SR - PHYSICS

Wave motion

1. Two sources A and B are sending notes of frequency 680 Hz . A lestener moves from A to B with a constant velocity ' u '. If the speed of sound in air is $340 \mathrm{~ms}^{-1}$, what must be the value of ' u ' so that he hears 10 beats per second (Engg-2009)
1) $2.0 \mathrm{~ms}^{-1}$
2) $2.5 \mathrm{~ms}^{-1}$
3) $3.0 \mathrm{~ms}^{-1}$
4) $3.5 \mathrm{~ms}^{-1}$
2. Two identical piano wire have a fundamental frequency of $600 \mathrm{c} / \mathrm{s}$ when kept under the same tension. What fractional increase in the tension of one wire will lead to the occurence of 6 beats per second when both wire vibrate simultaneously (Engg-2009)
1) 0.01
2) 0.02
3) 0.03
4) 0.04
3. A theatre of volume $100 \times 40 \times 10 \mathrm{~m}^{3}$ can accommodate 1000 visitors. The reverberation time of the theatre when empty is 8.5 sec . If the theatre is now filled with 500 visitors, occupying the front-half seats, the reverberation time changes to 6.2 seconds. The average absorption coefficient of each visitor is nearly (Med-2009)
1) 0.6
2) 0.5
3) 0.45
4) 0.7
4. An observer is standing 500 mts away from a vertical hill. Starting from a point between the observer and the hill, a police van moves towards the hill with uniform speed sounding a siren of frequency of 1000 Hz . If the frequency of the sound heard by the observer directly from the siren is 970 Hz , the frequency of the sound heard by the observer after reflection from the hill (Hz) is nearly (Velocity of sound in air $=330 \mathrm{~m} / \mathrm{s}$) (Med-2009)
1) 1042
2) 1031
3) 1022
4) 1012
5. When a sound wave of wavelength λ is propagating in a medium the maximum velocity of the particle is equal to wave velocity. The amplitude of the wave is (ENG 2008)
1) λ
2) $\frac{\lambda}{2}$
3) $\frac{\lambda}{2 \pi}$
4) $\frac{\lambda}{4 \pi}$
6. A car moving with a speed of 72 kmph towards a hill. Car blows horn at a distance of 1800 m from the hill. If echo is heard after 10s, the speed of sound (in ms^{-1}) is (ENG 2008)
1) 300
2) 320
3) 340
4) 360
7. The frequencies of three tuning forks A, B and C have a relation $n_{A}>n_{B}>n_{C}$. When the forks A and B are sounded together the number of beats produced is n_{1}. When A and C are sounded together the number of beats produced is n_{2}, then the number of beats produced when B and C are sounded together is (MED 2008)
1) $n_{1}+n_{2}$
2) $\frac{n_{1}+n_{2}}{2}$
3) $n_{2}-n_{1}$
4) $n_{1}-n_{2}$
8. Two strings of the same material and the same area of cross - section are used in sonometer experiment. One is loaded with 12 kg and the other with 3 kg . The fundamental frequency of the first string is equal to the first overtone of the second string. If the length of the second string is 100 cm , then the length of the first string is (MED 2008)
1) 300 cm
2) 200 cm
3) 100 cm
4) 50 cm
9. A whistle of frequency 540 Hz rotates in a horizontal circle of radius 2 m at an angular speed of $15 \mathrm{rad} /$ s. The highest frequency heard by a listener at rest respect to the centre of circle (velocity of sound in air $\left.=330 \mathrm{~ms}^{-1}\right)(\mathbf{2 0 0 7}-\mathrm{E})$
1) 590 Hz
2) 594 Hz
3) 598 Hz
4) 602 Hz
10. A segment of wire vibrates with a fundamental frequency of 450 Hz under a tensionof 9 kg weight. Then tension at which the fundamental frequency of the same wire becomes 900 Hz is (2007-E)
1) 36 kg -weight
2) 27 kg -weight
3) 18 kg -weight
4) 72 kg -weight
11. A uniform wire of linear density $0.004 \mathrm{kgm}^{-1}$ when stretched between two rigid supports with a tension $3.6 \times 10^{2} N$, resonates with a frequency of 420 Hz . The next harmonic frequency with which the wire resonates is 490 Hz . The length of the wire in metres is (MED 2007)
1) 1.41
2) 2.14
3) 2.41
4) 3.14
12. To increase the frequency by 20%, the tension in the string vibrating on a sonometer has to be increased by (MED 2007)
1) 44%
2) 33%
3) 22%
4) 11%
13. Two strings A and B of lengths, $L_{A}=80 \mathrm{~cm}$ and $L_{B}=x \mathrm{~cm}$ respectively are used separately in a sonometer. The ratio of their densities $\left(d_{A} / d_{B}\right)=0.81$. The diameter of B is one-half that of A If the strings have the same tension tension and fundamental frequency the value of x is (2006-E)
1) 33
2) 102
3) 144
4) 130
14. An observer is standing 500 m away from a vertical hill. Starting between the observer and the hill, a police van sounding a siren of frequency 1000 Hz moves from the siren is 970 Hz , the frequency of the sound heard directly from the siren is 970 Hz , the frequency of the sound heard after reflection from the hill(in Hz) is about, (velocity of sound $=330 \mathrm{~ms}^{-1}$) (2006-E)
1) 1042
2)1032
2) 1022
4)1012
15. The two surfaces of a biconvex lens has same radii of curvatures. This lens is made of glass odf refractive index 1.5 and has a focal length 10 cm in air.The lens is cut into equal halves along a plane perpendicular to its principal axis to yield two plano -convex lenses. The two pieces are glued such that the conve surfaces touch each other. If this combination lens is immersed in water (refractive index $=4 / 3$ focal length (in cm) is (2006-E)
1) 5
2) 10
3) 20
4) 40
16. The frequency of a tuning fork is 256 Hz . The velocity of sound in air is $344 \mathrm{~ms}^{-1}$. The distance travelled (in metres) by the sound during the time in which the tuning fork completes 32 vibrations is: (MED 2006)
1) 21
2) 43
3) 86
4) 129
17. A uniform string of length 1.5 m has two successive harmonics of frequencies 70 Hz and 84 Hz . The speed of the wave in the string $\left(\right.$ in $\left.m s^{-1}\right)$ is : (MED 2006)
1) 84
2) 42
3) 21
4) 10.5

Ray optics

18. Four light sources produce the following four waves (Engg-2009)
i) $y_{1}=a \sin \left(\omega t+\phi_{1}\right)$
ii) $y_{2}=a \sin 2 \omega t$
iii) $y_{3}=a^{\prime} \sin \left(\omega t+\phi_{2}\right)$
iv) $y_{4}=a^{\prime} \sin (3 \omega t+\phi)$

