%d%d%d",&xc,&yc,&r);

 printf("Specify the quadrilateral\n");

 for(int i=0;i<4;i++)

 {printf("\n co-ord %d\t",i);

 scanf("%d%d",&x[i],&y[i]);

 }

 Computer Graphics & Visualization Laboratory Manual 50

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

 glutInitWindowSize(400,400);

 glutInitWindowPosition(50,50);

 glutCreateWindow("Cylinder and parallelopiped");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 51

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 7: Program, using OpenGL functions, to draw a simple shaded

scene consisting of a tea pot on a table. Define suitably the position and

properties of the light source along with the properties of the properties

of the surfaces of the solid object used in the scene.

Program Code:

#include<GL/glut.h>

#include<stdio.h>

void wall(double thickness)

{

 glPushMatrix();

 glTranslated(0.5,0.5*thickness,0.5);

 glScaled(1.0,thickness, 1.0);

 glutSolidCube(1.0);

 glPopMatrix();

}

void tableLeg(double thick, double len)

{

 glPushMatrix();

 glTranslated(0,len/2,0);

 glScaled(thick,len,thick);

 glutSolidCube(1.0);

 glPopMatrix();

}

void table(double topWid, double topThick,double legThick, double legLen)

{

 glPushMatrix();

 glTranslated(0,legLen,0);

 glScaled(topWid,topThick,topWid);

 glutSolidCube(1.0);

 glPopMatrix();

 double dist=0.95*topWid/2.0-legThick/2.0;

 glPushMatrix();

 glTranslated(dist,0,dist);

 tableLeg(legThick,legLen);

 glTranslated(0.0,0.0,-2*dist);

 tableLeg(legThick,legLen);

 glTranslated(-2*dist,0,2*dist);

 tableLeg(legThick,legLen);

 glTranslated(0,0,-2*dist);

 tableLeg(legThick,legLen);

 glPopMatrix();

}

 Computer Graphics & Visualization Laboratory Manual 52

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void displaySolid(void)

{

 glLoadIdentity();

 GLfloat mat_ambient[] = {0.7f, 0.7f, 0.7f, 1.0f}; // gray

 GLfloat mat_diffuse[] = {.5f, .5f, .5f, 1.0f};

 GLfloat mat_specular[] = {1.0f, 1.0f, 1.0f, 1.0f};

 GLfloat mat_shininess[] = {50.0f};

 glMaterialfv (GL_FRONT, GL_AMBIENT, mat_ambient);

 glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse);

 glMaterialfv (GL_FRONT, GL_SPECULAR, mat_specular);

 glMaterialfv (GL_FRONT, GL_SHININESS, mat_shininess);

 GLfloat lightIntensity[] = {0.9f, 0.9f, 0.9f, 1.0f};

 GLfloat light_position[] = {2.0f, 6.0f, 3.0f, 0.0f};

 glLightfv (GL_LIGHT0, GL_POSITION, light_position);

 glLightfv (GL_LIGHT0, GL_DIFFUSE, lightIntensity);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity();

 double winHt = 1.0; //half-height of window

 glOrtho (-winHt * 64/48.0, winHt*64/48.0, -winHt, winHt, 0.1, 100.0);

 glMatrixMode (GL_MODELVIEW);

 glLoadIdentity();

 gluLookAt (2.3, 1.3, 2.0, 0.0, 0.25, 0.0, 0.0, 1.0, 0.0);

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();

 glTranslated (0.6, 0.38, 0.5);

 glRotated (30, 0, 1, 0);

 glutSolidTeapot (0.08);

 glPopMatrix ();

 glPushMatrix();

 glTranslated (0.4, 0, 0.4);

 table (0.6, 0.02, 0.02, 0.3);

 glPopMatrix();

 wall (0.02);

 glPushMatrix();

 glRotated (90.0, 0.0, 0.0, 1.0);

 wall (0.02);

 glPopMatrix();

 glPushMatrix();

 glRotated (-90.0, 1.0, 0.0, 0.0);

 wall (0.02);

 glPopMatrix();

 glFlush();

}

 Computer Graphics & Visualization Laboratory Manual 53

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void main(int argc, char ** argv)

{

 glutInit (&argc, argv);

 glutInitDisplayMode (GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize (640, 480);

 glutInitWindowPosition (100, 100);

 glutCreateWindow ("simple shaded scene consisting of a tea pot on a table");

 glutDisplayFunc (displaySolid);

 glEnable (GL_LIGHTING);

 glEnable (GL_LIGHT0);

 glShadeModel (GL_SMOOTH);

 glEnable (GL_DEPTH_TEST);

 glEnable (GL_NORMALIZE);

 glClearColor (0.1, 0.1, 0.1, 0.0);

 glViewport (0, 0, 640, 480);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 54

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 8: Program to draw a color cube and allow the user to move the

camera suitably to experiment with perspective viewing. Use OpenGL

functions.

