AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation,

Deemed to be University, Salem, Tamil Nadu, India) (AICTE APPROVED AND NAAC ACCREDITED)

Faculty of Engineering and Technology

REGULATIONS 2017

DEPARTMENT OF BIOTECHNOLOGY

Programme:

B.Tech. BIOTECHNOLOGY

Full Time (4 Years) STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS) CURRICULUM AND SYLLABUS (Semester I to VIII)

PROGRAM OUTCOMES (POs) OR GRADUATE ATTRIBUTES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of problems in the area of Biotechnology.
- Problem analysis: Identify, formulate, review research literature, and analyze complex biotechnology- oriented problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex bio-based problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations in the area of biotechnology.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice.
- 7. **Environment and sustainability**: Understand the impact of the professional biotechnological solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the technology practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the technology audience and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

(B) PROGRAM SPECIFIC OUTCOMES (PSOs)

Upon successful completion of the course the students are expected to:

PSO1: To identify, formulate, design, analyse and develop processes and technologies for biotechnological products for societal usage and economically sustainable for the present and future.**PSO2:** To assess the human health and environmental issues and provide relevant professional mitigation measures and implementation of biotechnological tools.

PSO3: To function in a multi-disciplinary team and understand the professional ethics and responsibilities and equip themselves for higher learning for addressing technological challenges.

(C) PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To provide the biotechnology graduates to have expertise in biotechnological aspects which will enable them to have a career and professional achievements in public and private sector

PEO2: Address the nuances of biotechnology in real life on application of microorganisms in industrial production of enzymes and products, downstream processing, genetic engineering, tissue culture and applications.

PEO3: Identify, design and develop biotechnological process and technologies to meet the industrial challenges and produce tools which a sound and economically viable and sustainable.

SI. No.	Category of Courses	Credits
	A. Foundation Courses (FC)	54 - 63
	i. Humanities and Sciences (English and Management Subjects)	12 – 21
01	ii. Basic Sciences (Maths, Physics and Chemistry Subjects)	24 - 33
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen programme of study.	81
	C. Elective Courses (EC)	18 - 27
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
	ii. Internship / Industry Supported Courses	9
05	E. Employability Enhancement Courses +	9 - 18
05	Co - Curricular Courses + Extra Curricular Courses (EEC)**	
	Minimum Credits to be earned	180

Credit Structure of Course Category

CURRICULUM B.TECH.-BIOTECHNOLOGY - SEMESTER I TO VIII

		B.TECH. – BIOTEC	CHNOLOGY -	SEMESTE	RI	го у	III		
	CATEGORY	A – FOUNDATION COUR	SES - HSS, BS A	ND ES COUR	SES -	CR	EDIT	'S (54	-63)
	(i) HUM	ANITIES AND SCIENCES (ENGL	ISH AND MANAGE	MENT SUBJECT	S) - C	REDIT	S (12 -	21)	
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL
2.	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HS)	3	0	0	3	NIL
3.	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HS)	3	0	0	3	NIL
4.	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HS)	0	0	4	2	NIL
5.	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC (HS)	0	0	4	2	NIL
6.	17EGHS82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT	ENGLISH	FC (HS)	0	0	2	1	NIL
	(ii) BASIC SCIENCES (MATHS, PH	IYSICS AND CHEM	ISTRY SUBJEC	ГS) - С	REDI	ГS (24	- 33)	
1.	17MABS03	MATHEMATICS FOR BIO- ENGINEERING	MATHS	FC (BS)	2	2	0	3	NIL
2.	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL
3.	17MABS07	BIOSTATISTICS	MATHS	FC (BS)	2	2	0	3	MATHEMATICS FOR BIO- ENGINEERING
4.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL
5.	17CHBS03	BIOORGANIC CHEMISTRY	CHEMISTRY	FC (BS)	3	0	0	3	NIL
6.	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEEIRNG	CHEMISTRY	FC (BS)	3	0	0	3	NIL
7.	17PHBS02	NANOTECHNOLOGY	PHYSICS	FC (BS)	3	0	0	3	NIL
8.	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL
9.	17CHBS81	BIOORGANIC CHEMISTRY LAB	CHEMISTRY	FC (BS)	0	0	4	2	NIL
	1	(iii) ENGINEERING SCIENCES	(BASIC ENGINEER	RING COURSES)	- CRI	DITS	(18 - 2'	7)	1
1.	17BTES04	FUNDAMENTALS OF BIOTECHNOLOGY	BTE	FC (ES)	3	0	0	3	NIL
2.	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC (ES)	3	0	0	3	NIL
3.	17CSES06	PROGRAMMING IN C	CSE	FC (ES)	3	0	0	3	NIL
4.	17BMES01	BIOSENSORS & MEASUREMENT DEVICES	BME	FC (ES)	3	0	0	3	NIL
5.	17BMES02	MEDICAL INSTRUMENTATION	BME	FC (ES)	3	0	0	3	NIL
6.	17CSES85	PROGRAMMING IN C LAB	CSE	FC (ES)	0	0	4	2	NIL
7.	17BMES81	BIOSENSORS & MEASUREMENT DEVICES LAB	BME	FC (ES)	0	0	4	2	NIL
8.	17BMES82	MEDICAL INSTRUMENTATION LAB	BME	FC (ES)	0	0	4	2	NIL

CATEGORY B – CORE COURSES RELEVANT TO THE PROGRAMME - CREDITS (81)

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17BTCC01	ESSENTIALS OF BIOCHEMISTRY	BTE	CC	3	0	0	3	NIL
2.	17BTCC02	CELL BIOLOGY	BTE	CC	3	0	0	3	NIL
3.	17BTCC03	MICROBIOLOGY	BTE	CC	3	0	0	3	NIL
4.	17BTCC04	CLASSICAL AND MOLECULAR GENETICS	BTE	CC	3	0	0	3	NIL
5.	17BTCC05	UNIT OPERATIONS IN PROCESS INDUSTRIES	BTE	CC	3	0	0	3	NIL
6.	17BTCC06	ADVANCED BIOCHEMISTRY	BTE	CC	3	0	0	3	ESSENTIALS OF BIOCHEMISTRY
7.	17BTCC07	ENZYME ENGINEERING AND TECHNOLOGY	BTE	CC	3	0	0	3	NIL
8.	17BTCC08	BIOINSTRUMENTATION	BTE	CC	3	0	0	3	NIL
9.	17BTCC09	MOLECULAR BIOLOGY	BTE	CC	3	0	0	3	CLASSICAL AND MOLECULAR GENETICS
10.	17BTCC10	PRINCIPLES OF CHEMICAL ENGINEERING	BTE	СС	3	0	0	3	UNIT OPERATIONS IN PROCESS INDUSTRIES
11.	17BTCC11	PLANT AND ANIMAL BIOTECHNOLOGY	BTE	СС	3	0	0	3	NIL
12.	17BTCC12	GENETIC ENGINEERING	BTE	CC	3	0	0	3	MOLECULAR BIOLOGY
13.	17BTCC13	THERMODYNAMICS FOR BIOTECHNOLOGY	BTE	CC	4	0	0	4	PRINCIPLES OF CHEMICAL ENGINEERING
14.	17BTCC14	IMMUNOLOGY	BTE	CC	3	0	0	3	NIL
15.	17BTCC15	FOOD PROCESSING TECHNOLOGY	BTE	CC	3	0	0	3	NIL
16.	17BTCC16	BIOPROCESS ENGINEERING	BTE	CC	3	0	0	3	ENZYME ENGINEERING AND TECHNOLOGY
17.	17BTCC17	DOWNSTREAM PROCESSING IN BIOTECHNOLOGY	BTE	CC	4	0	0	4	BIOPROCESS ENGINEERING
18.	17BTCC18	MASS TRANSFER OPERATIONS	BTE	CC	4	0	0	4	THERMODYNAMI CS FOR BIOTECHNOLOGY
19.	17BTCC81	BIOCHEMISTRY LAB	BTE	CC	0	0	4	2	NIL
20.	17BTCC82	CELL BIOLOGY LAB	BTE	CC	0	0	4	2	NIL
21.	17BTCC83	MICROBIOLOGY LAB	BTE	CC	0	0	4	2	NIL
22.	17BTCC84	ADVANCED BIOCHEMISTRY LAB	BTE	CC	0	0	4	2	NIL
23.	17BTCC85	MOLECULAR BIOLOGY LAB	BTE	CC	0	0	4	2	NIL
24.	17BTCC86	CHEMICAL ENGINEERING LAB	BTE	CC	0	0	4	2	NIL
25.	17BTCC87	BIOINSTRUMENTATION LAB	BTE	CC	0	0	4	2	NIL
26.	17BTCC88	GENETIC ENGINEERING LAB	BTE	CC	0	0	4	2	NIL
27.	17BTCC89	IMMUNOLOGY LAB	BTE	CC	0	0	4	2	NIL
28.	17BTCC90	FOOD PROCESSING TECHNOLOGY LAB	BTE	CC	0	0	4	2	NIL
29.	17BTCC91	BIOPROCESS ENGINEERING LAB	BTE	СС	0	0	4	2	NIL
30.	17BTCC92	DOWNSTREAM PROCESSING ENGINEERING LAB	BTE	СС	0	0	4	2	NIL
31.	17BTCC93	BIOINFORMATICS LAB	BTE	CC	0	0	4	2	NIL