Superposition of which two waves give rise to interference

1) i and ii
2) ii and iii
3) i and iii
4) iii and iv
19. The two lenses of an achromatic doublet should have (Engg-2009)
1) equal powers
2) equal dispersive power
3) equal ratio of their power and dispersive power
4) sum of the products of their power and dispersive power should be equal to zero
20. The light beams produce interference pattern to give maxima an minima on the screen. If the intensities of the light beams in the ratio of $9: 4$, then the ratio of intensities of maxima an minima is (Med-2009)
1) $3: 2$
2) $5: 1$
3) $25: 1$
4) $9: 1$
21. A glass slab of thickness 8 cms contains the same number of waves as 10 cms long path of water when both are traversed by the same monochromatic light. If the refractive index of water is $\frac{4}{3}$, the refractive index of glass is (Med-2009)
1) $\frac{5}{3}$
2) $\frac{5}{4}$
3) $\frac{16}{15}$
4) $\frac{3}{2}$
22. An achromatic combination of lenses produces (2008E)
1) images in black and white
2) Coloured images
3) images unaffected by variation of refractive index with wavelength
4) highly enlarged images are formed
23. Statement (S): Using Huygen's eye piece measurements can be taken but are not correct

Reason (R): The cross wires, scale and final image are not magnified proportionately because the image of the object is magnified by two lenses, whereas the cross wire scale is magnified by one lens only. (2008E)

1) Both (S) and (R) are true, (R) explains (S)
2) Both (S) and (R) are true, (R) cannot explains (S)
3) Only (S) is correct, but (R) is wrong
4) Both (S) and (R) are wrong
24. Wave theory cannot explain the phenomena of (2008M)
A) Polarization
B) Diffraction
C) Compton effect
D) Photoelectric effect
1) A and B
2) B and D
3) C and D
4) D and A
25. In Huygen's eye piece (2008M)
1) Chromatic aberration is not eliminated
2) Spherical aberration is completely eliminated
3) Focal length of field lens and eye lens are equal
4) Cross wires cannot be provided
26. Solar spectrum is an example of (2008M)
1) line emission spectrum
2) band absorption spectrum
3) line absorption spectrum
4) continuous emission spectrum
27. Match the following (2007-E)

List-I

a) Burning candle
b) Sodium vapour
c) Bunsen flame
d) Dark lines in solar spectrum

1) $a-g, b-e, c-f, d-h$
2) a-f, b-g, c-e, d-h
28. The refractive index of the material of a double convex lens is 1.5 and its focal length is 5 cm . If the radii of curvature are equal, the value of the radius of curvature (in cms) is (2007-E)
1) 5.0
2) 6.5
3) 8.0
4) 9.5
29. In Ramsden eye piece, the two plano convex lenses each of focal length f and separated by a distance 12 cm . The equivalent focal length (in cm) of the eye piece is (2007-E)
1) 10.5
2) 12.0
3) 13.5
4) 15.5
30. In Huygens eye piece (2007-E)
1) the cross wires are outside the eye piece
2) condition for achromatism is satisfied
3) condition for minimum spherical aberration is not satisfied
4) the image formed by the objective is a virtual image.
31. In Ramsden eyepiece, the focal length of each lens is F^{\prime}. The distance of the image formed by the objective lens from the eye lens is
(2007M)
1) $\frac{14 \mathrm{~F}}{15}$
2) $\frac{13 \mathrm{~F}}{14}$
3) $\frac{12 \mathrm{~F}}{13}$
4) $\frac{11 \mathrm{~F}}{12}$
32. The velocities of light in two different media are $2 \times 10^{8} \mathrm{~ms}^{-1}$ and $2.5 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. The critical angle for these media is $\mathbf{(2 0 0 7} \mathbf{M})$
1) $\sin ^{-1}(1 / 5)$
2) $\sin ^{-1}(4 / 5)$
3) $\sin ^{-1}(1 / 2)$
4) $\sin ^{-1}(1 / 4)$
33. The R.I. of a diverging meniscus lens is 1.5 and its radii of curvature are 3 cm and 4 cm . The position of the image, if an object is placed 12 cm infront of the lens is $(\mathbf{2 0 0 7} \mathbf{M})$
1) +8 cm
2) -8 cm
3) +9 cm
4) -9 cm

34 Dispersive power depends on th following (2006-E)

1) material of the prism
2) shape of the prism
3) size of the prism
4) size shape and material of the prism
35. Match the appropriate pairs from list I and II (2006-E)

List I

a) Nitrogen molecules
b) Incandescent solids
c) Fraunhofer lines
2) a-f; b-e; c-h; d-g

Emission spectrunm
3) a-h; b-e; c-f;d-g
4) $a-e ; b-g ; c-h ; d-f$
36. A light ray is travelling between two media as given below. The angle of incidence on the boundary in all the cases is 30°. Identify the sequence of increasing order of angles of refraction. (2006M)
a) Air to water
b) Water to glass
c) Glass to water

1) a,b,c
2) b, c, a
3) c, a, b
4) a, c, b
37. The effective focal length of the lens combination shown in the figure is -60 cm . The radii of curvature of the curved surfaces of the plano comvex lenses are 12 cm each and refractive index of the material of the lens is 1.5 . The refractive index of the liquid is: (2006M)