Program Code:

#include<stdlib.h>

#include<GL/glut.h>

GLfloat vertices[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-

1.0},{-1.0,-1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat normals[][3]={{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},{1.0,1.0,-1.0},{-1.0,1.0,-

1.0},{-1.0,-1.0,1.0},{1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat

colors[][3]={{0.0,0.0,0.0},{1.0,0.0,0.0},{1.0,1.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0},{1

.0,0.0,1.0},{1.0,1.0,1.0},{0.0,1.0,1.0}};

void polygon(int a ,int b,int c, int d)

{

 glBegin(GL_POLYGON);

 glColor3fv(colors[a]);

 glNormal3fv(normals[a]);

 glVertex3fv(vertices[a]);

 glColor3fv(colors[b]);

 glNormal3fv(normals[b]);

 glVertex3fv(vertices[b]);

 glColor3fv(colors[c]);

 glNormal3fv(normals[c]);

 glVertex3fv(vertices[c]);

 glColor3fv(colors[d]);

 glNormal3fv(normals[d]);

 glVertex3fv(vertices[d]);

 glEnd();

}

void colorcube()

{

 polygon(0,3,2,1);

 polygon(2,3,7,6);

 polygon(0,4,7,3);

 polygon(1,2,6,5);

 polygon(4,5,6,7);

 polygon(0,1,5,4);

}

static GLfloat theta[]={0.0,0.0,0.0};

static GLint axis=2;

static GLdouble viewer[]={0.0,0.0,5.0};

 Computer Graphics & Visualization Laboratory Manual 55

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void display()

{

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glLoadIdentity();

 gluLookAt(viewer[0],viewer[1],viewer[2],0.0,0.0,0.0,0.0,1.0,0.0);

 glRotatef(theta[0],1.0,0.0,0.0);

 glRotatef(theta[1],0.0,1.0,0.0);

 glRotatef(theta[2],0.0,0.0,1.0);

 colorcube();

 glFlush();

 glutSwapBuffers();

}

void mouse(int btn,int state,int x,int y)

{

 if(btn==GLUT_LEFT_BUTTON&&state==GLUT_DOWN)axis=0;

 if(btn==GLUT_MIDDLE_BUTTON&&state==GLUT_DOWN)axis=1;

 if(btn==GLUT_RIGHT_BUTTON&&state==GLUT_DOWN)axis=2;

 theta[axis]+=2.0;

 if(theta[axis]>360.0)theta[axis]-=360.0;

 glutPostRedisplay();

}

void keys(unsigned char key,int x,int y)

{

 if(key=='x') viewer[0]-=1.0;

 if(key=='X') viewer[0]+=1.0;

 if(key=='y') viewer[1]-=1.0;

 if(key=='Y') viewer[1]+=1.0;

 if(key=='z') viewer[2]-=1.0;

 if(key=='Z') viewer[2]+=1.0;

 glutPostRedisplay();

}

void myreshape(int w,int h)

{

 glViewport(0,0,w,h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 if(w<=h)

 glFrustum(-2.0,2.0,-

2.0*(GLfloat)h/(GLfloat)w,2.0*(GLfloat)h/(GLfloat)w,2.0,20.0);

 else

 glFrustum(-2.0*(GLfloat)w/(GLfloat)h,2.0*(GLfloat)w/(GLfloat)h,-

2.0,2.0,2.0,20.0);

 glMatrixMode(GL_MODELVIEW);

}

 Computer Graphics & Visualization Laboratory Manual 56

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void main(int argc, char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

 glutCreateWindow(" Cube Viewer");

 glutReshapeFunc(myreshape);

 glutDisplayFunc(display);

 glutMouseFunc(mouse);

 glutKeyboardFunc(keys);

 glEnable(GL_DEPTH_TEST);

 glutMainLoop();

}

Output:

 Computer Graphics & Visualization Laboratory Manual 57

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

 Computer Graphics & Visualization Laboratory Manual 58

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 9: Program to fill any given polygon using scan-line area filling

algorithm.(Use appropriate data structures.)

