

NACA Previous Year Paper **JNU 2009**

1.	If $u = F(x - y, y)$	$v - z, z - x$), then $\frac{\partial u}{\partial x} + $	$\frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ is equal to	
	(a) 3	(b) 0	(c) 1	(d) None of the above
2.	Disk allocation u	used in UXIX is similar	to	
	(a) contiguous al	location	(b) indexed allo	cation
	(c) linked allocat	ion	(d) a variant of l	linked allocation
3.	The positive inte	eger just greater thatn (1	+ 0.0001) ¹⁰⁰⁰⁰ is	
	(a) 4	(b) 5	(c) 2	(d) 3
4.	The height of an	open-cylinder of given	surface and greatest vo	lume is equal to
	(a) two times the	radius of the base	(b) half of the ra	adius of the base
	(c) radius of the	base	(d) 1/9th of the :	radius of the base
5.	If (<i>G</i> , *) is an Ab	elian group, then		
	(a) $x = x^{-1}$, for a		(b) $x = x^2$, for a	any $x \in G$
	(c) $(x * y)^2 = x^2$	* y^2 , for any $x, y \in G$	(d) <i>G</i> is of finite	order
6.	Dhon Sport Conclusions :	lowing statements: i is a good sportsman. smen are healthy rsons are sportsmen hy		
		e following is derived as		
	(a) Only conclus		(b) Only conclu	
	(c) Either I or II f		(d) Neither I not	r ll follows
7.	The value of \int_0^∞ .	$\int_{x}^{\infty} \frac{e^{-y}}{y} dx dy $ is		
	(a) – 1	(b) 1	(c) 0	(d) ∞
8.	For which three	values of <i>c</i> , then given a	matrix A is not invertib $A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$	le ?
			0 7 6	

9.	The surface area of th (a) 3πα ²	e section of the cylinde (b) $\sqrt{3\pi a^2}$	$x^{2} + y^{2} = a^{2}$ made by (c) $\sqrt{3\pi}a^{2}$	the plane $x + y + z = a$ is (d) None of the above	
		. ,			
10.	If A and B are symmetric (i) $A^2 - B^2$	etric matrices, which of (ii) $(A + B) (A - B)$	these are certainly symmetric (iii) <i>ABA</i>	(d) <i>ABAB</i>	
	(a) (i) and (iii) only	(b) (i) and (iv) only	(c) (ii) and (iii) only	(d) (ii), (iii) and (iv) only	
11.	If a system is in an ur	nsafe state, then			
	(a) it is deadlocked		(b) it is starving		
	(c) it may enter into d	eadlock	(d) it will never enter	into deadlock	
12.	The solution of different	ential equation $\frac{dy}{dx} + y c$	os $x = \frac{1}{2} \sin 2x$ is given b	by	
	(a) $y = \cos x - 1 + ce^{-1}$	COS X	(b) $y = \sin x - 1 + ce^{-1}$	- COS X	
	(c) $y = \sin x - 1 + ce^{-1}$	$\sin x$	(d) $v = \cos x - 1 + ce^{-1}$	$-\sin x$	
13.		s standard form, three o	f the constraints are		
10.	I. $x_1 + x_2 \le 2$				
	II. $2x_1 + 2x_2 \le 3$				
	III. $3x_1 + 3x_2 \le 8$ III. $3x_1 + 3x_2 \le 8$				
		he constrains will not a	ffect the optimality ?		
