B. Sc. First Year (Semester-I) Chemistry

Paper	Course	Periods/week	Total Periods	Marks
Ι	Inorganic Chemistry	2	30	32
II	Organic Chemistry	2	30	34
III	Physical Chemistry	2	30	34

Marks Distribution Paper-I: Inorganic Chemistry

Nome of the abortors	Dominda	Weig-	Question paper				Total
Name of the chapters	renous	htage	Q. 1	Q. 2	Q. 3	MCQs	Marks
IUPAC Nomenclature of inorganic comps:	03	04	01	-	-	03	04
Periodic table and periodic properties	09	12	01	03	06	02	12
Chemical Bonding-I	12	15	01	06	06	02	15
Chemical Bonding-II	06	07	01	03	-	03	07
Total	30	38	04	12	12	10	38

Marks Distribution Paper-II: Organic Chemistry

Name of the abortors	Dorioda	Weig-	Question paper				Total
Name of the chapters	renous	htage	Q.1	Q. 2	Q. 3	MCQs	Marks
IUPAC Nomenclature of Organic Compounds	03	04	02	-	-	03	05
Mechanism of organic reactions	07	09	02	06	-	01	09
Alkenes, Dienes, and Alkynes	10	13	01	03	06	03	13
Alcohols, ethers & epoxides	10	13	01	03	06	02	12
Total	30	39	05	12	12	10	39

Marks Distribution Paper-III: Physical Chemistry

Nome of the shortens	Deriteda	Weig-	Question paper			Total	
Name of the chapters	Periods	htage	Q. 1	Q. 2	Q. 3	MCQs	Marks
Chemical Mathematics	06	07	01	03	-	03	07
General concepts in	07	08	02	02		02	08
chemistry	07	08	02	05	-	03	
Gaseous State	10	13	01	03	06	03	13
Solid State	07	11	01	03	06	01	11
Total	30	39	05	12	12	10	39

Note: $1. \pm 02$ marks adjustment in given weightage should be allowed.

MODEL QUESTION PAPER

FACULTY OF SCIENCE

B. Sc. (First Year) Semester-I

EXAMINATION Part-I October/November 2009

Time: 2.10 Hrs

CHEMISTRY

Marks: 50

N. B.:

- *(i)* Use separate answer book for each paper.
- *(ii) Attempt all questions.*
- *(iii)* Use of logarithmic table and calculator is allowed.
- (iv) A figure to the right hand side indicates full marks.

Paper-I: INORGANIC CHEMISTRY

Q.1 Answer the following

- a) What is the name of $KMgF_3$.
- b) Define electronegativity.
- c) What are the causes of chemical bonding?
- d) Write the types of hybridization and geometry of $[Ni (CN)_4]^{-2}$.

Q.2 Answer any two of the following

- a) Give the general characteristics of d block elements.
- b) Calculate the percentage ionic character of HCl molecule by using Hanny and Smith relation.

Given: Electronegativity of H = 2.1; Electronegativity of Cl = 3.5.

- c) Calculate the electronegativity of fluorine by Pauling's method. Given: $E_{H-H} = 104.2$ Kcal mol⁻¹, $E_{F-F} = 36.6$ kcal mol⁻¹, $E_{H-F} = 134.6$ kcal mol⁻¹.
- d) Explain the various postulates of VSEPR.

Q.3 Answer any one of the following

- a) What is the ionic bond? Explain how energy changes in the formation of ionic bond.
- b) Define ionization potential. Give its trends in periodic table and explain factors affecting on it?

06

04

06

Paper-II: ORGANIC CHEMISTRY

What is Inductive effect? Define carbonium ions with one example Predict the product + HBr → ? Predict the product + CH₃MgI — → ? \mathbf{b} Write the formulae of following compounds

Q.2 Answer any two of the following

Write the IUPAC name of

O.1 Answer the following

a)

b)

c) d)

e)

- a)
- i) 1,4-Pentadiene, ii) 2-Methyl-2-propanol, iii) Pentan-2-one
- Explain the resonance with suitable example? b)
- c) Discuss 1,2 addition of Br_2 to propene with mechanism.
- Discuss the preparation of ethers via Williamson's synthesis? d)

Q.3 Solve any one of the following

- a) Preparation of acetylene from iodoform and explain substitution reaction of acetic acid on ethyne.
- b) Explain the addition of following reagents on glycerol 1) Nitric acid, 2) Hydroiodic acid, 3) Acetyl chloride, 4) KHSO₄

Paper-III: PHYSICAL CHEMISTRY

Q.1 Answer the following

Arrange the given equation to the form of general equation of straight a) line Y = mx + c and find out slope and intercept.

$$2y - 8x = 12$$

- b) How will you define molality?
- State law of rational intercept. c)
- Define: i) Ideal gas ii) Critical temperature. d)
- A solution contains 1 mole of alcohol and 4 moles of water. What is the e) mole fraction of water in solution?