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

SL.	CODE	COURSE	OFFERING	CATEGORY	L	Т	Р	С	PREREQUISITE
NO 1.	17BTEC01	PLANT AND ANIMAL DISEASES AND THEIR	DEPT. BTE	EC (PS)	3	0	0	3	MICROBIOLOGY
2.	17BTEC02	CONTROL OCEAN SCIENCE	BTE	EC (PS)	3	0	0	3	NIL
3.	17BTEC03	PRINCIPLES OF BIOINFORMATICS	BTE	EC (PS)	3	0	0	3	NIL
4.	17BTEC04	DIAGNOSTICS AND THERAPEUTICS	BTE	EC (PS)	3	0	0	3	MICROBIOLOGY
5.	17BTEC05	CYTOGENETICS	BTE	EC (PS)	3	0	0	3	NIL
6.	17BTEC06	STEM CELL BIOLOGY AND TISSUE ENGINEERING	BTE	EC (PS)	3	0	0	3	NIL
7.	17BTEC07	GENETICALLY MODIFIED ORGANISMS AND ETHICAL ISSUES	BTE	EC (PS)	3	0	0	3	GENETIC ENGINEERING
8.	17BTEC08	MOLECULAR EVOLUTION	BTE	EC (PS)	3	0	0	3	MOLECULAR BIOLOGY
9.	17BTEC09	MICROBIAL BIOTECHNOLOGY	BTE	EC (PS)	3	0	0	3	MICROBIOLOGY
10.	17BTEC10	CRYOPRESERVATION THEORY AND APPLICATIONS	BTE	EC (PS)	3	0	0	3	NIL
11.	17BTEC11	PROTEIN ENGINEERING	BTE	EC (PS)	3	0	0	3	NIL
12.	17BTEC12	NEUROBIOLOGY AND COGNITIVE SCIENCES	BTE	EC (PS)	3	0	0	3	NIL
13.	17BTEC13	FOOD MICROBIOLOGY	BTE	EC (PS)	3	0	0	3	NIL
14.	17BTEC14	ENDOCRINOLOGY	BTE	EC (PS)	3	0	0	3	NIL
15.	17BTEC15	BIOREMEDIATION TECHNOLOGY	BTE	EC (PS)	3	0	0	3	NIL
16.	17BTEC16	CANCER BIOLOGY	BTE	EC (PS)	3	0	0	3	MOLECULAR BIOLOGY
17.	17BTEC17	APPLIED BIOTECHNOLOGY	BTE	EC (PS)	3	0	0	3	PLANT AND ANIMAL BIOTECHNOLOGY
18.	17BTEC18	METABOLIC ENGINEERING	BTE	EC (PS)	3	0	0	3	ADVANCED BIOCHEMISTRY
19.	17BTEC19	CLINICAL TRIALS	BTE	EC (PS)	3	0	0	3	NIL
20.	17BTEC20	AGRICULTURAL BIOTECHNOLOGY	BTE	EC (PS)	3	0	0	3	NIL
21.	17BTEC21	GENOMICS AND PROTEOMICS	BTE	EC (PS)	3	0	0	3	GENETIC ENGINEERING
22.	17BTEC22	MOLECULAR MODELLING AND DRUG DESIGNING	BTE	EC (PS)	3	0	0	3	PRINCIPLES OF BIOINFORMATICS
23.	17BTEC23	NANOBIOTECHNOLOGY	BTE	EC (PS)	3	0	0	3	NIL
24.	17BTEC24	BIOFERTILIZER TECHNOLOGY	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
25.	17BTEC25	BIOLOGY FOR NON BIOLOGISTS	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
26.	17BTEC26	ECO-FRIENDLY MULTI- STOREY BUILDING	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
27.	17BTEC27	RENEWABLE ENERGY AND CONSTRUCTION METHODS	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
28.	17BTEC28	ENVIRONMENT FRIENDLY PRACTICES IN CIVIL ENGINEERING	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
29.	17BTEC29	GREEN BUILDING AND SUSTAINABLE ENVIRONMENT	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
30.	17BTEC30	NATURAL RESOURCES	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS

		MANAGEMENT							
31.	17BTEC31	APPLICATIONS OF ENZYME IN WASTE MANAGEMENT	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS
32.	17BTEC32	BIOLOGICAL DATABASE	BTE	EC (PS)	3	0	0	3	NOT FOR BTE STUDENTS

(ii) C	PEN ELECTI	VE (CLASS ROOM OR ON	LINE) - CREI	DITS (6 - 9)					
1.	17CSCC02	OBJECT ORIENTED PROGRAMMING	CSE	EC (OE)	3	0	0	3	NIL
2.	17CSCC07	OPERATING SYSTEM	CSE	EC (OE)	3	0	0	3	NIL
3.	17CSCC09	JAVA PROGRAMMING	CSE	EC (OE)	3	0	0	3	NIL
4.	17CSCC16	CLOUD COMPUTING	CSE	EC (OE)	3	0	0	3	NIL
5.	17CSCC17	CYBERSECURITY	CSE	EC (OE)	3	0	0	3	NIL
6.	17CSEC30	UNIX INTERNALS	CSE	EC (OE)	3	0	0	3	NIL
7.	17CSEC34	WEB DESIGN AND MANAGEMENT	CSE	EC (OE)	3	0	0	3	NIL
8.	17CSPI07	LEARNING IT ESSENTIALS BY DOING	CSE	EC (OE)	3	0	0	3	NIL
9.	17CSPI10	MOBILE APPLICATION DEVELOPMENT	CSE	EC (OE)	3	0	0	3	NIL
10.	17BMCC03	BIOSENSORS AND TRANSDUCERS	BME	EC (OE)	3	0	0	3	NIL
11.	17BMCC05	PATHOLOGY AND MICROBIOLOGY	BME	EC (OE)	3	0	0	3	NIL
12.	17BMEC01	MEDICAL OPTICS	BME	EC (OE)	3	0	0	3	NIL
13.	17BMEC02	BIOTELEMETRY	BME	EC (OE)	3	0	0	3	NIL
14.	17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	BME	EC (OE)	3	0	0	3	NIL
15.	17BMEC09	DESIGN OF MEDICAL DEVICES	BME	EC (OE)	3	0	0	3	NIL
16.	17BMEC13	PRINCIPLES OF TISSUE ENGINEERING	BME	EC (OE)	3	0	0	3	NIL
17.	17BMEC22	MEDICAL ETHICS AND STANDARDS	BME	EC (OE)	3	0	0	3	NIL
18.	17BMSE23	MEDICAL WASTE MANAGEMENT	BME	EC (OE)	3	0	0	3	NIL
19.	17BMSE24	MEDICAL TECHNOLOGY AND ENTREPRENEURSHIP	BME	EC (OE)	3	0	0	3	NIL
20.	17BMSE28	NANO TECHNOLOGY IN MEDICINE	BME	EC (OE)	3	0	0	3	NIL
21.	17CVEC35	MUNICIPAL SOLID AND WASTE MANAGEMENT	CIVIL	EC (OE)	3	0	0	3	NIL
22.	17CVEC14	AIR POLLUTION MANAGEMENT	CIVIL	EC (OE)	3	0	0	3	NIL
23.	17CVEC06	HYDROLOGY	CIVIL	EC (OE)	3	0	0	3	NIL
24.	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	CIVIL	EC (OE)	3	0	0	3	NIL
25.	17CVEC08	REMOTE SENSING TECHNIQUES AND APPLICATIONS	CIVIL	EC (OE)	3	0	0	3	NIL
26.	17EEEC18	RENEWABLE ENERGY TECHNOLOGY	EEE	EC (OE)	3	0	0	3	NIL
27.	17EEEC20	MATHEMATICAL MODELLING AND SIMULATION	EEE	EC (OE)	3	0	0	3	NIL
28.	17EEEC21	NON-CONVENTIONAL ENERGY SOURCES	EEE	EC (OE)	3	0	0	3	NIL
29.	17ATEC08	TRACTOR AND FARM EQUIPMENTS	AUTO	EC (OE)	3	0	0	3	NIL
30.	17ATEC18	ALTERNATIVE FUELS	AUTO	EC (OE)	3	0	0	3	NIL
31.	17MECC16	INDUSTRIAL AUTOMATION	MECH	EC (OE)	3	0	0	3	NIL

32.	17ECEC06	MEMS AND SENSORS	ECE	EC (OE)	3	0	0	3	NIL
33.	17ECEC23	INTRODUCTION TO MACHINE VISION	ECE	EC (OE)	3	0	0	3	NIL
34.	17MESE03	HYDROGEN AND FUEL CELL TECHNOLOGY	MECH	EC (OE)	3	0	0	3	NIL
35.	17MESE05	WASTE ENERGY CONVERSION TECHNOLOGIES	MECH	EC (OE)	3	0	0	3	NIL
36.	17MESE06	BIO ENERGY TECHNOLOGY	MECH	EC (OE)	3	0	0	3	NIL

<u>CATEGORY D</u> <u>PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)</u> <u>CREDITS (18)</u>

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E		
1	17BTPI01	PROJECT	BTE	PI	0	0	18	9	NIL		
	(ii) INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (9)										
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E		
1.	17BTPI02	MINI PROJECT	BTE	PI	0	0	6	3	NIL		
2.	17BTPI03	INDUSTRIAL ENZYMOLOGY	BTE	PI	3	0	0	3	NIL		
3.	17BTPI04	BIOPHARMACEUTICALS	BTE	PI	3	0	0	3	NIL		
4.	17BTPI05	INDUSTRIAL BIOSAFETY	BTE	PI	3	0	0	3	NIL		
5.	17BTPI06	WASTE MANAGEMENT	BTE	PI	3	0	0	3	NIL		
6.	17BTPI07	PROCESS ECONOMICS AND INDUSTRIAL MANAGEMENT	BTE	PI	3	0	0	3	NIL		
7.	17BTPI08	FERMENTATION AND BREWING TECHNOLOGY	BTE	PI	3	0	0	3	NIL		

CATEGORY E

EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.)

		(i) EMPLOYABILITY	Y ENHANCEME	NT COURSES	S (EEC	()					
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E		
1.	17APEE01	PERSONALITY SKILLS DEVELOPMENT - I	MATHS	EE	2 WEE TRAIN	EKS OF NING		1	NIL		
2.	17APEE02	PERSONALITY SKILLS DEVELOPMENT - II	ENGLISH & MANAGEMENT	EE	2 WEE TRAIN	EKS OF NING		1	NIL		
3.	17BTEE01	TECHNICAL SKILLS -I	BTE	EE	0	0	2	1	NIL		
4.	17BTEE02	TECHNICAL SKILLS –II	BTE	EE	0	0	2	1	NIL		
5.	17BTEE03	TECHNICAL SKILLS –III	BTE	EE	0	0	2	1	NIL		
6.	17BTEE04	TECHNICAL SKILLS-IV	BTE	EE	0	0	2	1	NIL		
7.	17BTEE05	TECHNICAL SKILLS -V	BTE	EE	0	0	2	1	NIL		
	(ii) CO - CURRICULAR COURSES (CCC)										
1.	17APEE03	NCC	NCC	EE	2 WEEKS OF TRAINING IN NCC CAMP 1 NIL						

2.	17APEE04	NSS	NSS	EE	2 WEEKS OF SOCIAL SERVICE IN NSS CAMP	1	NIL
3.	17APEE05	SPORTS AND GAMES (INTER –UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE		1	NIL
4.	17APEE06	SPORTS AND GAMES (INTRA-UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE		2	NIL
5.	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE		2	NIL
		(iii) EXTRA	CURRICULAR	COURSES (E	CC)		
1.	17BTEE06	EXTRA CURRICULAR COURSE - I	BTE	EE	15 HOURS	1	NIL
2.	17BTEE07	EXTRA CURRICULAR COURSE - II	BTE	EE	15 HOURS	1	NIL
3.	17BTEE08	EXTRA CURRICULAR COURSE - III	BTE	EE	15 HOURS	1	NIL
4.	17BTEE09	EXTRA CURRICULAR COURSE - IV	BTE	EE	15 HOURS	1	NIL
5.	17BTEE10	EXTRA CURRICULAR COURSE - V	BTE	EE	15 HOURS	1	NIL