	(a) II and III	(b) I and II	(c) I and III	(d) I only	
14			d – 3, the eigenvalues of		
14.	(a) are 4 and – 9	a with eigenvalues 2 and	(b) are 2 and -3		
	(a) are 4 and 9 (c) are 4 and 9			ned from the given data	
15		will the equations	(u) cannot be determine	neu nom me given uata	
15.	For what value of k , will the equations 2x + 3y = 5				
	and $6x + ky =$ have an infinite number				
	(a) 7	(b) 8	(c) 9	(d) 10	
16.				roximate relative error is always	
10.	(a) greater than the rel		(b) equal to the relativ		
	(c) less than the relati		(d) None of the above		
17		ly out of the following is			
17.	(a) ECL	(b) RTL	(c) DTL	(d) TTL	
10				(u) IIL	
18.	0	ollowing algebraic struc			
10	(a) group	(b) field	(c) ring	(d) monoid	
19.	the expression $Z \times T$	$-S \times U + P$, what is U t	o Z ?	A - B means A is the wife of B, then in	
	(a) Mother	(b) Grandmother	(c) Father	(d) Cannot be determined	
20.	There are sixteen 2 by (a) 6	(b) 8	(c) 10 (c) 10	se, how many are invertible ? (d) None of the above	
21.	Cyclomatic number of	f a graph is also known	as its		
	(a) rank	(b) complexity	(c) nullity	(d) None of the above	
22.	The function $f(x) = \langle$	$ \begin{cases} 0, x = 0\\ \sin \frac{1}{x}, x \neq 0 \end{cases} $ is			
	(A) continuous		(b) discontinuous		
	(c) differentiable such	that $f'(0) = 1$	(d) differentiable such	f'(0) = -1	
23.			of adding (+F12A) ₁₆ wi		
	(a) 10D55C	(b) 11D55C	(c) 00D55D	(d) 10D55D	
	(-)	(~) ========	(-)		

24.	Find the odd one		<pre>///</pre>	
	(a) Ballot	(b) Manifesto	(c) Election	(d) Vote
25.	The value of $\int_0^9 dx \int_0^1$	$\int_{0}^{x} e^{y/x} dy$ is		
	(a) $1 - e^2$	(b) $e^2 - 1$	(c) 1 – <i>e</i>	(d) <i>e</i> – 1
26.	The volume of the s	solid bounded by the sur	face $x = 0, y = 0, z =$	0 and $x + y + z = 1$ is given by
	(a) 1/2	(b) 1/3	(c) 1/6	(d) None of the above
27.		er. If he attempts 75 qu		e every correct answer and loses 1 mark for 125 marks, the number of questions he
	(a) 35	(b) 40	(c) 42	(d) 46
28.	Which of the follow (a) Pass by value (c) Pass by value-res		echniques is supported (b) Pass by referen (d) All of the abov	
	()		, ,	
29.	The solution of diffe	erential equation $\frac{dy}{dx} = si$	$n\left(\frac{y}{x}\right) + \frac{y}{z}$ is given by	
	(a) $\cot\left(\frac{y}{2x}\right)$	(b) $\cot\left(\frac{2x}{y}\right)$	(c) $\tan\left(\frac{2x}{y}\right)$	(d) $\tan\left(\frac{y}{2x}\right)$
30.	If PAINT is coded a	is 74128 and EXCEL is co	oded as 93596. how w	rill ACCEPT be encoded ?
	(a) 455978	(b) 547978	(c) 554978	(d) 735961
	{cout < void hell {cot << void mai	"How are U doing today	· ?";}	
	(a) Hi There		(b) How are U doin	ng today
	(c) Results in runtin	ne error	(d) Results in com	pilation error
32.	The solution of $\frac{d^2 y}{dx^2}$	$y'' - 2\frac{dy}{dx} + y = xe^x \sin x$	is given by	
	(a) $y = (c_1 + c_2 x) e^x$	$x - (x\sin x + 2\cos x)e^x$	(b) $y = xe^x - (x \sin \theta)$	in $x + 2\cos x$ e^x
	(c) $y = (c_1 + c_2 x) e^x$	x^{2} + (x sin x + 2 cos x) e^{x}	(d) $y = (c_1 + c_2 x)e_1$	$e^x + (x\cos x + 2\tan x)e^x$
33.	The area bounded b	by $y^2 = u - x$ and $y^2 = x$	x is	
	(a) $\frac{16}{3\sqrt{2}}$	(b) $\frac{8}{3\sqrt{2}}$	(c) $\frac{16\sqrt{2}}{3}$	(d) $\frac{16\sqrt{3}}{3}$
34.	Point out the odd m	10		
	(a) Advise	(b) Counsel	(c) Suggest	(d) Direct
35.	The coordinates of	the centre of the smalles	t circle touching the c	ircle $x^2 + y^2 = 4$ and line $x + y = 5\sqrt{2}$ is
	$(a)\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	$(b)\left(\frac{3}{2}, \frac{3}{2}\right)$	$(c)\left(\frac{7}{2\sqrt{2}}, \frac{7}{3\sqrt{2}}\right)$	(d) None of the above
