IIT-JEE 2012

PAPER - 1

PART - III : MATHEMATICS

Section I : Single Correct Answer Type

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
41. The point P is the intersection of the straight line joining the points $Q(2,3,5)$ and $R(1,-1,4)$ with the plane $5 x-4 y-z=1$. If S is the foot of the perpendicular drawn from the point $T(2,1,4)$ to $Q R$, then the length of the line segment PS is
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{2}$
(C) 2
(D) $2 \sqrt{2}$

Sol. Ans. (A)
Equation of $Q R$ is

$$
\begin{aligned}
& \frac{x-2}{1}=\frac{y-3}{4}=\frac{z-5}{1} \\
\text { Let } P \equiv & (2+\lambda, 3+4 \lambda, 5+\lambda) \\
& 10+5 \lambda-12-16 \lambda-5-\lambda=1 \\
& -7-12 \lambda=1 \\
\Rightarrow \quad & \lambda=\frac{-2}{3}
\end{aligned}
$$

then $\mathrm{P} \equiv\left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$
Let $S=(2+\mu, 3+4 \mu, 5+\mu)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{TS}}=(\mu) \hat{i}+(4 \mu+2) \hat{\mathrm{j}}+(\mu+1) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{TS}} \cdot(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})=0 \\
& \mu+16 \mu+8+\mu+1=0 \\
& \mu=-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& S=\left(\frac{3}{2}, 1, \frac{9}{2}\right) \\
& P S=\sqrt{\left(\frac{4}{3}-\frac{3}{2}\right)^{2}+\frac{4}{9}+\left(\frac{13}{3}-\frac{9}{2}\right)^{2}}=\sqrt{\frac{1}{36}+\frac{4}{9}+\frac{1}{36}}=\sqrt{\frac{1}{18}+\frac{4}{9}}=\sqrt{\frac{9}{18}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

42. The integral $\int \frac{\sec ^{2} x}{(\sec x+\tan x)^{9 / 2}} d x$ equals (for some arbitrary constant K)
(A) $\frac{-1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^{2}\right\}+K$
(B) $\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^{2}\right\}+K$
(C) $\frac{-1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^{2}\right\}+K$
(D) $\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^{2}\right\}+K$

Sol. Ans (C)

Put $\quad \sec x+\tan x=t$
$\left(\sec x \tan x+\sec ^{2} x\right) d x=d t$
$\sec x . t d x=d t$
$\sec x-\tan x=\frac{1}{t}$
$\sec x=\frac{t+\frac{1}{t}}{2}$

$$
\begin{aligned}
\int \frac{\sec x \cdot d t}{t^{9 / 2} \cdot t} & =\int \frac{1}{2} \frac{\left(t+\frac{1}{t}\right)}{t \cdot t^{9 / 2}} d t \\
& =\frac{1}{2} \int\left(\frac{1}{t^{9 / 2}}+\frac{1}{t^{13 / 2}}\right) d t \\
& =-\frac{1}{2}\left[\frac{2}{7 t^{7 / 2}}+\frac{2}{11 t^{11 / 2}}\right]+k \\
& =-\frac{1}{t^{11 / 2}}\left[\frac{t^{2}}{7}+\frac{1}{11}\right]+k
\end{aligned}
$$

43. Let z be a complex number such that the imaginary part of z is non zero and $a=z^{2}+z+1$ is real. Then a cannot take the value
(A) -1
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$
44. Ans (D)

Here $\quad z^{2}+z+1-a=0$
$\Rightarrow \quad z=\frac{-1 \pm \sqrt{4 a-3}}{2}$

Here $\quad a \neq \frac{3}{4}$ otherwise z will be purely real.
44. Let $f(x)=\left\{\begin{array}{ll}x^{2}\left|\cos \frac{\pi}{x}\right|, & x \neq 0 \\ 0, & x=0\end{array}, x \in I R\right.$, then f is
(A) differentiable both at $x=0$ and at $x=2$
(B) differentiable at $x=0$ but not differentiable at $x=2$
(C) not differentiable at $x=0$ but differentiable at $x=2$
(D) differentiable neither at $x=0$ nor at $x=2$

Sol. Ans (B)