Q.2 Answer any *two* of the following

- What is permutation? Explain it. a)
- Explain the deviation of real gases from ideal behaviour. b)
- What is molarity of solution prepared by dissolving 25.5×10^{-3} Kg of c) pure KOH in 500 ml of solution? (At .Wt. of K = 39.1, O = 16, H = 1.)
- State and explain the term: i) Unit cell ii) Space lattice. d)

O.3 Solve any *one* of the following

- a) Explain the crystal structure determination of KCl by x-ray diffraction method.
- b) Derive the Van der Waals equation .Give its interpretation at low pressure.

06

06

05

05

06

06

MODEL QUESTION PAPER FACULTY OF SCIENCE B. Sc. (First Year) Semester-I EXAMINATION Part-II October/November 2009

Time: 45 Min

CHEMISTRY

Marks: 30

N	R	•
14.	р.	•

(*i*) One mark to each correctly answered MCQ.

- *(ii)* Negative marking system is applicable.
- (iii) Use black ball point pen to darken the circle of correct choice in OMR answer sheet.
- (iv) Darken only once circle for the answer of a MCQ.
- (v) Circle once darken is final. No change is permitted.

Paper-I: INORGANIC CHEMISTRY

IUPAC name of I ₃ ⁻ is	
a) Iodo	b) Triiodide (1-) ion
c) Iodide	d) Iodine ion
H ₅ C ₅	
a) Cyclopentadienide	b) Pentadienide
c) Hydrocarbon	d) None of the above
B ₁₀ H ₁₄ is	
a) Nido decaborane (14)	b) Decaborane
c) Arachnoborane	d) Closo decaborane
Long form of the periodic table is the o	combination of
a) Mendeleeff & Deboreiner	b) Mosley & Newland
c) Mosley & Modern periodic law	d) Newland & Dobe
D block elements are also know as	
a) Inner transition elements	b) Transition elements
c) Lanthanides	d) Actinides
NaCl is a	
a) Covalent compound	b) Ionic compound
c) Coordinate compound	d) Metallic compound
Axial overlapping of atomic orbitals gi	ves
a) Sigma bond	b) Pi bond
c) Dative bond	d) Metallic bond
Hybridization of CH ₄ is	
a) sp	b) sp^2
c) sp^3	d) dsp^2
Bonding orbitals are denoted by	
a) σ	b) σ*
c) π	d) π*
Correct order of strength bond formed	l between two sp, sp ² & sp ³ is
a) $sp^3-sp^3>sp^2-sp^2>sp-sp$	b) $sp^2-sp^2>sp-sp>sp^3-sp^3$
c) $sp-sp>sp^2-sp^2>sp^3-sp^3$	d) $sp^3-sp^3>sp-sp>sp^2-sp^2$
	IUPAC name of I_3^- is a) Iodo c) Iodide $H_5C_5^-$ a) Cyclopentadienide c) Hydrocarbon $B_{10}H_{14}$ is a) Nido decaborane (14) c) Arachnoborane Long form of the periodic table is the of a) Mendeleeff & Deboreiner c) Mosley & Modern periodic law D block elements are also know as a) Inner transition elements c) Lanthanides NaCl is a a) Covalent compound c) Coordinate compound Axial overlapping of atomic orbitals given a) Sigma bond c) Dative bond Hybridization of CH4 is a) sp c) sp ³ Bonding orbitals are denoted by a) σ c) π Correct order of strength bond formed a) sp ³ -sp ³ >sp ² -sp ² >sp-sp c) sp-sp>sp ² -sp ² >sp ³ -sp ³