36.		25 students of Section <i>X</i> the marks of all the 55 st		is 67 and that of 30 students of Section XB
	(a) 71	(b) 71·4	(c) 72	(d) 72 · 4

VLSI Academy

37.		o burn, carbon dioxide i		
	(a) isolate	(b) foam	(c) extinguish	(d) explode
38.	What is the negation of			
	(a) $\sim p \leftrightarrow \sim q$		(c) $p \rightarrow \sim q$ x + 1 y - 3 z + 2	
39.	The equation of the pl	lane containing the line	$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ a	nd the point (0, 7, – 7) is
	· · ·	· · ·	(c) $x + y + z = 0$	
40.	How many characters synchronous ?	per sec (7 bits + 1 par	ity) can be transmitted	over a 2400 b.p.s. line if the transfer is
	(a) 300	(b) 240	(c) 250	(d) 275
41.		le is inscribed in the pa parabola. The length of		nat one vertex of this triangle coincides
	(a) $4a\sqrt{3}$	(b) $6a\sqrt{3}$	(c) $2a\sqrt{3}$	(d) $48a\sqrt{3}$
42.		guage, all operators hav 1×2 is this language we		associate to the left. The value of the
43.			aph with <i>v</i> vertices, <i>e</i> edg	
			(c) $v = e + r + 2$	
44.	-		FROM DUAL WHERE	
	(a) Hi	(b) FALSE	(c) TRUE	(d) No output
45.	The value of λ , so that	t the vector $\vec{\mathbf{U}} = (x + 3y)$	$\hat{\mathbf{i}} + (y - 2z) \hat{\mathbf{j}} + (x + \lambda z)$	$\hat{\mathbf{k}}$ is a solenoidal vector, is
	(a) – 2	(b) 1	(c) 3	(d) None of the above
46.	If MADRAS can be wi (a) ROAAKNM	ritten as ARSARS, how ((b) ROAKANM	can ARKONAM be writt (C) ROAKNNM	en in that code ? (D) ROAKNAM
47.	The value of $\oint_C \frac{e^{2z}}{(z+1)}$	$\frac{1}{4}$ dz, where C is the circ	z = 2 is	
	(a) $\frac{\pi}{3} i e^{-2}$	(b) $\frac{2\pi}{3}ie^{-2}$	(c) $\frac{8\pi}{3}ie^{-2}$	(d) None of the above
48.	To implement the exp	$\overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABCD}$	+ $A\overline{B}CD$, it takes one OF	R gate and
	(a) one AND gate		(b) three AND gates	
	(c) three AMD gates an		(d) three AND gates an	
49.		he ace of spades will be 1g Poisson distribution i		well-shuffled cards at least once in 104
	(a) e^2	(b) e^{-2}	(c) $1 - e^2$	(d) $1 - e^{-2}$
50.	. ,	+ mk, b = i + j + (m + 1)	k and c = i - j + mk and	re coplanar if <i>m</i> is equal to
	(a) 1	(b) 4	(c) 3	(d) None of the above
51.	Dual of $(q \rightarrow p) \rightarrow r$ is			
		(b) $p \rightarrow (q \rightarrow r)$		(d) None of the above
52.		g subsets of the real spa	$\operatorname{ce} R^3$:	
	I. {{ x_1, x_2, x_3 } : x_2, x_3			
	II. { $(x_1, x_2, x_3): x_2 -$ III. { $(x_1, x_2, x_3): x_2 -$	$x_3 + 2x_1 = 0$ $\leq x_2 \leq x_1 \text{ mut be true}$		
	How many of them are			
	(a) 0	(b) 1	(c) 2	(d) 3
53.	. ,	elongs to the group of oh		
	(a) Light	(b) Electricity	(c) Hour	(d) Ampere
54.	The harmonic mean o	f the roots of the equation	on $(5 + \sqrt{2}) x^2 - (4 + \sqrt{5})$	$x + 8 + 2\sqrt{5} = 0$ is

55.	Relations produced fr (a) first normal form	rom an E-R model will a	lways be in (b) second normal for:	m
	(c) third normal form		(d) fourth normal form	
56.		and plane defined by <i>z</i>		-
	(a) interior of an ellip		(b) exterior of a circle	
	(c) interior and bound	lary of an ellipse	(d) None of the above	
57.	If $x + iv =1$	$, \theta \neq 2n\pi, n \in I,$	then maximum value of	x is
50	(a) 1 Find out the meaning	(b) 2 s of the given declaration	(c) $1/2$	(d) 1/3
58.	int(*)	p) [5];		
		ional array of length 5 of	f pointers to integers	
	(b) <i>p</i> is a pointer to a (c) Same as int(*p)[5]	5-element integer array		
	(d) None of the above			
59.		s is similar to the set (63	3, 49, 35) ?	