1) 1.33
2) 1.42
3) 1.53
4) 1.60

Physical optics

38. In the Young's double slit expeiment, the intensities at two points P_{1} and P_{2} on the screen are respectivly I_{1} and I_{2}. If P_{1} is located at the centre of a bright fringe and P_{2} is located at a distance equal to a quater of fringe width from P_{1} the I_{1} / I_{2} is (Engg-2009)
1) 2
2) $1 / 2$
3) 4
4) 16
39. In Young;s double slit experiment, the 10th maximum of wavelenght λ_{1} is at a distance of y_{1} from the central maximum. When the wavelength of the source is changed to $\lambda_{2}, 5$ th maximum is at a distance of y_{2} from its central maximum. The ratio $\left(\frac{y_{1}}{y_{2}}\right)$ is (Engg-2009)
1) $\frac{2 \lambda_{1}}{\lambda_{2}}$
2) $\frac{2 \lambda_{2}}{\lambda_{1}}$
3) $\frac{\lambda_{1}}{2 \lambda_{2}}$
4) $\frac{\lambda_{2}}{2 \lambda_{1}}$
40. The critical angle of a transparent crystal is 45°. Then its polarizing angle is (Med-2009)
1) $\theta=\tan ^{-1}(\sqrt{2})$
2) $\theta=\sin ^{-1}(\sqrt{2})$
3) $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
4) $\theta=\cot ^{-1}(\sqrt{2})$
41. In Fraunhoffer diffraction experiment, L is the distance between screen and the obstacle, b is the size of obstacle and λ is wavelength of incident light.The general condition for the applicability of Fraunhoffer diffraction is ($\mathbf{2 0 0 8} \mathbf{E}$)
1) $\frac{b^{2}}{L \lambda} \gg 1$
2) $\frac{b^{2}}{L \lambda}=1$
3) $\frac{b^{2}}{L \lambda} \ll 1$
4) $\frac{b^{2}}{L \lambda} \neq 1$
42. The source is at some distance from an obstacle.Distance between obstacle and the point of observation is ' b ' and wavelength of light is ' λ '. The distance of $n^{\text {th }}$ Fresnel Zone from the point of observation is (2007 M)
1) $\frac{b n \lambda}{2}$
2) $b-\frac{n \lambda}{2}$
3) $b+\frac{n \lambda}{2}$
4) $b-n \lambda$
43. In young's double slit experiment using two identical slits,the intensity at a bright fringe on the screen is I. If one of the slits is now closed the intensity of the same bright fringe on the screen will be
$(2008 \mathrm{M})$
1) I
2) $I / 2$
3) $I / 4$
4) $\frac{I}{\sqrt{2}}$
44. In Young's double slit experiment, first has width four times the width of the second slit. The ratio of the maximum intensity to the minimum intensity in the interference fringe system is (2006-E)
1) $2: 1$
2) $4: 1$
3) $9: 1$
4) $8: 1$

Magnetism

45. Two bar magnets A, B are placed one over the other and are allowed to vibrate in a vibration magnetometer. They make 20 oscillations per minute when the similar poles of A nd B ae on the same side, whiletheymake 15 osciltationsperm intewhen theirqpositepoles lieonthesame side. If M and M_{B} are the magnetic moments of A and B and if $M_{A}>M_{B}$, the ratio of M_{A} and M_{B} is (Engg2009)
1) $4: 3$
2) $25: 7$
3) $7: 5$
4) $25: 16$
46. A bar magnet of 10 cm long is kept with its notth (N) pole pointing North. A neutral point is formed at a distance 15 cm from each pole. Give the horizontal component of earth's field is 0.4 Gauss, the pole strength of the magnet is (Engg-2009)
1) $9 \mathrm{amp}-\mathrm{m}$
2) $6.75 \mathrm{amp}-\mathrm{m}$
3) $27 \mathrm{amp}-\mathrm{m}$
4) $13.5 \mathrm{amp}-\mathrm{m}$
47. A magnet of lenght L and moment M is cut into two halves (A and B) perpendicular to its axis. One piece A is bent into a semicircle of radius R and is joined to the other piece at the poles as shown in the figure below. (Med-2009)

1) $\frac{M}{2 \pi}$
2) $\frac{M}{\pi}$
3) $\frac{M(2+\pi)}{2 \pi}$
4) $\frac{M \pi}{2+\pi}$
48. A magnetised wire of magnet moment M and lenght L is bent in the form of a semi circle ' r '. Then its magnetic moment is $(\mathbf{2 0 0 8} \mathbf{E})$
49. $\frac{2 \mathrm{M}}{\mathrm{p}}$
50. 2 M
51. $\frac{\mathrm{M}}{\pi}$
52. Zero
53. With a standard rectangular bar magnet, the time period of a vibration magneto meter is 4 sec. The bar magnet is cut parallel to its length into 4 equal pieces. The time period of vibration magnetometer when the piece is used (in sec) (bar magnet breadth is small) (2008E)
54. 16
55. 8
56. 4
57. 2
58. A short bar magnet placed at a certain distance from D.M.M in tan A position produces a deflection of 60°. The magnet is now cut into 3 equal pieces. If one piece is kept at same distance in $\tan A$ from D M M , then the deflection prodiced i(8008M)
59. 10^{0}
60. 20°
61. 30
62. 60
63. Two bar magnets are placed in a V.M.M and allowed to vibrate. They make 20 oscillations /minute when their similar poles are on the same side and they make 15 oscillations per minute with their opposite poles lie on the same side. the ratio of their moments (2008M)
64. 7:25
65. 25:7
66. 16:9
67. 5:4
68. A bar-magnet of moment of inertia $49 \times 10^{-2} \mathrm{~kg} \mathrm{~m}{ }^{2}$ vibrates in a magnetic field of induction 0.5×10^{-4} Tesla. The time period of vibration is 8.8 sec . The magnetic moment of the bar magnet is (2007-E)
1) $350 \mathrm{Am}^{2}$
2) $490 \mathrm{Am}^{2}$
3) $3300 \mathrm{Am}^{2}$
4) $5000 \mathrm{Am}^{2}$
53. A bar magnet of magnetic moment M and moment of inertia I is freely suspended such that the magnetic axial line is in the direction of magnetic meridian. If the magnet is displaced by a very small angle (θ), the angular acceleration is (Magnetic induction of earth's horizontal field $\left.=B_{H}\right)(\mathbf{2 0 0 7} \mathbf{- E})$
1) $\frac{M B_{H} \theta}{I}$
2) $\frac{I B_{H} \theta}{M}$
3) $\frac{M \theta}{I B_{H}}$
4) $\frac{I \theta}{M B_{H}}$
54. A bar magnet of magetic moment M_{1} is axially cut into two equal parts. If these two pieces are arranged perpendicular to each other, the resultant magnetic moment is M_{2}, then the value of $\frac{M_{1}}{M_{2}}$ is (2007M)
55. $\frac{1}{2 \sqrt{2}}$
56. 1
57. $\frac{1}{\sqrt{2}}$
58. $\sqrt{2}$
59. A bar magnet suspended freely ina uniform magnetic field is vibrating with a time period of 3 seconds. If the field strength is increased to 4 times of the earlies field strength, the time period will be (in seconds) (2007M)
60. 12
61. 6
62. 1.5
63. 0.75
64. The effect due to uniform magnetic field on a freely suspended magnetic needle is as follows (2006-E)
1) both torque and net force are present
2) torque is present but no net fore
3) both torque and net force are absent
4) net force is present but no torque
57. Two short magnets AB and CD are in the $\mathrm{X}-\mathrm{Y}$ plane and are parallel to X -axis and the coordinates of their centres respectively are $(0,2)$ and $(2,0)$ Line joining the North-South poles of CD is opposite to that of $A B$ and $C D$ at a points $P(2,2)$ is
$100 \times 10^{-7} \mathrm{~T}$. When the poles of the magnet CD are reversed, the resultant field induction is $50 \times 10^{-7} \mathrm{~T}$. The values of magnetic moments of AB and CD (in Am^{2}) are: (2006-E)
1) $300 ; 200$
2) $600 ; 400$
3) $200 ; 100$
4) $300 ; 150$
58. Two short bar magnets P and Q are arranged such that their contres are on the X -axis and are seperated by a large distance. The magnetic axes of P and Q are along X and Y axes respectively. At a point R, midway between their centres, if B is the magnitude of induction due to Q, the magnetude of total induction at R due to the both magnets is (2006M)
59. 3B
60. $\sqrt{5} \mathrm{~B}$
61. $\frac{\sqrt{5}}{2} B$
62. B
63. The magnetic induction at a distance ' d ' from the magnetic pole of the unkown strength ' m ' is B. If an identical pole is now placed at a distance of 2 d from the first pole, the force between the two poles is (2006M)
64. mB
65. $\frac{\mathrm{mB}}{2}$
66. $\frac{\mathrm{mB}}{4}$
67. 2 mB
68. An infinitely long thin stright wire has uniform linear charge density of $\frac{1}{3}$ colu. m^{-1}. Then the magnitude of the magnitude of the electric intensity at a point 18 cm away is (given $\epsilon_{0}=8.8 \times 10^{-12} \mathrm{C}^{2} / N-\mathrm{m}^{2}$) (Engg-2009)
1) $0.33 \times 10^{11} \mathrm{NC}^{-1}$
2) $3 \times 10^{11} \mathrm{NC}^{-1}$
3) $0.66 \times 10^{11} \mathrm{NC}^{-1}$
4) $1.32 \times 10^{11} \mathrm{NC}^{-1}$
61. Two point charges -q and +q are located at points $(0,0,-\mathrm{a})$ and $(0,0, a)$ respectively. The electric potential at a point at a point $(0,0, \mathrm{z})$, where $\mathrm{z}>\mathrm{a}$ is (Engg-2009)
1) $\frac{q a}{4 \pi \epsilon_{0} z^{2}}$
2) $\frac{q}{4 \pi \epsilon_{0} a}$
3) $\frac{2 q a}{4 \pi \epsilon_{0}\left(z^{2}-a^{2}\right)}$
4) $\frac{2 q a}{4 \pi \epsilon_{0}\left(z^{2}+a^{2}\right)}$
62. Two parallel plane sheets 1 and 2 carry uniform chare densities σ_{1} and σ_{2}, as shown in the figure. The magnitude of the resultant electric field in the region marked I is $\left(\sigma_{1}>\sigma_{2}\right)$ (Med-2009)

