
CHEMISTRY

20 g of a sample of Ba(OH)₂ is dissolved in 50 ml of 0.1 N HCl solution. The excess of HCl 1. was titrated with 0.1 N NaOH. The volume of NaOH used was 20 cc. The percentage of $Ba(OH)_2$ in the sample is (a) 128 (b) 1.28 (c) 2.28 (d) 4.08 The hybridization of atomic orbital of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are 2. (a) sp, sp^3 and sp^2 (b) sp, sp^2 and sp^3 (c) sp^2 , sp and sp^3 (d) sp^2 , sp^3 and sp3. The reaction is $2NO + Cl_2 \longrightarrow 2NOCl$. If the concentration of both the reactants is doubled, the rate becomes eight times. What will Entra be the total order? (a) 0 (b) 2 (d) 1 (c) 3 For NH₄HS(s) \implies NH₃(g) + H₂S(g), if K_p = 64 atm², equilibrium pressure of mixture is 4. (a) 8 atm (b) 16 atm (c) 64 atm (d) 4 atm The degree of hydrolysis of 0.1 M CH₃COOK at $18^{\circ}C[K_a CH_3COOH = 1.8 \times 10^{-5} \text{ at } 18^{\circ}C]$ is 5. (a) 7.4×10^{-10} (b) 7.4×10^{-5} Entrance (c) 7.0×10^{-6} (d) 8.5×10^{-5} (c) $7.0 \times 10^{\circ}$ Cu⁺ + e \longrightarrow Cu, E° = X₁ Volt 6. $Cu^2 + 2e \longrightarrow Cu, E^\circ = X_2$ Volt For $Cu^{+2} + e \longrightarrow Cu^{+} + E^{\circ}$ will be (a) $X - 2X_2$ (b) $X_1 + 2X_2$ (c) $X_1 + X_2$ (d) $2X_2 - X_1$ The ratio of closed packed atoms to tetrahedral holes in cubic close packing is 7. (a) 1:1 (b) 1:2 (c) 1:3 (d) 2:1 $CH_3NH_2 + CHCl_3 + 3KOH \longrightarrow X + Y + 3H_2O$; compounds X and Y are 8. (b) $CH_3NC + 3KCl$ (a) $CH_3CN + 3KCl$ (d) $CH_3NC + K_2CO_3$ (c) $CH_3CONH_2 + 3KCl$ 9. Arrange the following compounds in order of increasing dipole moment, Toluene(I), m-dichlorobenzene(II), o-dichlorobenzene(III), p-dichlorobenzene(IV): (a) (I) < (IV) < (II) < (III)(b) (IV) < (I) < (II) < (III)(c) (IV) < (I) < (III) < (II)(d) (IV) < (II) < (I) < (III)Examine the following two structures for the anilinium ion and choose the correct statement 10.