FOR DEGREE WITH SPECIALISATION CATEGORY C – PROGRAMME SPECIFIC ELECTIVE COURSES -CREDITS (12 - 15)

SPECIALISATION - INDUSTRIAL BIOTECHNOLOGY

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17BTSE01	INDUSTRIAL BIOTECHNOLOGY	BTE	EC (SE)	3	0	0	3	NIL
2.	17BTSE02	CHEMICAL REACTION ENGINEERING	BTE	EC (SE)	3	0	0	3	NIL
3.	17BTSE03	FERMENTER DESIGN AND ANALYSIS	BTE	EC (SE)	3	0	0	3	NIL
4.	17BTSE04	BIOSEPARATION TECHNOLOGY	BTE	EC (SE)	3	0	0	3	NIL
5.	17BTSE05	INDUSTRIAL WASTE MANAGEMENT	BTE	EC (SE)	3	0	0	3	NIL
6.	17BTSE06	FUNDAMENTALS OF FLUID MECHANICS	BTE	EC (SE)	3	0	0	3	NIL
7.	17BTSE07	BIOPROCESS ECONOMICS AND REACTOR DESIGN	BTE	EC (SE)	3	0	0	3	NIL
8.	17BTSE08	BIOREACTOR THEORY	BTE	EC (SE)	3	0	0	3	NIL
9.	17BTSE09	INDUSTRIAL BIOTECHNOLOGY LAB	BTE	EC (SE)	0	0	4	2	NIL
10.	17BTSE10	FERMENTATION LAB	BTE	EC (SE)	0	0	4	2	NIL
11.	17BTSE11	FLUID MECHANICS FOR BIOTECHNOLOGY LAB	BTE	EC (SE)	0	0	4	2	NIL

SPECIALISATION - MEDICAL AND PHARMACEUTICAL BIOTECHNOLOGY

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17BTSE12	INDUSTRIAL MANAGEMENT AND PHARMACEUTICAL MARKETING	BTE	EC (SE)	3	0	0	3	NIL
2.	17BTSE13	PHARMACEUTICAL PHYTO CHEMISTRY	BTE	EC (SE)	3	0	0	3	NIL
3.	17BTSE14	MEDICAL PHARMACOLOGY AND DRUG DELIVERY	BTE	EC (SE)	3	0	0	3	NIL
4.	17BTSE15	PHARMACEUTICAL ASPECTS OF MICROBIOLOGY	BTE	EC (SE)	3	0	0	3	NIL
5.	17BTSE16	PHARMACEUTICAL PROCESS CHEMISTRY	BTE	EC (SE)	3	0	0	3	NIL
6.	17BTSE17	PHARMACOGENOMICS	BTE	EC (SE)	3	0	0	3	NIL
7.	17BTSE18	HERBS AND DRUG ACTION	BTE	EC (SE)	3	0	0	3	NIL
8.	17BTSE19	SKILL BASED ETHANO MEDICINE	BTE	EC (SE)	3	0	0	3	NIL
9.	17BTSE20	PHARMACEUTICAL CHEMISTRY LABORATORY	BTE	EC (SE)	0	0	4	2	NIL
10.	17BTSE21	PHYTO CHEMISTRY LAB	BTE	EC (SE)	0	0	4	2	NIL
11.	17BTSE22	PHARMACEUTICAL MICROBIOLOGY LAB	BTE	EC (SE)	0	0	4	2	NIL
12.	17BTSE23	ANALYTICAL METHODS OF PHARMACEUTICAL LABORATORY	BTE	EC (SE)	0	0	4	2	NIL

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY, SALEM) AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM FACULTY OF ENGINEERING AND TECHNOLOGY

BOARD : BIOTECHNOLOGY REGULATION : 2017 PROGRAM : B.Tech., – BIOTECHNOLOGY (FULL TIME - REGULAR)

CURRICULUM AND SYLLABUS

		SEME	STER – I					
S.NO	COURSE CODE	COURSE TITLE	OFFERING DEPARTMENT	CATEGORY	L	Т	Р	С
THEO	RY							
1	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC(HSS)	3	0	0	3
2	17MABS03	MATHEMATICS FOR BIO- ENGINEERING	MATHEMATICS	FC(BS)	2	2	0	3
3	17PCBS02	PHYSICAL SCIENCES	PHYSICS & CHEMISTRY	FC(BS)	4	0	0	4
4	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	3	0	0	3
5	17BTES01	FUNDAMENTALS OF BIOTECHNOLOGY	BTE	FC(ES)	3	0	0	3
PRAC	TICAL	·	·					
6	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC(HSS)	0	0	4	2
7	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS & CHEMISTRY	FC(BS)	0	0	4	2
8	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2
TOT	AL		1	1	14	2	14	22
L – LE	CTURE HOUR 1	T – TUTORIAL HOUR P – PRACTICAL	HOUR C – CREDIT					

HSS	HUMANITIES AND SOCIAL SCIENCES	CC	CORE COURSES
BS	BASIC SCIENCES	EC	ELECTIVE COURSES
ES	ENGINEERING SCIENCES	EEC	EMPLOYABILITY ENHANCEMENT COURSES + EXTRA CURRICULAR COURSES + CO - CURRICULAR COURSES
PII	PROJECT + INTERNSHIP + INDUSTRY ELECTIVES		

SYLLABUS – SEMESTER I

	HS01		Т	ECHN		ENGL	ISH		Cat	tegory	L	Т	Р	Cre	dit
			-						H	ISS	3	0	0	3	
PREA	MBLI	£							•						
Techn	ical En	glish i	s a life	e skill	course	necess	ary for	r all st	udents	of Engi	neering	and Te	chnolog	gy. It ai	ims a
develo	ping c	ommui	nicatio	n skills	s in En	glish, e	essentia	al for u	ndersta	anding a	and expr	ressing	the idea	s of dif	feren
profes	sional	contex	t. The	outco	ome of	the c	ourse	is to l	help th	e stude	nts acq	uire the	e langu	age ski	lls o
Listen	ing, Sp	eaking	, Read	ling an	d Writ	ing cor	npeten	cy in I	English	langua	ge and	thereby	making	the stu	ıdent
	etent an	-		-		-	-	-	•	-	-		-		
	EQUIS		Nil		0										
COUR	RSE OB	JECTI	VES												
1 Te	o enable	e studer	nts to de	evelop	LSRW	skills in	Englis	h. (List	ening, S	Speaking	, Readir	ng, and V	Vriting.)		
2 To	o make	them to	becon	ne effec	tive co	nmunic	cators								
3 To	o ensure	e that le	arners	use Ele	ectronic	media	materia	ls for d	evelopi	ng langu	lage				
4 To	o aid th	e studei	nts with	n emplo	yability	skills.									
5 To	o motiv	ate stuc	lents co	ontinuo	usly to u	ise Eng	lish lan	guage							
6 To	o develo	op the s	tudents	comm	unicatio	on skills	s in form	nal and	inform	al situati	ons				
COUR	RSE OU	TCOM	1ES												
	success		•												
CO1. L	Listen, u	Indersta	ind and	respon	d to oth	ers in d	lifferent	t scena	rio				Unders	stand	
				•		•			lifferen	t situatio	n.		Apply		
СОЗ. Т	Го make	the stu	idents e	experts	in profe	essional	writing	5					Apply		
				recogn	ize the	role of	technic	al writi	ng in t	heir care	ers in b	usiness,	Apply		
	al and s			good		miantor	a of th	a work	nlago	and to	ha thaar	otionlly	Apply		
strong.		e tile s	students	s good	comm	inicator		C WOIN	place	and to	be theor	encarry	Арргу		
0	Fo make	the stu	idents i	n profi	rient teo	hnical	commu	nicator					Apply		
				•					GRAM	ME SPI	ECIFIC	OUTCO			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	-	-	-	М	М	М	L	S	S	S	М	-	-	-
CO2	S	-	L	М	S	S	М	L	М	S	М	S	-	-	-
CO3	L	L	-	L	S	М	-	L	М	S	-	L	-	-	-
CO4	L	М	-	-	М	М	S	М	М	М	S	S	-	-	-
CO5	S	М	L	-	L	-	S	М	S	S	L	М	-	-	-
CO6	М	-	-	-	М	-	-	-	М	S	-	S	-	-	-

UNIT – **I**: Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary

(definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

UNIT – II: Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore. **UNIT – III** Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description-Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

UNIT – IV Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

UNIT – V Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae. **TEXTBOOK**

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai **REFERENCES**

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

17MABS03	MATHEMATICS FOR BIO-ENGINEERING	Category	L	Т	Р	Credit	
		FC (BS)	2	2	0	3	

PREAMBLE

This course offers the knowledge of solving problems involving rates of change of variables subject to a functional relationship, to solve optimization problems, to find the area under curves and the area between curves, to develop skills and knowledge of standard concepts in ordinary differential equations, to design data collection plans, analyze data appropriately and interpret and draw conclusions from those analyses.

PREREQUISITE

	-														
COUR	RSE O	BJECT	ΓIVES												
1	To in	nprove	their a	bility i	n solvi	ng geo	metrica	al appli	ications	s of diffe	erential	calculus	problem	ns.	
2	To de	velop	the kno	owledg	e in int	egral c	alculu	s.							
3	To en	able th	e stude	ents to	solve o	ordinar	y diffe	rential	equation	ons.					
4		et the sitte the cer			at desc	cribes t	he cha	racteris	stic of	the entii	re group	and to	analyze	variatio	n of items
5		orrelate oretatio		or mo	ore var	iables,	one r	needs s	simple,	, multip	ole and	partial	correlati	ions and	l suitable
COUR	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to)					
CO1.	Apply	the con	icept of	f differ	entiatio	on in fu	unction	s of sir	ngle an	d severa	ıl variab	les.		Appl	у
CO2. <i>A</i>	Apply	tools to	o find a	rea and	d volun	ne.								Appl	у
			-				-			gical pro				Appl	у
					-	-			-	its and a				Appl	
CO5. /	Apply	the con	cept of	f correl	lation a	nd reg	ression	i in con	nputati	onal bio	ology.			Appl	у
MAPF	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L					Μ				L			
CO2	S	Μ	L					Μ				L			
CO3	S	Μ	Μ	L				М				М			
CO4	S	S	Μ	L				М				М			
CO5	S	М	М	L				М				М			
S- Stro	ong; M	[-Medi	um; L	-Low				·							·
SYLL	ABUS														

DIFFERENTIAL CALCULUS:

Ordinary Differentiation – Basic Concepts – Slope – Maxima, Minima of a function of a single variable – Second order derivates – Partial Differentiation – maxima and minima of a function of two variables.