	(a) (72, 40, 24)	(b) (72, 48, 24)	(c) (64, 40, 28)	(d) (81, 63, 45)
60.	The only value of <i>x</i> sa	atisfying the equation 6	$\sqrt{\frac{x}{x+4}} - 2\sqrt{\frac{x+4}{x}} = 11,$	where $x \in R$ is
	(a) 4/35	(b) - 4/35	(c) 16/3	(d) – 16/3
61.	IF CHARCOAL is cod	ed as 45164913 and MC	DRALE is coded as 2961	37, how is the word COLLER coded ?
	(a) 397758	(b) 497758	(c) 483359	(d) 493376
62.		-		titute three-fourths of the boys and the n the class, then the number of girls in
	(a) 6	(b) 12	(c) 18	(d) 24
63.	Centre of the arc repr	esented by $\arg\left(\frac{z-3i}{z-2i+1}\right)$	$\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$ is	
	(a) $\frac{1}{2}(5i+5)$	(b) $\frac{1}{2}(5i-5)$	(c) $\frac{1}{2}(9i+5)$	(d) $\frac{1}{2}(9i-5)$
64.	The dual simplex me			
	(a) feasible but superc	-	(b) feasible but subop	
05	(c) infeasible but supe	-	(d) infeasible but subo	optimal solution
65.	(a) R-S flip-flop	itable for parallel loadin (b) D flip-flop	g of data 1s (c) J-K flip-flop	(d) T flip-flop
66.				$z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is
	(a) 0	(b) 1	(c) 2	(d) 3
67.	0		by 1011 results in a rema	
	(a) 101	(b) 100 (π)	(c) 110 (π)	(d) 111
68.	The maximum value	of $1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} + \theta\right)$	$s\left(\frac{\pi}{4}-\theta\right)$ for real values of	
	(a) 3	(b) 4	(c) 5	(d) None of the above
69.		ble binary trees with 4 n		
	(a) 12	(b) 13	(c) 14	(d) 15

70.	A differential equation associated to the primit	ive $y = a + be^{5x} + ce^{-7x}$	^x is
	(a) $y_3 + 2y_2 - y_1 = 0$	(b) $4y_3 + 5y_2 - 20y_1 =$	= 0
	(c) $y_3 + 2y_2 - 35y_1 = 0$	(d) None of the above	
71.	A shelf holds <i>n</i> books in a row. How many wa are chosen ?	ays are there to choose	r books so that no two adjacent books
	(a) ${}^{n}C_{r}$ (b) ${}^{n+1}C_{r}$	(c) $^{n-r+1}C_r$	(d) $^{n-r}C_r$
72.	Choose the pair in which the words are differen	ntly related	
	(a) Beautician : Parlour	(b) Chemist : Medicine	
	(c) Lawyer : Court	(d) Engineer : Site	
73.	Using signed megnitude representation overflo and the carry out of the sign bit by using the ga		th the operands as carry into the sign
	(a) OR (b) AND	(c) XOR	(d) NOT
74.	As RATIONAL is to RATNIOLA, TRIBAL is to		
	(a) TIRLAB (b) TRIALB	(c) TIRLABA	(d) TRILBA
75.	Rahul and Sarvesh take turns in throwing two the prize. If Rahul gets the first turn to throw th (a) 10 : 11 (b) 11 : 10		
76.	The probability density function $f(x)$ of a cont	inuous random variable	e x is defined by