	(a) (II) is not an acceptable canonical structure because carbonium ions are less stable than ammonium ions.				
	(b) (II) is	not an acceptable canonical structure b not an acceptable canonical structure b			
		an acceptable canonical structure.			
11.		kownikoff's addition of HBr is not obse			
	(a) prope(c) 2-but		` '	benzene 2-pentene	
10		all some some some some some some some some		1	
12.		on of propene with HOCl proceeds via the first step		Cl ⁺ in the first step	
		in the first step	(d)	Cl^+ and \overline{OH} in the single step	
13.	5.6 g of a metal forms 12.7 g of metal chloride. Hence, equivalent weight of metal is				
	(a) 127		. ,	254	
	(c) 56		(d)	28	
14.	The number $(a) n^2$	er of orbital in a subshell is equal to	(b)	21	
	(c) $2l+1$		(d)	m	
15.				mass 120 at a pressure of 100 atm, was	
	evacuated by means of a pump until the pressure was 0.01 atm at the same T. Which of following is the best estimate of the number of molecules left in the flask				
	(a) 6×10^{-10} (c) 6×10^{-10}		(b)	6×10^{18} 6×10^{13}	
	$(c) 0 \times 10$	Entra	(u)	6×10^{13}	
16.	The solution of recompany is a more in the right would be				
	(a) $9x^3$ (c) $27x^4$		(b) (d)	$\frac{3x^4}{9x^4}$	
17.		y tetrahedral holes are occupied in diam			
1/.	(a) 25%			50%	
	(c) 75%		(d)	100%	
18.	Number of structural isomers represented by molecular formula C ₄ H ₁₀ O is				
	(a) 3 (a) 7		(b)	4	
	(c) 7		(d)	10	
19.	Which of t	the following is not cleaved by HI even			
	(a) C_6H_5 -	-O-CH ₃	(b)	C ₆ H ₅ -O-C ₆ H ₅	
	(c) C_6H_5	OC ₃ H ₇	(d)	Entre	
	R		17	-0-	
20.		ty in position and momentum are equal.			
	(a) $\sqrt{h/\tau}$		(b)	$\sqrt{h}/2\pi$	
	(c) $1/2m$	$\sqrt{h/\pi}$	(d)	none	

21. If the speed of the electron in the first Bohr's orbit of hydrogen atom be 'x' then the speed of electron in the third Bohr's orbit is

(a)	$\frac{x}{9}$	(b) $\frac{x}{3}$
(c)	3x	(d) 9 <i>x</i>

- (c) 3x
- 22. Structure of XeO₂F₂ is
 - (a) triangular planar
 - (c) square planar

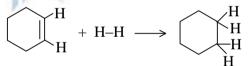
(b) distorted tetrahedral

Entrance

- (d) tetrahedral
- The reaction $A(g) + 2B(g) \longrightarrow C(g) + D(g)$ is an elementary process. In an experiment, 23. the initial partial pressure of A and B are $P_A = 0.60$ and $P_B = 0.80$ atm. When $P_C = 0.2$ atm the rate of reaction relative to the initial rate is
 - (a) 1/48
 - (c) 9/16

(b) 1/24 (d) 1/6

(b) 40, 20 (d) -20, 40


(b) $5 - \log 3$

(d) 8.523

- 24. For the reaction,
 - $A + B \Longrightarrow C + D$,

 ΔH for forward reaction is +20 kcal and has activation energy 40 kcal. The activation energy and ΔH for backward reaction are respectively:

- (a) 20, 40
- (c) 20, -20
- A weak base (BOH) with $K_b = 10^{-5}$ is titrated with a strong acid HCl. At ³/₄th of the 25. equivalent point, pH of the solution is Entrance
 - (a) $5 + \log$
 - (c) $14 5 + \log 3$
- For the reaction, 26.

bond energies are given as

(i) C–C, 346 kJ/mol

(iii) H-H. 437 kJ/mol and

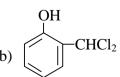
(ii) C-H, 413 kJ/mol (iv) C=C, 611 kJ/mol

What will be the value of $\Delta H 25^{\circ}C$ for the above reaction?

(a) -289 kJ mol^{-1}

(c) $+124 \text{ kJ mol}^{-1}$

(b) -124 kJ mol^{-1} (d) $+289 \text{ kJ mol}^{-1}$


- The difference between heats of reaction at constant pressure and constant volume for the 27. reaction $2C_6H_6(l) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(l)$ at $25^{\circ}C$ in kJ mol⁻¹ is (b) 7.43 kJ mol^{-1} (a) $-7.43 \text{ kJ mol}^{-1}$
 - (c) $2.477 \text{ kJ mol}^{-1}$

(a)

(d) $-2.477 \text{ kJ mol}^{-1}$

When phenol is reacted with CHCl₃ and NaOH followed by acidification, salicylaldehyde is 28. obtained. Which of the following species is involved in the above mentioned reaction as intermediates