INTEGRATION:

Concept of integration-Integration of Rational and Trigonometric functions – Using Partial Fractions – Substitutions – Integration by parts.

ORDINARY DIFFERENTIAL EQUATIONS:

Formation of differential equations – Solution of first order equation – Variable separable and solution of Linear differential equation of the form $\frac{dy}{dx} + Py = Q$ – Linear Second Order ordinary differential equation with constant coefficients (exp(ax), cosax, sinax).

STATISTICS:

Measure of central value – Average – Type of average – Arithmetic; Mean, Median, Mode – Measures of Dispersion – Measure of Skewness and Kurtosis – measure of Skewness based on Moments.

CORRELATION AND REGRESSION ANALYSIS: Correlation analysis – methods of correlation. Regression analysis – Regression equation – Multiple and partial correlation – Notations – Equation of regression plane (Three variables) – Multiple correlation coefficients – Partial Correlation coefficients

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 2. S.P. Gupta, "Statistical Methods", 34th Edition, Sultan Chand & Sons Publishers (2006).

REFERENCES:

- 1. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 2. Ewans & G.Grant, "Statistical Methods in Bio informatics An Introduction", (2005).

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.P.Sasikala	Prof	VMKVEC	sasikalap@vmkvec.edu.in
2	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	lakshmi@vmkvec.edu.in

17PCBS02	PHYSICAL SCIENCES	Category	L	Т	Р	Credit
111 02502	PART A - ENGINEERING PHYSICS	FC (BS)	2	0	0	2

PREAMBLE

Engineering Physics is the application of the concepts of physics to various technological applications. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication and different types of non-destructive techniques will help an engineer to analyze and design various equipments.

PREREQUISITE

		-													
COUR	RSE O	BJECT	rives												
1	To re	call the	e prope	rties of	f laser a	and to o	explain	n princi	ples of	laser					
2	To ex	amine	the app	plicatio	ons of l	aser									
3	Το οι	tline tl	ne prin	ciples o	of fibre	optics									
4	To ex	amine	the app	plicatio	ons of f	ibre op	otics								
5	To ex	plain v	various	techni	ques u	sed in I	Non-de	estructi	ve testi	ing					
COUR	RSE O	UTCO	MES		•										
On tl	he succ	essful	comple	etion of	f the co	ourse, s	tudents	s will t	be able	to					
CO1.	Define	e the p	rinciple	es of la	ser								Unders	tand	
CO2.	Use la	ser in o	designi	ng equ	ipmen	ts							Apply		
CO3.	Expla	in the p	orincip	les of f	iber op	tics &	the pro	opagati	on of l	ight in o	ptical fi	bers	Unders	tand	
CO4.	Utiliz	e fibre	optics	in com	munica	ation sy	ystems	and se	nsors				Apply		
CO5.	Inspec	t mate	rials us	sing no	on-dest	ructive	testing	g techn	iques				Analyz	e	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	L	L											
CO2	S	S	М	М	S	М			L			М			
CO3	L	Μ	L	L											
CO4	S	S	Μ	Μ	S	Μ			L			М			
CO5	S	S	Μ	Μ	S	Μ			Μ			М			
S-Stro	ong; M-	Mediu	m; L-I	LOW											
SVI I	ADIS														

SYLLABUS

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

FIBRE OPTICS: Principle and propagation of light in optical fibres – numerical aperture and acceptance angle – types of optical fibres (material, refractive index, mode) – Applications: Fibre optic communication system – fibre optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

Engineering Physics, compiled by Department of Physics, Vinayaka Missions University, Salem.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday. D, Resnick. R, Walker. J, Fundamentals of Physics, Wiley & sons, 2013.

3.Gaur R. K. and Gupta S. L., Engineering Physics, Dhanpat Rai publishers, New Delhi, 2001.

4. Avanadhanulu. M. N., Arun Murthy. T. V. S, Engineering Physics Vol. I, S. Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata Mc Graw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COUR	RSE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Dr. C. SENTHIL KUMAR	senthilbdu@gmail.com
2	Dr. R. SETHUPATHI	sethupathivmkv@gmail.com

				рн	VSIC	AL SC	CIENC	ES			Category	L	Т	Р	Credit
17PC	CBS02	(F	PART						STRY) -	FC (BS)	2	0	0	2
PREA	AMBLI	E									1 C (DD)	2	0	Ŭ	
Engin	neering	Chemi	istry e	xplain	s the	funda	amenta	ls of	Engine	ering	Chemistry	and	helps	the l	earners to
under	stand th	e appl	ication	s of E	engine	ering	Chemi	stry. T	he elec	ctrodes	, Cell and	batteri	es sti	ıdy giv	ves a clear
idea a	about ele	ectroch	emistr	y. Wa	ter tec	hnolo	gy stud	ly give	s the ir	nitiativ	e about so	ftening	of w	ater, d	esalination
and c	orrosior	n. Conv	vention	al and	d Non	-conve	entiona	al energ	gy fiel	d is es	sential for	the cu	rrent	scenar	rio and the
advan	nced eng	gineerin	ng mate	erials	are ne	eded f	or our	fast gr	owing	life sty	vle.				
PRE	REQUI	SITE													
NI	IL														
COU	RSE O	BJEC	ΓIVES)											
1	To in	npart f	undam	ental	know	ledge i	in Che	mistry	so tha	t the s	tudent wil	l under	stand	the e	ngineering
	conce	ept and	can fa	ce the	forth	comin	g years	as we	ll as th	e indu	stry effecti	vely.			
2	To ha	ive a cl	lear kn	owled	ge of	electro	ochemi	stry, ce	ells and	l electi	odes.				
3	To fa	miliari	zes the	type	of bat	teries	and fue	el cell.							
4	To la	ay fou	ndatior	n for	practi	cal ap	oplicati	ons of	f wate	r softe	ening and	desali	natior	n in e	ngineering
	aspec	ts.													
5	To in	culcate	e the kr	nowled	lge of	fuel, t	this is e	essenti	al for c	urrent	scenario.				
COU	RSE O	UTCO	MES												
On th	e succes	ssful co	ompleti	ion of	the co	ourse,	student	ts will	be able	e to					
CO1.	Under	stand	the vit	al kn	owled	lge in	Engin	neering	g Cher	nistry	helps the	Unde	erstar	nd	
learne	ers in fu	ture stu	udies												
CO2.	Employ	the ba	asic kn	owled	ge of	cells a	nd elec	ctrodes				App	ly		
CO3.	Demon	strate t	he app	licatio	ons of	water	softeni	ing				Appl			
Apply	y desalii	nation	nrocess	with	engin	eerina	asnect	c				App	v		
									al fuol	for t	he current		erstar	d	
scenar		s abot		ventio	IIai a	nu no		entiona	ai iuci	101 1		Unu	zi stai	lu	
	General	ize pol	umare	and a	nort n	notorio	10					Appl	1.7		
000	General	ize poi	ymers		Hart I	lateria	.15					App	l y		
МАР	PING	VITH	PROG	RAN	IME	ουτα	COME	S A NI) PRA	GRAI	MME SPF	CIFIC		TCON	ЛES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO	PSO3
													01		
CO1	М	М	М	-	-	М	М	-	-	-	-	М			
CO2	M	M	M	-	-	M	M	-	-	-	-	S			
CO3 CO4	M	S M	M	-	-	S	M	-	-	-	-	S			
04	М	М	М	-	-	М	Μ	-	-	-	-	S			

S- Strong; M-Medium; L-Low

М

М

L

М

-

-

-

-

М

Μ

CO5

CO6

-

-

-

-

-

-

М

Μ

S

М

S

S

-

-

SYLLABUS

UNIT - I: ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H₂-O₂ fuel cell)

UNIT – II: WATER TECHNOLOGY AND CORROSION

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis&ReverseOsmosis).

UNIT – III FUELS AND CHEMISTRY OF ADVANCED MATERIALS

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXTBOOK

1. Engineering Chemistry by VMU.

REFERENCES

1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi

2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi

3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Shanthi	Professor & Head	Chemistry	shanthi@vmkvec.edu.in
2	Mr.A Gilbert sunderraj	Assistant Professor	Chemistry	gilbertsunderraj@vmkvec.edu.in

1700	ES01		EGGI			E CON		INC		Categ	ory	L	Т	Р	Cr	edit
1/05	ES01		F991		112 U	r CON	APUT	ING		ES		3	0	0		3
This c install		aims to and en	nphasiz	zing p	rinciple	es app	lication	ots of Contraction of Contraction of Contraction of the contraction of	-	ter opera Studyir						
PRER	QUIS	ITE – 1	Nil													
COU	RSE O	BJEC	ΓIVES													
1	To pr	ovide l	basic k	nowled	lge of l	nardwa	are and	softwar	e com	ponents	of con	puters	5.			
2	To in	troduce	e and d	emons	trate va	arious	softwa	re appli	cation	package	es.					
3	To st	udy Pro	oblem s	solving	g Techr	niques	and pro	ogram d	levelo	pment c	ycle.					
4	To le	arn abo	out vari	ious al	gorithn	n and i	dentify	ing the	algori	thm effi	ciency.					
5	To le	arn dif	ferent a	algorith	nm for	variou	s appli	cation.								
COUI	RSE O	UTCO	MES													
On the	e succe	ssful co	ompleti	on of t	he cou	rse, stu	dents	will be a	able to)						
CO1.]	Basic k	nowled	dge on	hardw	are and	l softw	are teri	ninolog	gies.					Reme Under		
CO2.]	Demon	stration	n about	t variou	is App	licatio	n Packa	ages like	e MS-	word, M	IS- Exc	el etc.		Apply	7	
CO3. Techn		stand 1	Prograi	m Dev	volvem	ent C	ycle ai	nd appl	y var	ious Pr	oblem	Solvir	Ŭ	Under Apply		,
CO4.]	Identify	ying an	d analy	zing tl	he effic	ciency	of Algo	orithms.						Under	rstand	•
CO5.]	Implen	nentatio	on of A	lgorith	ms for	variou	is conc	epts.						Under Apply		and
MAPI	PING	WITH	PROC	GRAM	ME O	UTCC	DMES	AND P	ROG	RAMM	E SPE	CIFIC	00	U TCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	PSO1	PSO2	PSO3
CO1	S													S	М	
CO2	S	М												S	М	L
CO3	S	S	S		М									S	L	
CO4	S	S	S		S									S	М	
CO5	S	М	М		М									S	М	
S- Stro	ong; M	-Mediu	ım; L-I	Low												
	ABUS CS OI		IPUTI	ER AN	ND INI	FORM	ΙΑΤΙΟ	N TEC	CHNO	LOGY	: Comp	outer –	Ge	neratio	ons, T	ypes

of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.V.Amirthalingam	Associate Professor	Computer Science and Engineering	amirthalingam@vmkvec.edu.i
2	Mrs.T.Geetha	Assistant Professor	Computer Science and Engineering	geetha@vmkvec.edu.in