Paper-II: ORGANIC CHEMISTRY

11.	A carbanion has					
	a) <i>sp</i> ³ hybrid carbon	b) sp^2 hybrid carbon				
	c) sp^{1} hybrid carbon	d) all of above				
12.	IUPAC name of CH ₂ =CH-CH=CH ₂ is	S				
	a) 1-butene	b) 2-butene				
	c) 1,3-butadiene	d) 1,2-butadiene				
13.	Select correct structure of 1-amino-2-	propanol				
	a) CH ₃ -CH ₂ (NH ₂)-CH ₂ -OH	b) CH ₃ -CH(OH)CH ₂ -NH ₂				
	c) CH ₃ -CH-(OH)-CH ₂ -CH ₂ -NH ₂	d) None of these				
14.	IUPAC name of CH ₃ OCH ₂ -CH ₂ -NH ₂					
	a) 1-Methoxyethanamine	b) 1-Methyl ethanamine				
	c) 2-Amino-methoxyethane	d) 2-Methoxyethanamine				
15.	Dehydrohalogenation of 2-bromobutane with alcoholic KOH gives					
	a) 1-Butene	b) 2-Butene				
	c) 2-Methyl propene	d) 2-Butanol				
16.	Addition of HCN on propyne gives					
	a) 2-Methyl-2-propene nitrile	b) Acrylonitrile				
	c) Acetonitrile	d) Cynopropane				
17.	1,3-Butadiene and ethene gives					
	a) Cyclohexene	b) cyclohexane				
	c) Cyclopentene	d) Cyclopentane				
18.	Ethane-1,2-diol on dehydration by us	ing ZnCl2 gives				
	a) Vinyl alcohol	b) Acrylaldehyde				
	c) Ethylene oxide	d) Acetaldehyde				
19.	Ethylmethyl ether combines with HI gives					
	a) Ethyl iodide	b) Methyl iodide				
	c) Both	d) None of these				
20.	Action of peracid on ethene gives					
	a) Alcohol	b) Ketone				
	c) Ethylene oxide	d) Aldehyde				

Paper-III: PHYSICAL CHEMISTRY

21.	The pH of the 0.001 M HCl is	
	(a) 0.001	(b) 3
	(c) 10^{-3}	(d) - 3
22.	Log _a ^b x Log _a ^b is equal to	
	(a) One	(b) Two
	(c) Three	(d) Zero
23.	The value of $\int e^x dx$ is	
	(a) \varkappa^{n}	(b) x^{n-1}
	(c) n \varkappa^n	(d) <i>€</i> [∗]
24.	The molarities of 0.1 N solution	on of HCl and 0.1 N solution of H ₂ SO ₄ are
	respectively	
	(a) 0.1M and 0.1 M	(b) 0.05 M and 0.1 M
	(c) 0.1M and 0.05 M	(d) 0.1M and 0.2 M
25.	The normality of a solution of	sulphuric acid is $\frac{N}{10}$. Its molarity will be

	(a) $\frac{M}{5}$	(b) $\frac{M}{10}$
	(c) $\frac{M}{20}$	$(d) \frac{N}{40}$
26.	Which one of the following has molality (equal to one?
	(a) 36.5 gm of HCl in 500 ml of water.	(b) 36.5 gm of HCl in 1000 ml of water.
	(c) 36.5 gm of HCl in 1000 gm of water.	(d) 36.5 gm of HCl in 500 gm of water.
27.	The root mean square velocity of gas mo	lecules is given by the relation
	a) $V_{\rm rms} = \sqrt{RT/M}$	(b) $V_{\rm rms} = \sqrt{3RT/M}$
	(c) $V_{\rm rms} = \sqrt{2RT/M}$	(d) $V_{\rm rms} = \sqrt{8RT/M}$
28.	Excluded volume is times the actual	volume of molecules
	(a) 1/2	(b)Three
	(c)Four	(d) Two
29.	In Vander Waals equation of state for n	mole of non ideal gas, the net force of
	attration among the molecules is given by	y
	(a) $\frac{an^2}{v^2}$	(b) $[P + \frac{an^2}{v^2}]$
	(c) $[P - \frac{an^2}{v^2}]$	(d) $-\frac{an^2}{V^2}$
30.	The number of atoms in a simple cubic u	nit cell are
	(\mathbf{n}) \mathbf{A}	(\mathbf{b}) 2

(a	.) 4	(b) 2	
(c) 3	(d) 1	