Algorithm at work:

Scan Line Polygon Fill Algorithms

• A standard output primitive in general graphics package is a solid color or

patterned polygon area:

• There are two basic approaches to filling on raster systems.

• Determine overlap Intervals for scan lines that cross that area.

• Start from a given interior point and paint outward from this point until we

encounter the boundary

• The first approach is mostly used in general graphics packages, however second

approach is used in applications having complex boundaries and interactive

painting systems

Scan Line Polygon Fill Algorithm:

Interior pixels along a scan line passing through a polygon area

 Computer Graphics & Visualization Laboratory Manual 59

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

• For each scan line crossing a polygon are then sorted from left to right, and the

corresponding frame buffer positions between each intersection pair are set to the

specified color.

• These intersection points are then sorted from left to right , and the corresponding

frame buffer positions between each intersection pair are set to specified color

• In the given example (previous slide) , four pixel intersections define stretches

from x=10 to x=14 and x=18 to x=24

• Some scan-Line intersections at polygon vertices require special handling:

• A scan Line passing through a vertex intersects two polygon edges at that

position, adding two points to the list of intersections for the scan Line

• In the given example , scan Line y intersects five polygon edges and the scan Line

y‘ intersects 4 edges although it also passes through a vertex

• y‘ correctly identifies internal pixel spans ,but need some extra processing

• One way to resolve this is also to shorten some polygon edges to split those

vertices that should be counted as one intersection

• When the end point y coordinates of the two edges are increasing , the y value of

the upper endpoint for the current edge is decreased by 1

• When the endpoint y values are monotonically decreasing, we decrease the y

coordinate of the upper endpoint of the edge following the current edge

Adjusting endpoint values for a polygon, as we process edges in order around the

polygon perimeter. The edge currently being processed is indicated as a solid like. In (a),

the y coordinate of the upper endpoint of the current edge id decreased by 1. In (b), the y

coordinate of the upper end point of the next edge is decreased by 1

- The topological difference between scan line y and scan line y’ is …

- For Scan line y, the two intersecting edges sharing a vertex are on opposite sides

of the scan line …!

 But for scan line y’, the two intersecting edges are both above the scan line.

- Thus, the vertices that require additional processing are those that have

connecting edges on opposite sides of scan line.

 Computer Graphics & Visualization Laboratory Manual 60

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

- We can identify these vertices by tracing around the polygon boundary either in

clock-wise or anti-clockwise order and observing the relative changes in vertex y

coordinates as we move from one edge to the next.

- If the endpoint y values of two consecutive edges monotonically increase or

decrease, we need to count the middle vertex as a single intersection point for any

scan line passing through that vertex.

- Otherwise, the shared vertex represents a local extremum (min. or max.) on the

polygon boundary, and the two edge intersections with the scan line passing

through that vertex can be added to the intersection list

Intersection points along the scan lines that intersect polygon vertices. Scan line y

generates an odd number of intersections, but scan line y generates an even number of

intersections that can be paired to identify correctly the interior pixel spans.

The scan conversion algorithm works as follows

i. Intersect each scanline with all edges

ii. Sort intersections in x

iii. Calculate parity of intersections to determine in/out

iv. Fill the “in” pixels

Special cases to be handled:

i. Horizontal edges should be excluded

ii. For vertices lying on scanlines,

i. count twice for a change in slope.

ii. Shorten edge by one scanline for no change in slope

• Coherence between scanlines tells us that

- Edges that intersect scanline y are likely to intersect y + 1

- X changes predictably from scanline y to y + 1

1

1 2 1

2 1 1

Scan Line y1

Scan Line y

 Computer Graphics & Visualization Laboratory Manual 61

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

We have 2 data structures: Edge Table and Active Edge Table

• Traverse Edges to construct an Edge Table

1. Eliminate horizontal edges

2. Add edge to linked-list for the scan line corresponding to the lower vertex.

Store the following:

- y_upper: last scanline to consider

- x_lower: starting x coordinate for edge

- 1/m: for incrementing x; compute

• Construct Active Edge Table during scan conversion. AEL is a linked list of

active edges on the current scanline, y. Each active edge line has the following

information

- y_upper: last scanline to consider

- x_lower: edge’s intersection with current y

- 1/m: x increment

The active edges are kept sorted by x

Algorithm:

1. Set y to the smallest y coordinate that has an entry in the ET; i.e, y for the first

nonempty bucket.