COURSE DESIGNERS

17BTES04	FUN	NDAN	ЛЕNI	TALS	OF B	IOTE	CHNO	LOG	v Ca	tegory	L	Т	Р	Credit
1/212501	101							200.	FC	C(ES)	3	0	0	3
PREAMBLE	C													
Biotechnolog	y is th	he Co	ombin	ation	of bio	ological	scien	ces an	d engi	neering	in ord	ler to u	understa	and and
improve the l	ifesty	le of	living	orga	nisms.	Biopro	ocesses	and p	athway	s, living	g micro	oorgani	isms, pl	ant and
animal cells	and/o	r cell	lular	mater	ials ar	e expl	oited	to dev	elop n	ew exp	ertise.	Advar	nced to	ols and
technologies	develo	ped b	y bio	techno	ologist	s are us	sed in 1	researc	h and c	levelopr	nent, h	nealthca	are, agri	culture,
and the indu	stry to	o fur	ther e	nhano	ce org	anisms	and b	oioproo	cesses.	Fundan	nental	princip	ples of	genetic
engineering,	rDNA	tech	nolog	y hel	ps to	produc	e com	mercia	al manu	ifacture	of ne	w reco	ombinar	nt DNA
engineering, rDNA technology helps to produce commercial manufacture of new recombinant DNA derived products.														
PREREQUISITE – NIL														
COURSE O	BJEC	TIVE	S											
1 To acc	quire k	nowl	edge o	on pri	nciples	s of bio	techno	logy.						
2 To stu	dy in o	detail	about	mech	nanism	and ap	plicati	ons of	genetic	engine	ering i	n the fo	ood and	
agricu	ltural	indus	try.											
3 To un	dersta	nd im	portar	ice of	biotec	hnolog	y to de	evelop	genetic	ally mo	dified a	animals	s its	
applic	ations	•												
4 To ana	alyze i	n deta	ails ab	out p	erform	ance of	f drugs	devel	oped us	ing rDN	A tech	nnology	γ.	
5 To app	oly the	e knov	vledge	e of bi	iotechr	nology	to enha	ance th	e envir	onment.				
COURSE O	UTCC	OMES	5											
On the succes	sful c	omple	etion of	of the	course	, stude	nts wil	l be ab	le to					
CO1. Knowle	edge al	bout f	undar	nental	l princi	iples at	out bio	otechn	ology.		U	ndersta	ind	
CO2. Acquire	ed goo	d kno	wledg	re on	genetia	cally m	odified	l produ	icts in f	ood and	U	ndersta	nd	
agricultural fi	-	u mio	1042	,e on	Benetit	<i>Juliy</i> 111	ouniee	. prode				11401500	liid	
CO3. Underst		n deta	il aboi	it the	applic	ations	of gene	etically	modifi	ed	U	ndersta	nd	
animals in res							or gene	Juoung	moun	- Cu	Ũ	1140154	liid	
CO4. Apply t						gy to ir	nprove	globa	l enviro	nment.	A	pply		
			-									nalyze		
methods														
MAPPING V	APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	М	М	L	М	L	S	L	М	L	S	S	S	М
CO2 S	М	S	S	М	М	S	М	S	М	М	S	S	М	М
CO3 S	S	S	S	М	М	М	М	S	М	М	S	S	М	М
CO4 S	S	S	S	S	М	М	S	S	М	М	М	S	S	S
CO5 S	M	М	S	М	М	S	S	М	М	М	М	S	S	S
S- Strong; M-	Mediu	um; L	-Low											

SYLLABUS FOOD BIOTECHNOLOGY

Scope and importance of Food Biotechnology, Arctic Apples, Golden Rice, Flavr – Savr Tomato, Bt-potatoes, Virus resistant Squash, Fermented Food, Single Cell Protein – Spirulina.

AGRICULTURAL BIOTECHNOLOGY

Basics of plant tissue culture – callus induction, organogenesis, embryogenesis – embryo rescue, somatic embryogenesis, somaclonal variation, artificial seeds, secondary metabolites and their uses, Protoplast technology – hybrids and Cybrids, Biofertilizer, Biological Pest Control.

ANIMAL BIOTECHNOLOGY

Transgenic animals – Knock out mice, chimeric mice, Baculoviruses and transgenic silkworm, Hybridoma Technique for Monoclonal antibodies, Pharmaceuticals from animal systems, Animal bioreactors to produce therapeutic proteins, Karyotyping, FISH – Fluorescent in situ hybridization.

MEDICINAL BIOTECHNOLOGY

Industrial Enzyme production: α-amylase, cellulase, protease and lipase, Recombinant protein production: Insulin and interferon, Antibiotic production: Penicillin- Synthetic and Semisynthetic and Bacitracin (Novartis and Genetech), Gene Therapy, Clinical Diagnosis using electronic devices (PCR, ELISA, Glucometer, RIA, Biosensor).

ENVIRONMENTAL BIOTECHNOLOGY

Molecular approaches towards bioremediation, Biosensors for detection of environmental pollutants, Ecofriendly & sustainable Environmental Technologies, Renewable energy technologies.

TEXT BOOKS

1. Gupta, P.K., "Elements of Biotechnology", Rastogi Publications, 2nd Edition, 2010.

2. Satyanarayana.U., "Biotechnology", Books and Allied Pvt Ltd., 2005.

REFERENCE BOOKS

1. John E. Smith., "Biotechnology", Cambridge Press. 3rd Edition, 2005.

2. Glazer A and Nikaido H., "Microbial Biotechnology - Fundamentals of Applied Microbiology", Cambridge University Press, 2nd Edition, 2007.

3. Jogdand S.N., "Environmental Biotechnology", Himalaya Publishing House, 2003.

4. Kumar H.D., "Modern Concepts and Biotechnology", Vikas Publishing House Pvt. Ltd, 1998.

5. R.C. Dubey., "Textbook of Biotechnology", S. Chand Publishing., 2001.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in								
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in								

17EG	HS81		ENG	GLISF	I LAN	GUAG	GE LA	B	C	ategory	⁷ L	Г]	P C	redit
1.20	1.001			02101		00110				HSS	0	0) ,	4	2
PREA	MBLE	4							1		1				
Englis	h Lang	uage L	Laborat	ory pr	ovides	techno	ological	suppo	ort to st	udents.	It acts	as a pla	tform	for lear	ning,
practic	ing and	l produ	ucing la	anguag	e skill	s throu	gh inte	ractive	lesson	s and co	ommun	icative	mode o	of teach	ing.
PRER	EQUIS	SITE													
			IL												
COU	RSE OI														
1	To un	derstar	nd com	munic	ation n	uisanc	es in th	e corp	orate se	ector.					
2	To un	derstar	nd the r	ole of	mothe	r tongu	e in se	cond la	inguage	e learnii	ng and t	o avoid	interfe	erence	of
	mother					0			00		0				
3				ffectiv	ely thro	ough d	ifferen	activi	ties						
4						-	etique								
5						-	aspects		nmuni	cation					
6		-	the ora				_								
COUH	RSE OI	-													
	succes			on of t	he cou	rse, stu	idents '	will be	able to)					
CO1. 0	Give be	est per	formar	ice in g	group d	liscussi	ion and	interv	iew					Under	stand
CO2. 1	Best per	rforma	nce in	the art	of con	versati	on and	public	speak	ing.				Apply	
CO3. (Give be	tter jo	b oppo	rtunitie	es in co	orporat	e comp	anies						Apply	
CO4. 2	Better u	unders	tanding	g of nu	ances	of Eng	glish la	nguage	e throu	gh audi	o-visua	l experi	ience	Apply	
and gr	oup act	ivities													
CO5. Skills	Speakir	ng skil	ls with	clarity	and c	onfide	nce wh	ich in	turn er	nhances	their e	mployal	bility	Under	stand
	Acquire	strate	oic cor	nneten	ce to u	se hotl	1 snoke	n and	written	langua	oe in a	wide ra	nge	Apply	
	munica		-	-		.50 000	1 spore	iii uiiu	witten	Tunguu	50 111 a	wide iu	inge	¹ ippiy	
			U		ME O	UTCO)MES	AND I	PROG	RAMM	E SPE	CIFIC	OUTC	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSC
															3
CO1	-	S	Μ	S	-	L	-	-	S	S	Μ	-	-	-	-
CO2	M	L	-	-	-	-	L	-	M	S	-	M	-	-	-
CO3 CO4	M	•	-	L	-	L	-	-	L	S M	-	M	-	-	<u> </u>
C04 C05	M M	· ·	-	- S	-	-		-	-	M M	-	M M	-	-	-
CO5	-	- M	M	-	-	-	-	-	-	M	-	M	-	-	-
	ong; M-			Low	1	1	1	1	1		1	1	1	1	
	0		,												
	ABUS	Dress	ron C		. I	nin~ (Harr		listori	a ~)		tonina	Deaster		~
UNIT	– I : Ice	e Breal	ker, Gr	ouping	g, Liste	nıng- (Hearn	ng and	Iistenii	ng)- Act	ive Lis	tening-	Passive	e Lister	ung

- Listening to a song and understanding- (fill in the blanks) Telephone Conversation

UNIT – **II:** Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

UNIT – III:Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

UNIT IV. Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

UNIT V. Case study of Etiquette in different scenario.

TEXTBOOK

REFERENCES

S.No.	Name of the Faculty	Mail ID
1.	Dr. P.Saradha/ Associate Professor - English	saradhap@vmkvec.edu.in

17PCBS81

PHYSICAL SCIENCES LAB: PART A – REAL AND VIRTUAL LAB IN PHYSICS

ТА –	Category	L	Т	Р	Credit	
YSICS	FC (BS)	0	0	2	1	

PREAMBLE

Real and Virtual Lab in Physics trains the students to take readings with precision. The experiments involve the calculation of physical parameters. In addition to the above, the students have the hands-on experience in performing the experiments through virtual laboratory.

PREREQUISITE

COUF	RSE OI	BJECT	rives												
1	To in	npart ba	asic ski	ills in t	aking r	eading	with p	orecisio	on of pl	nysics ex	xperime	nts			
2	To in	culcate	the ha	bit of l	nandlin	g equij	pments	appro	priatel	у					
3	To gain the knowledge of practicing experiments through virtual laboratory.														
4	To know the importance of units														
5	To obtain results with accuracy														
COUF	RSE OUTCOMES														
On th	the successful completion of the course, students will be able to														
CO1	. Opera	te the	equipn	nents w	ith pre	cision							Apply		
CO2	. Practi	ce to h	andle (he equ	ipment	s in a s	system	atic ma	anner				Apply		
CO3	. Demo	onstrate	the ex	perime	ents thr	ough v	irtual	laborat	ory				Apply		
	.Recog			+				-	0	experin	nents,	during	Unders	tand	
	. Calcu												Analyz	e	
						•	MES		PDOC	рамм	F SDF(TIFIC C		MES	
	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	Μ	S				Μ			М			
CO2	S														
CO3	S	S	Μ	Μ	S							S			
CO4	S	S													

S- Strong; M-Medium; L-Low

S

SYLLABUS

S

CO5

- 1. Young's modulus of a bar Non-uniform bending
- 2. Rigidity modulus of a wire Torsional Pendulum
- 3. Viscosity of a liquid Poiseuille's method
- 4. Velocity of ultrasonic waves in liquids Ultrasonic Interferometer
- 5. Particle size determination using Laser

- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual, prepared by the faculty of Department of Physics, Vinayaka Mission's Kirupananda Variyar Engineering College, Salem (2017).

COUR	COURSE DESIGNERS							
S.No.	Name of the Faculty	Mail ID						
1	Dr. C. SENTHIL KUMAR	senthilbdu@gmail.com						
2	Dr. R. SETHUPATHI	sethupathivmkv@gmail.com						

17PCBS81	PHYSICAL SCIENCES	Category	L	Т	Р	Credit
P	PART B - ENGINEERING CHEMISTRY LAB	FC (BS)	0	0	2	1

PREAMBLE

Engineering Chemistry Lab experiments explains the basics and essentials of Engineering Chemistry. It also helps the students to understand the applications of Engineering Chemistry. The electrodes, Cell and batteries study gives clear basic application oriented knowledge about electrochemistry. Water technology study gives the idea about hardness and its disadvantages.. Now-a-days the practical and handling of equipments are needed for our fast growing life style.

PREREQUISITE

NIL

COURSE OBJECTIVES

1	To impart basic skills in Chemistry so that the student will understand the engineering concept.
2	To inculcate the knowledge of water and electrochemistry.
3	To lay foundation for practical applications of chemistry in engineering aspects.
COLI	

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the basic skills for his/her future studies.

CO2 Analyze the water comprehensively.

CO3. Apply the practical knowledge in engineering aspects

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	L	М	М	S	-	-	-	М	-	-	-
CO2	S	М	М	-	L	М	М	L	-	-	-	М	-	-	-
CO3	S	S	М	-	L	М	М	М	-	-	-	М			
a a															

Understand

Apply

Apply

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. 8. Estimation of Iron by Spectrophotometer

Text Book:

1. Engineering Chemistry Lab Manual by VMU.

COURSE DESIGNERS

	KSE DESIGNEKS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.T.Shanthi	Professor & Head	Chemistry	shanthi@vmkvec.edu.in
2	Mr.A.Gilbertraj	Assistant Professor	Chemistry	gilbertsunderraj@vmkvec.edu.in

VINAYAKA MISSION'S RESEARCH FOUNDATION (DEEMED TO BE UNIVERSITY, SALEM) AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM FACULTY OF ENGINEERING AND TECHNOLOGY

STRUCTURED CHOICE BASED CREDIT SYSTEM

BOARD : BIOTECHNOLOGY REGULATION : 2017 PROGRAM :B.Tech., – BIOTECHNOLOGY (FULL TIME - REGULAR)

SEMESTER – II										
S.NO	COURSE CODE	COURSE TITLE	OFFERING DEPARTMENT	CATEGORY		Т	Р	С		
THEORY										
1	17MABS07	BIOSTATISTICS	MATHEMATICS FC(BS)		2	2	0	3		
2	17CSES06	PROGRAMMING IN C	CSE	FC(ES)	3	0	0	3		
3	17BTCC02	CELL BIOLOGY	BTE	CC	3	0	0	3		
4	17PHBS05	SMART MATERIALS	PHYSICS	FC(BS)	3	0	0	3		
5	17BTCC01	ESSENTIALS OF BIOCHEMISTRY	BTE	CC	3	0	0	3		
PRACTICAL										
6	17CSES85	PROGRAMMING IN C LAB	CSE FC(ES)		0	0	4	2		
7	17BTCC81	BIOCHEMISTRY LAB	BTE	CC	0	0	4	2		
8	17BTCC82	CELL BIOLOGYLAB	BTE	CC	0	0	4	2		
TOTAL						2	12	21		
L – LECTURE HOUR T – TUTORIAL HOUR P – PRACTICAL HOUR						C – CREDIT				

CURRICULUM AND SYLLABUS

HSS	HUMANITIES AND SOCIAL SCIENCES	CC	CORE COURSES
BS	BASIC SCIENCES	EC	ELECTIVE COURSES
ES	ENGINEERING SCIENCES	EEC	EMPLOYABILITY ENHANCEMENT COURSES +
			EXTRA CURRICULAR COURSES + CO -
			CURRICULAR COURSES
PII	PROJECT + INTERNSHIP + INDUSTRY		
	ELECTIVES		

SYLLABUS – SEMESTER II

(Statistical table permitted for Examination) FC (BS) 2 2 0 3	17MABS07	BIOSTATISTICS	Category	L	Т	Р	Credit
		(Statistical table permitted for Examination)	FC (BS)	2	2	0	3

Biostatistics is the application of statistical methods in studies in biology by collection of data, analysis and interpretation of data. The data come from a wide range of sources, including genomic studies, experiments with cells and organisms, and clinical trials. Testing of hypothesis is a Statistical procedure to draw inferences from samples about population. Statistical Quality control is a method of quality control which employs statistical methods to monitor and control a process. This helps ensure the process operates efficiently, producing more specification-conforming product. Acceptance sampling allows measuring the quality of a batch of products by selecting a specified number of products for testing.

PREREQUISITE

Mathematics for Bio-Engineering

mather	1144105 1	01 010	enginee												
COUR	SE OB	JECTI	VES												
1	Devel	op skill	s in pre	senting	quanti	tative d	ata usir	ng appro	opriate o	diagrams	, tabulati	ions and	summari	es	
2			ental k of stat			he prob	ability	concep	ots with	respect	to how	they are	applied	to the fu	ndamental
3			knowle s made				lypothe	esis use	eful in	making	decisio	n and te	est them	by mea	ins of the
4			posed t certain				ods desi	igned to	o contri	bute to t	he proce	ss of ma	king scie	entific jud	lgments in
5	To ur sampl		d the d	concept	of Qu	ality co	ontrol a	and the	use of	operatir	ng charao	cteristic	(OC) cui	rves in A	Acceptance
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to						
			-							d fields,	and pro	pose a m	nethod fo	r Appl	/
	ollection				C							•			
CO2.	Apply	probab	ility ru	es and	probab	ility mo	dels to	solve p	problem	s and tra	nslate re	al-world	problem	s Appl	/
into pro					Ū.				•	urvey des	Į.				
CO3.		•	perform	n statis	tical si	gnificaı	nce tes	ts for s	mall, la	arge sam	ples and	l interpre	et the tes	st Appl	/
	approp	-													
	-			•		ariance	(ANO	VA), a	techniq	ue used t	to compa	are mean	s amongs	st Analy	/ze
	nan two			•				1			Estima	(1 (1 .		1	
	able or u								is of the	e process	s. Estima	te wheth	er a lot i	s Appl	/
•									3 D A N <i>U</i>				MEG		
							1	1	1	ME SPE	1		1		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L					L				Μ			
CO2	S	Μ	М	L				М				М			
CO3	S	S	М	L				М				М			
CO4	S	S	М	L				М				М			

CO5	S	М	М	L	 	 М	 	 М	 	
C Stag	na. M		mitt	0.111						

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO BIOSTATISTICS : Statistics – Definition, Scope, Limitation – Collection of data – Primary & Secondary Data; Classification & Tabulation of data – Type of Classification & Tabulation – Diagrammatic and Graphical representation of data – Types and significance.

PROBABILITY AND SAMPLING: Probability – Definition – Measurement & Law of Probability – Conditional Probability – Baye's Theorem – Probability Distributions – Application of Probability. Sampling: Method of Sampling – Random and Non-Random Sampling – Merits and Demerits, Limitation of sampling.

TESTING OF HYPOTHESIS: Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, proportions using Normal, t and F distributions. Chi-square Tests for independence of attributes and Goodness of fit.

DESIGN OF EXPERIMENTS: Analysis of variance – One way and Two way classifications – Completely randomized design – Randomized block design.

STATISTICAL QUALITY CONTROL: Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits – Acceptance sampling.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", 34th Edition, Sultan Chand & Sons Publishers (2006).
- 2. P.N.Arora, P.K.Malhan, "Biostatistics", Himalaya Publishing House (2010).

REFERENCES:

- 1. Milton.J.S, "Statistical Methods in Biological & Health Science", McGraw Hill, New York (1992).
- 2. S.S.Sundar Rao, J.Richard, "Introduction to Biostatistics and Research Methods", 5th Edition, Prentice-Hall of India Pvt. Ltd (2016).

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Sasikala	Professor	Mathematics	sasikalap@vmkvec.edu.in
2	Ms.M.Usha	Assistant Professor	Mathematics	usha@vmkvec.edu.in

17C	SES06			PROG	GRAM	MING	IN C		CA	TEGO	RY	L	Т	Р	CR	EDIT
										FC		3	0	0		3
PREA	MBLI	E														
										io-Tech						
			-				0			program	nming	concep	ots and	l its a	appli	cation.
It also	enable	s the s	tudent	s to so	lve pro	blems	using	, progra	ammab	le logic.						
PRER	QUIS	ITE														
NIL																
COUR	SE O	BJEC	TIVE	5												
1	To in	ntrodu	ce Bas	ics of (Z.											
2	To u	nderst	and Co	ontrol S	Structu	res &	Array	s.								
3	To le	earn at	out St	ring co	ncept,	Struc	ture ar	nd Unio	on in C	•						
4	To ii	ntrodu	ce the	concep	ts of F	unctio	ons and	d Point	ers.							
5	To in	ntrodu	ce Mei	nory a	nd File	e mana	igeme	nt conc	epts in	. C.						
COUR																
On the			-													
		erstan	d the b	asics o	f C Da	ita typ	es, sco	ope of v	variable	es, differ	ent typ	bes of		τ	Unde	rstand
Operate							<u> </u>		<u> </u>				<u> </u>			
								and re	cursion	n in term	s of C	prograi	nming	-		rstand
CO3. [icture								Apply	-
CO4. [Apply	
CO5. [1 1	0			0		1								rstand
				-	1				•	GRAM	-	-				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO		502	PSO3
CO1	L												S		L	
CO2	S S	S S	S	M M	S S	М	S		м	М			S		M	L
CO3 CO4	~	2	S		2		М		М				S		L M	L
CO4 CO5	S S	S S	S S	M M	S S		IVI						S S		M	
COS	2	2	Low	IVI	3								3		IVI	

SYLLABUS

BASICS OF C

Identifiers, variables, expression, keywords, data types, constants, scope of variables. Operators: arithmetic, logical, relational, conditional and bitwise operators – Special operators: size of () & comma (,) operator – Precedence and associatively of operators – Type conversion in expressions.

