RW-6386 | 571101

M.Phil. DEGREE EXAMINATION, DECEMBER 2010 Mathematics COMMUTATIVE ALGEBRA

(CBCS—2008 onwards)

Time: 3 Hours Maximum: 75 Marks

Answer **all** questions. $(5 \times 15 = 75)$

1. (a) Define the term exact sequence of R-modules. Prove that:

(i) for any exact sequence $O-N' \xrightarrow{f} N \xrightarrow{g} N'' \rightarrow O$ of R-modules, the induced sequence :

 $O \to \operatorname{Hom}_R(M_1N') \ \stackrel{f^*}{\to} \operatorname{Hom}_R(M_1N) \ \stackrel{g^*}{\to} \operatorname{Hom}_R(M_1N'') \ is \ exact$ where M is a -Rmodule.

(ii) An R-module P is projective if and only if for any surjective homomorphism $g: M \to M$ " the induced homomorphism $g^*: \operatorname{Hom}_R(P_1M) \to \operatorname{Hom}_R(P_1M^r)$ is surjective.

- (b) For an R-module M show that the following are equivalent:
 - (i) A sequence $O \rightarrow N' \xrightarrow{f} N \xrightarrow{g} N'' \rightarrow O$ of R-modules is exact if and only if the tensored sequence:

$$O \to M \otimes N' \xrightarrow{f} M \otimes N \xrightarrow{g} M \otimes N'' \to O$$
 is exact.

- (ii) M is R-flat and for any R-module N, $M \otimes_{I} N=0 \text{ implies } N=0.$
- (iii) M is R-flat and for any R-homomorphism $f: N' \to N$, the induced map $f^*: M \otimes N' \to M \otimes N$ is zero implies that f = 0.

Prove that M is faithfully flat if and only if M is flat and for each maximal ideal m of R, $m^{M} \neq M$.

2. (a) Prove:

- (i) Let R be a local ring. Any finitely generated projective R-module is free.
- (ii) Let R be a local ring with maximal ideal in and M be a finitely presented R-module. If the canonical map $u_{\mathrm{M}}: m \otimes \mathrm{M} \to \mathrm{M}$ given by $u_{\mathrm{M}}: (a \otimes x) = ax, a \in m, x \in \mathrm{M}$ is injective then M is free.

(Or)

(b) For a ring R, describe R_s , for a multiplicatively closed subset S of R. If S is a multiplicatively closed set and $f:R \to R_s$ be the natural map given by f(a) = (a/1), show that (i) every ideal of R_s is an extended ideal (ii) the prime ideals of R_s are in 1 - 1 correspondence with the prime ideals of R not intersecting S; iii) f preserves the ideal operations of taking finite sums, products, intersections and radical.

3. (a) Let R be an Artinian ring. Show that (i) every prime ideal of R is maximal (ii) there are finitely many maximal ideals of R (iii) the nil radical is nilpotent.

- (b) Define the term "length of a module". State and prove the Jordan-Hölder theorem w.r.t. composition series and length.
- 4. (a) Prove:
 - (i) Let RCS be domains and S integral over R. The R is a field if and only if S is a field.
 - (ii) Let R, S be as in (i) for any prime ideal P of R, there exists a prime ideal P' of S such that $P' \cap R = P$.

(iii) Let S be an integral extension of R, $f: R \to \Omega$ be a ring homomorphism of R into an algebraically closed field Ω . Then f can be extended to a ring homomorphism $g: S \to \Omega$.

- (b) Let R be an integrally closed domain with quotent field and S normal extension of R with Galoi's group G = G (L/K). Show that:
 - (i) G is the group of R-automorphisms of S.
 - (ii) Two prime ideals P' and Q' of S lie over the same prime ideal of R if and only if there exists some $\sigma \in G$ with $\sigma(\rho') = Q'$.

5. (a) Define the term valuation ring. Let *p* be a fixed prime and RCQ, where Q is the field of rationals is defined by:

R =
$$\left\{ p^r \frac{m}{n} : r \ge 0, (n, p = 1, (n, p) > 1 \right\}$$
. Show that R

is a valuation ring. Prove (i) the ideals of a valuation ring are totally ordered by inclusion (ii) if the ideals of a domain V in the quotient field K are totally ordered by inclusion then V is a valuation ring of K.

- (b) Let R be a Noetherian local domain, with unique maximal ideal $m \neq 0$, and K be the quotient field of R. Show that the following are equivalent:
 - (i) R is a discrete valuation ring;
 - (ii) R is a principal ideal domain;

(• • •)	•	•	•	- 1
(iii)	m is	prin	cin.	аl.
(/	~	r	·	

- (iv) R is integrally closed and every non-zero prime ideal of R is maximal.
- (v) every non-zero ideal of R is a power of m.

____ *** ____

RW-6387 571102

M.Phil. DEGREE EXAMINATION, DECEMBER 2010 Mathematics FUNCTIONAL ANALYSIS

(CBCS-2008 onwards)

Time: 3 Hours Maximum: 75 Marks

Answer **all** questions. $(5 \times 15 = 75)$

- 1. (a) Let \wedge be a linear functional on a Topological vector space X. Assume $\wedge x \neq 0$ for some $x \in X$. Prove that the following four properties are equivalent:
 - (i) \wedge is continuous.
 - (ii) The null space $\mathcal{N}(\Lambda)$ is closed.
 - (iii) $\mathcal{N}(\Lambda)$ is not dense in X.
 - (iv) \wedge is bounded in some neighbourhood \vee of 0.

- (b) (i) Suppose K and C are subsets of a topological vector space X, K is compact, C is closed and $K \cap C = \phi$. Prove that 0 has a neighbourhood V such that $(K + V) \cap (C + V) = \phi$.
 - (ii) Prove that every locally compact topological vector space X has finite dimension.