1) $\frac{\sigma_{1}}{2 \epsilon_{0}}$
2) $\frac{\sigma_{2}}{2 \epsilon_{0}}$
3) $\frac{\sigma_{1}+\sigma_{2}}{2 \epsilon_{0}}$
4) $\frac{\sigma_{1}-\sigma_{2}}{2 \in_{0}}$
63. A parallel plate capacitor with air as dielectric is charged to a potential ' V ' using a battery. Removing the battery, the charged capacitor is then connected across an identical uncharged parallel plate capacitor filledw ithwax of cieletric constait'. The common potential of both the capacitors is (Med-2009)
1) V volts
2) kV volts
3) $(k+1) V$ volts
4) $\frac{V}{k+1}$ volts
64. A $8 \mu F$ capacitor is charged by a 400 V supply through $0.10 .1 \mathrm{M} \Omega$ resistance. The time taken by the capacitor to develop a potential difference of 300 V is $\left(\right.$ Given $\left.\log _{10} 4=0.602\right)(\mathbf{M e d}-2009)$
1) 2.2 sec
2) 1.1 sec
3) 0.55 sec
4) 0.48 sec
65. Two charges q and -q are kept apart. Then at any point on the perpendicular bisector of line joining the two charges. (2008E)
1) the electric field strength is zero
2) the electric potential is zero
3) both electric potential and electric field strength are zero
4) both electric potential and electric field strength are non-zero
66. A charge of $1 \mu C$ is divided into two parts such that their charges are in the ratio of $2: 3$. These two charges are kept at a distance 1 m apart in vaccum. Them, the electric force between them (in newton) is (2008E)
1) 0.216
2) 0.00216
3) 0.0216
4) 2.16
67. A charge q is placed at the centre of the line joining two equal charges Q. The system of three charges will be in equilibrium if q is equal to (2008M)
1) $-\frac{Q}{2}$
2) $-\frac{Q}{4}$
3) $+\frac{Q}{4}$
4) $\frac{Q}{2}$
68. A charge ' Q ' is placed at each corner of a cube of side ' a '. The potential at the centre of the cube is ($\mathbf{2 0 0 8} \mathbf{~ M) ~}$
1) $\frac{8 Q}{\pi \varepsilon_{0} a}$
2) $\frac{4 Q}{4 \pi \varepsilon_{0} a}$
3) $\frac{4 Q}{\sqrt{3} \pi \varepsilon_{0} a}$
4) $\frac{2 Q}{\pi \varepsilon_{0} a}$
69. Along the x -axis, three charges $\frac{q}{2},-q$ and $\frac{q}{2}$ are placed at $\mathrm{x}=0, \mathrm{x}=\mathrm{a}$ and $\mathrm{x}=2 \mathrm{a}$ respectively. The resultant electric potential at a point ' P ' located at a distance r from the charge $-\mathrm{q}(a \ll r)$ is (ϵ_{0} is the permittivity of free space) (2007-E)
1) $\frac{q a}{4 \pi \epsilon_{0} r^{2}}$
2) $\frac{q a^{2}}{4 \pi \epsilon_{0} r^{3}}$
3) $\frac{q\left(\frac{a^{2}}{4}\right)}{4 \pi \epsilon_{0} r^{3}}$
4) $\frac{q}{4 \pi \epsilon_{0} r}$
70. Two unit negative charges are placed on a straight line. A positive charge q is placed exactly at the mid point between these unit charges. If the system of these three charges is in equilibrium, the value of $q($ in $C)$ is (2007-E)
1) 1.0
2) 0.75
3) 0.5
4) 0.25
71. The bob of a simple pendulum is hanging vertically down from a fixed identical bob by means of a string of length l If both bobs are changed with a change ' q ' each , time period of the pendulum is (ignore the radii of the bobs) (2006-E)
1)