2. Initialize the AET to be empty.

3. Repeat until the AET and ET are empty:

3.1 Move from ET bucket y to the AET those edges whose y_min = y (entering

edges).

3.2 Remove from the AET those entries for which y = y_max (edges not involved

in the next scanline), the sort the AET on x (made easier because ET is

presorted).

3.3 Fill in desired pixel values on scanline y by using pairs of x coordinates from

AET.

3.4 Increment y by 1 (to the coordinate of the next scanline).

3.5 For each nonvertical edge remaining in the AET, update x for the new y.

Scan Line y
k
 + 1

Scan Line y
k

(X
k + 1

, Y
k + 1

)

(X
k
, Y

k
)

 Computer Graphics & Visualization Laboratory Manual 62

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Program Code:

#include<stdio.h>

#include<GL/glut.h>

#include<stdlib.h>

#define WINDOW_HEIGHT 500

/*The edge data structure*/

typedef struct tEdge {

int yUpper;

float xIntersect, dxPerScan;

struct tEdge * next;

} Edge;

typedef struct tdcPt {

int x;

int y;

} dcPt;

int cnt;

dcPt pts[60];

/* Inserts edge into list in order of increasing xIntersect field. */

void insertEdge (Edge * list, Edge * edge)

{

Edge * p, * q = list;

p = q->next;

while (p != NULL)

{

if (edge->xIntersect < p->xIntersect)

p = NULL;

else

{

q = p;

p = p->next;

}

}

edge->next = q->next;

q->next = edge;

}

/* Store lower-y coordinate and inverse slope for each edge. Adjust

and store upper-y coordinate for edges that are the lower member

of a monotically increasing or decreasing pair of edges */

void makeEdgeRec(dcPt lower, dcPt upper, int yComp, Edge * edge, Edge *

edges[])

{

//Edge *q;

edge->dxPerScan =(float) (upper.x - lower.x) / (upper.y - lower.y);

edge->xIntersect = lower.x;

if (upper.y < yComp)

 Computer Graphics & Visualization Laboratory Manual 63

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

edge->yUpper = upper.y - 1;

else

edge->yUpper = upper.y;

insertEdge (edges[lower.y], edge);

/*checking the values inserted into edge records uncomment if you want to check

q=edges[lower.y]->next;

while(q!=NULL)

{

printf("xi=%f\n",q->xIntersect);

q=q->next;

}*/

}

/* For an index, return y-coordinate of next nonhorizontal line */

int yNext (int k, int cnt, dcPt * pts)

{

int j;

if ((k+1) > (cnt-1))

j = 0;

else

j = k + 1;

while (pts[k].y == pts[j].y)

if ((j+1) > (cnt-1))

j = 0;

else

j++;

return (pts[j].y);

}

void buildEdgeList (int cnt, dcPt * pts, Edge * edges[])

{

Edge * edge;

dcPt v1, v2;

int i, yPrev = pts[cnt - 2].y;

v1.x = pts[cnt-1].x; v1.y = pts[cnt-1].y;

for (i=0; i<cnt; i++) {

v2 = pts[i];

if (v1.y != v2.y) { /* nonhorizontal line */

edge = (Edge *) malloc (sizeof (Edge));

if (v1.y < v2.y) /* up-going edge */

makeEdgeRec (v1, v2, yNext (i, cnt, pts), edge, edges);

else /* down-going edge */

makeEdgeRec (v2, v1, yPrev, edge, edges);

}

yPrev = v1.y;

 Computer Graphics & Visualization Laboratory Manual 64

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

v1 = v2;

}

}

void buildActiveList (int scan, Edge * active, Edge * edges[])

{

Edge * p, * q;

p = edges[scan]->next;

while (p) {

q = p->next;

insertEdge (active, p);

p = q;

}

}

void fillScan (int scan, Edge * active)

{

Edge * p1, * p2;

int i;

p1 = active->next;

while (p1)

{

p2 = p1->next;

glColor3f(0.0,1.0,0.0);

glBegin(GL_POINTS);

for (i=p1->xIntersect; i<p2->xIntersect; i++)

glVertex2i((int) i, scan);

glEnd();

p1 = p2->next;