	$f(\mathbf{x}) = \int A$	$4x^{-3}, 5 \le x \le 10$	
		$4x^{-3}$, $5 \le x \le 10$ 0, otherwise	
	The value of A is		
	(a) 50 (b) 1	(c) – 200	(d) 200/3
77.	In the cigarette smoking population 70% are m women smoke 'WILLS'. The probability that a p		
	(a) 6/13 (b) 7/13	(c) 3/13	(d) 10/13
78.	In 1's complement arithmetic a carry generated	should be	
		(c) appended	(d) discarded
79.	If <i>P</i> is a variable on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	with AA' as the major	axis, then the maximum area of the
	triangle <i>APA'</i> is		
	(a) <i>ab</i> (b) 2 <i>ab</i>	(c) <i>ab</i> /2	(d) \sqrt{ab}
80.	Select the odd numeral pair		
	(a) 24-21 (b) 46-32	(c) 63-23	(d) 84-24
81.	The incidence of occupational disease in an in from it. The probability that out of 6 workers 4	-	-
	(a) 2/3 (b) 40/2125	(c) 53/2125	(d) 50/2125
82.	There are four algorithms A1, A2, A3, A4 winner $n/\log(n)$ respectively. Which of these algorithm		
	(a) <i>A</i> 1 (b) <i>A</i> 2	(c) A3	(d) A4
83.	The arithmetic mean of the series ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{1}$	$C_2,, {}^n C_n$ is	
	(a) $2^n/(n+1)$ (b) $2^n/n$	(c) $2^{n-1}/(n+1)$	(d) None of the above
84.	If a variate X is expressed as a linear function of \overline{X} of X is	of two variables <i>U</i> and <i>V</i>	<i>V</i> in the form $X = aU + bV$, then mean
	(a) $a\overline{U} - b\overline{V}$ (b) $\overline{U} + \overline{V}$	(c) $b\overline{U} + a\overline{V}$	(d) None of the above
85.	The standard diviation (SD) of a variate x is σ .		ax + b)/c, where a, b, c are constants, is
	(a) $\left(\frac{a}{c}\right)\sigma$ (b) $\left \frac{a}{c}\right \sigma$	(c) $\left(\frac{a^2}{c^2}\right)\sigma$	(d) None of the above

86.	A student obtains 75%, 80% and 85% marks in three subjects. If the marks of another subject is added, th average cannot be less than
	(a) 60% (b) 65% (c) 80% (d) 90%
87.	Which one of the following transformations reduces the differential equation $\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2}(\log z)^2$ int
	the form $\frac{du}{dx} + uP(x) = Q(x)$?
88.	The value of ${}^{n}C_{0} {}^{2n}C_{n} - {}^{n}C_{1} {}^{2n-1}C_{n} + {}^{n}C_{2} {}^{2n-2}C_{n} - {}^{n}C_{3} {}^{2n-3}C_{n} + \dots + (-1)^{n-n}C_{n} {}^{n}C_{n}$ is
	(a) 0 (b) 1 (c) $(-1)^n$ (d) 2^n
89.	Q is the brother of R , P is the sister of Q , T is the brother of S , S is the daughter of R , then Q is the uncle of whom ?