$2 \pi \sqrt{\frac{l}{g+-\left(\frac{q^{2}}{l^{2} m}\right)}}$
2) $2 \pi \sqrt{\frac{l}{g-\left(\frac{q^{2}}{l^{2} m}\right)}}$
3) $2 \pi \sqrt{\frac{l}{g}}$
4) $2 \pi \sqrt{\frac{l}{g-\left(\frac{q^{2}}{l^{2} m}\right)}}$
72. Three charges $1 \mu C, 1 \mu C$ and $2 \mu C$ are kept at the vertices A, B and C of an equilateral triangle ABC of 10 cm side, respectively. The resultant force on the charge at C is $(\mathbf{2 0 0 7} \mathbf{M})$

1) 0.9 N
2) 1.8 N
3) 2.72 N
4) 3.12 N
73. The equivalent capacity between the points X and Y in the circuit with $C=1 \mu F$ (2007M)

1) $2 \mu F$
2) $3 \mu \mathrm{~F}$
3) $1 \mu \mathrm{~F}$
4) $0.5 \mu \mathrm{~F}$
74. Along the X-axis, three charges $\frac{q}{2}$,- q and $\frac{q}{2}$ are placed at $x-0, x=\mathrm{a}$ and $x=2 \mathrm{a}$ respectively. The resultant electric potential at $x=\mathrm{a}+\mathrm{r}($ if a,$\ll \mathrm{r})$ is $\left(\epsilon_{0}\right.$ is the permittivity of free space : (2006-E)
1) $\frac{q a}{4 \pi \in_{0} r^{2}}$
2) $\frac{q a^{2}}{4 \pi \epsilon_{0} r^{3}}$
3) $\frac{q\left(a^{2} / 4\right)}{4 \pi \in_{0} r^{3}}$
4) $\frac{q}{4 \pi \epsilon_{0} r}$
75. The electrical potential on the surface of a sphere of radius ' r ' due to a charge $3 \times 10^{-6} \mathrm{C}$ is 500 V . The intensity of electric field on the surface of the sphere is $\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right]\left(\mathrm{inNC} \mathrm{C}^{-1}\right)$
(2006M)
1) $25 / 27$
2) $27 / 25$
3) 25
4) 27

Current electricity

76. In the circuit shown below, a voltmeter of internal resistance R , when connected across B and C reads $\frac{100}{3}$ volts. Neglecting the internal resistance of the battery, the value of R is (Engg-2009)

1) $100 \mathrm{k} \Omega$
2) $75 \mathrm{k} \Omega$
3) $50 \mathrm{k} \Omega$
4) $25 \mathrm{k} \Omega$
77. A cell in secondary circuit gives null deflectio for 2.5 m length of potentiometer having 10 m length of wire. If the length of th epotentiometer wire is increased by 1 m without changing the cell in the primary, the position of the null point now is (Engg-2009)
1) 3.5 m
2) 3 m
3) 2.75 m
4) 2.0 m
78. A flash light lamp is marked 3.5 V and 0.28 A . The filament temperature is $425^{\circ} \mathrm{C}$. The filament resistance at $0^{\circ} \mathrm{C}$ is 4Ω. Then, the temperature coefficient of resistance of the material of the filament is (Med-2009)
1) $8.5 \times 10^{-3} / \mathrm{K}$
2) $3.5 \times 10^{-3} / \mathrm{K}$
3) $0.5 \times 10^{-3} / \mathrm{K}$
4) $5 \times 10^{-3} / \mathrm{K}$
79. A current of 2 A flows in an electric cicuit as shown in figure. The potential difference $\left(V_{R}-V_{S}\right) m$ in volts (V_{R} and V_{S} are potentials at R and S respectively) is ($\mathbf{2 0 0 8} \mathbf{E}$)

1) -4
(2) +2
(3) +4
(4) -2
80. When a battery connected across a resistor of 16Ω, the voltage across the resistor is 12 V . When the same battery is conneted across a resistor of 10Ω, voltage across it is 11 V . The internal resistance of the battery in Ojms is ($\mathbf{2 0 0 8} \mathbf{~ E}$)
(1) $\frac{10}{7}$
(2) $\frac{20}{7}$
(3) $\frac{25}{7}$
(4) $\frac{30}{7}$
81. I and V are respectively the current and voltage in a metal wire of resistance 'R'. Two I-V graphs at two different temperatures T_{1} and T_{2} are given in the graph. Then ($\mathbf{2 0 0 8} \mathbf{~ M}$)

(1) $T_{1}=T_{2}$
(2) $T_{1}>T_{2}$
(3) $T_{1}<T_{2}$
(4) $T_{1}=2 T_{2}$
82. A projector lamp can be used at a maximum voltage of 60 V , its resistance is 20Ω, the series resistance (in ohms) required to operate the lamp from a 75 V supply is $(\mathbf{2 0 0 8} \mathbf{~ M})$
(1) 2
(2) 3
(3) 4
(4) 5
83. Two unknown resistrance X and Y are connected to left and right gaps of a meter bridge and the balancing point is obtained at 80 cm from left. When a 10Ω resistance is connected in parallel to X , the balancing point is 50 cm from left. The values of X and Y respectively are ($\mathbf{2 0 0 7} \mathbf{E}$)
(1) $40 \Omega, 9 \Omega$
(2) $30 \Omega, 7.5 \Omega$
(3) $20 \Omega, 6 \Omega$
(4) $10 \Omega, 3 \Omega$
84. The current in a circuit containing a battery connected to 2Ω resistance is 0.9 A . When a resistance of 7Ω connected to the same battery, the current observed in the circuit is 0.3 A . Then the internal resistance of the battery is $(\mathbf{2 0 0 7} \mathbf{E})$
(1) 0.1Ω
(2) 0.5Ω
(3) 1Ω
(4) Zero
85. Twelve cells, each having e.m.f ' E ' volts are connected in series and are kept in a closed box. Some of these cells are wrongly connected with positive and negative terminals reversed. This 12 cell battery is connected in series with an ammeter, an external resistance ' R ' ohms and a two-cell battery (two cells of the same type used earlier, connected perfectly in series). The current in the circuit when the 12 -cell battery and 2 -cell battery aid each other. Then the number of cells in 12-cells battery that are connected wrongly is ($\mathbf{2 0 0 6} \mathbf{E}$)
1) 4
2) 3
3) 2
4) 1
86. One end each of a resistance ' r ' capacitance C and resistance ' 2 r ' are connected together. The other ends are respectively connected to the positive terminals of the batteries $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ having respectively e.m.f s E, E and 2E. The negative terminals of the batteries are then connected together. In this circuit, with steady current the potential drop across the capacitance is : ($\mathbf{2 0 0 6} \mathbf{E}$)
1) $\frac{E}{3}$
2) $\frac{E}{2}$
3) $\frac{2 E}{3}$
4) E
87. A teacher asked a student to connect ' N ' cells each of e.m.f. 'e' in series to get a total e.m.f. of Ne . While connecting, the student, by mistake, reversed the polarity of 'n' cells. The total e.m.f. of the resulting series combination is : $\mathbf{(2 0 0 6} \mathbf{M})$
1) $e\left(N-\frac{n}{2}\right)$
2) $e(N-n)$
3) $e(N-2 n)$
4) eN

