
Midterm Exam Key Math 428: Operations Research
Name: __________________________ Score: ___________

Instructions: Write out your solutions on the paper provided. Show your work and give reasons for
your answers. NO notes, calculators, laptops, cell phones or other electronic equipment allowed. Each
problem is worth 20 points for a total of 100 points. Work problem 1 and any four of the remaining
five problems. Clearly indicate which four you want graded. Give exact answers (like 1/3 or

√
2) where

calculations are expected.

1. Answer True or False for each of the following statements about LP problems and justify your
answer.

(a) Although any CPF (corner point feasible) solution can be chosen to be the initial CPF solution,
the simplex method always chooses the origin.

(b) An LP problem cannot handle variables that could be negative.

(c) If there is no leaving variable in a column selected for an entering basic variable, then the objective
function is unbounded.

(d) If a maximization problem in standard form and its dual have feasible solutions, then both prob-
lems have optimal solutions.

(e) If the final tableau of the simplex method applied to LP has a nonbasic variable with a coefficient
of 0 in row 0, then the problem has multiple solutions.

Solution.
(a) False. The origin may not be a CPF solution, in which case Big M or two-phase methods will

select the origin as an initial BF solution, but this does not correspond to any CPF solution.

(b) False. One writes the possibly negative variable as x j = x+
j − x−j , where x+

j ,x−j are nonnegative
variables. (Or: if the variable is bounded below, do change of variables so resulting variable is nonnega-
tive.)

(c) True. This means that improvements to this variable will increase the objective function at a
nonzero constant rate and no upper bound is imposed on the variable.

(d) True. We know from weak duality that in this case if x,y are BF solutions to the primal and dual,
respectively, then bT x≤ cT y. It follows that there is an upper bound on bT x and lower bound on cT y, over
all BF x,y, hence each problem has a max, min, respectively.

(e) False. This is true, provided the simplex method finds an optimal solution, but in the case that it
terminates with no solution or an unbounded Z, we may have a nonbasic variable with coefficient of 0.

2. Consider the following LP problem:

Minimize 2x1 +3x2

subject to the constraints xi ≥ 0, i = 1,2, and

x1 +2x2 ≥ 4
x1 + x2 ≥ 3.

(a) Convert this problem to a maximization problem.
(b) Solve the problem of (a) by the graphical method.
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Solution.
(a) We could do this by taking the negative of the objective function:

Maximize −2x1−3x2

subject to the constraints xi ≥ 0, i = 1,2, and

x1 +2x2 ≥ 4
x1 + x2 ≥ 3.

or by looking at the dual:
Maximize 4x1 +3x2

subject to the constraints xi ≥ 0, i = 1,2, and

x1 + x2 ≤ 2
2x1 + x2 ≤ 3.

(b) The graphs:
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We see from the graphs that the minimization problem has a solution since level lines for the objective
function move the the left as Z decreases and we need only test the CPF solutions:

Z (0,3) = 9
Z (2,1) = 7
Z (4,0) = 8.

Thus the minimum value is Z = 7 which occurs at CPF (2,1).
We could also see the same with the dual, namely that the maximum value of the dual objective is

W = 7 at the dual point (1,1), but this does not identify the primal optimal point.

3. Use the simplex method to solve the problem

Max Z = x1 +2x3

Sbj.
x1 +2x2 + x3 ≤ 2

x3 ≤ 1
x1 ≥ 0,x2 ≥ 0,x3 ≥ 0.
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At each stage say which variables are entering and exiting basic variables.

Solution. This is a straightforward optimization problem with an obvious initial BF solution at the
origin. Introduce slack variables x4,x5 for the two inequalities and we have initial tableau with columns
for x1,x2,x3,x4,x5, rhs:  −1 0 −2 0 0 0

1 2 1 1 0 2
0 0 1 0 1 1


The column of x3 has largest negative, so x3 will enter and x4will exit by the minimum ratio test with
suitable row ops using third row for pivot:

→
E23 (−1)
E13 (2)

 −1 0 0 0 2 2
1 2 0 1 −1 1
0 0 1 0 1 1

 .

At the next step x1has the largest negative, so x1 will enter and x4 will exit:

→
E12 (1)

 0 2 0 1 1 3
1 2 0 1 −1 1
0 0 1 0 1 1

 .

With this step we are done, since no negative entries reside in the zeroth row, hence the optimal solution
is Z = 3, which occurs at the BF solution (1,0,1,0,0), i.e., CPF solution (1,0,1).

4. Consider the problem

Max Z = x1 +3x2

Sbj.
3x1 + x2 ≤ 3
x1− x2 ≥ 2
x1 ≥ 0,x2 ≥ 0.

(a) Use the Big M method or phase 1 of the two-phase method to show that there is no feasible solution
to this problem.

(b) Exhibit iteration 1 of simplex tableau of the method not used in (a) and identify the initial BF
solution.

Solution. (a) If we use Big M, the variables used are decision variables x1,x2, slack variable x3, surplus
variable x4 and artificial variable x̄5 with rhs to yield the tableau −1 −3 0 0 M 0

3 1 1 0 0 3
1 −1 0 −1 1 2

 .

To reach the initial simplex tableau, we add −M times the third row to the first, yielding −1−M −3+M 0 M 0 −2M
3 1 1 0 0 3
1 −1 0 −1 1 2

 .