	(a) R and P (b) P and T (c) Q and T (d) S and T
90.	The necessary and sufficient condition for a complete graph of n vertices K_n to be Eularian is(a) n should be even(b) n should be odd(c) n is a composite number(d) n is a prime number
91.	Solution of the differential equation $2y \sin x \frac{dy}{dx} = 2 \sin x \cos x - y^2 \cos x$ satisfying $y(\pi/2) = 1$ is given by
	(a) $y^2 = \sin x$ (b) $y = \sin^2 x$ (c) $y^2 = \cos x + 1$ (d) $y^2 \sin x = 4\cos^2 x$
92.	What is the possible number of binary relations on a set S having n elements which are symmetric an antisymmetric ?
	-
93.	(a) 0 (b) 1 (c) n^2 (d) 2^n The equation $ \sqrt{x^2 + (y-1)^2} - \sqrt{x^2 + (y+1)^2} = K$ will represent a hyperbola for
	(a) $K \in (0, 2)$ (b) $K \in (-2, 1)$ (c) $K \in (1, \infty)$ (d) $K \in (0, \infty)$
94.	A hash table can store a maximum of 10 records. Currently there are records in locations 1, 3, 4, 7, 8, 9, 10 The probability of a new record going into location 2, with a hash function resolving collisions by linear probing is
	(a) $0 \cdot 6$ (b) $0 \cdot 1$ (c) $0 \cdot 2$ (d) $0 \cdot 5$
95.	If $a + b + c \neq 0$ and $\begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0$, then the total number of different values of x is equal to
	(a) 1 (b) 2 (c) 3 (d) None of the above
96.	The UPSC has a list of 150 persons. Out of these 50 are women and 100 are men. 125 of them know Hind and remaining do not know Hindi. 90 of them are teachers and remaining are not teachers. What is the probability of selecting a Hindi-knowing woman teacher as examiner ?
	(a) 1/6 (b) 3/5 (c) 2/9 (d) 5/6
97.	As attribute of one table matching the primary key of another table is known as
	(a) candidate key (b) composite key (c) foreign key (d) secondary key
98.	Let $p(x) = 0$ be a polynomial equation of least possible degree with rational coefficients having $\sqrt[3]{7} + \sqrt[3]{49}$ a one of its roots. The product of all the roots of $p(x) = 0$ is
	(a) 56 (b) 63 (c) 7 (d) 49
99.	The value of $\tan 100^\circ + \tan 125^\circ + 100^\circ \tan 125^\circ$ is
4.000	(a) 0 (b) $1/2$ (c) -1 (d) 1
100.	Contrapositive of the statement "If a number is divisible by 9, then it is divisible by 3" is
	(a) If a number is not divisible by 3, it is not divisible by 9 (b) If a number is not divisible by 3, it is divisible by 9
	(c) If a number is not divisible by 9, it is not divisible by 3

(d) None of the above

101.	In the set of integers	a relation B is defined	as aRb , if and only if $b =$	a Relation B is
101.	(a) reflexive	(b) irreflexive	(c) symmetric	(d) antisymmetric
102.				umber of possible one-to-one mapings
	from A to B , when $m < $	-	T T T T	I J
	(a) <i>m</i> ^{<i>n</i>}	(b) ${}^{m}C_{n}$	(c) ${}^{n}P_{m}$	(d) ${}^{m}P_{2}$
103.	The missing number i	n the given figure is		
			? 8	
			16 27	
			125 64	
		Ň	123 04	
	(a) 4	(b) 305	(c) 343	(d) 729
104.	The most general valu	tes for which $\tan \theta = -$	1, $\cos \theta = 1/\sqrt{2}$ are	
	(a) $n\pi + 7\pi/4$	(b) $n\pi + (-1)^n 7\pi/4$	(c) 2 <i>np</i> + 7π/4	(d) $2n\pi + (-1)^n 7\pi/4$
105.	The meaning of 'baud	' in network is		
		transmitted per unit tir		
		es transmitted per unit t	time	
	(c) the rate at which the	ne signal changes		
100	(d) None of the above	ulle in subish the sub		One to the other than the share
106.	x + 2y + 2z + 7 = 0 is	rcie in which the spr	arre x + y + z + 2x - 2x	-2y - 4z - 19 = 0 is cut by the plane
	(a) 2	(b) 3	(c) 4	(d) 1
107.) embedded in a plane is bounded by <i>k</i>
	edges, then			,
	(a) $e = \frac{k(n-2)}{k-2}$	(b) $e = \frac{k(k-2)}{n-2}$	(c) $e = \frac{n(k-2)}{n-2}$	(d) $e = \frac{n(n-2)}{k-2}$
108.	Given a 32 bit mach			(d) $e = \frac{n(n-2)}{k-2}$ th page size 4K, how many pages are
108.		ine and the memory 1		th page size 4K, how many pages are
108. 109.	Given a 32 bit mach possible ? (a) 2 ¹²	(b) 2 ²⁰	nanagement scheme wi	th page size 4K, how many pages are (d) 2 ⁴
	Given a 32 bit mach possible ? (a) 2 ¹²	(b) 2 ²⁰	nanagement scheme wi (c) 2 ³²	th page size 4K, how many pages are (d) 2 ⁴
	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$	ine and the memory r (b) 2^{20} ngent to the conic x^2 -	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$	th page size 4K, how many pages are (d) 2 ⁴ at (2, 1) is
109.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$	(b) 2^{20} (b) 2^{20} (c) $2x + 1 = 0$	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$