29. In the complete combustion of C_nH_{2n+2} , the number of moles of oxygen required is

(b) $\left(\frac{n+1}{2}\right)O_2$ (a) $n/2O_2$ (d) $\left(\frac{n+2}{2}\right)O_2$ (c) $\left(\frac{3n+1}{2}\right)O_2$

Compound 'A' (molecular formula C₃H₈O) is treated with acidified potassium dichromate to 30. form a product 'B' (molecular formula C₃H₆O). 'B' forms shining silver mirror on warming with ammonical silver nitrate. 'B' when treated with an aqueous solution of NH₂CONHNH₂. HCl and sodium acetate gives a product 'C'. Identify the structure of 'C':

- (a) $CH_3CH_2CH=NNHCONH_2$
- (c) $CH_3-C=NCONHNH_2$ I CH_3

- (b) CH₃-CH=NNHCONH₂
- (d) CH₃CH₂CH=NCONHNH₂

Entrance For preparing M/10 solution of H_2SO_4 in one litre we need H_2SO_4 31.

(a) 9.8 g (c) 4.8 g

34.

(b) 49.0 g (d) 0.09 g

- Which of the following species is not linear? 32. (a) ICl^{2-}
 - (c) N_3^-

(d) ClO_2

(b) I^3

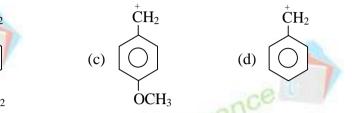
At low pressure vander Waal's equation for 3 moles of a real gas will have its simplified form 33.

(a)
$$\frac{PV}{R_{T} - \frac{3a}{V}} = 3$$

(b) $\frac{PV}{R_{T} - Rb} = 3$
(c) $\frac{PV}{R_{T} - 3Pb} = 1$
(d) $\frac{PV}{R_{T} - \frac{9}{V}} = 3$
For the reaction, $2NH_{3} \longrightarrow N_{2} + 3H_{2}$
 $\frac{d[NH_{3}]}{dt} = K_{1}[NH_{3}], \frac{d[N_{2}]}{dt} = K_{2}[NH_{3}], \frac{d[H_{2}]}{dt} = K_{3}[NH_{3}]$
Then relation between K_{1}, K_{2} and K_{3} is
(a) $1.5 K_{1} = 3K_{2} = K_{3}$
(b) $2K_{1} = K_{2} = 3K_{3}$
(c) $K_{1} = K_{2} = K_{3}$
(d) $K_{1} = 3K_{2} = 2K_{3}$

 E° values of Mg²⁺ / Mg is -2.37 volts of Zn²⁺ / Zn is -0.76 volt and Fe⁺² / Fe is -0.44 volt. 35. Which of the following statement is correct?

- (a) Zn oxidises Fe.
- (c) Zn will reduce Mg^{2+} .


- (b) Zn will reduce Fe^{2+} .
- (d) Mg oxidises Fe.

36. A white salt is insoluble in cold water but soluble in boiling water. Its solution when treated with potassium chromate solution gives yellow precipitate. The salt may be

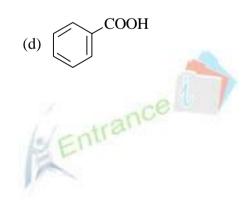
- (a) $BaCl_2$
- (c) PbCl₂
- **37.** Most stable carbonium ion is
 - (a) \bigcirc (b) \bigcirc NO₂
- (b) $SrCl_2$

(d)

(d) $Hg(NO_3)_2$

- 38. 2–Phenyl ethanol may be prepared by the reaction of phenyl magnesium bromide with(a) HCHO(b) CH₃CHO
 - (c) CH₃COCH₃

39.


40.

The ether \bigcirc -O-CH₂- \bigcirc when treated with HI produces (a) \bigcirc -CH₂I (b) \bigcirc -CH₂OH (c) \bigcirc -I (d) \bigcirc -O-CH₃ Which of the following is the weakest acid?

(a) OH

(b) CH₃COOH

