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Abstract

A common belief is to qualify the credit default swap(CDS) market as very liquid.

However, looking at intra-daily CDS data on individual firms from a major inter-

dealer broker, we find only limited support for this view. In fact, bid-ask spreads

and daily number of trades in our CDS data are more comparable to corporate

bond markets than to equity markets. To dig deeper in our data set, we estimate

a state-space model of CDS bid and ask quotes on our data. Our model allows for

price discreteness, data-errors, heterogeneity of the quotes, jumps in the efficient

spreads and intra-daily patterns both in the volatility of the efficient CDS premium

and proportional transaction costs. We estimate the model using particle filtering

and the Monte Carlo EM algorithm. The volatility of the efficient premium and

transaction costs exhibit the usual J-shaped intra-daily pattern observed in equity

markets. Also, volatility is much lower during overnight periods and transaction

costs much higher.

Keywords : Credit Default Swap, Liquidity, Stochastic Transaction Costs, Inter-

dealer Market.
∗We thank GFI for providing the data. All errors or omissions are ours.
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1 Introduction

Credit Default Swaps (CDS) are arguably one of the most successful financial innovations

of the last decade. It is a well-established fact that they provide a more up-to-date picture

of creditworthiness than corporate bonds (Blanco, Brennan, and Marsh (2005)) or credit

ratings ( Hull, Predescu, White (2005)). Also they facilitate taking relatively large long and

short positions in the credit markets, improving its efficiency. As a result, it is tempting

to go one step further and treat CDS premia as a pure measure of credit risk, by-and-

large free of the influence of market microstructure phenomena that bedevil the life of any

investigator dealing with the corporate bond markets. In this paper we take a microscopic

view of the CDS market using high-frequency data from GFI, a major CDS inter-dealer

broker (IDB) and try to check whether the latter view is warranted.

Our data consists of three representative US names (Ford Credit, GMAC, and Sears

Acceptance) and one European name (France Telecom). The dataset we analyze contains

a complete record of bid and ask quotes, and transaction prices in 2004, 2005, and 2006.

We do not observe the volume traded, or the depth posted, or the ID of participants. The

access in the IDB is limited to dealers, who trade large amounts. We find that the most

active CDS name, Ford, trades on average 4 times a day, while the other three CDSs trade

less frequently. Since US corporate bonds trade on average 1.9 per day, and European

corporate bond trade on average 4 time a day, the trading frequency of reputed liquid

CDSs is quite similar to the corporate bond market.1 Then we examine the tightness of

the market and we find that the cost of turning around a position is around 40 basis points

for an investment with a notional of $100. In comparison, Biais and Declerck (2007) find

that the costs of a round trip in the European corporate bond market is 30 cents.

As a further step in our analysis we build a dynamic model of discrete bid and ask

quotes, based on Hasbrouck (2003). The bid and ask quotes are rounding transformation

of an implicit efficient premium, and stochastic market-making costs, where the mean

proportional costs can be time-varying. The dynamics of the efficient premium allows for

deterministic time-varying volatility and jumps. Further, we allow for data errors to deal

with outliers. To solve the resulting non-linear filtering task we employ particle filters and

1Though the average trade size is much higher in the CDS market
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we use the Monte Carlo EM algorithm to estimate the model parameters.2

With this modeling framework we can compare intradaily patterns in the trading activ-

ity, volatility of the efficient price, and average transaction costs. We find that the number

of quotes per unit of time leads the number of trades per unit of time, which is consis-

tent with either a price discovery process and/or price competition among dealers in the

IDB system. The analysis reveals that the volatility has a J-shape during business hours

(between 7:30 to 3:30 New York GMT), and is very low during overseas trading. Turning

to transaction costs, our results show that the mean costs attain their highest level before

the jump in trades, and then declines sharply when the trading frequency picks up, which

is consistent with price competition among dealers. Then, transaction costs increase 50%

during overseas hours when trading is thin. Overall we find much stronger support in the

IDB for price discovery than for the presence of dealers with an inventory motive.

Our results point towards a view that while CDS markets may be much deeper than

corporate bond markets, transaction costs are at least as high. Also, looking at intradaily

patterns, we find some preliminary evidence for the presence of informed traders. All

this suggest that CDS markets are relatively efficient informationally, but in a sense the

relatively high transaction costs are the price to be paid for this efficiency. This view is

consistent with several recent studies using daily data. Blanco, Brennan, and Marsh (2005)

find that the CDS market leads the bond market in determining the price of credit risk, sug-

gesting that informed traders trade first in the CDS market. Acharya and Johnson (2006)

find prima facie evidence that informed traders play in the CDS market. Besides, Hull,

Predescu, White (2005) provide evidence on the informational efficiency of this market, by

showing that CDS premium changes predict rating changes. Our study complements this

literature by adding a piece of evidence using high-frequency data.

We also add to the nascent literature on IDB markets. Extant empirical literature (Reiss

and Werner (1998),Bjonnes and Rime (2005), Reiss and Werner (2004)) find support for

dealers who primarily use the IDB to rebalance their inventories at the end of the day.

Interestingly, we don’t find much evidence for the inventory motive in our data. In contrast,

our findings are consistent with either a price discovery process or competition among

dealers.

Last, the econometric methodology we work with could be used to measure transaction

costs for illiquid assets. This can be useful for investigating the microstructure of illiquid

2The estimation methodology draws heavily on Duan and Fulop (2007a,b)
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stocks or derivatives.

2 Overview of the CDS market

2.1 Main characteristics

Credit derivatives are traded over the counter (OTC), which means that there is no physical

location and no central organized exchange where orders are matched. Instead, the CDS

secondary market operates 24 hours a day through an electronic network of banks, hedge

funds and other institutional investors. Quotes are posted by professional intermediaries,

as bank dealers. However, dealers are not required explicit continuous presence. Nor do

they face rules limiting the size of the bid-ask spread they choose to post, or limiting

changes in their prices (unlike the Specialist on the NYSE). Thus the CDS secondary

market is organized as a decentralized dealer market. Currently there is a lack of complete

post-trade infrastructure for such OTC credit derivatives. In the EU, there is no central

counterparty clearing house. In the US, since 2006, there is at least a central warehouse

(the Depository Trust and Clearing Corporation).

Dealers trade directly with clients, and among themselves. Trading is conducted in a

bilateral non-anonymous communication over the telephone. However, indirect trading via

interdealer brokers (IDBs) plays an increasing role. Interdealer brokers collect and post

dealer quotes. They also execute trades between dealers by matching buyers and sellers.

Only dealers have access to IDB systems, and they are not required to submit quotes

to IDBs. Interdealer brokerage involves voice-based systems, and/or electronic platforms,

and represents 34% of trades in 2004, according to the International Swaps and Derivatives

Association (ISDA) report.

2.2 Trading CDSs in the interdealer market

Trading organization. Interdealer trading in the CDS market can be direct (non anony-

mous) or brokered (anonymous). There are major differences between the direct and

the brokered market: (i) the level of fragmentation of both systems, (ii) the degree of

anonymity, (iii) the level of transparency of both organizations. All these key dimensions

have an impact on the liquidity of the market. The source of our data are the anonymous
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centralized electronic IDB market.