109.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules	nanagement scheme wi (c) 2^{32} $-y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures
109.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50
109. 110.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to rned right and walked	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures
109. 110.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to rned right and walked	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50
109. 110.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to rned right and walked ting point ?	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r 70 meters. Finally, he to (c) 50 meters	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 urned right and walked 50 meters. How
109. 110. 111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to rned right and walked ting point ? (b) 20 meters	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r 70 meters. Finally, he to (c) 50 meters	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 urned right and walked 50 meters. How
109. 110. 111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to med right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above <i>Y</i> at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b) value of the expression	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 urned right and walked 50 meters. How (d) 70 meters (d) None of the above
109.110.111.111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to med right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b)	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 urned right and walked 50 meters. How (d) 70 meters (d) None of the above
109.110.111.111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to med right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above <i>Y</i> at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b) value of the expression	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 meters. He turned right and walked 50 meters. How (d) 70 meters (d) None of the above)} $\frac{\pi}{900}$
109.110.111.111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local If ω is a complex cube	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to med right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above <i>Y</i> at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b) value of the expression	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 urned right and walked 50 meters. How (d) 70 meters (d) None of the above
109.110.111.111.	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local If ω is a complex cube	ine and the memory n (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ uired for languages that rules a point X straight to med right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the $\cos \left[\{ (1 - \omega) (1 - \omega^2) \} \right]$	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b) value of the expression $1 + + (10 - \omega) (10 - \omega^2)$ (c) 1	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 meters. He turned right and walked 50 meters. How (d) 70 meters (d) None of the above)} $\frac{\pi}{900}$
 109. 110. 111. 1112. 1113. 	Given a 32 bit mach possible ? (a) 2^{12} The equation of the ta (a) $x + 2 = 0$ heap allocation is requ (a) support recursion (c) use dynamic scope Sanjay travelled from meters, then again tur far is he from the start (a) 10 meters Thrashing occurs quit (a) local If ω is a complex cube	ine and the memory r (b) 2^{20} ngent to the conic x^2 - (b) $2x + 1 = 0$ hired for languages that rules a point X straight to red right and walked ting point ? (b) 20 meters e often when the page (b) global e root of unity, then the $\cos \left[\{ (1 - \omega) (1 - \omega^2) \} \right]$ (b) 0	nanagement scheme wi (c) 2^{32} - $y^2 - 8x + 2y + 11 = 0$ (c) $x - 2 = 0$ (b) support dynamic of (d) None of the above Y at a distance of 80 r 70 meters. Finally, he tu (c) 50 meters allocation policy is (c) Both (a) and (b) value of the expression $1 + + (10 - \omega) (10 - \omega^2)$ (c) 1	th page size 4K, how many pages are (d) 2^4 at (2, 1) is (d) $x + y + 1 = 0$ data structures neters. He turned right and walked 50 meters. He turned right and walked 50 meters. How (d) 70 meters (d) None of the above)} $\frac{\pi}{900}$

- (c) Simpson's rule with the interval width as $0 \cdot 1$
- (d) Simpson's rule with the interval width as $0 \cdot 2$