1. Following two wave trains are approaching each other. $y_1 = a \sin 200 \pi t$ $y_2 = a \sin 208 \pi t$ The number of beats heard per second is : A. 8 B. 4 C. 1 D. 0					
 One of the geo-stati A. New Delhi 	onary satellites of India i B. Mumbai	s vertically above C. Allahabad	D. None of these		
3. Light of wavelength equal to	a 2400 x 10 ⁻¹⁰ m in air wi	ll become light of wave	length in glass ($\mu = 1.5$)		
A. $1600 \ge 10^{-10} =$	B. 7200 x 10 ⁻¹⁰ m	C. $1080 \ge 10^{-10} =$	D. none of these		
	ary to primary turns is 4:: all losses) to power inpu		hat will be the ratio of		
A. 4:9	B. 9:4	C. 5:4	D. 1:1		
5. Lenz's law applies to A. electrostatics C. electro-magnetic in		B. lenses D. cinema slides			
6. If a proton and anti- released ?	proton come close to eac		now much energy will be		
A. 1.5 x 10 ⁻¹⁰ J	B. 3 x 10^{-10} J	C. 4.5 x 10^{-10} J	D. none of these		
7. If <i>Sn</i> is doped with <i>A</i> ?	As, what will be the resul	t			
A. <i>n</i> -type B. <i>p</i> -type semi- semi- conductor conductor	semi-	f			
8. A charge is placed a faces?	t the centre of a cube, wh	hat is the electric flux pa	assing through one of its		
A. (1/6) x (q/ϵ_0)	B. q/ε_0	C. $6q/\varepsilon_0$	D. None of these		
 9. What is the degree of freedom in case of a mono atomic gas ? A. 1 B. 3 C. 5 D. None of these 					
A. 1	D . 5	C. J	D. None of these		
10. The ratio of secondary to primary turns is 4:5. If power input is <i>P</i> , what will be the ratio of power output (neglect all losses) to power input ?					
A.	B.	C.	D.		

11. Speed of recession of galaxy is proportional to its distance

A. directly	B. inversely	C. exponential		
12. If a substance goe A. Paramagnetic	s in a magnetic field and B. Ferromagnetic	is pushed out of it, what C. Diamagnetic	is it ? D. Antiferromagnetic	
13. Which is not a sca	lar quantity?			
A. Work	B. Power	C. Torque	D. Gravitational Constant	
14. Minimum energy A13.6 eV	required to excite an elec B. 13.6 eV	tron in a Hydrogen atom C. 10.2 eV	in ground state is : D. 3.4 eV	
15. If Gravitational Co satellite orbiting arour	onstant is decreasing in tind earth ?	me, what will remain un	changed in case of a	
A. Time period		C. Tangential velocity	D. Angular velocity	
16. If a transparent medium of refractive index $\mu = 1.5$ and thickness $t = 2.5 \times 10^{-5}$ m is inserted in front of one of the slits of Young's Double Slit experiment, how much will be the shift in the interference pattern ? The distance between the slits is 5.0×10^{-3} cm and that between slits and screen is 100 cm.				
A. 5 cm	B. 2.5 cm	C. 0.25 cm	D. 0.1 cm	
	opagate in optical fibres?	,		
A. Total internal reflection	B. Refraction	C. Reflection	D. None of these	
18. Dispersion of light	t is due to			
A. wavelength 19. Which of the follo a stationary body?	B. intensity of light wing conclusions is corre	•	D. none of these	
A. No force is acting of	•			
B. Vector sum of force C. The body is in vacu	es acing on the body is ze	ero		
D. The forces acting on the body do not constitute a couple				
20. Energy released in stars is due to				
A. Fission	B. Fusion	C. Combustion	D. Chemical reaction	
21. 13 days is the half 1/16th of the original	-life period of a sample. substance ?	After how many days, th	e sample will become	
A. 52	B. 3.8	C. 3	D. none of these	
22 Absolute zero is th	he temperature at which			