The direct interdealer market follows the organization of the secondary OTC market

of CDSs, being a fragmented price-driven market. Trading is initiated by one dealer

calling another for a bilateral quote, i.e., the quote is not available to other dealers, which

distinguishes it from a quote posted to an IDB. This means that trading in that market

potentially involves search costs to find the best price.

On the other hand, while indirect IDBs are not costless (there is the interdealer broker’

s fee to pay), they allow to decrease search costs and make the matching process between

buyers and sellers more efficient. IDB systems are centralized books for brokers that can

better match buyers and sellers with a larger vision of the market and of the order flow.

Brokers collect dealers’ quote and depth information, and post the data into the system that

are provided anonymously to the other dealers. This transparency should reduce search

costs. Also, the organization of these platforms should enhance the speed of execution.

Since trades are executed anonymously in IDBs market, they enable dealers to trade in

size. Moreover, the size of limit orders is undisclosed in some IDBs.3 Anonymity of quotes

and trades is known to lower volatility and enhance liquidity (see Foucault, Moinas, and

Theissen, 2007)).

Trading motives. Why do dealers usually trade in anonymous IDBs? As Huang, Cai

and Wang (2002) point out, trading in IDBs may be visualized as the second step of a

two-stage game. The first stage concerns trades between dealers and clients in the opaque,

fragmented quote-driven market. Then, dealers trade in the interdealer market either to

manage their inventory positions (i.e. to unwind or to build a position) as suggested by

Ho and Stoll (1983), or/and to trade on private information. Given the anonymity of

IDBs platforms, the level of information-based trading could be high in these facilities:

IDBs could be the favored trading venue of informed interdealer trades (see, for instance,

Barclay and Hendershott (2004)).

However, the few empirical studies that exist on IDB’s 4 seem to find more evidence

for the inventory motive. First, in the London Stock Exchange, Reiss and Werner (1998)

3The anonymity of IDB systems is a key factor of these platforms. Dealers choose to trade anonymously

because their identity is an additional information that could be exploited by competitors.
4There are few studies of interdealer broker markets. The well known electronic interdealer systems are

SelectNet and SuperSOES for the Nasdaq before its move to SuperMontage, GovPX for the US Treasury

bond market, EBS and Reuters 2000-2 for the FX market.
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show that interdealer markets are mainly used by equity dealers to share inventory risks.

Bjonnes and Rime (2005) also find evidence that, in the FX market, IDBs are used by

dealers to manage positions. Second, Reiss and Werner (2004) find that IDBs in the LSE

attract uninformed order-flow, whereas the direct non-anonymous inter-dealer market at-

tracts informed inter-dealer trades, contrarily to standard information-based microstruc-

ture theories. Reiss and Werner observe that when adverse selection is perceived to be

high, limit order are cancelled in IDB platforms, and liquidity dries up. Besides when a

dealer who possesses a time-sensitive private information posts an informed limit order in

the IDB it may not be executed, and information may leak out.

In light of these studies, a priori, one expects to observe intraday patterns in IDBs for

CDSs that are consistent with the inventory paradigm and less affected by information

asymmetries. First, trading activity and the number of trades should pick at the end of

the business day, to reflect the desire to close open positions before the overnight hours.

Second, if adverse selection is indeed not of major importance on the CDS IDB market,

one should not observe an especially high level of transaction costs and volatility at the

beginning of the day.

3 Data

3.1 A preliminary look at the data

We use intra-daily bid and ask quotes from GFI, a major CDS interdealer broker. GFI

is a hybrid voice-electronic execution platforms for CDSs. Dealer may be providers or

consumers of liquidity. Retail and institutional investors (the ”buy-side”) are not eligible

to use the platform directly. The platform has a minimum trade size of $1 million. Only the

broker can see the depth of the market; however, dealers can observe the last trade (price,

volume, and direction). Bid and ask prices posted on the platform are firm. According

to GFI, it is the leading broker since it would represent 60% of the interdealer brokerage

activity. As a broker, GFI earns commissions directly from trade counterparts.

The dataset that GFI provided us contains CDS quote and trade price for 4 entities (3

from US and 1 from Europe) whose CDS contracts are reputed very liquid. The 4 names are

Ford, GMAC, Sears Acceptance and France Telecom, all of them are on a 5-year contracts

on senior debt. Ford and GMAC were downgraded from investment to speculative bond
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on May, 5 2005. France Telecom is graded as investment (see Table 1, Panel A).

Our sample runs from January 2004, through December 2006. The sample consists of

bid, ask quotes, and trade prices expressed in basis point. Our data is time stamped down

to a minute. Our local time benchmark is New York GMT. There are no identifiers of

the dealers who post quotes or who trade. No information about the depth of quotes, nor

information about the size of each transaction is provided.5

We examine two measures of trading activity: the number of bid or/and ask quotes per

unit of time (the quoting frequency), and the number of trades per unit of time (the trade

frequency).

As Figure 1 illustrates, quotes and trades are irregularly spaced . Although trading

could take place round-the-clock, the trading activity (number of quotes and trades) of

the 3 US entities mainly occur during the New York business hours (7:30 am to 5:30

pm), as Figures 2, 3, and 4 illustrate.6 However, Ford and GMAC exhibit some weak

but significant trading activity when London open at 7:30 am (2:30 am New York), unlike

Sears Acceptance. In contrast, the main peak for the trading activity is in London for the

European name. Trading of the European CDS France Telecom starts at 7:30 am London.

Then it passes to New York at 12:30 am London (7:30 am New York), and continues there

until 5:30 pm (see Figure 5).

It is worth noticing, first, that, during New York business hours, we observe a J-shape

pattern for the number of trades for the 3 US names. The number of trades does not spike

upward at the end of the day, as it is usually the case in other markets (U-shaped pattern

for volume). This intraday pattern is quite unexpected, since it seems to go against the

hypothesis of IDBs as inventory management tools. Indeed, in case IDBs would have been

used by dealers to close or hedge open inventory position before the overnight period, we

should observe a jump upward at the end of the business day.

Second, we find that for the 4 names, the peak of the number of trades follows the

busiest period in terms of number of quotes (lead-lag pattern between quotes and trades).

This pattern may reflect either the price competition among dealers in the IDB platform

5From interviews with traders, it seems that the minimum trade size is 5-10 million in Europe and in

US: CDS contracts are only traded in relatively large slot (”granularity” of CDS contracts). For instance,

a trade on a 20− 30 million for the most liquid European CDS is quite standard. Note also that the most

common practice is to trade on a 5-year contract.
6The reasons may be that news concerning these US firms are probably announced during New York

trading hours, and holders of these CDS contracts are presumably US banks or hedge funds.
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to fill the book before trading happens, or/and a price discovery process similar to what

we observe during the preopening periods in regulated equity markets.7

3.2 Descriptive statistics

Table 1 (Panel B) reports some descriptive statistics on the trading activity. For the 4

CDS contracts reputed to be very liquid, we compute the average number of trades per

day. France Telecom trades on average 1.42 a day. Concerning the 3 US entities, GMAC

and Ford trade on average 4.46 a day, and 2.57 a day respectively. Sears Acceptance trades

less (0.78 a day). The trading is low compared to their counterparts in the equity market,

but similar to their counterparts in the corporate bond market. Edwards, Nimalendran

and Piwowar (2006) find that the sample of the more active US corporate bonds trades

in average 3.7 times per day, whereas Edwards, Harris and Piwowar (2007) find a lower

figure (1.9) for their sample that covers also less active bonds. Biais and Declerck (2007)

find that Euro-denominated corporate bonds trade on average 4 times per day.8

Table 1 (Panel C) reports also some descriptive statistics on quotes. First, even for these

reputed liquid CDS contracts, the number of quotes (bid or ask) is quite low, compared

to the equity market. For instance, GMAC and Ford are active CDSs with more than

1400 bid/ask pairs during three years, whereas we observe only 568 bid/ask pairs for Sears

Acceptance. Thus, it is important to use as much information in the data as possible, in

particular, to use the individual bid or ask observations.9

Second, the level of CDS spreads seems to be related to the rating of the entity. Average

quoted b/a spreads are around 10 bp for CDS of speculative-grade entities (the 3 US

names), and lower than 3 bp for the European CDS of the investment-grade bond France

Telecom.