Thermo electricity

88. The thermo-emf (E) of a certain thermocouple is found to vary with temperature t (in ${ }^{\circ} \mathrm{C}$) in accordance with the relation

$$
E=40 t-\frac{t^{2}}{20}
$$

where t is the temperature of the hot junction, the cold junction being kept at $0^{\circ} \mathrm{C}$. The neutral temperature of the couple is (Med-2009)

1) $100^{\circ} \mathrm{C}$
2) $200^{\circ} \mathrm{C}$
3) $300^{\circ} \mathrm{C}$
4) $400^{\circ} \mathrm{C}$
89. A copper constantan thermocouple prodcues an e.m.f. of $40 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$. The smallest temperature difference that can be measured with this thermocouple is $2.5^{\circ} \mathrm{C}$, when a galvanometer capable of detecting as low as $10^{-6} \mathrm{amp}$. is employed. The resistance of that galvanometer is ($\mathbf{2 0 0 8} \mathbf{~ E}$)
1) 50 W
2) 100 W
3) 200 W
4) 400 W
90. A heater coil working on mains produces 100 calories of heat in a certain time. Now the heater coil is cut into three equal parts and one part is only used for heating. The quantity of heat produced (in calories) in the same time is ($\mathbf{2 0 0 8} \mathbf{~ M}$)
1) 300
2) 200
3) $100 / 3$
4) $200 / 3$
91. Temperature of cold junction in a thermocouple is $10^{\circ} \mathrm{C}$ and neutral temperature is $270^{\circ} \mathrm{C}$, then the temperature of inversion is ($\mathbf{2 0 0 7} \mathbf{~ E}$)
1) $540^{\circ} \mathrm{C}$
2) $530^{\circ} \mathrm{C}$
3) $280^{\circ} \mathrm{C}$
4) $260^{\circ} \mathrm{C}$
92. In a thermo-couple the cold junction is at $30^{\circ} \mathrm{C}$. The temperature of inversion is found to be $540^{\circ} \mathrm{C}$. Then the neutral temperature is $(\mathbf{2 0 0 7} \mathbf{~ M})$
1) $270^{\circ} \mathrm{C}$
2) $510^{\circ} \mathrm{C}$
3) $285^{\circ} \mathrm{C}$
4) $240^{\circ} \mathrm{C}$
93. If the cold juntion is heldat $0^{\circ} \mathrm{C}$, themo em $\mathrm{f} . \mathrm{V}^{\prime}$ of a themocouple varies as $\mathrm{V}=10 \times{ }^{6} \mathbb{1} \theta$ $\frac{1}{40} \times 10^{-6} t^{2}$, where ' t is the temperature of the hot junction in ${ }^{\circ} \mathrm{C}$. The neutral temperature and the maximum value of thermo e.m.f. are respectively. ($\mathbf{2 0 0 6} \mathbf{E}$)
1) $200^{\circ} \mathrm{C} ; 2 \mathrm{mV}$
2) $400^{\circ} \mathrm{C} ; 2 \mathrm{mV}$
3) $100^{\circ} \mathrm{C} ; 1 \mathrm{mV}$
4) $200^{\circ} \mathrm{C} ; 1 \mathrm{mV}$
94. Consider the following statements A and B and identify the correct answer :

A : Thermistors can have only negative temperature coefficients of resistances.
B : Thermistors with negative temperature coefficients of resistance are used as resistance thermometers, to measure low temperatures of the order of 10 K . ($\mathbf{2 0 0 6} \mathbf{~ M}$)

1) Both A and B are true
2) Both A and B are false
3) A is true, but B is false
4) A is false, but B is true

Electro magnetism

95. The following series L-C-R circuit, when driven by an e.m.f. source of angular frequency 70 kiloradians per second, the circuit effectively behaves like (Engg-2009)

1) purely resistive circuit
2) series R-L circuit
3) series R-C circuit
4) series $L-C$ circuit with $R=0$
96. A wire of lenght ' l ' is bent into a circular loop of radius R and carries a current I . The magnetic field at the centre of the loop is ' B '. The same wire is now bent into a double loop of equal radii. If both loops carry the same current I and it is in the same direction, the magnetic field at the centre of the double loop will be (Engg-2009)
1) zero
2) $2 B$
3) 4 B
4) 8 B
97. An infinitely long straight conductor is bent into the shape as shown below. It carries a current of i Amps and the radius of the circular loop is R metres. Then the magnitude of magnetic induction at the centre of the circular loop is (Engg-2009)