22. Absolute zero is the temperature at which

For more files visit www.educationobserver.com/forum

		B. all gases become liquid D. everything solidifies			
23. Motion of liquid in a tube is described by					
A. Bernaulli's Theorer	n B. Poiseuille Equation	C. Stoke's Law	D. Archimedes' Principle		
24. Molecular motion	shows itself as				
A. Temperature	B. Internal Energy	C. Friction	D. Viscosity		
25. Which is this gate	?				
A. AND	B. NAND				
C. OR	D. NOR				
	olids are a consequence of				
A. Ohm's Law C. Bohr's Theory		B. Pauli's Exclusion PrD. Heissenberg's Unce	*		
		C	•		
•	stands on the floor of an e The force exerted by the	0			
A. Mg x Ma	B. g + a	C. Mg – Ma	D. Mg + Ma		
-	m ₁ exerts a force on anot on (in magnitude) of A is		If the acceleration of B be		
A. m_2/m_1 (a ₂)	B. $m_1 m_2 a_2$	C. m_1/m_2 (a ₂)	D. $(m_1 + m_2) a_2$		
A. Wavelength	nge when sound enters fr B. Speed	C. Frequency	D. none of these		
-	-	1 2			
30. Resolving power of A. wavelength of light	of a microscope depends u t used, directly	¹ pon B. wavelength of light	used, inversely		
C. frequency of light u	· ·	D. focal length of object			
31. An astronaut of weight Mg is in a rocket accelerating upward with an acceleration of 4g. The apparent weight of the astronaut will be					
A. 5Kg	B. 4Kg	C. Mg	D. zero		
	32. One proton beam enters a magnetic field of 10^{-4} m/s normally, sp. charge = 10^{11} C/kg, velocity = 10^{9} m/s. What is the radius of the circle describe by it ?				
A. 0.1 m	B. 100 m	C. 10 m	D. none of these		
33. If a black body rad	liates 20 calories per seco	ond at 227°C, it will radi	ate at 727°C		

A. 10 calories per second	B. 80 calories per second	C. 320 calories per second	D. none of these		
	34. If a carnot engine is working with source temperature equal to 227°C and its sink temperature is at 27°C, its efficiency will be				
A. 20%	B. 10%	C. 67%	D. 50%		
35. If the frequency of energy is	f an oscillating particle is	<i>n</i> , then the frequency of	oscillation of its potential		
A. n	B. 2n	C. n/2	D. 4n		
36. If an electron osci A. X-rays C. Infra-red rays	llates at a frequency of 1	GHz, it gives : B. Micro-waves D. None of these			
37. Earth's atmosphere A. Ultra-violet rays	e is richest in B. Infra-red rays	C. X-rays	D. Micro-waves		
38. Cathode rays cons	ist of				
A. Photons	B. Electrons	C. Protons	D. α -particles		
39. A body of mass m_1 is moving with a velocity V. It collides with another stationary body of mass m_2 . They get embedded. At the point of collision, the velocity of the system A. increasesA. increasesB. decreases but does not become zero D. becomes zero					
1:2. The smaller part l	ving with velocity V in specomes stationary. Wha	t is the velocity of the ot	her part ?		
A. 4V	B. V	C. 4V/3	D. 2V/3		
41. A thief steals a bo experiences a weight	• • •	from the third floor of a b	ouilding. During jump, he		
A. W	B. 3W	C. 1.5W	D. zero		
42. Two electron beams are moving parallel in space but in opposite directions; thenA. they will attract each otherC. no interaction will take placeD. none of these					
43. Two wires with re 2R and R is	sistances R and 3R are co	onnected in parallel, the	ratio of heat generated in		
A. 1 : 3	B. 2 : 1	C. 1 : 4	D. 4 : 1		
44 A wire is drawn si	ich that its radius change	s from r to $2r$ the new r	esistance is		