To measure the cost of a round-trip in the CDS market, one cannot simply use the

quoted b/a spread as is the case in the equity or the bond market. The reason is that

entering a long position and unwinding it leaves the investor with a negative cash-flow

stream with a frequency and a duration equal to the frequency and maturity of the CDS

7Equity markets have regulated trading hours. There is a clear distinction between the overnight hours,

and the trading hours, unlike OTC 24-hours markets
8Even if the trading frequency is similar between the bond market and the CDS market, overall trading

should be much higher in the CDS as the size of individual trade is muchi higher.
9In contrast, Huang et al. (2002) and others filter out one-sided quotes when using GovPX.

8



contract, where the amount of the individual cash-flows is equal to the b/a spread. So, to

compute the cost of turning around a position, one needs to take the present value of this

cash-flow stream. For instance, the cost of a round trip for an investment in GMAC with

a notional of $100 is 42 cents. Analyzing a sample of Euro-denominated corporate bonds,

Biais and Declerck (2007) find an average quoted spread around 30 cents. Edwards, Harris

and Piwowar find that the effective cost is 20 cents for large trade on US corporate bonds.

These numbers suggest that b/a spreads and transaction costs on the CDS market are

not lower than on the corporate bond market. Thus, microstructure phenomena (trad-

ing frictions) are likely to be important in this market and one needs to be careful in

interpreting CDS premia as a pure measure of credit risk.

4 Econometric Model

To be able to dig further in our data set we link the quotes to an unobserved efficient

price and cast the resulting estimation task as a missing-data problem. In our data, in

any minute, we keep the last recorded bids and asks and label an observation a joint

observation if they have the same time stamp. We discard all joint observations where

the ask is smaller than or equal to the bid. Then, filtering and estimation in the resulting

non-linear state-space system is solved using simulation-based methods. This modeling

framework allows us to estimate intra-daily patterns of the efficient CDS premium and

intra-daily patterns of transaction costs. Also, as a by-product we can estimate the salient

features of the efficient premium evolution and come up with a filtered estimate of the

CDS premium at any time point.

We consider a model conditional on the arrival of bids and asks of CDS spreads. Let

τi, i = 0, ..., T denote the joint arrivals of these data points. Let Di denote the information

set up to τi. We either have a bid or ask observation at τi denoted by Bτi
, Aτi

respectively,

or we may have both. Similarly to Hasbrouck (2003) we assume a latent variable model

for our data. In particular, we link all observables to a theoretical efficient log spread,

mτi
(= log(Mτi

)), which follows

mτi
= mτi−1

+ σu,f(τi−1,τi)

√
∆τiui +

∆Ni∑
h=0

Ji,h (1)

where ∆τi = τi − τi−1. ui are iid standard normal and model the effect of public news

on the efficient price Mτi
. σu,f(τi−1,τi) is a volatility coefficient allowing for time-varying
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volatility. The last term is there to allow for the arrival for jumps in the efficient CDS

price. Here ∆Ni is a Poisson random variable with λ∆τi as its parameter and Ji,h are

independent normally distributed jump sizes with mean µJ and variance σ2
J .

Dealers are assumed to be subject to nonnegative costs of market making, denoted

ci,A(= log(Ci,A)) and ci,B(= log(Ci,B)), as follows.

ci,A ∼ N(µτi
, σ2

c,A)

ci,B ∼ N(µτi
, σ2

c,B)

We assume that in the absence of tick restrictions a market maker would bid Bτi
= Mτi

−
Ci,B = emτi−(ci,B+qA

i εA
i ) and offer(ask) Aτi

= Mτi
+ Ci,A = emτi+ci,A+qB

i εB
i . Further, we also

assume that we only observe cases when the bid is smaller than the ask. This means

that when we have both a bid and an ask observation, we need to condition on the event

{ci,A + qA
i εA

i + ci,B + qB
i εB

i > 0}.

The expressions qA
i εA

i and qB
i εB

i represent data errors where qA
i , qB

i are iid Bernoullis

that take the value 1 with probability p and εA
i and εB

i are iid normal with mean zero and

variance σ2
ε .

If the tick size is K, the discrete bid and ask prices are given by

Bτi
= Floor

(
emτi−(ci,B+qB

i εB
i ), K

)
(2)

Aτi
= Ceiling

(
emτi+ci,A+qA

i εA
i , K

)
(3)

where the floor and ceiling functions round down and up respectively to the next multiple

of K.10

5 Filtering and ML estimation

5.1 Particle Filter for the model

First, we describe the filtering algorithm for the case when we only have an ask observation.

Assume that the time index of the new observation is τi. Denote the noisy ask observation

10Duan and Fulop (2007b) applies a similar model to high-frequency stock market transaction data.

However, their focus is on the efficient price process not microstructure phenomena. Accordingly, their

efficient-price model is richer, but their microstructure model is simpler.
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before discretization by aτi
= mτi

+ ci,A + qA
i εA

i . Our algorithm is based on the following

filtering density/distribution

f(aτi
, mτi

, mτi−1
, ∆Ni, q

A
i , cA

i | Di)

= f(cA
i | aτi

, mτi
, qA

i )f(mτi
| aτi

, mτi−1
, ∆Ni, q

A
i )

× f(aτi
| Aτi

, mτi−1
, ∆Ni, q

A
i )f(mτi−1

, ∆Ni, q
A
i , | Di)

∝ f(cA
i | aτi

, mτi
, qA

i )f(mτi
| aτi

, mτi−1
, ∆Ni, q

A
i )f(aτi

| Aτi
, mτi−1

, ∆Ni, q
A
i )

× p(Aτi
| mτi−1

, ∆Ni, q
A
i )p(∆Ni)p(qA

i )f(mτi−1
| Di−1) (4)

The last expression in (4) suggests a way to sample from the filtering distribution, given

a sample of particles representing f
(
mτi−1

∣∣Di−1). First, extend the state-space to in-

clude jumps in the system by simulating from some importance sampler g1(∆Ni)g2(q
A
i ).