(I) for derivability at $\mathrm{x}=0$
L.H.D. $=f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(0-h)-f(0)}{-h}$

$$
=\lim _{h \rightarrow 0^{+}} \frac{h^{2} \cdot\left|\cos \left(-\frac{\pi}{h}\right)\right|-0}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}}-h .\left|\cos \frac{\pi}{h}\right|=0
$$

RHD $\quad f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$

$$
=\lim _{h \rightarrow 0^{+}} \frac{h^{2} \cdot\left|\cos \left(\frac{\pi}{h}\right)\right|-0}{h}=0
$$

So $f(x)$ is derivable at $x=0$
(ii) check for derivability at $x=2$
$R H D=f^{\prime}\left(2^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h}$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2+h)^{2} \cdot\left|\cos \left(\frac{\pi}{2+h}\right)\right|-0}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}} \frac{(2+h)^{2} \cdot \cos \left(\frac{\pi}{2+h}\right)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{(2+h)^{2} \cdot \sin \left(\frac{\pi}{2}-\frac{\pi}{2+h}\right)}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2+h)^{2} \cdot \sin \left(\frac{\pi h}{2(2+h)}\right)}{\left(\frac{\pi}{2(2+h)}\right) h} \cdot \frac{\pi}{2(2+h)}
$$

$$
=(2)^{2} \cdot \frac{\pi}{2(2)}=\pi
$$

$$
\text { LHD }=\lim _{h \rightarrow 0^{+}} \frac{f(2-h)-f(2)}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2-h)^{2} \cdot\left|\cos \left(\frac{\pi}{2-h}\right)\right|-0}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2-h)^{2} \cdot\left(-\cos \left(\frac{\pi}{2-h}\right)\right)-0}{-h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2-h)^{2} \cos \left(\frac{\pi}{2-h}\right)}{h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2-h)^{2} \cdot \sin \left(\frac{\pi}{2}-\frac{\pi}{2-h}\right)}{h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(2-h)^{2} \cdot \sin \left(-\frac{\pi h}{2(2-h)}\right)}{\left(-\frac{\pi h}{2(2-h)}\right)} \cdot \frac{-\pi}{2(2-h)}
$$

$$
=-\pi
$$

So $f(x)$ is not derivable at $x=2$
45. The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is
(A) 75
(B) 150
(C) 210
(D) 243

Sol. Ans (B)

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
Case-1:	1	1	3
Case-2:	2	2	1

Ways of distribution $=\frac{5!}{1!1!3!2!} \cdot 3!+\frac{5!}{2!2!1!2!} \cdot 3!$

$$
=150
$$

46. If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$, then
(A) $a=1, b=4$
(B) $a=1, b=-4$
(C) $a=2, b=-3$
(D) $a=2, b=3$

Sol. Ans (B)
$\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$
$\lim _{x \rightarrow \infty}\left(\frac{x^{2}(1-a)+x(1-a-b)+(1-b)}{x+1}\right)=4$
Limit is finite
It exists when $1-a=0 \quad \Rightarrow a=1$
then $\lim _{x \rightarrow \infty}\left(\frac{1-a-b+\frac{1-b}{x}}{1+\frac{1}{x}}\right)=4$
$\therefore \quad 1-a-b=4 \quad \Rightarrow \quad b=-4$
47. The function $f:[0,3] \rightarrow[1,29]$, defined by $f(x)=2 x^{3}-15 x^{2}+36 x+1$, is
(A) one-one and onto
(B) onto but not one-one
(C) one-one but not onto
(D) neither one-one nor onto

Sol. Ans (B)

$\mathrm{F}:[0,3] \rightarrow[1,29]$
$f(x)=2 x^{3}-15 x^{2}+36 x+1$
$f^{\prime}(x)=6 x^{2}-30 x+36$

$=6\left(x^{2}-5 x+6\right)$
$=6(x-2)(x-3)$
in given domain function has local maxima, it is many-one
Now at $x=0 \quad f(0)=1$

$$
x=2 \quad f(2)=16-60+72+1=29
$$

$$
\begin{aligned}
x=3 \quad f(3) & =54-135+108+1 \\
& =163-135=28
\end{aligned}
$$

Has range = [1, 29]
Hence given function is onto
48. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line $4 x-5 y=20$ to the circle $x^{2}+y^{2}=9$ is
(A) $20\left(x^{2}+y^{2}\right)-36 x+45 y=0$
(B) $20\left(x^{2}+y^{2}\right)+36 x-45 y=0$
(C) $36\left(x^{2}+y^{2}\right)-20 x+45 y=0$
(D) $36\left(x^{2}+y^{2}\right)+20 x-45 y=0$

Sol. Ans (A)

Circle $x^{2}+y^{2}=9$
line $\quad 4 x-5 y=20$
$P\left(t, \frac{4 t-20}{5}\right)$
equation of chord $A B$ whose mid point is $M(h, k)$
$\mathrm{T}=\mathrm{S}_{1}$
$\therefore \quad h x+k y=h^{2}+k^{2}$
equation of chord of contact $A B$ with respect to P.
$\mathrm{T}=0$
$t x+\left(\frac{4 t-20}{5}\right) y=9$
comparing equation (1) and (2)

$$
\frac{\mathrm{h}}{\mathrm{t}}=\frac{5 \mathrm{k}}{4 \mathrm{t}-20}=\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{9}
$$

on solving
$45 \mathrm{k}=36 \mathrm{~h}-20 \mathrm{~h}^{2}-20 \mathrm{k}^{2}$
$\Rightarrow \quad$ Locus is $20\left(x^{2}+y^{2}\right)-36 x+45 y=0$
49. Let $P=\left[a_{i j}\right]$ be a 3×3 matrix and let $Q=\left[b_{i j}\right]$, where $b_{i j}=2{ }^{i+j} a_{i j}$ for $1 \leq i, j \leq 3$. If the determinant of P is 2 , then the determinant of the matrix Q is
(A) 2^{10}
(B) 2^{11}
(C) 2^{12}
(D) 2^{13}

Sol. Ans (D)
Given $P=\left[a_{i j}\right]_{3 \times 3} \quad b_{i j}=2^{i+j}$ aij $Q=\left[\mathrm{b}_{\mathrm{ij}}\right]_{3 \times 3}$
$P=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]|P|=2$
$Q=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]=\left[\begin{array}{ccc}4 a_{11} & 8 a_{12} & 16 a_{13} \\ 8 a_{21} & 16 a_{22} & 32 a_{23} \\ 16 a_{31} & 32 a_{32} & 64 a_{33}\end{array}\right]$

Determinant of $Q=\left|\begin{array}{ccc}4 a_{11} & 8 a_{12} & 16 a_{13} \\ 8 a_{21} & 16 a_{22} & 32 a_{23} \\ 16 a_{31} & 32 a_{32} & 64 a_{33}\end{array}\right|$
$=4 \times 8 \times 16\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 2 a_{21} & 2 a_{22} & 2 a_{23} \\ 4 a_{31} & 4 a_{32} & 4 a_{33}\end{array}\right|$
$=4 \times 8 \times 16 \times 2 \times 4\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=2^{2} \cdot 2^{3} \cdot 2^{4} \cdot 2^{1} \cdot 2^{2} \cdot 2^{1}$
$=2^{13}$
50. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R.. The eccentricity of the ellipse E_{2} is
(A) $\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$

Sol. Ans (C)
Let required ellipse is
$E_{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
It passes thorugh (0, 4)
$0+\frac{16}{b^{2}}=1 \quad \Rightarrow \quad b^{2}=16$
It also passes through $(\pm 3, \pm 2)$

$$
\begin{aligned}
& \frac{9}{a^{2}}+\frac{4}{b^{2}}=1 \\
& \frac{9}{a^{2}}+\frac{1}{4}=1 \\
& \frac{9}{a^{2}}=\frac{3}{4} \quad \Rightarrow \quad a^{2}=b^{2}\left(1-e^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12}{16}=1-e^{2} \\
& e^{2}=1-\frac{12}{16}=\frac{4}{16}=\frac{1}{16} \\
& e=\frac{1}{2}
\end{aligned}
$$

Section II : Multiple Correct Answer(s) Type

This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
51. If $y(x)$ satisfies the differential equation $y^{\prime}-y \tan x=2 x \sec x$ and $y(0)$, then
(A) $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8 \sqrt{2}}$
(B) $y^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{18}$
(C) y $\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{9}$
(D) $y^{\prime}\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$

Sol. Ans (AD)
$\frac{d y}{d x}-y \tan x=2 x \sec x$
$y(0)=0$
I.F. $=e^{-\int \tan x d x}=e^{-\log \sec x}$
I.F. $=\cos x$
$\cos x \cdot y=\int 2 x \sec x \cdot \operatorname{cox} d x$
$\cos x . y=x^{2}+c$
$\mathrm{c}=0$
$y=x^{2} \sec x$
$y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{16} \cdot \sqrt{2}=\frac{\pi^{2}}{8 \sqrt{2}}$
$\mathrm{y}^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi}{2} \cdot \sqrt{2}+\frac{\pi^{2}}{16} \cdot \sqrt{2}$
$y\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{9} \cdot 2=\frac{2 \pi^{2}}{9}$
$\mathrm{y}^{\prime}\left(\frac{\pi}{3}\right)=2 \frac{\pi}{2} \cdot 2+\frac{\pi^{2}}{9} \cdot 2 \cdot \sqrt{3}$

$$
\frac{4 \pi}{3}+\frac{2 \pi^{2} \sqrt{3}}{9}
$$

52. A ship is fitted with three engines E_{1}, E_{2} and E_{3}. The engines function independently of each other with respective probabilities $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{4}$. For the ship to be operational at least two of its engines must function. Let X denote the event that the ship is operational and let X_{1}, X_{2} and X_{3} denotes respectively the events that the engines $E_{1} E_{2}$ and E_{3} are functioning. Which of the following is (are) true ?
(A) $P\left[X_{1}^{c} \mid x\right]=\frac{3}{16}$
(B) $\mathrm{P}[$ Exactly two engines of the ship are functioning $\mid X]=\frac{7}{8}$
(C) $P\left[X \mid X_{2}\right]=\frac{5}{16}$
(D) $P\left[X \mid X_{1}\right]=\frac{7}{16}$

Sol. Ans (BD)
$P\left(x_{1}\right)=\frac{1}{2}$
$P\left(x_{2}\right)=\frac{1}{4}$
$P\left(x_{3}\right)=\frac{1}{4}$
$P(x)=P\left(E_{1} E_{2} E_{3}\right)+P\left(\bar{E}_{1} E_{2} E_{3}\right)+P\left(E_{1} \bar{E}_{2} E_{3}\right)+P\left(E_{1} E_{2} \bar{E}_{3}\right)$
$=\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}$
$P(x)=\frac{1}{4}$
(A) $P\left(\frac{x_{1}{ }^{c}}{x}\right)=\frac{P\left(x_{1}{ }^{c} \cap x\right)}{P(x)}$

$$
=\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}}{\frac{1}{4}}=\frac{1}{8}
$$

(B) $\mathrm{P}($ exactly two $/ \mathrm{x})=\frac{\mathrm{P}(\text { exactly two } \cap \mathrm{x})}{\mathrm{P}(\mathrm{x})}=\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{4}}=\frac{7}{8}$
(C) $P\left(x / x_{2}\right)=\frac{P\left(x \cap x_{2}\right)}{P\left(x_{2}\right)}=\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{4}}=\frac{5}{8}$
(D) $P\left(x / x_{1}\right)=\frac{P\left(x \cap x_{1}\right)}{P\left(x_{1}\right)}=\frac{\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{4}}{\frac{1}{2}}=\frac{7}{16}$
53. Let $\theta, \phi \in[0,2 \pi]$ be such that $2 \cos \theta(1-\sin \phi)=\sin ^{2} \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta)>0$ and $-1<\sin \theta<-\frac{\sqrt{3}}{2}$. Then ϕ cannot satisfy
(A) $0<\phi<\frac{\pi}{2}$
(B) $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$
(C) $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$
(D) $\frac{3 \pi}{2}<\phi<2 \pi$

Sol. Ans (ACD)
As $\tan (2 \pi-\theta)>0,-1<\sin \theta<-\frac{\sqrt{3}}{2}, \theta \in[0,2 \pi]$
$\Rightarrow \frac{3 \pi}{2}<\theta<\frac{5 \pi}{3}$
Now $2 \cos \theta(1-\sin \phi)=\sin ^{2} \theta(\tan \theta / 2+\cot \theta / 2) \cos \phi-1$
$\Rightarrow 2 \cos \theta(1-\sin \phi)=2 \sin \theta \cos \phi-1$
$\Rightarrow 2 \cos \theta+1=2 \sin (\theta+\phi)$
As $\theta \in\left(\frac{3 \pi}{2}, \frac{5 \pi}{3}\right) \Rightarrow 2 \cos \theta+1 \in(1,2)$
$\Rightarrow 1<2 \sin (\theta+\phi)<2$
$\Rightarrow \frac{1}{2}<\sin (\theta+\phi)<1$
As $\theta+\phi \in[0,4 \pi]$
$\Rightarrow \theta+\phi \in\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$ or $\theta+\phi \in\left(\frac{13 \pi}{6}, \frac{17 \pi}{6}\right)$
$\Rightarrow \frac{\pi}{6}-\theta<\phi<\frac{5 \pi}{6}-\theta$ or $\frac{13 \pi}{6}-\theta<\phi<\frac{17 \pi}{6}-\theta$
$\Rightarrow \phi \in\left(-\frac{3 \pi}{2}, \frac{-2 \pi}{3}\right) \cup\left(\frac{2 \pi}{3}, \frac{7 \pi}{6}\right)$
$\left(\because \theta \in\left(\frac{3 \pi}{2}, \frac{5 \pi}{3}\right)\right)$
54. If S be the area of the region enclosed by $y=e^{-x^{2}}, y=0, x=0$, and $x=1$. Then
(A) $S \geq \frac{1}{e}$
(B) $\mathrm{S} \geq 1-\frac{1}{\mathrm{e}}$
(C) $S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
(D) $S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$

Sol. Ans (ABD)
$I=\int_{0}^{1} e^{-x^{2}} d x$
$-x^{2} \leq 0$
$e^{-x^{2}} \leq 1$
$\int_{0}^{1} e^{-x^{2}} d x \leq 1$
$x^{2} \leq x \Rightarrow-x^{2} \geq-x \Rightarrow e^{-x^{2}} \geq e^{-x}$
$\Rightarrow I \geq \int_{0}^{1} \mathrm{e}^{-x} \mathrm{dx}$
$\geq-\left(\mathrm{e}^{-x}\right)_{0}^{1}$
$\geq-\left(\frac{1}{e}-1\right)$
$I \geq 1-\frac{1}{e} \Rightarrow(B)$ is correct
Since If $\mathrm{I} \geq 1-\frac{1}{\mathrm{e}} \Rightarrow \mathrm{I}>\frac{1}{\mathrm{e}} \quad \Rightarrow(\mathrm{A})$ is correct
$1<\frac{1}{\sqrt{2}} \times 1+\frac{1}{\sqrt{\mathrm{e}}} \times\left(1-\frac{1}{\sqrt{2}}\right)$

So Ans. D
55. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are
(A) $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(B) $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(C) $(3 \sqrt{3},-2 \sqrt{2})$
(D) $(-3 \sqrt{3}, 2 \sqrt{2})$

Sol. Ans (AB)

Slope of tangents = 2
Equation of tangents $y=2 x \pm \sqrt{9.4-4}$
$\Rightarrow y=2 x \pm \sqrt{32}$
$\Rightarrow 2 x-y \pm 4 \sqrt{2}=0$
Let point of contact be $\left(x_{1}, y_{1}\right)$
then equation (i) will be identical to the equation
$\frac{x x_{1}}{9}-\frac{y y_{1}}{4}-1=0$
$\therefore \frac{\mathrm{x}_{1} / 9}{2}=\frac{\mathrm{y}_{1} / 4}{1}=\frac{-1}{ \pm 4 \sqrt{2}}$
$\Rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \equiv\left(-\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ and $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Section III : Integer Answer Type

This section contains 5 questions. The answer to each question is a single digit integer, ranging from 0 to 9 (both inclusive).
56. Let S be the focus of the parabola $y^{2}=8 x$ and let $P Q$ be the common chord of the circle $x^{2}+y^{2}-2 x-4 y=0$ and the given parabola. The area of the triangle PQS is.
Sol. Ans (4)
Focus is $(a, 0) \equiv(2,0)$
$\mathrm{P} \equiv(0,0)$
$A=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 2 & 0 & 1 \\ \frac{\alpha^{2}}{8} & \alpha & 1\end{array}\right|$

$=\frac{1}{2}(2 \alpha)=\alpha$ we need y coordinate of Q.
$\left(2 t^{2}, 4 t\right)$ satisfies circle
$4 t^{4}+16 t^{2}-4 t^{2}-16 t=0$
$t^{3}+3 t-4=0$
$(t-1)\left(t^{2}+t+4\right)=0$
$\mathrm{t}=1$
so Ans. 4
57. Let $p(x)$ be a real polynomial of least degree which has a local maximum at $x=1$ and a local minimum at $x=3$. If $p(1)=6 p(3)=2$, then $p^{\prime}(0)$ is
Sol. Ans (9)
$\mathrm{p}^{\prime}=\lambda(\mathrm{x}-1)(\mathrm{x}-3)=\lambda\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right)$
$p(x)=\lambda\left(x^{3} / 3-2 x^{2}+3 x\right)+\mu$
$p(1)=6$
$6=\lambda(1 / 3-2+3)+\mu$
$6=\lambda(1 / 3+1)+\mu$
$18=4 \lambda+3 \mu$
$p(3)=2$
$2=\lambda(27 / 3-2 \times 9+9)+\mu$
$2=\mu$
$\mu=2 \Rightarrow \lambda=3$
$\mathrm{p}^{\prime}(\mathrm{x})=3(\mathrm{x}-1)(\mathrm{x}-3)$
$p^{\prime}(0)=3(-1)(-3)$
$=9$
58. Let $f: I R \rightarrow$ IR be defined as $f(x)=|x|+\left|x^{2}-1\right|$. The total number of points at which f attains either a local maximum or a local minimum is

Sol. Ans (5)

$f(x)=|x|+\left|x^{2}-1\right|$
$f(x)=\left\{\begin{array}{cc}-x+x^{2}-1 & x<-1 \\ -x-x^{2}+1 & -1 \leq x \leq 0 \\ x-x^{2}+1 & 0<x<1 \\ x+x^{2}-1 & x \geq 1\end{array}\right.$

$f(x)=\left\{\begin{array}{cc}x^{2}-x-1 & x<-1 \\ -x^{2}-x+1 & -1 \leq x \leq 0 \\ -x^{2}+x+1 & 0<x<1 \\ x^{2}+x-1 & x \geq 1\end{array}\right.$
59. The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \cdots}}}\right)$ is

Sol. Ans (4)

Let $\sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}}}} \cdots \cdots . .=t$
$\sqrt{4-\frac{1}{3 \sqrt{2}} t}=t$
$4-\frac{1}{3 \sqrt{2}} t=t^{2} \Rightarrow$
$t^{2}+\frac{1}{3 \sqrt{2}} t-4=0 \Rightarrow 3 \sqrt{2} t^{2}+t-12 \sqrt{2}=0$
$t=\frac{-1 \pm \sqrt{1+4 \times 3 \sqrt{2} \times 12 \sqrt{2}}}{2 \times 3 \sqrt{2}}=\frac{-1 \pm 17}{2 \times 3 \sqrt{2}}$
$t=\frac{16}{6 \sqrt{2}}, \frac{-18}{6 \sqrt{2}}$
$\mathrm{t}=\frac{8}{3 \sqrt{2}}, \frac{-3}{\sqrt{2}}$ and $\frac{-3}{\sqrt{2}}$ is rejected
so $6+\log _{3 / 2}\left(\frac{1}{3 \sqrt{2}} \times \frac{8}{3 \sqrt{2}}\right)=6+\log _{3 / 2}\left(\frac{4}{9}\right)=6+\log _{3 / 2}\left(\left(\frac{2}{3}\right)^{2}\right)=6-2=4$
60. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is

Sol. Ans (3)
$6-2 \vec{a} \cdot \vec{b}-2 \vec{b} \cdot \vec{c}-2 \vec{c} \cdot \vec{a}=9$
$(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=\frac{-3}{2}$
$|\vec{a}+\vec{b}+\vec{c}|^{2} \geq 0$
$3+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}) \geq 0$
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a} \geq \frac{-3}{2}$

Since $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=\frac{-3}{2}$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=0 \Rightarrow \vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow|2 \overrightarrow{\mathrm{a}}+5(-\overrightarrow{\mathrm{a}})|=|3 \overrightarrow{\mathrm{a}}| \Rightarrow 3$