1) $\frac{\mu_{0} i}{2 \pi R}$
2) $\frac{\mu_{0} n i}{2 R}$
3) $\frac{\mu_{0} i}{2 \pi R}(\pi+1)$
4) $\frac{\mu_{0} i}{2 \pi R}(\pi-1)$
98. A charged particle velocity $\bar{v}=x \hat{i}+y \hat{j}$ moves in a magnetic field $\bar{B}=y \hat{i}+x \hat{j}$. Magnitude of the force acting on the particle is F . The correct option for F is (Med-2009)
a) No force will act on particle if $x=y$
b) Force will act along y axis if $y<y$
c) Force is proportional to $\left(x^{2}-y^{2}\right)$ if $x>y$
d) Force is proportional to $\left(x^{2}+y^{2}\right)$ if $y>x$
1) a and b are true
2) a and c are true
3) b and d are true
4) c and d are true
99. In a galvanometer 5\% of the total current in the circuit passes through it. If the resistance of the galvanometer is G , the shunt resistance ' S ' connected to the galvanometer is (EAM 2008)
1) 19 G
2) $G / 19$
3) 20 G
4) $\mathrm{G} / 20$
100. A circular coil of wire of radius ' r ' has ' n ' turns and carries a current ' l '. The magnetic induction (B) at a point on the axis of the coil at a distance $\sqrt{3} \mathrm{r}$ from its centre is (EAMCET 2008 MED)
1) $\frac{\mu_{0} I n}{4 r}$
2) $\frac{\mu_{0} I n}{8 r}$
3) $\frac{\mu_{0} n I}{16 r}$
4) $\frac{\mu_{0} I n}{32 r}$
101. Two wires A and B are of lengths 40 cm and 30 cm . A is bent into a circle of radius r and B into an arc of radius r. A current i_{1} is passed through A and i_{2} through B. To have the same magnetic inductions at the centre, the ratio of $i_{1}: i_{2}$ is (2007-E)
1) $3: 4$
2) $3: 5$
3) $2: 3$
4) $4: 3$
102. The natural frequency of an LC - circuit is $1,25,000$ cycles per second. Then the capacitor C is replaced by another with a dielectric medium of dielectric constant k.In this case, the frequency decreases by 25 kHz . The value of k is (2007-E)
1) 3.0
2) 2.1
3) 1.56
4) 1.7
103. When a positively charged particle enters a uniform magnetic fild with uniform velocity , it trajectory can be (2006-E)
1) a straight line
2) a circle
3) a helix
4) 1 only
5) 1 or 2
6) 1 or 3
7) any one of 1,2 and 3
104. A rectangular loop of length l and breadth ' b ' is placed at a distance of x from an infinitely long wire carrying current i such that the direction of current is parallel to breadth. If the loop moves away from the current wire in a direction perpendicular to it with a velocity ' v ' the magnitude of the e.m f in the loop is ($\mu_{0}=$ permeability of free space) (2006-E)
1) $\frac{\mu_{0} i v}{2 \pi x}\left(\frac{l+b}{B}\right)$
2) $\frac{\mu_{0} i^{2} v}{2 \pi^{2} x} \log \left(\frac{b}{l}\right)$
3) $\frac{\mu_{0} i l b u}{2 \pi x(l+x)}$
4) $\frac{\mu_{0} i l b u}{2 \pi x(l+x)} \log \left(\frac{x+1}{x}\right)$
105. A small square loop of wire of side ' l ' is placed inside a large a square loop of side ' L ' ($\mathrm{L} \gg l$). If the loops are coplanar and their centres coincide, the mutual induction of the system is directly proportional to (2006-E)
1) $\frac{L}{l}$
2) $\frac{l}{L}$
3) $\frac{L^{2}}{l}$
4) $\frac{l^{2}}{L}$
106. A long horizontal rigidly supported wire carries a current $i_{a}=96 \mathrm{~A}$. Directly above it and parallel to it at a distance, another wire of 0.144 N weight per metre carrying a current $i_{b}=24 \mathrm{~A}$, in a direction opposite to that air due to magnetic repulsion, then its distance (in mm) from the lower wire is : (EAMCET 2006 MED)
1) 9.6
2) 4.8
3) 3.2
4) 1.6

Atomic physics

107. The work function of a certain metal is $3.31 \times 10^{-19} \mathrm{~J}$. Then the maximum kinetic energy of photoelectrons emitted by incident radiation of wavelength 5000A ${ }^{0}$ is (Engg-2009)
1) 2.48 eV
2) 0.41 eV
3) 2.07 eV
4) 0.82 eV
108. A photon of energy ' E ' ejects a photoelectron from a metal surface whose work functio is W_{0}. If this electron enters into a uniform magnetic field of induction ' B ' in a direction perpendicular to the field and describes a circular path of radius ' r ', then the radius ' r ' is given by, (in the usual notation) (Engg2009)
1) $\sqrt{\frac{2 m\left(E-W_{0}\right)}{e B}}$
2) $\sqrt{2 m\left(E-W_{0}\right) e B}$
3) $\frac{\sqrt{2 e\left(E-W_{0}\right)}}{m B}$
4) $\frac{\sqrt{2 m\left(E-W_{0}\right)}}{e B}$
109. Electrons accelerated by a petential of ' V ' volts strike a target material to produce 'continous X rays'. Ratio between the de-Broglie wavelength of the electrons striking the target and the shortest wavelength of the 'continous X-rays' emitted is (Med-2009)
1) $\frac{h}{\sqrt{2 V e m}}$
2) $\frac{1}{c} \sqrt{\frac{2 m}{V e}}$
3) $\frac{1}{c} \sqrt{\frac{V e}{2 m}}$
4) $\frac{h c}{\sqrt{\frac{V e}{2 m}}}$
110. In Millikan's oil drop experiment, a charged oil drop of mass $3.2 \times 10^{-14} \mathrm{~kg}$ is held stationary between two parallel plates 6 mm apart, by applying a potential difference of 1200 V between them. How many electrons does the oil drop carry? $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$ (Med-2009)
1) 7
2) 8
3) 9
4) 10
111. An X-ray tube produces a continuous spectrum of radiation with its shortest wavelength of $45 \times 10^{-2} \mathrm{~A}^{0 .}$ The maximum energy photon in the radiation in eV is. $\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}\right.$, $\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.) [E 2008]
1) 27,500
2) 22,500
3) 17,500
4) 12,500
112. X-rays of energy 50 KeV . are scattered from a carbon target. The scattered rays are at 90° from the incident beam. The percentage of change in wavelength ($m_{\mathrm{e}}=9 \times 10^{-31} \mathrm{Kg}, \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. [\mathbf{E} 2008]
1) 10%
2) 20%
3) 5%
4) 1%
113. The threshold frequency for a certain metal is v_{0} when a certain radiation of frequency $2 v_{0}$ incident on this metal surface maximum velocity of photo electrons emitted is $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$, if radiation of frequency $3 v_{0}$ is incident on the same metal surface the maximum velocity of the photo electrons emitted (in $\mathrm{m} /$ s) is.[M 2008]
1) 2×10^{6}
2) $2 \sqrt{2} \times 10^{6}$
3) $4 \sqrt{2} \times 10^{6}$
4) $4 \sqrt{3} \times 10^{6}$
114. An electron beam travels with a velocity of $1.6 \times 10^{7} \mathrm{~ms}^{-1}$ perpendicularly to magnetic field of intensity 0.1 T . The radius of the path of the electron beam $\left(m_{e}=9 \times 10^{-31} \mathrm{~kg}\right)$ (2007-E)
1) $9 \times 10^{-5} \mathrm{~m}$
2) $9 \times 10^{-2} \mathrm{~m}$
3) $9 \times 10^{-4} \mathrm{~m}$
4) $9 \times 10^{-3} \mathrm{~m}$
115. The work function of the nickel is 5 eV . When a light of wavelength $2000 A^{0}$ falls on it, it emits photoelectrons in the circuit. Then the potential difference necessary to stop the fastest electrons emitted is (given $h=6.67 \times 10^{-34} \mathrm{JS}$) (2007-E)
1) 1.0 V
2) 1.75 V
3) 1.25 V
4) 0.75 V
116. In an experiment on photoelectric emission from a metallic surface, wavelength of incident light is $2 \times 10^{-7} \mathrm{~m}$ and stopping potential is 2.5 V . The threshold frequency of the metal (in Hz) approximately (charge of electron $e=1.6 \times 10^{-19} \mathrm{C}$, Plank's constant $h=6.6 \times 10^{-34} \mathrm{JS}$) (2007-E)
1) 12×10^{15}
2) 9×10^{15}
3) 9×10^{14}
4) 12×10^{13}
117. A proton and an alpha particle are accelerated through the same potential difference. The ratio of wavelengths associated with proton and alpha particle respectively is [\mathbf{M} 2007]
1) $1: 2 \sqrt{2}$
2) $2: 1$
3) $2 \sqrt{2}: 1$
4) $4: 1$
118. A oil drop having a mass $4.8 \times 10^{-18} \mathrm{C}$ stands still between two changed horizontal plates separated by a distance of 1 cm If now the polarity of the plates is changed, instantaneous acceleration of the drop is (in ms ${ }^{-2}$): (2006-E)
1) 5
2) 10
3) 20
4) 40
119. A proton, a deuteron (nucleus of H^{2}) and an α-particle with same kinetic energy enter a region of uniform magnetic fild moving at right angles to the filed. The ratio of the radii of their circular paths is (2006-E)
1) $1: 2: 4$
2) $1: \sqrt{2}: 1$
3) $2 \sqrt{2}: 1$
4) $1: 1: 2$
120. In X-ray spectrum, transition of an electron from an outer shell to an inner shell gives a characteristics X-ray spectral line. If we consider the spectral lines K_{β}, L_{β} and M_{α}, then[\mathbf{M} 2006]
1) K_{β} and L_{β} have a common inner shell
2) K_{β} and L_{β} have a common outer shell
3) L_{β} and M_{α} have a common outer shell
4) L_{β} and M_{α} have a common inner shell
121. The de-broglie wavelength of an electron and the wavelength of a photon are same. The ratio between the energy of the photon and the momentum of the electron is
[M 2006]
1) h
2) c
3) $1 / \mathrm{h}$
4) $1 / \mathrm{c}$