Then, perform resampling to obtain the particle (mτi−1
, qA

i , ∆Ni) based on the weights

w =
p(Aτi |mτi−1 ,∆Ni,q

A
i )p(∆Ni)p(qA

i )

g1(∆Ni)g2(qA
i )

. Finally, sample (cA
i , Ji, mτi

, aτi
) according to f(cA

i |
aτi

, mτi
, qA

i )f(mτi
| aτi

, mτi−1
, ∆Ni, q

A
i )f(aτi

| Aτi
, mτi−1

, ∆Ni, q
A
i ).

Assume that we have M particles, m
(m)
τi−1 representing f(mτi−1

| Di−1). Then our localized

particle filter with M particles consists of the following steps:

• Step 1: Enlarge the state-space by the jumps in the system by sampling from ∆Ni

and qA
i . Jumps can be rare events so we use stratified sampling to ensure that our

simulated sample always contains jumps by putting an equal probability of 1
2

on

having and not having jumps. I.e. we use the importance sampling distributions

g1(∆Ni) =
1

2
p(∆Ni | ∆Ni > 0) +

1

2
1{∆Ni=0} (5)

g2(q
A
i ) =

1

2
1{qA

i =0} +
1

2
1{qA

i =1} (6)

To arrive at an empirical representation of f(mτi−1
, ∆Ni, q

A
i , | Di) attach to each of

the particles (m
(m)
τi−1 , ∆N

(m)
i , (qA

i )(m)) the importance weights

w
(m)
i = p(Aτi

| m(m)
τi−1

, ∆N
(m)
i , (qA

i )(m))p((qA
i )(m))[1

∆N
(m)
i >0

p(∆Ni > 0)+1
∆N

(m)
i =0

p(∆Ni = 0)]

The likelihood value for the observed ask can be computed as

p(Aτi
| Di−1) ≈

1

M

M∑
m=1

w
(m)
i
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• Step 2: Resample the particle set according to the probability π
(m)
i =

w
(m)
i

PM
m=1 w

(m)
i

to

yield M equal-weighted particles denoted by (m
(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m)). This equal-

weighted particle set is again an empirical representation of f(mτi−1
, ∆Ni, q

A
i , | Di).

• Step 3: Corresponding to each particle (m
(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m)), sample from the

truncated normal density f(aτi
| Aτi

, m
(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m)) to generate the particle

(a
(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m)). The corresponding particle set represents f(aτi
, mτi−1

, ∆Ni, q
A
i , |

Di).

• Step 4: Using conditional normality sample from

m(m)
τi

∼ f(mτi
| a(m)

τi
, m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m))

(cA
i )(m)) ∼ f(cA

i | a(m)
τi

, m(m)
τi

, (qA
i )(m)))

This yields M particles, (a
(m)
τi , m

(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (cA
i )(m)) which represent

f(aτi
, mτi

, mτi−1
, ∆Ni, q

A
i , cA

i | Di). One can then proceed to marginalize mτi
to

represent the filtering distribution f(mτi
| Di)

The necessary quantities to implement the algorithm are described in detail in Appendix

A. The case of only a bid observation at τi is very similar to the situation described above,

so to conserve space we do not spell out its details. On the other hand, the case of a paired

observation with both a bid and an ask, the situation is a bit different. First, both the bid

and the ask contains information on the new fundamental price, mτi
. Second, we need to

deal with sample selection as a result of the restriction S = {aτi
> bτi

} where

bτi
= mτi

− (ci,B + qB
i εB

i )

aτi
= mτi

+ ci,A + qA
i εA

i

The particle filter used to deal with this case is described in Appendix B.

6 Monte Carlo EM algorithm

We now address the issue of computing the maximum likelihood (ML) estimates for the

model parameters. The particle filtering algorithm described in the preceding section can

generate the log-likelihood function for any fixed parameter values. However, it is ill-suited

for finding the ML estimates because the log-likelihood function is inherently irregular with
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respect to the parameters even with the use of common random numbers. This irregularity

arises from the resampling step required for any particle filter. Thus we adopt an indirect

approach to the ML estimation via the EM algorithm of Dempster, et al (1977). The

EM algorithm is an alternative way of obtaining the ML estimate for the incomplete data

model, where incomplete data refers to the situation that the model contains some random

variable(s) without corresponding observations. The EM algorithm involves two steps -

expectation and maximization – and hence its name. One first writes down the complete-

data log-likelihood function. Since it is not observable, one needs to compute its expected

value by conditioning on the observed data in conjunction with some assumed parameter

values. This completes the expectation step. In the maximization step, one finds the new

parameter values that maximize the expected complete-data log-likelihood function. The

updated parameter values are then used to repeat the E- and M-step until convergence.

Interestingly, the EM algorithm will converge to the ML estimate under some regularity

conditions.

For our ML estimation, the E-step due to its complexity will have to be computed

using the particle filter, which means that we are using the Monte Carlo EM (MCEM)

algorithm.11 Casting optimization as an EM algorithm problem effectively circumvents

the irregularity induced by the particle filter, because the E-step ensures that the expected

complete-data log-likelihood function is smooth with respect to the model parameters

that define the complete-data log-likelihood function. Even though the function is still

inherently irregular in relation to the assumed parameter values used in computing the

expectation, it becomes immaterial as far as optimization is concerned. In effect, one has

decoupled optimization from filtering in each iteration.

In general, the complete-data representation of the model is not unique. We choose a

specification that allows for relatively easy M-steps and where the expected complete-data

loglikelihood can be written as a combination of sufficient statistics of the latent data and

the model parameters. This latter property is important because it means that we need

to run the particle filter only once per iteration of the EM algorithm.

First, we need a complete data representation of the fundamental innovations. We

include the innovation due to the diffusion part, Zi,u = σu,f(τi−1,τi)

√
∆τiui, the number of

jumps, ∆Ni and the innovation due to jumps, Zi,J =
∑∆Ni

h=0 Ji,h. The loglikelihood of the

11For a general introduction to the MCEM algorithm, see for instance Wei and Tanner (1990).
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number of jumps is

L1
i = ∆Ni ln(λ∆τi)− λ∆τi (7)

Conditional on the number of jumps, the loglikelihood of the spread innovations is

L2
i = −

Z2
i,u

2σ2
u,f(τi−1,τi)

∆τi

−
ln
(
σ2

u,f(τi−1,τi)

)
2

+ 1{∆N>0} ×
[
− (Zi,J − µJ∆Ni)

2

2σ2
J(∆Ni + 1{∆N=0})

− ln (σ2
J)

2

]
(8)

Second, we need the complete data representation of the microstructure noises and data

errors. We include the microstructure errors ci,A, ci,B, the data error indicators qi,A, qi,B

and the data errors εi,A, εi,B. Then, if the observation is an ask we have

L3,A
i = −(ci,A − µτi

)2

2σ2
c,A

−
ln(σ2

c,A)

2
+ qi,A

[
−

ε2
i,A

2σ2
ε

− ln(σ2
ε)

2

]
+ qi,A ln p + (1− qi,A) ln(1− p) (9)

If the observation is a bid we have

L3,B
i = −(ci,B − µτi

)2

2σ2
c,B

−
ln(σ2

c,B)

2
+ qi,B

[
−

ε2
i,B

2σ2
ε

− ln(σ2
ε)

2

]
+ qi,B ln p + (1− qi,B) ln(1− p) (10)

When we have both a bid and an ask observation, the situation is more involved because

of the conditioning on the event {ci,A +qA
i εA

i +ci,B +qB
i εB

i > 0}. Fortunately the EM setup

is ideally suited to deal with such situations. In particular, complete the space with draws

of the vector (ci,A, qA
i , εA

i , ci,B, qB
i , εB

i )j that were thrown away because of not satisfying

the condition. Denote the corresponding loglikelihoods L3,A
i,j and L3,B

i,j . Let ki denote the

number of such draws. Then the complete data loglikelihood is

L3,AB
i = L3,A

i + L3,B
i +

ki∑
j=0

(L3,A
i,j + L3,B

i,j ) (11)

Then the MCEM algorithm can be summarized as follows: (1) Set some initial parameter

values, θ(0); (2) Repeat the following E- and M-steps until convergence.