(8+7)

- 2. (a) (i) State and prove Baire's theorem.
 - (ii) State and prove Banach-Steinhauss theorem.

(7 + 8)

(*Or*)

(b) State and prove Open mapping theorem.

3. (a) State and prove the Banach-Alaoglu theorem. State and prove any two applications of the above theorem.

(9+6)

- (b) Let M be a subspace of a real vector space X. Let $p: X \to R$ satisfy $p(x+y) \le p(x) + p(y)$ and p(tx) = p(x) if $x \in X$, $y \in X$ $t \ge 0$. Suppose $f: M \to R$ is linear and $f(x) \le p(x)$ on M. Prove that there exists a linear $\wedge: X \to R$ such that $\wedge(x) = f(x), (x \in M)$ and $-p(-x) \le \wedge(x) \le p(x),$ $x \in X$.
- 4. (a) (i) Suppose X and Y are normed spaces. Prove that to each $T \in \mathcal{B}(X,Y)$ there corresponds a unique $T^* \in \mathcal{B}(Y^*,X^*)$ that satisfies $\langle Tx,y^* \rangle = \langle x,T^*y^* \rangle$ for all $x \in X$ and all $y^* \in Y^*$. Also prove that $||T^*|| = ||T||$.

(ii) Suppose X and Y are Banach spaces and $T \in \mathcal{B}(X, Y)$. Prove that T is compact if, and only if, T^* is compact.

- (b) Suppose X is a Banach Space, $T \in \mathcal{B}(X)$ and T is compact. Then prove the following:
 - (i) If $\lambda \neq 0$, then the four numbers $\alpha = \dim \mathcal{N} (T \lambda I)$, $\beta = \dim (X/\mathbb{R} (T \lambda))$, $\alpha^* = \dim N (T^* \lambda I)$ and $\beta^* = \dim (X^*/\mathbb{R} (T^* \lambda I))$ are equal and finite.
 - (ii) if $\lambda \neq 0$, and $\lambda \in \sigma(T)$ then λ is an eigen value of T and of T*.
 - (iii) $\sigma(T)$ is compact, at most countable and has at most one limit point namely 0.

5. (a) State and prove Bishop's theorem. Give an example to illustrate Bishop's theorem.

(Or)

(b) Let G be a compact group. Prove that there exists a unique regular Borel probability measure m which is left invariant, right invariant and satisfies the relation

$$\int_{G} f(x) \, dm(x) = \int_{G} f(x^{-1}) \, dm(x)$$

where $f \in C(G)$.

RW-6388 571203

M.Phil. DEGREE EXAMINATION, DECEMBER 2010 Mathematics MEASURE THEORY

MEASURE THEORY

 $(CBCS-2008\ onwards)$

Time: 3 Hours Maximum: 75 Marks

Answer all questions.

 $(5 \times 15 = 75)$

1. (a) (i) Define measurable space and measurable sets.

(5)

- (ii) Suppose m is a σ -algebra in X, and Y is a topological space let f map X into Y
 - 1. If Ω is the collection of all sets $E \subset Y$ such that $f^{-1}(E) \in m$, then Ω is a σ -algebra in Y
 - 2. If f is measurable and E is a Borel set in Y then $f^{-1}(E) \in m$.

(10)

(b) Suppose f and $g \in L'(\mu)$ and α and β are complex numbers

then prove that $\alpha f + \beta g \in L'(\mu)$ and

$$\int_{X} (\alpha f + \beta g) d \mu = \alpha \int_{X} f d \mu + \beta \int_{X} g d \mu .$$

(15)

- 2. (a) (i) Explain $C_c(X)$. (5)
 - (ii) State and prove Urysohn's lemma. (10)

(*Or*)

- (b) (i) Define σ -finite measure. (3)
 - (ii) Let X be a locally compact Hausdorff space in which every open set is σ –compact. Let λ be any positive Borel measure on X such that λ (K) < ∞ , \forall K then prove that λ is regular.

(12)

3. (a) (i) If φ is convex on (a, b) then φ is continuous on (a, b) where φ is a real function on (a, b).

(5)

(ii) State and prove Jensen's inequality.

(10)

(Or)

(b) (i) Prove that $L^p(\mu)$ is a complete metric space, for $1 \le p \le \infty$ and for every positive measure μ

(10)

(ii) If $\{f_n\}$ is a Cauchy sequence in L^p (μ) with limit f then prove $\{f_n\}$ has a subsequence which converges pointwise almost everywhere to f(x).

(5)

4. (a) (i) Let μ be a complex measure on a σ -algebra m in X, then there is a measurable function h such that $|h(x)| = 1 \ \forall \ x \in X$ such that $d \mu = h d |\mu|$

(8)

(ii) State and prove the Hahn-decomposition theorem.

(7)

(*Or*)

- (b) State and prove the Riesz representation theorem for a unique regular complex Borel measure.
- 5. (a) (i) Prove that weak L^1 contains L^1

(5)

(ii) If $f \in L'(\mathbb{R}^K)$, then prove that almost every $x \in \mathbb{R}^K$ is a Lebesgue point of f.

(10)

(Or)

(b) If T (B (x, r) is Lebesgue measurable, the set V is open in R^K , T: V $\rightarrow R^K$ is continuous and T is differentiable at some point $x \in V$ then prove that.

$$\lim_{r\to 0} \frac{m\left(\mathrm{T}\left(\mathrm{B}\left(x,r\right)\right)\right)}{m(\mathrm{B}(x,r))} = \Delta\left(\mathrm{T}'(x)\right)$$

(15)

_____ *** ____