44. A wire is drawn such that its radius changes from r to 2r, the new resistance is

A. 2 times	B. 4 times	C. 8 times			
45. In solids, inter-ator A. totally repulsive C. combination of (a) a		B. totally attractive D. none of these			
46. When horse starts running all of a sudden, the rider on the horse back falls backward becauseA. he is taken abackB. he is afraidC. due to inertia of rest, the upper part of his body remains at restD. due to inertia of motion, the lower part of his body comes in motion					
	e minimum velocity at th	-	tied to a string, so that		
the string just does not A. $\sqrt{(Rg)}$	slack ? B. $\sqrt{(5Rg)}$	C. $(R/g)^{3/2}$	D. $\sqrt{(2Rg)}$		
48. If a person standingA. increaseC. remain same	g on a rotating disc stretc	thes out his hands, the sp B. decrease D. none of these	eed will:		
49. EMF is most close	•				
A. mechanical force	B. potential difference	C. electric field	D. magnetic field		
50. Planetary system in the solar system describesA. conservation of energyB. conservation of linear momentumC. conservation of angular momentumD. none of these					
51. Lenz's law is based upon					
A. energy	B. momentum	C. angular momentum	D. inertia		
52. Faraday's second law states that mass deposited on the electrode is directly proportional to					
A. atomic mass	B. atomic mass x velocity	C. atomic mass/valency	y D. valency		

53. Unit of power isA. kilowatt hourB. kilowatt per hourC. kilowattD. erg54. Power can be expressed asA. F.vB. 1/2 (Fv²)C. F.tD. F x v55. Units of coefficient of viscosity areA. Nms⁻¹B. Nm² s⁻¹C. Nm⁻² sD. Nms⁻²

56. Dimensions of toro A. MLT ⁻²	que are B. ML^2T^{-2}	$C. M^2 L^2 T^{-2}$	D. ML ⁻² T ⁻²	
57. A body of weight <i>i</i> extending the string is	· · · ·	, which extends its lengt	h by <i>l</i> . The work done in	
A. mg l	B. mg l/2	C. 2 mg l	D. none of these	
58. The water droplets	in free fall are spherical	due to		
A. gravity	B. viscosity	C. surface tension	D. inter-molecular attraction	
	g is accelerating at a rate			
A. 1 Kg ms ⁻²	B. 2 Kg ms ⁻²	C. 3 Kg ms ^{-2}	D. 4 Kg ms ⁻²	
60. A body orbitting as orbit of a satellite. The	round earth at a mean rac period of the body is	lius which is two times a	s great as the parking	
A. 4 days	B. $2\sqrt{2}$ days	C. 16 days	D. 64 days	
61. Gamma rays areA. high energy electronsB. low energy electronsC. high energy electro-magnetic wavesD. high energy positrons				
	abundant metal in the ea			
A. Fe	B. Al	C. Ca	D. Na	
63. Which one does no	ot give a precipitate with	excess of NaOH?		
A. ZnSO ₄	B. FeSO ₄	C. AgNO ₃	D. HgCl ₂	
64. What volume of CO_2 will be liberated at NTP of 12 gm of carbon is burnt in excess of oxygen?				
A. 11.2 litres	B. 22.4 litres	C. 2.24 litres	D. 1.12 litres	
65. Which base is found only in nucleotides of RNA?A. AdenineB. UracilC. GuanineD. Cytosine				
66. Ascorbic acid is th A. Vitamin B ₆	e chemical name of B. Vitamin A	C. Vitamin C	D. Vitamin D	

67. A hydrocarbon has carbon and hydrogen. Its molecular weight is 28. Its possible formula would be

A. C_3H_6	B. C_2H_4	C. CH ₄	D. C ₄ H ₈	
68. The first Noble Pr A. Faraday	ize in chemistry was give B. Cnrizzaro	en to C. Mendeleevs	D. Moseley	
69. Four different coll action?	oids have the following g	gold number. Which one	has its most effective	
A. 10	B. 30	C. 20	D. 40	
70. Which is an examp A. Polythene	ple of thermosetting poly B. PVC	mer? C. Neoprene	D. Bakelite	
71. The number of un	paired electrons in ferrou	s ion is		
A. 3	B. 2	C. 4	D. 5	
72. Strongest reducing A. K	g agent is B. Mg	C. Al	D. Ba	
73. Which of the follo	wing is man-made eleme	ent?		
A. Ra	B.U	C. Np	D. C – 4	
74. Which of the following statements is/are correct? A. Boiling point of alkylhalide is greater than its corresponding alkane B. In water, solubility of $CH_3OH > C_2H_5OH >$ C_6H_5OH C. Aniline is a weaker base than NH_3 D. All of the above				
75. Which amine of th A. Ethylamine	e following will not answ B. Methylamine	wer Carbylamine reaction C. Dimethylamine	n? D. Phenylamine	
76. Tollen's reagent ca A. (CH ₃) ₂ – CHOH	In be used to detect B. $CH_3 - CO.CH_3$	C. CH ₃ CH ₂ CHO	D. CH ₃ OCH ₃	
77. Glycerol on heating with Potassium bisulphate yieldsA. AcetoneB. GlyceraldehydeC. AcroleinD. Propanol				
78. Salicylic acid on h A. Benzene	eating with sodalime giv B. Calcium salicylate		D. Phenol	
79. Which one of the b A. Ethanol	following will not give ic B. Ethanal	odoform test? C. 2-propanone	D. None of these	

80. The rusting of iron A. Fe	is catalysed by B. O ₂	C. Zn	$D. H^+$		
81. 100 ml of a liquid A was mixed with 25 ml of a liquid B to give non-ideal solution of A-B mixture. The volume of this mixture will be					
A. 75 ml C. fluctuating between	75 ml and 125 ml	B. 125 ml exact D. close to 125 ml but	not to exceed 125 ml		
82. IUPAC name of a A. 3, 3 - dimethyl - 1 - C. 1,1, 1 - dimethyl - 2	butene	B. 1, 1 - dimethyl - 3 -	mula $(CH_3)_3 C - CH = CH_2$ is B. 1, 1 - dimethyl - 3 - butene D. 3, 3, 3 - dimethyl - 1 - l propene		
83. Which of the follo	wing compounds will be	optically active?			
A. (OH ₃) ₂ – CHOH	B. CH ₃ - CH ₂ - CH ₂ - CH ₂ - CH ₃	C. CH ₃ – CHCl.COOH	I D. (CH ₃) ₃ .C.Cl		
84. The major compor A. Zn and Sn	ents of brass are B. Cu and Zn	C. Fe and Ni	D. Zn and Fe		
85. Lunar castic is A. Silver Chloride	B. Silver Nitrate	C. Sodium Hydroxide	D. Potassium Nitrate		
86. When hot iron is e	xposed in hot water vapo	our, the compound forme	d is		
A. FeO	B. Fe_2O_4	C. Fe_3O_4	D. Fe ₂ (OH) ₂		
87. Which of the follo	wing halide is not oxidis	ed by MnO ₂ ?			
A. F	B. Cl	C. Br	D. I ⁻		
88. The outermost elec A. ns ² np ³	e	he most electronegative of C. ns ² np ⁵	element is D. ns ² np ⁶		
89. Shape of CO_2 is					
A. tetrahedral	B. trigonal	C. bent	D. linear		
90. The catalyst used in the manufacture of H_2SO_4 by contact process isA. Al_2O_3 B. Cr_2O_3 C. V_2O_5 D. MnO_2					
91. The composition o	f the common glass is				
A. Na ₂ O.CaO.6SiO ₂	B. Na ₂ O.Al ₂ O ₃ .2SiO ₂	C. CaO.Al ₂ O ₃ .2SiO ₂	D. Na ₂ O.CaO.Al ₂ O ₃ .6SiO ₂		

92. In a borax lead tes A. Chromium	t, the brown colour is due B.Cobalt	e to C. Manganese	D. Iron		
93. Which of the follo	wing is not a fertiliser?				
A. Urea	B. Superphosphate of lime	C. Benzene Hexachloride	D. Potassium		
94. Which one of the Table?	following belongs to repr	resentative group of elen	nents in the Periodic		
A. Lanthanum	B. Argon	C. Chromium	D. Aluminium		
95. Which one of the	following is not an isotop	e of Hydrogen?			
A. Tritium	B. Deuterium	C. Ortho-hydrogen	D. None of the above		
A. its molecular weigh	96. In the reaction $I_2 + 2S_2O_3^2 = 2I + S_4O_6^2$, equivalent weight of iodine will be equal toA. its molecular weightB. 1/2 of its molecular weightC. 1/4 the molecular weightD. twice the molecular weight				
97. Which of the following is the most powerful oxidising agent?A. F_2 B. Cl_2 C. Br_2 D. I_2					
98. From the followin strongest acid?	g values of dissociating c	constants of four acids, v	which value represents the		
A. 2×10^{-2}	B. 0.02 x 10 ⁻¹	C. 3 x 10 ⁻³	D. 2.0 x 10 ⁴		
00. In which of the fel	llowing appaged door the re	nation as the fortheat fo	r completion?		
A. $K = 10^3$	llowing cases, does the re B. $K = 10^{-2}$	C. $K = 10$	D. $K = 1$		
100 The reaction whi	ch proceeds in the forwar	rd direction is			
A. $Fe_2O_3 + 6HCl \rightarrow 2$	1	B. $NH_3 + H_2O + NaCl$	\rightarrow NH ₄ Cl + NaOH		
C. SnCl ₄ + Hg ₂ Cl ₂ →	SnCl ₂ + 2HgCl ₂	D. $2CuI + I_2 + 4K^+ \rightarrow$	$2Cu^{2+} + 4KI$		
101. The substance ca	pable of being drawn into	o fine wire is called			
A. malleable	B. tensile	C. ductile	D. mild		
102. The idea that mo is given by	102. The idea that most of the mass of an atom is concentrated in a very small core, i.e., nucleus is given by				
A. Amedo Avogadro	B. Rutherford	C. Bohr	D. Henery Mosley		
103. Which of the foll A. $N_2H_5^+$	owing does contain a co- B. BaCl ₂	ordinate covalent bond? C. HCl	D. H ₂ O		

104. Which of the follo A. CCl ₄	owing contains both cova B. CaCl ₂	alent and ionic bonds? C. NH4Cl	D. H ₂ O		
	105. Keeping in view the periodic law and the periodic table, suggest which of the following elements should have the maximum electronegative character?				
A. Oxygen	B. Nitrogen	C. Fluorine	D. Astatine		
106. The electronic configuration of element atomic number 37 isA. $(2, 8) 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$ B. $(2, 8) 3s^2 3p^6 3d^{10} 4s^2 5s^6 4p^5$ C. $(2, 8) 3s^2 3p^6 4s^2 3d^9 5s^1 4p^5$ D. none of these					
-	solution of a weak acid i	s 3. What is the value of	ionisation constant for		
the acid? A. 0.1	B. 10 ⁻³	C. 10 ⁻⁵	D. 10 ⁻⁷		
108. Pure Aniline is a A. brown coloured liquid	B. colourless liquid	C. brown coloured solid	D. colourless solid		
109. Sulphide ores are A. roasting	generally concentrated b B. froth floatation	by C. reducing by carbon	D. tempering		
A. 6.02×10^{23} atoms o	110. One mole of CO_2 containsA. $6.02 \ge 10^{23}$ atoms of CB. $6.02 \ge 10^{23}$ atoms of OC. $18.1 \ge 10^{23}$ molecules of CO_2 D. 3 gm atom of CO_2				
111. The Avogadro Nu	umber or a mole represen	its			
A. 6.02×10^{23} ions	-	C. 6.02×10^{23} molecules	D. 6.02 x 10^{23} entities		
112. What is the weigh A. $6.0 \ge 10^{-23}$ gm	nt of one molecule of a m B. 6.02×10^{23} gm		hose atomic weight is 36? D. 36 x 10 ⁻²³ gm		
113. When α -particles because	s are set through a thin m	etal foil, most of them g	o straight through the foil		
A. α -particles are much heavier than electronsB. α -particles are positively chargedC. α -particles move with high velocityD. α -particles move with low velocity					
A. $Fe_2O_3 + 6HCl \rightarrow 2l$	114. The reaction, which proceeds in the forward direction, isA. $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$ B. $NH_3 + H_2O + NaCl \rightarrow NH_4Cl + NaOH$ C. $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$ D. $2CuI + I_2 + 4K \rightarrow 2Cu^+ + 4KI$				
5. 511014 11 <u>5</u> 2012 / 1			~~		

115. The first order constant for the decomposition of N_2O_5 is 6.2 x 10 ⁻⁴ sec ⁻¹ . The half-life period for this decomposition in second is			
A. 1117.7	B. 111.7	C. 223.4	D. 160.9
	mount of zinc is treated slumes of H_2 evolved is	separately with excess of	f H_2SO_4 and excess of
A. 1 : 1	B. 1 : 2	C. 2 : 1	D. 9 : 4
117. Calcium does no A. oxygen	t combine directly with B. nitrogen	C. hydrogen	D. carbon
118. Carbon differs frA. availability of d-orC. its tendency to cate	•	0 1	o-ordination number four o form multiple bonds
	h cold dil. NaOH to give B. NaI + NaIO + O ₂	C. NaI + NaIO + H ₂ O	D. NaI + NaIO ₃ + H ₂ O
120. The number of is A. 2	omers for the atomic cor B. 3	npound of the formula C C. 4	² ₇ H ₈ O is D. 5
 121. Which of the foll A. A column in the simplex table that contains all of the variables in the solution is called pivot or key column. B. A basic solution which is also in the feasible region is called a basic feasible solution. C. A surplus variable a variable subtracted from the left hand side of a greater than or 	ed is	r programming problem	?
equal to constraint to			

convert it into an

equality.

D. A slack variable is a variable added to the

left hand side of a less than or equal to constraint to convert it into an equality. 122. The equation of the circle whose diameter lies on 2x + 3y = 3 and 16x - y = 4 and which passes through (4, 6) is A. $x^2 + y^2 = 40$ B. $5(x^2 + y^2) - 4x - 8y = 200$ D. $5(x^2 + y^2) - 3x - 8y = 200$ C. $x^2 + y^2 - 4x - 8y = 200$ 123. Let n(A) = 4 and n(B) = 5. The number of all possible injections from A to B is B. 9 A. 120 C. 24 D. none 124. If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then A. c = bdB. b = cdC. d = bcD. none of the above 125. A square root of 3 + 4i is A. $\sqrt{3} + i$ B. 2 - i C. 2 + iD. none of the above 126. Which of the following is not applicable for a complex number? B. Division C. D. Subtraction Addition A. Inequality 127. | maximum amp (z) - minimum amp (z) | is equal to A. $\sin^{-1}(3/5) - \cos^{-1}(3/5)$ B. $\pi/2 + \cos^{-1}(3/5)$ D. $\cos^{-1}(3/5)$ C. π - 2 cos ⁻¹ (3/5) 128. If e, e' be the eccentricities of two conics S and S' and if $e^2 + e'^2 = 3$, then both S and S' can be A. hyperbolas C. parabolas D. none of the above B. ellipses 129. A stick of length 'I' rests against the floor and a wall of a room. If the stick begins to slide on the floor, then the locus of its middle point is A. an ellipse B. a parabola C. a circle D. a straight line 130. The eccentricity of the ellipse which meets the straight line x/y + y/2 = 1 on the axis of x and the straight line x/3 - y/5 = 1 on the axis of y and whose axes lie along the axes of coordinates is C. √6/7 A. 2√6/7 B. $3\sqrt{2}/7$ D. none of the above 131. A and B are positive acute angles satisfying the equations $3\cos^2 A + 2\cos^2 B = 4$ and $3\sin^2 B = 4$ A/sin B = $2 \cos B/\cos A$, then A + 2B is equal to A. $\pi/3$ B. $\pi/2$ C. $\pi/6$ D. $\pi/4$

132. At a point 15 metres away from the base of a 15 metres high house, the angle of elevation of the top is A. 90° B. 60° C. 30° D. 45° 133. If $tan(\pi \cos \theta) = cot(\pi \sin \theta)$, $0 < \theta < 3\pi/4$, then $sin(\theta + \pi/4)$ equals A. $1/\sqrt{2}$ **B**. 1/2 C. $1/(2\sqrt{2})$ D. $\sqrt{2}$ 134. In a triangle ABC, $\angle B = \pi/3$, $\angle B = \pi/4$, and D divides BC internally in the ratio1 : 3. Then $(\sin \angle BAD)/(\sin \angle CAD)$ equals A. $\sqrt{2/3}$ C. 1/√6 B. $1/\sqrt{3}$ D. 1/3 135. The straight line 5x + 4y = 0 passes through the point of intersection of the lines A. x + y - 2 = 0, 3x + 4y - 7 = 0B. x - y = 0, x + y = 0C. x + 2y - 10 = 0, 2x + y + 5 = 0D. none of the above 136. The number of common tangents of the circles $x^2 + y^2 - 2x - 1 = 0$ and $x^2 + y^2 - 2y - 7 = 0$ is **B**. 1 C. 3 D. 2 A. 4 137. If the product of the roots of the equation $\alpha x^2 + 6x + \alpha^2 + 1 = 0$ is -2, then α equals C. 2 A. -2 B. -1 D. 1 138. If the roots of $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ are same, then A. $a_1/a_2 = b_1/b_2 = c_1/c_2$ B. $a_1 = b_1 = c_1$, $a_2 = b_2 = c_2$ C. $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$ D. $c_1 = c_2$ 139. The roots of the equation $(3 - x)^4 + (2 - x)^4 = (5 - 2x)^4$ are A. two real and two imaginary B. all imaginary C. all real D. none of the above 140. The value $\sum_{n=1}^{10} (-1)^n$ is of C. 1 A. 10 **B**. 0 D. -1 141. If the 10th term of a G.P. is 9 and 4th term is 4, then its 7 th term is A. 9/4 B. 4/9 C. 6 D. 36 142. 1 - $1/2 + 1/3 - 1/4 + \dots$ to ∞ equals C. e⁻¹ A. $\log 2$ D. none of the above B. e $143.9/1! + 19/2! + 35/3! + 57/4! + 85/5! + \dots =$ A. 16e -5 B. 7e - 3 C. 12e - 5 D. none of the above

144. How many different arrangements can be made out of the letters in the expansion $A^2B^3C^4$, when written in full?

A. 9!/(2! + 3! + 4!) B. 9!/(2! 3! 4!) C. 2! + 3! + 4! (2! 3!) D. 2! 3! - 4!4!) D. 2! 3! - 4!

145. The number of straight lines that can be drawn out of 10 points of which 7 are collinear isA. 23B. 21C. 25D. 24

146. 1/n! + 1/[2! (n - 2)!] + 1/[4! (n - 4)!] + isA. $(2^{n-1}/n!$ B. $2^n/[(n + 1)!]$ C. $2^n/n!$ D. $2^{n-2}/[(n - 1)!]$

147. The term independent of x in $(x^2 - 1/x)^9$ isC. -1D. none of the above

148. The 9th term of an A.P. is 499 and 499th term is 9. The term which is equal to zero isA. 501thB. 502thC. 500thD. none of the above

149. If A
$$\begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}$$
, B = $\begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix}$ then $(A + B)^{-1}$

A. is a skew symmetric matrixB.C. does not existD.

B. $A^{-1} + B^{-1}$ D. none of the above

150. If AB = A and BA = B, then B^2 is equal to A. B B. A C. 1 D. 0

151. If the determinant $\begin{vmatrix} a & b & 2a\alpha + 3b \\ b & c & 2b\alpha + 3c \\ 2a\alpha + 3b & 2b\alpha + 3c & 0 \end{vmatrix} = 0$, then

A. a, b, c are in H.P. B. α is a root of $4ax^2 + 12bx + 9c = 0$ or a, b, c are in G.P. C. a, b, c are in G.P. only a, b, c are in A.P. 152. The value of K so that (x - 1)/-3 = (y - 2)/2K = (z - 3)/2 and (x - 1)/3K = (y - 1)/1 = (z - 6)/-55 may be perpendicular is given byA. -7/10B. -10/7C. -10D. 10/7

153. The equation of the plane containing the line

 $\vec{r} = \vec{i} + \vec{j} + \lambda (2\vec{i} + \vec{i} + 4\vec{k}) \vec{is}$ $\vec{r} = \vec{i} + \vec{j} + \lambda (2\vec{i} + \vec{i} + 4\vec{k}) \vec{is}$ $\vec{A} = \vec{r} \cdot (-\vec{i} - 2\vec{j} + \vec{k}) = 0$ $\vec{A} = \vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$ $\vec{C} = \vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 3$

D. none of the above

154. The mean of discrete observations y_1 , y_2 , y_n is given by

155. For a poisson distribution whose mean is λ , the standard deviation will be A. λ^2 B. $1/\lambda$ C. $\sqrt{\lambda}$ D. λ

156. If a, b, c, d are constants such that a and c are both negative and r is the correlation coefficient between x and y, then the correlation coefficient between (ax + b) and (cy + d) is equal to A. (a/c)rB. c/a C. - r D.r 157. A person draws a card from a pack of 52 playing cards, replaces it and shuffles the pack. He continues doing this until he draws a spade, the chance that he will fail in the first two draws is A. 1/16 B. 9/16 C. 9/64 D. 1/64 158. In tossing 10 coins, the probability of getting exactly 5 heads is A. 193/256 B. 9/128 C. 1/2 D. 63/256 159. Four tickets marked 00, 01, 10, 11 respectively are placed in a bag. A ticket is drawn at random five times, being replaced each time, the probability that the sum of the numbers on tickets thus drawn is 23, is A. 100/256 B. 231/256 C. 25/256 D. none of the above $\int \tan^2 x \, dx \text{ is equal to}$ 160.The value of B. 1 + $(\pi/4)$ C. 1 - $(\pi/4)$ D. none of the above A. $\pi/4$ 161. Let $f[x + (1/x)] = [x^2 + (1/x^2)](x \neq 0)$, then f(x) is equal to A. $x^2 - 1$ B. $x^2 - 2$ C. x^2 A. $x^2 - 1$ D. none of the above 162. Let $f(x) = [\tan(\pi/4 - x)]/\cot(2x)$, $x \neq \pi/4$. The value which should be assigned to f at $x = \pi/4$, so that it is continous everywhere is **B**. 1/2 C. 2 D. none of the above A. 1 163. If $f_1(x)$ and $f_2(x)$ are defined on domains D_1 and D_2 respectively, then domain of $f_1(x) + f_2(x)$ $f_2(x)$ is C. D₁ - D₂ A. $D_1 \cap D_2$ B. $D_1 \cup D_2$ D. D₂ - D₁ 164. The derivative of sin x^3 with respect to $\cos x^3$ is equal to B. - $\cot x^3$ D. $\tan x^3$ A. - $\tan x^3$ C. $\cot x^3$ 165. If y = f(x) is an odd differentiable function defined on (∞, ∞) such that f'(3) = -2, then f'(-3)equals A. 4 **B**. 2 C. -2 D. 0 166. The line (x/a) + (y/b) = 1 touches the curve $y = be^{-x/a}$ at the point C. (a, b/a) B. (a, a/b)A. (a, ba) D. none of the above

167. The least value of 'a' for which the equation $(4/\sin x) + [1/(1 - \sin x)] = a$ has at least one solution on the interval $(0, \pi/2)$ is **B**. 1 C. 9 A. 4 D. 8 168. The area bounded by the curve $y^2 = 8x$ and $x^2 = 8y$ is A. 32/7 B. 24/5 C. 72/3 D. 64/3 169. The integrating factor of the differential equation $[(dy/dx)(x \log x)] + y = 2 \log x$ is given by A. $\log(\log x)$ B. e^x C. log x D. x 170. If $y = \tan^{-1}[(\sin x + \cos x)/(\cos x - \sin x)]$, then dy/dx is equal to A. 1/2 B. 0 C. 1 D. none of the above 171. The length of tangent from (5, 1) to the circle $x^2 + y^2 + 6x - 4y - 3 = 0$ is B. 29 A. 81 C. 7 D. 21 172. The equation of the straight line which is perpendicular to y = x and passes through (3, 2) will be given by A. x - y = 5B. x + y = 5C. x + y = 1D. x - y = 1173. If the imaginary part of (2z + 1)/(iz + 1) is - 2, then the locus of the point representing z in the complex plane is A. a circle B. a straight line C. a parabola D. none of the above 174. The sum of 40 terms of an A.P. whose first term is 2 and common difference 4, will be A. 3200 B. 1600 C. 200 D. 2800 175. If a, b, c are in A.P., then a/bc, 1/c, 2/b are in D. none of the above A. A.P. B. G.P. C. H.P. 176. The term independent of x in $[x^2 + (1/x^2)]$ is A. 1 D. none of the above **B**. -1 C. 48 177. The equation of a line through (2, -3) parallel to y-axis is A. y = -3B. y = 2C. x = 2D. x = -3178. The value $\int_{-\infty}^{\infty} (ax^3 + bx + c) dx$ depends of on B. the value of c C. the value of a D. the value of a and b A. the value of b

179. The range of the f	$function f(x) = (1 + x^2)/x$	x^2 is equal to	
A. [0, 1]	B. [1, 0]	C. (1, ∞)	D. [2, ∞]

180. Two vectors are said to be equal if

A. their magnitudes are same

C. they meet at the same point

B. direction is same

D. they have magnitude and same sense of direction