• E-step: Get the conditional expectation of the sufficient statistics in the complete

data loglikelihood function of the previous set of parameters. In particular we need

to approximate quantities of the form

E(X | DT , θ(k−1))

14



where Xi is some function of the hidden random states, DT is the observed data and

θk−1 is the parameter vector at the (k − 1)th iteration. The particle filter described

in section 5.1 can be used to compute these quantities. We run the filter using the

parameters θ(k−1) to generate the particle set that represents the smoothed distribu-

tion for Xi. The m-th particle is denoted by X
(m)
i|T . Thus, the expectation can be

approximated by the sample average as follows:

E(Xi | DT , θ(k−1)) ≈ 1

M

M∑
m=1

X
(m)
i|T

When the sample size T is large, undesirable Monte-Carlo noise will be introduced

by the use of the smoothed distribution. Intuitively, the particle filter always adapts

to the newest observation, and thus its representation of the distant past is bound to

be poor. Cappe and Moulines (2005) suggest to use the information only up to i+L

when computing any quantity that involves the unobserved state variable at time i.

The rationale is the forgetting property expected of the dynamic system; that is, for

large enough L, the distribution for the unobserved state variable at time i conditional

on the information up to i + L will be almost identical to that conditional on the

entire sample. Cappe and Moulines (2005) thus propose to use fixed-lag smoothing

by using information only up to i + L. Adopting fixed-lag smoothing leads to our

approximation as follows:

E(Xi | DT , θ(k−1))

≈ E(Xi | D(i+L)∧T , θ(k−1))

≈ 1

M

M∑
m=1

X
(m)
i|(i+L)∧T

• M-step: Maximize the conditional expected value of the complete-data log-likelihood

function obtained in the E-step. In particular, denote the ith complete-data loglike-

lihood by Li(θ)

Li(θ) = L1
i (θ) + L2

i (θ) + L3
i (θ) (12)

where L3
i (θ) is equal to L3,A

i (θ), L3,B
i (θ) or L3,AB

i (θ) depending on whether the obser-

vation is an ask, a bid or an ask-bid pair. Then, in general the M-step can be written

as follows

θ(k) = arg max
θ

T∑
i=1

E(Li(θ) | DT , θ(k−1))

A detailed description of the M-step is in Appendix C.
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The usual way to compute the asymptotic standard error for the maximum likelihood

estimate is to use the negative Hessian matrix or the inner product of the individual scores.

But in our case, either one is not directly computable because the individual log-likelihood

function, ln f(si; i = 1, · · · , n | θ) is highly irregular with respect to θ due to using the

particle filter. An alternative estimator proposed by Duan and Fulop (2007a) can be

applied to our setting, however, which uses the smoothed individual scores to compute the

asymptotic error.

7 Empirical Results

In this section we investigate intraday patterns of volatility and transaction costs. We

allow both the diffusion volatility and the proportional costs to vary during the day. For

the 3 US entities, the parameter values are estimated during 5 time periods in New-York

GMT: 5:30-7:30 (1), 7:30-9:30 (2), 9:30-14:30 (3), 14:30-16:30 (4) and the overnight period

16:30-05:30 (5). For the European name, the parameter values are estimated during 6

time periods (NY GMT): 5:30-7:30 (1), 7:30-9:30 (2), 9:30-14:30 (3), 14:30-16:30 (4) and

the overnight period 16:30-05:30 (5). Table 2 shows the parameter estimates and the

asymptotic standard errors.

For the 3 US entities, the volatility parameter exhibits the usual J-shaped pattern during

the business hours (5:30 am-5:30 pm) (see Hasbrouck (1999) and others). The volatility is

at the lowest level during off hours trading, when almost no trade or quote happens. This

pattern may signal the price discovery process and/or price competition among traders.

However, it is not likely that portfolio re-balancing is the main motive of the dealers.

The intraday pattern of the mean cost of the US entities, µ, is noteworthy. The mean

cost attains its highest level prior to the New York business hours (5:30-7:30), when there

are few trades, but when the quoting activity is high in the IDB. Then µ declines sharply

from 7:30 to 9:30, when the number of trades picks up. During the late afternoon, µ

increases slightly for Ford and GMAC, and it picks up (increase of 50% ) during the off-

hours period (17:30 - 5:30), when trading is thin. Note that we do not have enough data to

estimate the mean costs of Sears during the overnight period. Thus, we observe that the

number of trades and the mean costs are inversely related in our data, which is consistent

with the theory of liquidity externalities.
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8 Conclusion

In this paper, we use a new high-frequency data set for 4 credit default swaps, provided

by GFI, one of the main interdealer brokers.

First, we find that bid-ask spreads and roundtrip costs in our data are not substantially

lower than their counterparts in the corporate bond markets. This suggests that just like

corporate bonds, CDS prices are not likely to be free from microstructure phenomena. So

one should be careful when interpreting CDS premia as a pure measure of credit risk.

Second, as we have intra-day observations, we are able to estimate an econometric

model allowing for intradaily patterns in transaction costs and volatility. In the model,

bid and ask quotes arise from an implicit efficient price and stochastic market-making

costs. Further, our framework allows for data errors, discreteness and jumps in the efficient

price. We estimate the model using particle filtering and the Monte Carlo EM algorithm.

The parameter estimates show a J-shape pattern for the volatility of the efficient price,

and for transaction costs during New York business hours for the 3 US names. Patterns

are different for the European name whose trading activity and volatility pick up during

London business hours. For all the four names, we find that volatility is low and transaction

costs are higher when trading is thinner (off hours trading).

These results suggest that this IDB does not seem to be used so much by dealers to

manage their inventory position. We do not observe in our data any patterns usually

consistent with the inventory paradigm, (for instance, we don’t find a peak in the number

of trades, or volatility at the end of the day). In contrast, the J-shape pattern of volatility

and transaction costs may signal the presence of the price discovery process. If this is

indeed the case, we have found an example of an IDB where anonymity promotes informed

trades. However, further research is needed on this issue, especially to disentangle the

asymmetric information story from price competition among dealers.
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Appendix A:

The necessary quantities for executing the particle filtering algorithm when the obser-

vation is an ask are described below. For the jump probabilities, we have

p(qA
i = 1) = p and p(qA

i = 0) = 1− p

p(∆Ni = k) =
(λ∆τi)

k

k!
e−λ∆τi for k = 0, 1, 2, · · ·

The conditional distribution of f(aτi
| mτi−1

, ∆Ni, q
A
i ) is normal with mean and variance

E[aτi
| mτi−1

, ∆Ni, q
A
i ] = mτi−1

+ ∆NiµJ + µτi

V ar[aτi
| mτi−1

, ∆Ni, q
A
i ] = σ2

u,f(τi−1,τi)
∆τi + ∆Niσ

2
J + σ2

c,A + qA
i σ2

ε

Corresponding to Aτi
it must be that aτi

∈ (ln(Aτi
−K), ln Aτi

]. Thus we can compute

p(Aτi
| mτi−1

, ∆Ni, (q
A
i )) (13)

= Φ

 ln Aτi
− E[aτi

| mτi−1
, ∆Ni, q

A
i ]√

V ar[aτi
| mτi−1

, ∆Ni, qA
i ]

− Φ

 ln(Aτi
−K)− E[aτi

| mτi−1
, ∆Ni, q

A
i ]√

V ar[aτi
| mτi−1

, ∆Ni, qA
i ]


The conditional distribution f(mτi

| aτi
, mτi−1

, ∆Ni, q
A
i ) is again normal with mean and

variance

E[mτi
| aτi

, mτi−1
, ∆Ni, q

A
i ] = E[mτi

| mτi−1
, ∆Ni, q

A
i ]

+
Cov[mτi

, aτi
| mτi−1

, ∆Ni, q
A
i ]

V ar[aτi
| mτi−1

, ∆Ni, qA
i ]

× (aτi
− E[aτi

| mτi−1
, ∆Ni, q

A
i ])

V ar[mτi
| aτi

, mτi−1
, ∆Ni, q

A
i ] = V ar[mτi

| mτi−1
, ∆Ni, q

A
i ]−

Cov[mτi
, aτi

| mτi−1
, ∆Ni, q

A
i ]2

V ar[aτi
| mτi−1

, ∆Ni, qA
i ]

where

E[mτi
| mτi−1

, ∆Ni, q
A
i ] = mτi−1

+ ∆NiµJ

V ar[mτi
| mτi−1

, ∆Ni, q
A
i ] = σ2

u,f(τi−1,τi)
∆τi + ∆Niσ

2
J

Cov[mτi
, aτi

| mτi−1
, ∆Ni, q

A
i ] = σ2

u,f(τi−1,τi)
∆τi + ∆Niσ

2
J

Similarly, f(cA
i | aτi

, mτi
, qA

i ) is normal with mean and variance

E[cA
i | aτi

, mτi
, qA

i ] = µτi
+

σ2
c,A

σ2
c,A + qA

i σ2
ε

× (aτi
−mτi

− µτi
)

V ar[cA
i | aτi

, mτi
, qA

i ] = σ2
c,A −

σ4
c,A

σ2
c,A + qA

i σ2
ε
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Appendix B: Particle Filter for the case of a bid and
an ask observation

This appendix contains the details of the particle filtering algorithm for the case when

we have both a bid and an ask observation. The algorithm differs from the case of only

one observation for two reasons. First, both the bid and the ask contains information on

the new fundamental price, mτi
. Second, we need to deal with sample selection as a result

of the restriction S = {aτi
> bτi

} where

bτi
= mτi

− (ci,B + qB
i εB

i )

aτi
= mτi

+ ci,A + qA
i εA

i

which also ensures that Aτi
−Bτi

≥ K.

Our algorithm now is based on the following filtering density/distribution

f(aτi
, bτi

, mτi
, mτi−1

, ∆Ni, q
A
i , qB

i , cA
i , cB

i | Di,S)

= f(cA
i | aτi

, mτi
, qA

i )f(cB
i | bτi

, mτi
, qB

i )f(mτi
| aτi

, bτi
, mτi−1

, ∆Ni, q
A
i , qB

i )

× f(aτi
| Aτi

, bτi
, mτi−1

, ∆Ni, q
A
i , qB

i ,S)f(bτi
, mτi−1

, ∆Ni, q
A
i , qb

i | Di,S)

where f(bτi
, mτi−1

, ∆Ni, q
A
i , qb

i | Di,S)

∝ p(Aτi
,S | bτi

, mτi−1
, ∆Ni, q

A
i , qB

i )f(bτi
| Bτi

, mτi−1
, ∆Ni, q

B
i )

× p(Bτi
| mτi−1

, ∆Ni, q
B
i )p(∆Ni)p(qA

i )p(qB
i )f(mτi−1

| Di−1)

Assume that we have M particles, m
(m)
τi−1 representing f(mτi−1

| Di−1). Then our localized

particle filter with M particles consists of the following steps:

• Step 1: Enlarge the state-space by the jumps in the system by sampling from

∆Ni, q
A
i , qb

i . Jumps can be rare events so we use stratified sampling to ensure that

our simulated sample always contains jumps by putting an equal probability of 1
2

on

having and not having jumps. I.e. we use the importance sampling distributions

g1(∆Ni) =
1

2
p(∆Ni | ∆Ni > 0) +

1

2
1{∆Ni=0} (14)

g2(q
A
i ) =

1

2
1{qA

i =0} +
1

2
1{qA

i =1} (15)

g3(q
B
i ) =

1

2
1{qB

i =0} +
1

2
1{qB

i =1} (16)

This results in particles m
(m)
τi−1 , ∆N

(m)
i , (qA

i )(m), (qB
i )(m).
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Also, sample bτi
from the truncated normal density f(bτi

| Bτi
, m

(m)
τi−1 , ∆N

(m)
i , (qB

i )(m)).

This results in an M -particle set (b
(m)
τi , m

(m)
τi−1 , ∆N

(m)
i , (qA

i )(m), (qB
i )(m)), m = 1, . . . ,M .

Then, to arrive at an empirical representation of f(bτi
, mτi−1

, ∆Ni, q
A
i , qb

i | Di,S)

attach to each of these particles the importance weights

w
(m)
i = p(Aτi

,S | b(m)
τi

, m(m)
τi−1

, ∆N
(m)
i , (qA

i )(m), (qB
i )(m))

× p(Bτi
| m(m)

τi−1
, ∆N

(m)
i , (qB

i )(m))

× p((qA
i )(m))p((qB

i )(m))[1
∆N

(m)
i >0

p(∆Ni > 0) + 1
∆N

(m)
i =0

p(∆Ni = 0)]

The likelihood value for the observed bid and ask can be computed as

p(Aτi
, Bτi

| Di−1,S) =
p(Aτi

, Bτi
,S | Di−1)

p(S)
≈

1
M

∑M
m=1 w

(m)
i

p(S)

• Step 2: Resample the particle set according to the probability π
(m)
i =

w
(m)
i

PM
m=1 w

(m)
i

to

yield M equal-weighted particles denoted by (b
(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m)).

This equal-weighted particle set is again an empirical representation of f(bτi
, mτi−1

, ∆Ni, q
A
i , qb

i |
Di,S).

• Step 3: Corresponding to each particle (b
(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m)), sam-

ple from the truncated normal density f(aτi
| Aτi

, b
(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m),S)

to generate the particle (a
(m)
τi , b

(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m)). The correspond-

ing particle set represents f(aτi
, bτi

, mτi−1
, ∆Ni, q

A
i , qb

i | Di,S).

• Step 4: Using conditional normality sample from

m(m)
τi

∼ f(mτi
| a(m)

τi
, b(m)

τi
, m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m))

(cA
i )(m) ∼ f(cA

i | a(m)
τi

, m(m)
τi

, (qA
i )(m))

(cB
i )(m) ∼ f(cB

i | b(m)
τi

, m(m)
τi

, (qB
i )(m))

This yields M particles, (a
(m)
τi , b

(m)
τi , m

(m)
τi , m

(m)
τi−1|i, ∆N

(m)
i , (qA

i )(m), (qB
i )(m), (cA

i )(m), (cB
i )(m))

which represent f(aτi
, bτi

, mτi
, mτi−1

, ∆Ni, q
A
i , qB

i , cA
i , cB

i | Di,S). One can then pro-

ceed to marginalize mτi
to represent the filtering distribution f(mτi

| Di)

The necessary quantities for executing this algorithm are described below. The condi-

tional distribution of f(bτi
| mτi−1

, ∆Ni, q
b
i ) is normal with mean and variance

E[bτi
| mτi−1

, ∆Ni, q
B
i ] = mτi−1

+ ∆NiµJ − µτi

V ar[bτi
| mτi−1

, ∆Ni, q
B
i ] = σ2

u,f(τi−1,τi)
∆τi + ∆Niσ

2
J + σ2

c,b + qB
i σ2

ε
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Corresponding to Bτi
it must me that bτi

∈ [ln Bτi
, ln(Bτi

+ K). Thus we can compute

p(Bτi
| mτi−1

, ∆Ni, (q
B
i )) (17)

= Φ

 ln(Bτi
+ K)− E[bτi

| mτi−1
, ∆Ni, q

B
i ]√

V ar[Bτi
| mτi−1

, ∆Ni, qB
i ]

− Φ

 ln Bτi
− E[bτi

| mτi−1
, ∆Ni, q

B
i ]√

V ar[bτi
| mτi−1

, ∆Ni, qB
i ]


The conditional distribution f(aτi

| bτi
, mτi−1

, ∆Ni, q
A
i , qB

i ) is normal with mean and

variance

E[aτi
| bτi

, mτi−1
, ∆Ni, q

A
i , qB

i ] = E[aτi
| mτi−1

, ∆Ni, q
A
i ]

+
Cov[aτi

, bτi
| mτi−1

, ∆Ni, q
A
i , aτi

| bτi
, mτi−1

, ∆Ni, q
A
i , qB

i ]

V ar[bτi
| mτi−1

, ∆Ni, qB
i ]

× (bτi
− E[bτi

| mτi−1
, ∆Ni, q

B
i ])

V ar[aτi
| bτi

, mτi−1
, ∆Ni, q

A
i , qB

i ] = V ar[aτi
| mτi−1

, ∆Ni, q
A
i ]−

Cov[aτi
, bτi

| mτi−1
, ∆Ni, q

A
i , qB

i ]]2

V ar[bτi
| mτi−1

, ∆Ni, qB
i ]

where

Cov[aτi
, bτi

| mτi−1
, ∆Ni, q

A
i , qB

i ] = σ2
u,f(τi−1,τi)

∆τi + ∆Niσ
2
J

Aτi
,S means that aτi

∈ (max[ln(Aτi
−K), bτi

], ln Aτi
) 12 . Then we have the following

p(Aτi
,S | b(m)

τi
, m(m)

τi−1
, ∆N

(m)
i , (qA

i )(m), (qB
i )(m)) (18)

= Φ

 ln Aτi
− E[aτi

| mτi−1
, ∆Ni, q

A
i ]√

V ar[aτi
| bτi

, mτi−1
, ∆Ni, qA

i , qB
i ]

− Φ

max[ln(Aτi
−K), bτi

]− E[aτi
| mτi−1

, ∆Ni, q
A
i ]√

V ar[aτi
| bτi

, mτi−1
, ∆Ni, qA

i , qB
i ]


The last quantity we need is the conditional normal distribution of f(mτi

| aτi
, bτi

, mτi−1
, ∆Ni, q

A
i , qB

i ).

12This is enough because bτi
< lnAτi
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Its mean and variance are

E[(mτi
| aτi

, bτi
, mτi−1

, ∆Ni, q
A
i , qB

i ]

= E[(mτi
| mτi−1

, ∆Ni, q
A
i , qB

i ]

+ Cov[mτi
,

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]′V ar[

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]−1

×

[(
aτi

bτi

)
− E[

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]

]
V ar[(mτi

| aτi
, bτi

, mτi−1
, ∆Ni, q

A
i , qB

i ]

= V ar[(mτi
| mτi−1

, ∆Ni, q
A
i , qB

i ]

− Cov[mτi
,

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]′V ar[

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]−1

× Cov[mτi
,

(
aτi

bτi

)
| mτi−1

, ∆Ni, q
A
i ]

Note that the particle filter provides a sample on the entire past of the system up to τi.

Any quantity of interest based on the past particles can be computed and carried forward

alongside with mτi
. This is true because at any time ti, mτi

is sufficient for moving the

algorithm forward. Denote by Ii the quantity whose distribution is of interest; for example,

one may be interested in Ii = (mτ0 +mτ1 + · · ·+mτi
)/(i+1). Then, in all of the preceding

derivations one can use the vector (Ii, mτi
) in place of mτi

. Conditional on mτi
, the system’s

forward evolution has nothing to do with Ii, and thus the algorithm remains unchanged.

However, the output of the filter at any time τi will be a set of particles representing the

joint filtering distribution of (Ii, mτi
), i.e., f (Ii, mτi

, | Di).

Appendix C: M-step of the MCEM algorithm

This appendix describes the parameter updates in the M-step of our MCEM algorithm,

parameter-by-parameter. First, let us introduce some notation. Let l
|k−1
Xi

denote the condi-

tional expectation of a variable Xi given the observed data, DT and the parameter vector

at the (k − 1)th iteration, θk−1

l
|k−1
Xi

= E(Xi | DT , θ(k−1))

As discussed in the main text, the particle filter described in section 5.1 can be used to

compute this quantity jointly with fixed-lag smoothing.
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Similarly denote by l
|k−1,SC

Xi
the expectation of Xi conditionally on θk−1 and the com-

plementer set of S
l
|k−1,SC

Xi
= E(Xi | θ(k−1),SC)

These quantities are computed analytically in our model.

Now we are in the position to write parameter updates.

λ(k) =

∑T
i=1 l

|k−1
∆Ni

τT − τ0

θ(k)
σu

= arg max
θσu

n∑
i=1

−
l
|k−1

Z2
i,u

2σ2
u,f(τi−1,τi)

∆τi

−
ln
(
σ2

u,f(τi−1,τi)
∆τi

)
2

µ
(k)
J =

∑n
i=1 l

|k−1
Xi,1∑n

i=1 l
|k−1
Xi,2

(σ2
J)(k) =

∑n
i=1

[
l
|k−1
Xi,3

− 2µ
(k)
J l

|k−1
Xi,1

+ (µ
(k)
J )2l

|k−1
Xi,2

]
∑n

i=1 l
|k−1
1{∆Ni>0}

where

Xi,1 = 1{∆Ni>0}
Zi,J∆Ni

∆Ni + 1{∆Ni=0}

Xi,2 = 1{∆Ni>0}
(∆Ni)

2

∆Ni + 1{∆Ni=0}

Xi,3 = 1{∆Ni>0}
Z2

i,J

∆Ni + 1{∆Ni=0}

θ(k)
µ = arg max

θµ

∑
i∈IA

S
IAB

−
−2l

|k−1
ci,A µτi

+ µ2
τi

2(σ
(k−1)
c,A )2

+
∑

i∈IB
S

IAB

−
−2l

|k−1
ci,B µτi

+ µ2
τi

2(σ
(k−1)
c,B )2

+
∑

i∈IAB

l
|k−1
ki

×

[
−
−2l

|k−1,SC

ci,B µτi
+ µ2

τi

2(σ
(k−1)
c,B )2

−
−2l

|k−1,SC

ci,A µτi
+ µ2

τi

2(σ
(k−1)
c,A )2

]

σ
(k)
c,A =

√√√√√∑i∈IA
S

IAB

[
l
|k−1

c2i,A
− 2l

|k−1
ci,A µ

(k)
τi + (µ

(k)
τi )2

]
+
∑

i∈IAB
l
|k−1
ki

[
l
|k−1,SC

c2i,A
− 2l

|k−1,SC

ci,A µ
(k)
τi + (µ

(k)
τi )2

]
TA + TAB +

∑
i∈IAB

l
|k−1
ki

σ
(k)
c,B =

√√√√√∑i∈IB
S

IAB

[
l
|k−1

c2i,B
− 2l

|k−1
ci,B µ

(k)
τi + (µ

(k)
τi )2

]
+
∑

i∈IAB
l
|k−1
ki

[
l
|k−1,SC

c2i,B
− 2l

|k−1,SC

ci,B µ
(k)
τi + (µ

(k)
τi )2

]
TB + TAB +

∑
i∈IAB

l
|k−1
ki
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σ(k)
ε =

√√√√√∑i∈IB
S

IAB
l
|k−1

qi,Bε2
i,B

+
∑

i∈IA
S

IAB
l
|k−1

qi,Aε2
i,A

+
∑

i∈IAB
l
|k−1
ki

[
l
|k−1,SC

qi,Bε2
i,B

+ l
|k−1,SC

qi,Aε2
i,A

]
∑

i∈IB
S

IAB
l
|k−1
qi,B +

∑
i∈IA

S
IAB

l
|k−1
qi,A +

∑
i∈IAB

l
|k−1
ki

[
l
|k−1,SC

qi,B + l
|k−1,SC

qi,A

]
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Ford GMAC Sears Acceptance France Telecom
Currency USD USD USD EUR
Country United States United States United States France
Sector Automobile Automobile Retail Telecommunication
Grade on 2006/12/31 B BB+ BB+ A-

Data is between 2004-2006

Ford GMAC Sears Acceptance France Telecom
Daily Average # bid 5,81 6,65 2,49 4,32

N bid 4265 4936 1356 3078

Average bid 332 344 106,23 41,27

Daily Average # ask 5,12 6,18 2,07 4,24

N ask 3759 4589 1127 3017

Average ask 341 352 114,65 42,78

Daily Average # trade 2,57 4,46 0,78 1,42

N trade 1891 3313 425 997

Average trade price 367 393 113,46 42,38

Ford France Telecom GMAC Sears Acceptance
N bid 2611 1640 2991 714

Average bid 335 40,49 351,45 107,34

N ask 2149 1583 2681 509

Average ask 343 40,95 359,25 115,59

N bid/ask pair 1420 1276 1656 568

Average midpoint(*) 331 43,61 331,185 109,42

Average b/a spread(*) 10,08 2,87 9,7 9,26

Average cost of a round-trip(**) 43,64 12,43 42,00 40,09

Minimum tick, K 1 0,5 0,5 1

Data is between 2004-2006
At most 1 bid and ask observation has been kept for an identical time stamp (this is per minute)
Only observations where the ask is higher than the bid has been kept

(*) These statistics have been computed using the observation with both a bid and an ask

Entity

Table 1
Characteristics of bid and ask quotes and trade price.

Panel A

Panel C

Characteristics

Results from the dataset used for estimation 

Entity

Entity

Panel B
Descriptive statistics from the raw dataset
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Time σu µ σu µ σu µ
05:30-07:30 1,0689 0,0146 1,2458 0,0157 0,3848 0,0437

0,0530 0,0002 0,0569 0,0003 0,3420 0,0016
07:30-09:30 0,9733 0,0092 1,0961 0,0106 1,2522 0,0328

0,0355 0,0003 0,0412 0,0003 0,1322 0,0008
09:30-14:30 0,8436 0,0100 0,8441 0,0098 0,7877 0,0257

0,0266 0,0002 0,0305 0,0002 0,0911 0,0012
14:30-16:30 0,7089 0,0103 0,9717 0,0110 0,8085 0,0236

0,0644 0,0004 0,0512 0,0004 0,2753 0,0028
16:30-05:30 0,0466104 0,0107857 0,0847063 0,013508 0,0213781 -9,73E-05

0,0271 0,0006 0,0615 0,0006 0,1566 0,0162
Parameters
σc,A 0,0105 0,0113 0,0276

0,0002 0,0002 0,0009
σc,B 0,0099 0,0113 0,0287

0,0002 0,0002 0,0008
σЄ 0,0782 0,0727 0,1815

0,0073 0,0069 0,0327
λ 47,5301 60,7998 22,3496

7,5655 6,7575 5,7466
µJ 0,0017 -0,0033 0,0203

0,0056 0,0071 0,0167
σJ 0,0586 0,0777 0,1065

0,0035 0,0027 0,0142

Time σu µ
00:30-02:30 0,6902 0,0331

0,1106 0,0008
02:30-04:30 1,1769 0,0242

0,0705 0,0004
04:30-07:30 0,5748 0,0197

0,0890 0,0007
07:30-10:30 0,6971 0,0198

0,0689 0,0007
10:30-14:30 0,3150177 0,0169186

0,1105 0,0010
14:30-00:30 0,0005 0,0227

0,0097 0,0029
Parameters
σc,A 0,0196

0,0004
σc,B 0,0201

0,0004
σЄ 0,0727

0,0131
λ 26,8219

7,0712
µJ 0,0056

0,0093
σJ 0,0635

0,0090

Table 2
Panel A: US names (Assymptotic standard errors in italics )

Panel B: European name (Assymptotic standard errors in italics)
France Telecom

Ford GMAC Sears Acceptance
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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Figure 10:
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Figure 11:
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Figure 12:

2004 2005 2006 2007
0

100

200

300

400

500

600

700

800

bp

GMAC CDS spreads 2004−2006

 

 
Bids
Asks
Efficient Spreads

39



Figure 13:

2004 2005 2006 2007
20

40

60

80

100

120

140

160

180

200

bp

Sears CDS spreads 2004−2006

 

 
Bids
Asks
Efficient Spreads

40



Figure 14:

2004 2005 2006 2007
20

30

40

50

60

70

80

bp

FT CDS spreads 2004−2006

 

 
Bids
Asks
Efficient Spreads

41