Thus the initial BF solution is (0,0,3,0,2).
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To finish the problem, we would use x1 as entering, and x3 as exiting by minimum ratio test to obtain

→
E2

(1
3

)
E32 (−1)

E12 (1+M)

 0 −8
3 + 4

3M 1
3 (1+M) M 0 M

1 1
3

1
3 0 0 1

0 −4
3 −1

3 0−1 1 1

 .

This is the final tableau, which shows Z = M at a BF solution (1,0,0,0,1), which has the artificial variable
x̄5 = 1, and hence does not correspond to a BF solution to the original problem. Hence, it has no BF
solutions.

(b) If we use the two-phase method, the variables used for phase 1 are decision variables x1,x2, slack
variable x3, surplus variable x4 and artificial variable x̄5 with rhs, and we attempt to minimize Z = x̄5, i.e.,
maximize −x̄5 to yield the tableau  0 0 0 0 1 0

3 1 1 0 0 3
1 −1 0 −1 1 2

 .

To reach the initial simplex tableau, we add −1 times the third row to the first, yielding −1 1 0 1 0 −2
3 1 1 0 0 3
1 −1 0 −1 1 2

 .

Thus the initial BF solution is (0,0,3,0,2).
To finish the problem, we would use x1 as entering, and x3 as exiting by minimum ratio test to obtain

→
E2

(1
3

)
E32 (−1)
E12 (1)

 1 4
3

1
3 1 0 −1

1 1
3

1
3 0 0 1

0 −4
3 −1

3 0−1 1 1

 .

This is the final tableau, which shows Z = 1 at a BF solution (1,0,0,0,1), which has the artificial variable
x̄5 = 1, and hence does not correspond to a BF solution to the original problem. Hence, it has no BF
solutions.

5. Consider the problem

Max Z = 5x1 +7x2

Sbj.
x1 +2x2 ≤ 4
x1 + x2 ≤ 3
x1 ≥ 0,x2 ≥ 0.

(a) Find the dual to this LP.
(b) Exhibit the BF solutions of the simplex method applied to the primal along with the corresponding

complementary basic solutions to the dual. You may use the simplex method or graphical methods. (You
may assume that the simplex method moves along CPF solutions (0,0)→ (0,2)→ (2,1).)

Solution.
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(a) The dual problem is

Min W = 4y1 +3y2

Sbj.
y1 + y2 ≥ 5

2y1 + y2 ≥ 7
y1 ≥ 0,y2 ≥ 0.

(b) Using simplex methods on the primal problem, we have the sequence

 −5 −7 0 0 0
1 2 1 0 4
1 1 0 1 3

 →
E2

(1
3

)
E32 (−1)
E12 (1)

 −3
2 0 7

2 0 14
1
2 1 1

2 0 2
1
2 0 −1

2 1 1


→

E3 (2)
E23

(
−1

2

)
E13

(3
2

)
 0 0 2 3 17

0 1 1 −1 1
1 0 −1 2 2

 .

Thus we see that the sequence BF solutions and complementary dual solutions (from reversing first two
and last two entries of zeroth row) are given as

(x1,x2,x3,x4) (y1,y2,y3,y4)
(0,0,4,3) (0,0,−5,−7)
(0,2,0,1)

(7
2 ,0,−3

2 ,0
)

(2,1,0,0) (2,3,0,0)

If we use graphical methods, we will graph the two feasible sets and observe that the primal CPF
solutions are (0,0) ,(0,2) ,(1,2) and the dual CP solutions are (0,0)(5,0)(0,5) ,(2,3) ,(0,7) ,(7/2,0).
Now compute objective functions at each point and obtain that

Z (0,0) = 0 = W (0,0)
Z (0,2) = 14 = W (7/2,0)
Z (2,1) = 17 = W (2,3) .

This gives the CP correspondence. Fill in the slack variables for each problem and we have the table
above.

6. A zero-sum game has the following payoff table for player 1:

Strategy
Player 2

1 2 3 4

Player 1
1
2
3

0 -2 2 1
5 4 -3 5
2 3 -4 3

(a) Use the dominated strategies technique to eliminate rows and/or columns, if possible.
(b) Use maximin/minimax to find a saddle point of the game resulting from (a), if there is one.
(c) Express the solution to the game of (a) as a linear programming problem (do not solve.)
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Solution. (a) Inspection shows that row 3 is dominated by row 2, so player 1 should discard row 3.
Rows 1 and 2 are incomparable.

Having done so, we see that column 4 is dominated by column 1, so player 2 should discard column
4. Next, we see that column 1 is dominated by column 2, so player 2 should discard move 1. Doing so
leaves us with this table of incomparable moves and no saddle point:

Strategy
Player 2

2 3

Player 1
1
2

-2 2
4 -3

(b) We calculate the maximin payoff for player 1 to be max{−2,−3}=−2, so player 1 would choose
move 1 as an optimal pure strategy with a payoff of −2.

On the other hand, the minimax strategy for player 2 is min{4,2}= 2, so player 2 would choose move
3 as an optimal pure strategy with a payoff of 2. Thus we see that payoffs do not match, so there is no
saddle point.

(c) Consider player 1 strategy. As a linear programming problem, we would convert the payoff ν

to the difference ν = x5− x6 (I’m making room for the slack variables, but this isn’t necessary) of two
nonnegative variables. So if we focus on the primal (player 1), the problem is

Max Z = x5− x6

Sbj.
2x1−4x2 + x5− x6 ≤ 0

−2x1 +3x2 + x5− x6 ≤ 0
x j ≥ 0, j = 1,2,5,6.

(Or any number of variations on this.)

6