}

}

void deleteAfter (Edge * q)

{

Edge * p = q->next;

q->next = p->next;

free (p);

}

/* Delete completed edges. Update 'xIntersect' field for others */

void updateActiveList (int scan, Edge * active)

{

Edge * q = active, * p = active->next;

while (p)

if (scan >= p->yUpper)

{

p = p->next;

deleteAfter (q);

}

 Computer Graphics & Visualization Laboratory Manual 65

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

else

{

p->xIntersect = p->xIntersect + p->dxPerScan;/*x=x+1/m*/

q = p;

p = p->next;

}

}

void resortActiveList (Edge * active)

{

Edge * q, * p = active->next;

active->next = NULL;

while (p)

{

q = p->next;

insertEdge (active, p);

p = q;

}

}

void scanFill (int cnt, dcPt * pts)

{

Edge * edges[WINDOW_HEIGHT], * active;

int i, scan;

for (i=0; i<WINDOW_HEIGHT; i++)

{

edges[i] = (Edge *) malloc (sizeof (Edge));

edges[i]->next = NULL;

}

buildEdgeList (cnt, pts, edges);

active = (Edge *) malloc (sizeof (Edge));

active->next = NULL;

for (scan=0; scan<WINDOW_HEIGHT; scan++)

{

buildActiveList (scan, active, edges);

if (active->next)

{

fillScan (scan, active);

updateActiveList (scan, active);

resortActiveList (active);

}

}

/* Free edge records that have been malloc'ed ... */

free(active);

}

 Computer Graphics & Visualization Laboratory Manual 66

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(0.0,0.0,1.0);

 glBegin(GL_LINE_LOOP);

 for(int i=0;i<cnt; i++)

 {

 glVertex2i(pts[i].x,pts[i].y);

 }

 glEnd();

 scanFill(cnt,pts);

 glFlush();

}

void myinit()

{

glClearColor(0.0,0.0,0.0,1.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0,499.0,0.0,499.0);

glMatrixMode(GL_MODELVIEW);

}

void main(int argc, char **argv)

{

 printf("Enter the no of points\n");

 scanf("%d",&cnt);

 printf("Enter the pts\n");

 for(int i=0;i<cnt; i++)

 scanf("%d%d",&pts[i].x,&pts[i].y);

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

 glutInitWindowPosition(0,0);

 glutInitWindowSize(500,500);

 glutCreateWindow("Scan Line Area Filling Algorithm..Orisinal");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

 Computer Graphics & Visualization Laboratory Manual 67

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

Output:

 Computer Graphics & Visualization Laboratory Manual 68

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

LAB 10: Program to display a set of values { fij } as a rectangular mesh.

Program Code:

#include<GL/glut.h>

#include<stdlib.h>

#define maxx 20

#define maxy 25

#define dx 15

#define dy 10

GLfloat x[maxx]={0.0};

GLfloat y[maxy]={0.0};

GLfloat x0=50,y0=50;

GLint i,j;

void display()

{

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(0.0,0.0,1.0);

 for(i=0;i<maxx;i++)

 x[i]=x0+i*dx;

 for(j=0;j<maxy;j++)

 y[j]=y0+j*dy;

 for(i=0;i<maxx-1;i++)//drawing the mesh

 for(j=0;j<maxy-1;j++)

 {

 glBegin(GL_LINE_LOOP);

 glVertex2f(x[i],y[j]);

 glVertex2f(x[i+1],y[j]);

 glVertex2f(x[i+1],y[j+1]);

 glVertex2f(x[i],y[j+1]);

 glEnd();

 }

 glFlush();

}

void myinit()

{

 glClearColor(1.0,1.0,1.0,1.0);

 glPointSize(5.0);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluOrtho2D(0,499.0,0,499.0);

 glMatrixMode(GL_MODELVIEW);

}

 Computer Graphics & Visualization Laboratory Manual 69

Prepared By: Aslam J K & Shonali R

Dept Of Computer Science & Engineering

void main(int argc,char **argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);

 glutInitWindowPosition(0,0);

 glutInitWindowSize(500,400);

 glutCreateWindow("Rectangular mesh for f{i,j}");

 myinit();

 glutDisplayFunc(display);

 glutMainLoop();

}

Output:

