
2007 CS: Computer Science and Engineering

Duration: Three Hours Maximum Marks: 150

Read the following instructions carefully.

- This question paper contains 85 objective type questions. Q.1 to Q.20 carry one mark each and Q.21 to Q.85 carry two marks each.
- 2. Attempt all the questions.
- 3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely.
- 4. Wrong answers will carry NEGATIVE marks. In Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. In Q.21 to Q.76, Q.78, Q.80, Q.82 and in Q.84, 0.5 mark will be deducted for each wrong answer. However, there is no negative marking in Q.77, Q.79, Q.81, Q.83 and in Q.85. More than one answer bubbled against a question will be taken as an incorrect response. Unattempted questions will not carry any marks.
- Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- Calculator is allowed in the examination hall.
- Charts, graph sheets or tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
- This question paper contains 24 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

- Q.1 Consider the following two statements about the function f(x) = |x|:
 - P. f(x) is continuous for all real values of x
 - Q. f(x) is differentiable for all real values of x Which of the following is TRUE?
 - (A) P is true and Q is false.
 - (B) P is false and Q is true.
 - (C) Both P and Q are true.
 - (D) Both P and Q are false.
- Let S be a set of n elements. The number of ordered pairs in the largest and the Q.2 smallest equivalence relations on S are
 - (A) n and n
- (B) n^2 and n (C) n^2 and 0 (D) n and 1
- Q.3 What is the maximum number of different Boolean functions involving n Boolean variables?
 - (A) n2
- (B) 2"
- (D) 2"
- Let G be the non-planar graph with the minimum possible number of edges. Then G 0.4 has
 - (A) 9 edges and 5 vertices
 - (B) 9 edges and 6 vertices
 - (C) 10 edges and 5 vertices
 - (D) 10 edges and 6 vertices
- Q.5 Consider the DAG with $V = \{1,2,3,4,5,6\}$, shown below.

Which of the following is NOT a topological ordering?

(A) 123456

(B) 132456

(C) 132465

- (D) 324165
- Which of the following problems is undecidable?
 - (A) Membership problem for CFGs.
 - (B) Ambiguity problem for CFGs.
 - (C) Finiteness problem for FSAs.
 - (D) Equivalence problem for FSAs.

Q.7	Which of the fol	lowing is TRUE?						
	(B) Every finite (C) The union of	t of a regular set is regular subset of a non-regular f two non-regular sets in n of finite sets is regular	set is regular. s not regular.					
Q.8	How many 3-to-8 line decoders with an enable input are needed to construct a 6- line decoder without using any other logic gates?							
	(A) 7	(B) 8	(C) 9	(D) 10				
Q.9		lowing Boolean function $(z, z) = \sum (1,3,4,6,9,11,12)$						
	(A) independent (B) independent (C) independent	of one variable. of two variables, of three variables. n all the variables.						
Q.10	words. The CPL		iress of a word in mair	s with a line size of 64 memory. The number				
	(A) 9, 6, 5	(B) 7, 7, 6	(C) 7, 5, 8	(D) 9, 5, 6				
Q.11	track. 512 bytes	d the number of bits re	bit serial manner in a s	and 256 sectors per sector. The capacity of ticular sector in the disk				
	(A) 256 Mbyte, (C) 512 Mbyte,		(B) 256 Mbyte, 28 (D) 64 Gbyte, 28					
Q.12		binary tree is the maximumber of nodes in a b		in any root to leaf rath.				
	(A) 2 ^h -1	(B) 2 ^{h-1} -1	(C) 2 ^{h+1} -1	(D) 2 ^{h+1}				
Q.13	The maximum is:	number of binary trees	that can be formed wit	h three unlabeled nodes				
	(A) 1	(B) 5	(C) 4	(D) 3				
Q.14	Which of the fo	llowing sorting algorit	hms has the lowest wo	rst-case complexity?				
	(A) Merge sort (C) Quick sort		(B) Bubble sort (D) Selection so	rt				

Q.15	Consider the following segment of C-co	de:				
	int j, n;					
	j = 1;					
	while (j <= n)					
	j = j*2;					
	The number of comparisons made in the	e execution of the loop for any $n > 0$ is:				
	(A) $\lceil \log_2 n \rceil + 1$ (B) n	(C) $\lceil \log_2 n \rceil$ (D) $\lfloor \log_2 n \rfloor + 1$				
Q.16	Group 1 contains some CPU scheduling applications, Match entries in Group 1 to	[10] [10] [20] [20] [20] [20] [20] [20] [20] [2				
	Group 1	Group 2				
	P. Gang Scheduling	1. Guaranteed Scheduling				
	Q. Rate Monotonic Scheduling	2. Real-time Scheduling				
	R. Fair Share Scheduling	3. Thread Scheduling				
	(A) P-3; Q-2; R-1	(B) P-1; Q-2; R-3				
	(C) P-2; Q-3; R-1	(D) P-1; Q-3; R-2				
Q.17	Consider the following statements about user level threads and kernel level threads. Which one of the following statements is FALSE?					
	(A) Context switch time is longer for ke (B) User level threads do not need any	ernel level threads than for user level thread				
	(C) Related kernel level threads can be	scheduled on different processors in a mult				
	processor system. (D) Blocking one kernel level thread bl	only all related threads				
	(D) Blocking the kernel level thread bl	ocks an related till caus.				
Q.18	Which one of the following is a top-do-	wn parser?				
	(A) Recursive descent parser.					
	(B) Operator precedence parser.					
	(C) An LR(k) parser.					
	(D) An LALR(k) parser.					
Q.19	In Ethernet when Manchester encoding	is used, the bit rate is:				
	(A) Half the baud rate.					
	(B) Twice the baud rate.					
	(C) Same as the baud rate.					
	(D) None of the above.					
Q.20	Which one of the following uses UDP	as the transport protocol?				
3	The state of the s	as the transport protocot/				

(C) DNS

(D) SMTP

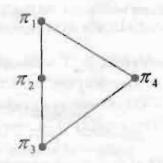
(B) Telnet

(A) HTTP

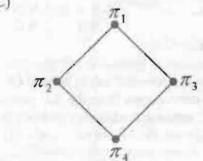
Q. 21 to Q. 75 carry two marks each.

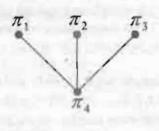
How many different non-isomorphic Abelian groups of order 4 are there?

Q.21


	(A) 2	(B) 3	(C) 4	(D) 5				
Q.22	Let $Graph(x)$ be a predicate which denotes that x is a graph. Let $Connected(x)$ be a predicate which denotes that x is connected. Which of the following first order logic sentences DOES NOT represent the statement: "Not every graph is connected"?							
	(A) $\neg \forall x (Grap)$	$h(x) \Rightarrow Connected(x)$))					
		$(x) \land \neg Connected(x))$	SPS III					
		$uph(x) \lor Connected(x)$						
	(D) ∀x (Graph($(x) \Rightarrow \neg Connected(x)$)))					
		CAPTER COMMISSION OF STREET						
Q.23	Which of the fo	llowing graphs has ar	Eulerian circuit?					
	(B) A complete	lar graph where k is a graph on 90 vertices, ment of a cycle on 25 above.		Aug.				
Q.24	Suppose we uniformly and randomly select a permutation from the 20! permutations of 1,2,3,,20. What is the probability that 2 appears at an earlier position than any other even number in the selected permutation?							
	(A) $\frac{1}{2}$							
	(B) $\frac{1}{10}$							
	(C) $\frac{9!}{20!}$							
	(D) None of the	e above.						
Q.25				ch of the following is an				
	eigenvalue of	$\begin{bmatrix} A & I \\ I & A \end{bmatrix}$, where I is th	e 4×4 identity matr	ix?				
	(A) -5	(B) -7	(C) 2	(D) 1				

Q.26 • Consider the set $S = \{a,b,c,d\}$. Consider the following 4 partitions π_1,π_2,π_3,π_4 on $S: \pi_1 = \{\overline{abcd}\}, \pi_2 = \{\overline{ab},\overline{cd}\}, \pi_3 = \{\overline{abc},\overline{d}\}, \pi_4 = \{\overline{a},\overline{b},\overline{c},\overline{d}\}$. Let \prec be the partial order on the set of partitions $S' = \{\pi_1,\pi_2,\pi_3,\pi_4\}$ defined as follows: $\pi_i \prec \pi_j$ if and only if π_i refines π_i . The poset digram for (S',\prec) is


(A)


(B)

(C)

(D)

- Q.27 Consider the set of (column) vectors defined by $X = \{x \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$, where $x^T = [x_1, x_2, x_3]^T$. Which of the following is TRUE?
 - (A) { $[1,-1,0]^T$, $[1,0,-1]^T$ } is a basis for the subspace X.
 - (B) {[1,-1,0]^T,[1,0,-1]^T} is a linearly independent set, but it does not span X and therefore is not a basis of X.
 - (C) X is not a subspace of R3.
 - (D) None of the above.
- Q.28 Consider the series $x_{n+1} = \frac{x_n}{2} + \frac{9}{8x_n}$, $x_0 = 0.5$ obtained from the Newton-Raphson method. The series converges to
 - (A) 1.5
- (B) $\sqrt{2}$
- (C) 1.6
- (D) 1.4
- Q.29 A minimum state deterministic finite automaton accepting the language $L = \{w | w \in \{0,1\}^*, \text{ number of 0s and 1s in } w \text{ are divisible by 3 and 5, respectively} \}$ has
 - (A) 15 states
- (B) 11 states
- (C) 10 states
- (D) 9 states

- Q.30 The language $L = \{0^i 21^i | i \ge 0\}$ over the alphabet $\{0, 1, 2\}$ is (A) not recursive. (B) is recursive and is a deterministic CFL. (C) is a regular language. (D) is not a deterministic CFL but a CFL. Which of the following languages is regular? 0.31 (A) $\left\{ww^{R} \middle| w \in \left\{0,1\right\}^{*}\right\}$ (B) $\{ww^R x | x, w \in \{0,1\}^+\}$ (C) $\{wxw^{R} | x, w \in \{0,1\}^{+}\}$ (D) $\{xww^R | x, w \in \{0,1\}^*\}$ Q.32 Let $f(w, x, y, z) = \sum (0, 4, 5, 7, 8, 9, 13, 15)$. Which of the following expressions are NOT equivalent to f? (P) x'y'z'+w'xy'+wy'z+xz(Q) w'y'z'+wx'y'+xz (R) w'y'z'+wx'y'+xyz+xy'z(S) x'y'z'+wx'y'+w'y (A) P only (B) Q and S (C) R and S (D) S only Define the connective * for the Boolean variables X and Y as: X * Y = XY + X'Y'. Q.33 Let Z = X * Y. Consider the following expressions P, Q and R. Q: Y = X * ZP: X = Y * ZWhich of the following is TRUE? (B) Only Q and R are valid. (A) Only P and Q are valid. (D) All P. Q. R are valid. (€) Only P and R are valid.
- Q.34 Suppose only one multiplexer and one inverter are allowed to be used to implement any Boolean function of n variables. What is the minimum size of the multiplexer needed?
 - (A) 2ⁿ line to 1 line

(B) 2ⁿ⁺¹ line to 1 line

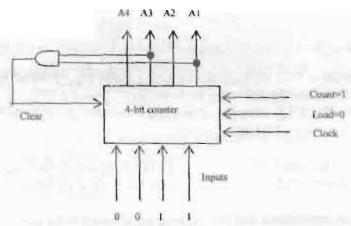
(C) 2ⁿ⁻¹ line to 1 line

(D) 2ⁿ⁻² line to 1 line

Q.35 In a look-ahead carry generator, the carry generate function G_i and the carry propagate function P_i for inputs A_i and B_i are given by:

$$P_i = A_i \oplus B_i$$
 and $G_i = A_i B_i$

The expressions for the sum bit S_i and the carry bit C_{i+1} of the look-ahead carry adder are given by:


$$S_i = P_i \oplus C_i$$
 and $C_{i+1} = G_i + P_i C_i$, where C_0 is the input carry.

Consider a two-level logic implementation of the look-ahead carry generator. Assume that all P_i and G_i are available for the carry generator circuit and that the AND and OR gates can have any number of inputs. The number of AND gates and OR gates needed to implement the look-ahead carry generator for a 4-bit adder with S₁, S₂, S₁, S₀ and C₄ as its outputs are respectively:

- (A) 6, 3
- (B) 10, 4
- (C) 6,4
- (D) 10,5
- Q.36 The control signal functions of a 4-bit binary counter are given below (where X is "don't care"):

Clear	Clock	Load	Count	Function
1	X	X	X	Clear to 0
0	X	0	0	No change
0	1	1	X	Load input
0	1	0	1	Count next

The counter is connected as follows:

Assume that the counter and gate delays are negligible. If the counter starts at 0, then it cycles through the following sequence:

(A) 0, 3, 4

(B) 0, 3, 4, 5

(C) 0, 1, 2, 3, 4

(D) 0, 1, 2, 3, 4, 5

Q.37 Consider a pipelined processor with the following four stages:

IF: Instruction Fetch

ID: Instruction Decode and Operand Fetch

EX: Execute

WB: Write Back

The IF, ID and WB stages take one clock cycle each to complete the operation. The number of clock cycles for the EX stage depends on the instruction. The ADD and SUB instructions need 1 clock cycle and the MUL instruction needs 3 clock cycles in the EX stage. Operand forwarding is used in the pipelined processor. What is the number of clock cycles taken to complete the following sequence of instructions?

ADD R2, R1, R0

R2 ← R1 + R0

MUL R4, R3, R2

R4 ← R3 * R2

SUB R6, R5, R4

R6 4- R5 - R4

(A) 7

(B) 8

(C) 10

(D) 14

Q.38 The following postfix expression with single digit operands is evaluated using a stack:

823 ^ / 23 * + 51 * -

Note that ^ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:

(A) 6,1

(B) 5,7

(C) 3,2

(D) 1.5

Q.39 The inorder and preorder traversal of a binary tree are

dbeafcg and abdecfg, respectively.

The postorder traversal of the binary tree is

(A) debfgca

(B) edbgfca

(C) edbfgca

(D) defgbca

Q.40 Consider a hash table of size seven, with starting index zero, and a hash function (3x+4) mod 7. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that - denotes an empty location in the table.

Q.41	In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity, by							
	(B) Warshall's als (C) performing a	orithm starting from S. gorithm. DFS starting from S. BFS starting from S.						
Q.42	if (n if (n (r re	nt n) : int r=0; <= 0) return 1; > 3) = n; :turn f(n-2)+2; : f(n-1)+r;						
	(A) 5	(B) 7	(C) 9	(D) 18				
Q.43	A complete n -ary tree is a tree in which each node has n children or no children. Let I be the number of internal nodes and L be the number of leaves in a complete n -ary tree. If $L=41$, and $I=10$, what is the value of n ?							
	(A) 3	(B) 4	(C) 5	(D) 6				
Q.44	int gcc { if(n n = : retu }	km == 0) return						
	(A) $\Theta(\log_2 n)$	(B) Ω(n)	(C) Θ(log ₂	$\log_2 n$ (D) $\Theta(\sqrt{n})$				
Q.45	int DoSomet if (n <= retur else							
	(AV OV. Tv.	(B) Of the ex	100 04	m 64-1	W.			
	(A) Θ(n²)	(B) $\Theta(n\log_2 n)$	(C) Θ(log ₂ n	 (D) Θ(log₂ log₂ n)			

Q.46 Consider the following C program segment where CellNode represents a node in a binary tree:

The value returned by GetValue when a pointer to the root of a binary tree is passed as its argument is:

- (A) the number of nodes in the tree.
- (B) the number of internal nodes in the tree.
- (C) the number of leaf nodes in the tree.
- (D) the height of the tree.
- Q.47 Consider the process of inserting an element into a Max Heap, where the Max Heap is represented by an array. Suppose we perform a binary search on the path from the new leaf to the root to find the position for the newly inserted element, the number of comparisons performed is:
 - (A) $\Theta(\log, n)$
 - (B) $\Theta(\log, \log, n)$
 - (C) Θ(n)
 - (D) $\Theta(n\log_2 n)$
- Q.48 Which of the following is TRUE about formulae in Conjunctive Normal Form?
 - (A) For any formula, there is a truth assignment for which at least half the clauses evaluate to true.
 - (B) For any formula, there is a truth assignment for which all the clauses evaluate to
 - (C) There is a formula such that for each truth assignment, at most one-fourth of the clauses evaluate to true.
 - (D) None of the above.

- Q.49 Let w be the minimum weight among all edge weights in an undirected connected graph. Let e be a specific edge of weight w. Which of the following is FALSE?
 - (A) There is a minimum spanning tree containing e.
 - (B) If e is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the same weight.
 - (C) Every minimum spanning tree has an edge of weight w.
 - (D) e is present in every minimum spanning tree.
- Q.50 An array of n numbers is given, where n is an even number. The maximum as well as the minimum of these n numbers needs to be determined. Which of the following is TRUE about the number of comparisons needed?
 - (A) At least 2n-c comparisons, for some constant c, are needed.
 - (B) At most 1.5n − 2 comparisons are needed.
 - (C) At least nlog₂ n comparisons are needed.
 - (D) None of the above.
- Q.51 Consider the following C code segment:

```
int IsPrime(n)
{
   int 1, n;
   for(i=2;i <= sqrt(n);i++)
        if(n%i == 0)
            (printf("Not Prime\n"); return 0;)
   return 1;</pre>
```

Let T(n) denote the number of times the for loop is executed by the program on input n. Which of the following is **TRUE**?

(A)
$$T(n) = O(\sqrt{n})$$
 and $T(n) = O(\sqrt{n})$

(B)
$$T(n) = O(\sqrt{n})$$
 and $T(n) = \Omega(1)$

(C)
$$T(n) = O(n)$$
 and $T(n) = \Omega(\sqrt{n})$

- (D) None of the above.
- Q.52 Consider the grammar with non-terminals $N = \{S, C, S_i\}$, terminals $T = \{a, b, i, t, e\}$, with S as the start symbol, and the following set of rules:

$$S \rightarrow iCtSS_1 \mid a$$

 $S_1 \rightarrow eS \mid \varepsilon$
 $C \rightarrow b$

The grammar is NOT LL(1) because:

- (A) it is left recursive.
- (B) it is right recursive.
- (C) it is ambiguous.
- (D) it is not context-free.

Q: Every regula	r set has a LR	(1) grammar						
Which of the fol	lowing is TRI	JE5						
			THE COUNTY OF THE PARTY OF THE					
In a simplified computer the instructions are: OP R _i ,R _i - Performs R _i OP R _i and stores the result in register R _i . OP m,R _i - Performs val OP R _i and stores the result in R _i , val denotes the								
MOV m,R _i - MOV R _i ,m - The computer ha	Moves the co Moves the co Moves the co as only two rep	mory location ntent of memoratent of regis	i m. ory location m t ter R _i to memor	o register R _i . y location m.				
$t_f = a$	$t_f = a + b$							
$t_3 = e$	- 12							
$t_4 = t_1$	경기 경소 계계							
Assume that all operands are initially in memory. The final value of the computation should be in memory. What is the minimum number of MOV instructions in the code generated for this basic block?								
(A) 2			(B) 3					
(C) 5			(D) 6					
An operating system uses Shortest Remaining Time first (SRT) process scheduling algorithm. Consider the arrival times and execution times for the following processes:								
	Process	Execution	Arrival					
			time					
			0					
			30					
	P4	15	45					
What is the tota	I waiting time	for process P.	2?					
(A) 5	(B) 15		(C) 40	(D) 55				
	Which of the foll (A) Both P and C (C) P is false and In a simplified of OP R _i , R _i - OP m, R _i - MOV m, R _i - MOV R _i , m- The computer hat following basic t _i = a t ₂ = c t ₃ = c t ₄ = t ₁ Assume that all should be in mergenerated for the (A) 2 (C) 5 An operating sy algorithm. Cons	Which of the following is TRU (A) Both P and Q are true. (C) P is false and Q is true. In a simplified computer the in OP R _j , R _i - Performs R _j O OP m, R _i - Performs val content of me MOV m, R _i - Moves the computer has only two restollowing basic block: t _i = a + b t ₂ = c + d t ₃ = c - t ₂ t ₄ = t ₁ - t ₃ Assume that all operands are inshould be in memory. What is generated for this basic block? (A) 2 (C) 5 An operating system uses Should process PI P2 P3 P4 What is the total waiting time	(C) P is false and Q is true. In a simplified computer the instructions are OP R _i , R _i - Performs R _i OP R _i and store OP m, R _i - Performs val OP R _i and store content of memory location MOV m, R _i - Moves the content of memory MOV R _i , m - Moves the content of regist The computer has only two registers, and Olf following basic block: t _i = a + b t ₂ = c + d t ₃ = c - t ₂ t ₄ = t ₁ - t ₃ Assume that all operands are initially in mer should be in memory. What is the minimum generated for this basic block? (A) 2 (C) 5 An operating system uses Shortest Remaining algorithm. Consider the arrival times and experimental times and experimental times. Process Execution time Process Execution time P1 20 P2 25 P3 10 P4 15 What is the total waiting time for process P.	Which of the following is TRUE? (A) Both P and Q are true. (C) P is false and Q is true. (D) Both P and In a simplified computer the instructions are: OP R _j , R _i - Performs R _j OP R _i and stores the result in OP m, R _i - Performs val OP R _i and stores the result in content of memory location m. MOV m, R _i - Moves the content of memory location m to MOV R _i , m - Moves the content of register R _i to memory. The computer has only two registers, and OP is either ADD following basic block: t _i = a + b t ₂ = c + d t ₃ = c - t ₂ t ₄ = t ₁ - t ₃ Assume that all operands are initially in memory. The final should be in memory. What is the minimum number of MO generated for this basic block? (A) 2 (B) 3 (C) 5 (D) 6 An operating system uses Shortest Remaining Time first (S algorithm. Consider the arrival times and execution times for Process Execution Arrival time time P1 20 0 P2 25 15 P3 10 30 P4 15 45 What is the total waiting time for process P2?				

Q.53

Consider the following two statements:

P: Every regular grammar is LL(1)

- Q.56 A virtual memory system uses First In First Out (FIFO) page replacement policy and allocates a fixed number of frames to a process. Consider the following statements:
 - P: Increasing the number of page frames allocated to a process sometimes increases the page fault rate.
 - Q. Some programs do not exhibit locality of reference.

Which one of the following is TRUE?

- (A) Both P and Q are true, and Q is the reason for P.
- (B) Both P and Q are true, but Q is not the reason for P.
- (C) P is false, but Q is true.
- (D) Both P and Q are false.
- Q.57 A single processor system has three resource types X, Y, and Z, which are shared by three processes. There are 5 units of each resource type. Consider the following scenario, where the column alloc denotes the number of units of each resource type allocated to each process, and the column request denotes the number of units of each resource type requested by a process in order to complete execution. Which of these processes will finish LAST?

	alloc	request
	XYZ	XYZ
P0	121	103
P1	201	012
P2	221	120

- (A) P0
- (B) PI
- (C) P2
- (D) None of the above, since the system is in a deadlock.
- Q.58 Two processes, P1 and P2, need to access a critical section of code. Consider the following synchronization construct used by the processes:

```
/* Pl */
while (true) (
   wantsl = true;
   while (wants2==true);
   /* Critical
       Section */
   wantsI=false;
}
/* Remainder section */
```

```
/* P2 */
while (true) (
   wants2 = true;
   while (wants1==true);
   /* Critical
        Section */
   wants2=false;
}
/* Remainder section */
```

Here, wants1 and wants2 are shared variables, which are initialized to false. Which one of the following statements is TRUE about the above construct?

- (A) It does not ensure mutual exclusion.
- (B) It does not ensure bounded waiting.
- (C) It requires that processes enter the critical section in strict alternation.
- (D) It does not prevent deadlocks, but ensures mutual exclusion.

Q.59 Information about a collection of students is given by the relation studInfo(studId, name, sex). The relation enroll(studId, courseId) gives which student has enrolled for (or taken) what course(s). Assume that every course is taken by at least one male and at least one female student. What does the following relational algebra expression represent?

 $\Pi_{courseld} ((\Pi_{studid}(\sigma_{sux} - \tau_{counter}(studInfo)) \times \Pi_{courseld}(enroll)) - enroll)$

- (A) Courses in which all the female students are enrolled.
- (B) Courses in which a proper subset of female students are enrolled.
- (C) Courses in which only male students are enrolled.
- (D) None of the above.
- Q.60 Consider the relation employee(name, sex, supervisorName) with name as the key. supervisorName gives the name of the supervisor of the employee under consideration. What does the following Tuple Relational Calculus query produce?

 $\{e.name \mid employee(e) \land (\forall x)[\neg employee(x) \lor x.supervisorName \neq e.name \lor x.sex = "male"] \}$

- (A) Names of employees with a male supervisor.
- (B) Names of employees with no immediate male subordinates.
- (C) Names of employees with no immediate female subordinates.
- (D) Names of employees with a female supervisor.
- Q.61 Consider the table employee(empld, name, department, salary) and the two queries Q₁, Q₂ below. Assuming that department 5 has more than one employee, and we want to find the employees who get higher salary than anyone in the department 5, which one of the statements is TRUE for any arbitrary employee table?
 - Q₁: Select e.empld

From employee e

Where not exists

(Select * From employee's Where s.department = "5" and s.salary >= e.salary)

Q2: Select e.empld

From employee e

Where e.salary > Any

(Select distinct salary From employee's Where s.department = "5")

- (A) Q₁ is the correct query.
- (B) Q₂ is the correct query.
- (C) Both Q1 and Q2 produce the same answer.
- (D) Neither Q1 nor Q2 is the correct query.
- Q.62 Which one of the following statements is FALSE?
 - (A) Any relation with two attributes is in BCNF.
 - (B) A relation in which every key has only one attribute is in 2NF.
 - (C) A prime attribute can be transitively dependent on a key in a 3NF relation.
 - (D) A prime attribute can be transitively dependent on a key in a BCNF relation.

Q.63	The order of a leaf node in a B*-tree is the maximum number of (value, data record pointer) pairs it can hold. Given that the block size is 1K bytes, data record pointer is 7 bytes long, the value field is 9 bytes long and a block pointer is 6 bytes long, what is the order of the leaf node?							
	(A) 63		(B) 64		(C) 67		(D) 68	
Q.64			ving schedules is TRUE? S ₁ : r ₁ (X); r ₁ (Y S ₂ : r ₁ (X); r ₂ (X); r ₂ (X); r ₂ (Y); w ₂ (Y); w _i (X)	one of the
	(B) S ₁ is a (C) S ₁ is a	conflict ser	re conflict seria ializable and S ₂ serializable and tre not conflict s	is not d S ₂ is	conflict serial conflict serial			
Q.65	There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each time slot. What is the probability that ONLY one station transmits in a given time slot?							
	(A) np(I	- p)*-1	(B) $(I - p)^{n-1}$		(C) p(1-p)*·· t	(D) 1-	$(1-p)^{n-1}$
Q.66	In a token ring network the transmission speed is 10 ⁷ bps and the propagation speed is 200 metres/µs. The 1-bit delay in this network is equivalent to:							
	(B) 200 n	netres of ca netres of ca	ible.					
		etres of cal						
Q.67			ss B host is to b m number of su	No. of the Park of				
	(B) 64 su (C) 62 su	bnets and i bnets and	262142 hosts. 262142 hosts. 1022 hosts.					
			1024 hosts.					
Q.68	The message I100100I is to be transmitted using the CRC polynomial $x^3 + 1$ to protect it from errors. The message that should be transmitted is:							
	(A) 1100	1001000	(B) 1100100	1101	(C) 110010	010	(D) 11	1100100100

Q.69 The distance between two stations M and N is L kilometres. All frames are K bits long. The propagation delay per kilometre is t seconds. Let R bits/second be the channel capacity. Assuming that processing delay is negligible, the minimum number of bits for the sequence number field in a frame for maximum utilization, when the sliding window protocol is used, is:

$$(A) \left[\log_2 \frac{2LtR + 2K}{K} \right]$$

(B)
$$\left[\log_2 \frac{2LtR}{K}\right]$$

(C)
$$\left[\log_2 \frac{2LtR + K}{K}\right]$$

(D)
$$\log_2 \frac{2LiR + K}{2K}$$

- Q.70 Match the following:
 - P. SMTP
 - Q. BGP
 - R. TCP
 - S. PPP

- Application layer
- 2. Transport layer
- 3. Data link layer
- 4. Network layer
- 5. Physical layer

- (A) P-2, Q-1, R-3, S-5
- (B) P-1, Q-4, R-2, S-3
- (C) P-1, Q-4, R-2, S-5
- (D) P-2, Q-4, R-1, S-3

Common Data Questions

Common Data for Questions 71,72,73:

Consider the following program segment. Here R1, R2 and R3 are the general purpose registers.

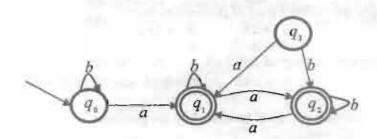
	Instruction		Operation	Instruction size (no. of words)	
	MOV	R1, (3000)	R1 ← M[3000]	2	
LOOP:	MOV	R2, (R3)	$R2 \leftarrow M[R3]$	1	
	ADD	R2, R1	R2 ← R1 + R2	1	
	MOV	(R3), R2	$M[R3] \leftarrow R2$	1	
	INC	R3	R3 ← R3 + 1	1	
	DEC	RI	$RI \leftarrow RI - I$	1	
	BNZ	LOOP	Branch on not zero	2	
	HALT		Stop		

Assume that the content of memory location 3000 is 10 and the content of the register R3 is 2000. The content of each of the memory locations from 2000 to 2010 is 100. The program is loaded from the memory location 1000. All the numbers are in decimal.

Q.71 Assume that the memory is word addressable. The number of memory references for accessing the data in executing the program completely is

(A) 10 (B) 11 (C) 20 (D) 21

Q.72 Assume that the memory is word addressable. After the execution of this program, the content of memory location 2010 is


(A) 100 (B) 101 (C) 102 (D) 110

Q.73 Assume that the memory is byte addressable and the word size is 32 bits. If an interrupt occurs during the execution of the instruction "INC R3", what return address will be pushed on to the stack?

(A) 1005 (B) 1020 (C) 1024 (D) 1040

Common Data for Questions 74, 75:

Consider the following Finite State Automaton:

- Q.74 The language accepted by this automaton is given by the regular expression
 - (A) b ab ab ab
- (B) (a+b) (C) $b^*a(a+b)$ (D) $b^*ab^*ab^*$
- Q.75 The minimum state automaton equivalent to the above FSA has the following number of states
 - (A) 1

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 & 77:

Suppose the letters a,b,c,d,e,f have probabilities $\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{32}$, respectively.

- Q.76 Which of the following is the Huffman code for the letters a, b, c, d, e, f?
 - (A) 0,10,110,1110,11110,11111
 - (B) 11,10,011,010,001,000
 - (C) 11,10,01,001,0001,0000
 - (D) 110,100,010,000,001,111
- What is the average length of the correct answer to Q.76? Q.77

Statement for Linked Answer Questions 78 & 79:

Sasth	e start symbol and	the following set of p					
		$S \rightarrow aB$					
		$B \rightarrow b$	$A \rightarrow a$				
		$B \rightarrow bS$	$A \rightarrow aS$				
		$B \rightarrow aBB$	$A \rightarrow bAA$				
Q.78	Which of the fol	lowing strings is gener	rated by the grammar				
11		and an agent	and Branning.				
	(A) aaaabb	(B) aabbbb	(C) aabbab	(D) abbbba			
Q.79	For the correct a	nswer string to Q.78, I	now many derivation	trees are there?			
	(A) 1	(B) 2	(C) 3	(D) 4			
States	ment for Linked A	Answer Questions 80	& 81:				
mapp two-d 11001	ed data cache consi imensional array o I. Assume that the	sting of 32 lines of 64 f bytes is stored in the data cache is initially	bytes each is used in main memory starting empty. The complete	the system. A 50 × 50 g from memory location array is accessed twice.			
Assur	ne that the content	s of the data cache do	not change in betweer	the two accesses.			
Q.80	How many data	cache misses will occi	ur in total?				
	(A) 48	(B) 50	(C) 56	(D) 59			
Q.81	Which of the following lines of the data cache will be replaced by new blocks in accessing the array for the second time?						
	(A) line 4 to line	11	(B) line 4 to lin	a.12			
	(C) line 0 to line		(D) line 0 to line 8				
State	ment for Linked	Answer Questions 82	& 83;				
availa	able in the memory ences (reference str	initially. The process ing): 1, 2, 1, 3, 7, 4, 5, replacement policy is	makes the following 6, 3, 1	e pages of the process are sequence of page faults occur for the above			
	(A) 7	(B) 8	(C) 9	(D) 10			
Q.83	optimal page re		eve reference string, h	ractical approximation to ow many more page faults licy?			

(C) 2

(D) 3

(B) I

(A) 0

Statement for Linked Answer Questions 84 & 85:

Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at (i, j) then it can move to either (i+1, j) or (i, j+1).

- Q.84 How many distinct paths are there for the robot to reach the point (10,10) starting from the initial position (0,0)?
 - (A) $\begin{pmatrix} 20 \\ 10 \end{pmatrix}$
 - (B) 220
 - (C) 210
 - (D)None of the above
- Q.85 Suppose that the robot is not allowed to traverse the line segment from (4,4) to (5,4). With this constraint, how many distinct paths are there for the robot to reach (10,10) starting from (0,0)?
 - (A)29
 - (B) 219
 - $(C)\binom{8}{4} \times \binom{11}{1}$
 - $(D)^{\binom{20}{10}} \binom{8}{4} \times \binom{11}{3}$

END OF THE QUESTION PAPER