Nuclear physics

122. The radioactivity of a sample is ' X ' at a time ' t ' and ' Y ' at a time ' t_{2} '. If the mean life time of the specimen is ' τ ', the number of atoms that have disintegrated in the time interval $\left(t_{1}-t_{2}\right)$ is (Engg2009)
1) $X t_{1}-Y t_{2}$
2) $X-Y$
3) $\frac{X-Y}{\tau}$
4) $(X-Y) \tau$
123. Atomic mass of ${ }_{6}^{13} C$ is 13.00335 amu and its mass number is 13.0 . If $1 \mathrm{amu}=931 \mathrm{MeV}$, binding energy of the neutrons present in the nucleus is (Med-2009)
1) 0.24 MeV
2) 1.44 MeV
3) 1.68 MeV
4) 3.12 MeV
124. Let $\mathrm{F}_{\mathrm{pp}}, \mathrm{F}_{\mathrm{pn}}$ and F_{nn} denote the magnitudes of the nuclear force by a proton on a proton ,by a proton on a neutron and by a neutron on a neutron respectively when the separation is less than one fermi, then
(2008 E)
1) $F_{p p}>F_{p n}=F_{n n}$
2) $\mathrm{F}_{\mathrm{pp}}=\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
3) $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4) $F_{p p}<F_{p n}=F_{n n}$
125. The following particles are Baryons: (M-2008)
1) Nucleons and hyperons
2) Nucleons and leptons
3) Hyperons and leptons
4) Hyperons and Bosons
126. In Sun, the important source of energy is (2007-E)
1) proton -proton cycle
2) carbon - nitrogen cycle
3) carbon - carbon cycle
4) nitrogen - nitrogen cycle
127. Electron belongs to the following class of elementary particles [2007M]
1) Hardon
2) Lepton
3) Boson
4) Baryon
128. A free netron decays spontaneously into (2006-E)
1) a proton, an electron and anti-netrino
2) a proton , an electron and a neutrino
3) a proton and electron
4) a proton, an electron, a neutrino and anti-neutrino
129. Assertion(A): Nuclear forces arise from strong Coulombic interactions between protons and neutrons. Reason (R): Nuclear forces are independent of the charge of the nucleons.
[2006M]
1) Both A and R are true and R is the correct explanation of A
2) Both A and R are true but R is the not correct explanation of A
3) A is true, but R is false
4) A is false, but R is true

Semi conductor device

130. Currents flowing in each of the following circuits A and B respectively are (Engg-2009)

1) $1 \mathrm{~A}, 2 \mathrm{~A}$
2) $2 \mathrm{~A}, 1 \mathrm{~A}$
3) $4 \mathrm{~A}, 2 \mathrm{~A}$
4) $2 \mathrm{~A}, 4 \mathrm{~A}$
131. A full-wave $p-n$ diode rectifier uses a load resistor of 1500Ω. No filter is used. The forward bias resistance of the diode is 10Ω. The efficiency of the rectifier is (Med-2009)
1) 81.2%
2) 40.6%
3) 80.4%
4) 40.2%
132. Among the following one statement is not correct when a junction diode is in forward bias (ENG-2008)
1) the width of depletion region decreases
2) free electron on n - side will move towards the junction
3) holes on p-side move towards the junction
4) electron on n - side and holes on p-side will move away from junction
133. If an intrinsic semiconductor is heated, the ratio of free electrons to holes is
(MEDI-2008)
1) greater than one
2) less than one
3) equal to one
4) dercease and becomes zero
134. In an n-type semiconductor, the fermi energy level lies (2007-E)
1) in the forbidden energy gap nearer to the conduction band

2) in the forbidden energy gap nearer to the valence band.
3) in the middle of forbidden energy gap
4) outside the forbidden energy gap
135. In a transistor circuit the base current changes from $30 \mu A$ to $90 \mu A$. If the current gain of the transistor is 30 , the change in the collector current is (MED- 2007)

1) 4 mA
2) 2 m A
3) 3.6 mA
4) 1.8 mA
136. Consider a p-n junction as a capacitor, formed with p and n -materials acting as thin metal electrodes and depletion layer transistor is working as an amplifier in CE configuration .If C_{1} and C_{2} are the base-emitter and collector emitter junction capacitances, then : (2006-E)
1) $\mathrm{C}_{1}>\mathrm{C}_{2}$
2) $C_{1}<C_{2}$
3) $\mathrm{C}_{1}<\mathrm{C}_{2}$
4) $\mathrm{C}_{1}<\mathrm{C}_{2}=0$
137. Ap-n-p transistor is said to be in active region of operation, When : (MED-2006)
1) Both emitter junction and collector junction a are forward biased
2) Both emitter junction and collector junction are reverse biased
3) Emitter junction is forward biased and collector junction is reverse biased
4) Emitter junction is reverse biased and collector junction is forward biased