CONTROL STRUCTURES

Basic input/output and library functions: Single character input/output i.e. getch(), getchar(), getche(), putchar() – Formatted input/output: printf() and scanf() – Library functions (mathematical and character

functions). Decision Making and Branching – Looping statements.

ARRAYS, STRING, STRUCTURE & UNION

Arrays – Initialization – Declaration – One dimensional and two dimensional arrays. Strings: Declaration – Initialization and string handling functions. Structure and Union: structure declaration and definition – Accessing a Structure variable – Structure within a structure – Union.

FUNCTIONS AND POINTERS

Function – Function Declaration – function definition – Pass by value – Pass by reference – Recursive function – Pointers – Definition – Initialization

MEMORY AND FILE MANAGEMENT

Static and dynamic memory allocation – Storage class specifier – Preprocessor directives. File handling concepts – File read – write – Functions for file manipulation: fopen, fclose, gets, puts, fprintf, fscan, getw, putw, fputs, fgets, fread, fwrite.

TEXT BOOKS:

1.Balaguruswami. E, "Programming in C", TMH Publications, 1997

REFERENCES:

1. Behrouz A. Forouzan& Richard F. Gilberg, "Computer Science A Structured Programming using C", Cengage Learning, 3rd Edition, 2007.

- 2. Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 3. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 4. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. B. Sundharamurthy	Assistant Professor	Computer science and	sundharamurthy@vmkvecedu.in
	WIT: D. Sundharamuttry	Assistant 1 10105501	engineering	
2	Mr. S. Senthilkumar	Assistant Professor	Computer science and	senthilkumars@vmkvec.edu.in
	WII. S. Sentilikullai	Assistant Floresson	engineering	sentilikumars@vinkvec.edu.m

17BTCC02	CELL BIOLOGY	Category	L	Т	Р	Credit
		CC	3	0	0	3

Cell biology deals with the structures, organization and functions of the cells and organelles, their physiological properties, life cycle, metabolic processes, signalling pathways and their interactions with their environment at microscopic and molecular level. The subject helps to gain knowledge in fundamentals of cells to all biological sciences, for research in bio-medical fields such as cancer, and other diseases and also in research related to genetics, biochemistry, molecular biology, immunology, and developmental biology.

PRER	QUIS	[TE -]	NIL												
COUI	RSE O	BJEC'	TIVE	S											
1	To un	dersta	nd the	e struc	tures a	and pu	rposes	of ba	sic con	nponen	ts of pr	okaryot	tic and o	eukaryot	ic
	cells,	especi	ially r	nacron	nolecu	ıles, m	nembra	nes, a	nd org	anelles					
2	Stude	nts wi	ll und	lerstan	d how	these	cellula	ar com	ponen	ts are u	sed to	generate	e and ut	ilize ene	rgy in
	cells	and the	e cono	cepts b	ehind	cell d	ivision	•							
3	To gi	ve an o	overv	iew of	cell si	ignalir	ng mol	ecules	and th	neir rece	eptors.				
4	To un	dersta	nd the	e pathy	ways a	and int	racellu	lar sig	gnal tra	ansducti	on				
5		ake stu s in cel			ply the	eir kno	wledg	e of co	ell biol	logy to s	selecte	d examj	ples of o	changes	or
COUI	RSE O	UTCC	OMES	5											
On the	e succes	sful c	omple	etion of	f the c	ourse,	studer	nts wi	ll be at	ole to					
CO1.]	List the	funda	ment	al featu	ares of	f proka	aryotic	and e	ukaryo	otic cell	s, their	structu	re,	Unders	tand
compo	osition a	and rol	le of c	ell me	mbrai	nes and	d the m	najor s	tages o	of the ce	ell cycl	e			
CO2. '	To und	erstand	d the s	specifi	c proc	esses	and pro	oteins	involv	red in m	embra	ne trans	port	Unders	tand
CO3. 7	To und	erstand	l aboı	ıt inter	cellul	ar che	mical 1	nesse	ngers,	receptor	r subcl	asses ar	nd	Unders	tand
their p	ossible	uses i	n cell	signal	ling.										
CO4. '	To anal	yze th	e mec	hanisr	ns by	which	differe	ent me	essenge	er-recep	otor inte	eraction	IS	Apply	
bring a	about lo	ong or	short	-term c	change	es in co	ell stat	e.							
CO5. '	To Inte	grate t	he dif	ferent	levels	of bio	ologica	l orga	nizatic	on, from	molec	cules to	cells	Apply	
to orga	anisms.														
		•		-		ogical	analys	is in t	he asse	essment	and ev	aluatio	n of	Apply	
issues	in cell	biolog	y and	genet	ics.										
MAPI	PING V	VITH	PRO	GRA	MME	OUT	COM	ES AI	ND PR	OGRA	MME	SPEC	IFIC O	UTCON	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	М	S	L	L	-	-	-	-	-	-	-	-	-
CO2	L	М	М	L	L	L	-	-	-	-	-	-	-	-	-
CO3	L	М	М	L	М	L	М	-	-	-	-	-	-	-	-
CO4	М	М	S	S	М	L	-	-	-	-	-	-	S	М	М

CO5	М	М	S	S	М	М	М	-	-	-	-	L	-	М	-
CO6	М	М	S	S	S	S	-	-	-	-	-	-	-	S	М
0 0	3.6	N <i>T</i> 1'	т	т											

S- Strong; M-Medium; L-Low

SYLLABUS

CELL AND FUNCTIONS OF THE ORGANELLES

General structure – Prokaryotic and eukaryotic cell, Molecular organization of the cell membrane, Cell membrane – Proteins, Lipids and Carbohydrates, Cell organelles, Cytoskeletal proteins, Types of cell functions, Cell cycle - Mitosis and meiosis, apoptosis.

CELL MEMBRANE AND PERMEABILITY

Passive and active transport, Permeases, Sodium potassium pump, Ca2+, AT Pase pumps, Lysosomal and vacuolar membrane, Co-transport, Uniport, Symport, Antiport, Protein localization & Membrane trafficking, Endocytosis and exocytosis, Entry of viruses and toxins into cells.

CELL SIGNALING MOLECULES AND THEIR RECEPTORS

Cytosolic, Nuclear and membrane bound receptors, Examples of receptors, Modes of cell – cell signaling: Autocrine, Paracrine and Endocrine models of action, Secondary messenger's molecules, Quantitation and characterization of receptors.

PATHWAYS AND INTRACELLULAR SIGNAL TRANSDUCTION

Signal amplification – Different models of signal amplifications, Cyclic AMP, Role of inositol phosphates as messengers, Biosynthesis of inositol triphosphates, Cyclic GMP and G proteins role in signal transduction, Calcium ion flux and its role in cell Signaling, Current models of signal amplification, Phosphorylation of protein kinases.

CELL CULTURE

Techniques for the propagation of prokaryotic and eukaryotic cells, Cell line, Generation of cell lines, Maintenance of stock cells, Characterization of cell, Morphological analysis techniques in cell culture, Explant cultures, Primary cultures, Contamination, Differentiation.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi @ vmkvec.edu.in

170110505	SMART MATERIALS	Category	L	Т	Р	Credit
17PHBS05		Basic Sciences	3	0	0	3

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PRERQUISITE

NIL

COU	RSE O	BJECT	TIVES												
1	1			perties	of sma	rt mate	erials								
2	To de	monst	rate the	e struct	ure of o	crystal	ine ma	aterials							
3	To ex	amine	the syn	nthesis	of Nar	io mate	erials								
4	To ex	plain t	he proj	perties	and cla	ssifica	tion of	magne	etic ma	terials					
5	To ou	tline tl	ne conc	cept of	superc	onduct	ing ma	terials	and th	eir prop	erties				
COU	RSE O	UTCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents	will be	able to)					
CO1. I	Utilize	the sm	art mat	erials f	or desi	gning	equipn	nents				Apply			
CO2. 1	Interpre	t the st	tructur	e of cry	stallin	e mate	rials					Apply			
CO3. 1	Develop	p equip	ments	using	nanoma	aterials						Analyze			
CO4. 1	Use the	proper	rties of	magne	etic ma	terials	in desi	gning o	equipm	nents		Apply			
	Develo											Analyze			
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	ROG	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	S	S	S	Μ	S				М			Μ			
CO2	S	М	S	М	S				М			М			
CO3	S	S	S	S	S				S			М			
CO4	S	М	S	М	S				М			М			
CO5	S	S	S	S	S				S			М			
S- Stro	ong; M-	Mediu	m; L-I	Low											

SYLLABUS

SMART MATERIALS:

Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS:

Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS:

Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Solgel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS:

Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS:

Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2011.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2009.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. Senthil Kumar	Professor & Head	Physics	senthilbdu@gmail.com
2	Dr. R. Sethupathi	Associate Professor	Physics	sethupathivmkv@gmail.com

17BTCC01	ESSENTIALS OF BIOCHEMISTRY	Category	L	Т	Р	Credit
		CC	3	0	0	3

Essentials of biochemistry deals with the study of biomolecules found in living organism. The course exposes the students to classification, properties, basic structure and functions of biomolecules like carbohydrate, amino acid, lipids, nucleic acid and vitamins. Knowledge of this course will enable students to understand the importance of biomolecules and give awareness to the various diseases associated with the deficiency of biomolecules

PRERQUISITE - NIL

COUR	RSE OBJECTIVES
1	To understand the basic structure, properties and functions of Biomolecules
2	To emphasize the role of biomolecules by providing basic information on specific metabolic
	diseases.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. I	Explain	the cl	assifica	ation p	ropertie	es and	biolog	ical ir	nporta	nce of		Un	derstan	ıd	
carboh	ydrates	8													
CO2. 1	Discuss	s the cla	assifica	ation, n	omenc	lature,	struct	ure ar	ld prop	erties	of fatty	un Un	derstan	d	
acids															
CO3. 1	Knowle	edge ab	out an	nino ac	ids and	l protei	ins					Un	derstan	d	
CO4. 1	Know a	about tl	ne imp	ortance	of nu	cleic a	cid					Ap	ply		
CO5. 1	Disting	uish th	e vitan	nins an	d its de	eficien	су					Un	derstan	d	
CO6. 1	Know a	about tl	ne imp	ortance	of mi	inerals						Un	derstan	ld	
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCC	DMES	AND	PRO	GRAM	IME S	PECI	FIC OU	JTCOM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO02	PSO3
CO1	S	-	L	-	-	-	-	-	-	-	-	-	L	L	-
CO2	S	-	L	-	-	_	-	_	-	-	-	-	L	L	_

CO2	S	-	L	-	-	-	-	-	-	-	-	-	L	L	-
CO3	S	-	L	-	-	-	-	-	-	-	-	-	L	L	-
CO4	S	-	L	-	-	-	-	-	-	-	-	-	L	L	-
CO5	S	-	L	-	-	М	-	-	-	-	-	-	L	L	-
CO6	S	-	L	-	-	М	-	-	-	-	-	-	L	L	-

S- Strong; M-Medium; L-Low

SYLLABUS

CARBOHYDRATE

Biological importance, Classification and Properties of Monosaccharides, Disaccharides and Polysaccharides (Starch, Glycogen, Cellulose and their derivatives, Chitin, Peptidoglycans, Glycoaminoglycans, Glycoconjugates).

LIPIDS

Biological importance, Classification. Fattyacids: classification, nomenclature, structure and properties of

saturated and unsaturated fatty acids. Essential fatty acids, Triacylglycerols: nomenclature, physical properties, chemical properties. Glycerophospholipids (lecithins, cephalins, phosphatidyl serine, phosphatidyl inositol, sphingomyelins).

AMINO ACIDS AND PROTEINS

Amino acids – Classification, Structure, Properties and Biological importance. Proteins – Classification, Structural organization of Proteins – Primary, Secondary (α -helix, β -pleated structure, triple helix), Tertiary and Quaternary (Myoglobin and Hemoglobin), Factors stabilizing, Properties and Biological importance, Denaturation and Renaturation.

NUCLEIC ACIDS

Nucleosides and nucleotides, configuration and conformation, Composition of RNA and DNA, Physicochemical properties of nucleic acids – effect of alkali, acid and heat (denaturation and renaturation), features of phosphodiester bond, endonucleases. Complementary base pairing, secondary structure of RNA, features of DNA double helix (Watson-Crick model), Nucleoproteins – histone and nonhistone

VITAMINS

Nutritional importance of vitamin, classification, source, daily requirements and functions, Deficiency symptoms – hypervitaminosis of fat soluble vitamins. Nutritional importance of Minerals – classification, source, daily requirement and deficiency symptoms.

TEXT BOOKS

1. "Fundamentals of Biochemistry", Jain J.L., Sunjay Jain and Nitin Jain., S.Chand & Company Ltd., 6th Edition, 2005.

REFERENCES:

1. "Text Book of Biochemistry for Medical Students", Ambika Shanmugham, Lippin cott Williams & Wilkins, 7th Edition, 2012.

2. "Biochemistry", Rastogi S.C. Mc. Graw-Hill Publishing Company Ltd, 6th Edition, 2007.

3. "Principles of Biochemistry", David L. Nelson and Michael M. Cox, W. H. Freeman and Company, 4th Edition, 2005.

4. "Text book of Biochemistry", Sathyanarayana U and Chakrapani U., Uppala Author Publishers Interlinks, 3rd Edition, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

170	CSES85			PROG	RAMN	/ING I	N C L	AB			Category	y L	Т	Р	Credit
											ES	0	0	4	2
This L require		e of a	lgorith												lems that problem
PRER NIL	EQUISI	TE													
COUR	RSE OB.	JECTI	VES												
	Gain kn	owledg	ge abou	t basic'	C' lang	guage s	yntax a	nd sema	antics to	write '	C' progra	ms and u	se conc	epts su	ch as
1.	variable	s, conc	litional	and iter	ative e	xecutio	n metho	ods etc.							
2.	Unders	tand th	e funda	mentals	s of Stri	ng han	dling fu	inctions	, structu	ires and	pointers.				
3.	Underst	and the	e conce	pts of fi	le hand	ling.									
COUR	RSE OU	ГСОМ	IES												
	success			of the	course,	studen	ts will t	be able t	0						
CO1.De	esign alg	orithm	s for th	e given	problei	n speci	fication	18				Analyze			
СО2.Тс	write si	mple p	orogram	s and u	ndersta	nd the b	basics o	f C.				Apply			
CO3.De	evelop C	progra	ams for	array so	orting, s	searchir	ng and s	structure	e			Apply			
	write C	<u> </u>					-					Apply			
					- î		-			noont		Apply			
	o write C PING W					-			-	-	ECIFIC O		IES		
COs	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9		PO11	PO12	PSO1	PSC	D2 PSO3
CO1	L	L		-	-	-	-	-	-	-	-	-	S	M	
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	М	L
CO3	S	S	S	-	-	-	-	-	-	-	-	-	S	L	-
CO4	S	S	S	-	-	-	-	-	-	-	-	-	S	М	_
CO5	S	М	М	-	-	-	-	-	-	-	-	-	S	М	_
S- Stro	ong; M-N	lediun	n; L-Lo	W											
Develo 1. 2.	ABUS operiment op C prog Write a Write a Write a	grams i C Prog C Prog	gram to gram to	generat	e Fibon	acci Se	ries usi	ng for l							
	Write a						-	*							
a) Find	l the grea	atest of	three r												
b) Fin	d the gre	atest o	f three	number	s using	g condit	ional o	perator.							

- 5. Write a C program for finding the roots of a given quadratic equation using conditional control statements.
- **6.** Write a C program to

a) Compute matrix multiplication using the concept of arrays.

- b) Illustrate the concept of string handling functions.
 - 7. Write a C program to find the largest element in an array using pointers.
 - 8. Write a C program to read and write data using file concepts.
 - 9. Write a C program to store employee details using the concept of structures.

REFERENCES

- **1.** Laboratory Reference Manual.
- 2. Balaguruswami. E, "Programming in C", TMH Publications, 1997
- **3.** Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- **5.** Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mr.B.Sundaramurthy	Associate Professor	Associate Professor	Computer Science and Engineering
2.	Mrs.T.Narmadha	Assistant Protessor	Computer Science and Engineering	narmadhat@vmkvec.edu.in

CC0042PREAMBLEThe course is a laboratory course that focuses on developing the skills of the students by providing hands on training in various techniques in BiochemistryPREREQUISITE - NILCOURSE OBJECTIVES1To Understand laboratory safety and standard operating procedures of common laboratory equipment's.2To impart skills in preparation of solutions and biological buffers.3To extend knowledge in analysis & estimation of biomoleculesCOURSE OUTCOMESOn the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safelyApplyCO3. Isolate biomolecules from various sourceCO4. Determine the quality and quantity of biomoleculesAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOSP01P02P03P04P05P06P07P08P09P010P011P012PS01PS02PS03Co1SMSMM-	17	BTC	C 81		BIO	CHE	MIST	RYL	AB		Categ	ory	L	r	Т	Р	Credit
The course is a laboratory course that focuses on developing the skills of the students by providing hands on training in various techniques in Biochemistry PREREQUISITE - NIL COURSE OBJECTIVES 1 To Understand laboratory safety and standard operating procedures of common laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES F06 F07 F08 F09 F01 F01 F02 FS02 FS03 C01 S - - M S M - - - M -		_			_	-					CC	1	0		0	4	2
hands on training in various techniques in Biochemistry PREREQUISITE - NIL COURSE OBJECTIVES 1 To Understand laboratory safety and standard operating procedures of common laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to C01. Demonstrate safe laboratory practices and handle the equipment safely Apply C02. Prepare solutions and biological buffers Apply C03. Isolate biomolecules from various source Analyze C04. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES OUT PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 C01 S - - M S M - - - M -	PRE	AMB	LE	•													
PREREQUISITE - NIL COURSE OBJECTIVES 1 To Understand laboratory safety and standard operating procedures of common laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M - - - M - - - M - - - M - - -	The c	course	is a la	aborat	tory c	ourse	that fo	cuses	on dev	velopir	ig the s	kills of	f the stu	ıden	ts by	v prov	iding
COURSE OBJECTIVES 1 To Understand laboratory safety and standard operating procedures of common laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M -	hands	s on tr	aining	g in va	arious	techr	iques	in Bio	chemi	stry							
1 To Understand laboratory safety and standard operating procedures of common laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M -	PRE	REQ	UISIT	' E - N	IIL												
laboratory equipment's. 2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M - - - M - - - M - - - M - - - M - - - M - - - M - - - M	COU	RSE	OBJE	ECTI	VES												
2 To impart skills in preparation of solutions and biological buffers. 3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M -	1		To U	nders	stand l	abora	tory sa	fety a	nd star	ndard	operati	ng proc	cedures	of c	comn	non	
3 To extend knowledge in analysis & estimation of biomolecules COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S - - M S M - - - M -			labor	atory	equip	ment	'S.										
On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 CO5 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M -	2		To in	npart	skills	in pro	eparati	on of	solutio	ns and	biolog	gical bu	ffers.				
On the successful completion of the course, students will be able to Apply CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - - M -	3		To ex	ktend	know	ledge	in ana	lysis a	& estin	nation	of bior	nolecu	les				
CO1. Demonstrate safe laboratory practices and handle the equipment safely Apply CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC Analyze OUTCOMES CO3 CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 S - - M S M - - - M - - - - M - - - M - - - - M - - - - M - - - - M - - - - M - - - - - M - - - - - M - - - - - M - - - - M	COU	RSE	OUT	COM	ES												
CO2. Prepare solutions and biological buffers Apply CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC Analyze OUTCOMES CO3 CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S - - M S M - - - M - - - M - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - - - M - - - - - M - - - - M - - - - - M - - - </td <td>On th</td> <td>e suc</td> <td>cessfu</td> <td>l com</td> <td>pletic</td> <td>on of t</td> <td>he cou</td> <td>rse, st</td> <td>udents</td> <td>will b</td> <td>e able</td> <td>to</td> <td></td> <td></td> <td></td> <td></td> <td></td>	On th	e suc	cessfu	l com	pletic	on of t	he cou	rse, st	udents	will b	e able	to					
CO3. Isolate biomolecules from various source Analyze CO4. Determine the quality and quantity of biomolecules Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C01 S - - M S M - - - M -	CO1.	Dem	onstra	te saf	e labo	orator	y pract	ices a	nd han	dle the	equip	ment sa	afely		App	oly	
COLSPAN="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6"C	CO2.	Prepa	are sol	ution	s and	biolo	gical b	uffers							App	oly	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFICOUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO1SMSMM-	CO3.	Isola	te bioi	nolec	ules f	rom v	various	sourc	e						Ana	alyze	
OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S - - M S M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - - M - - - - - M - - - - - M - - - - - - - M - - - - - M - - - - - - - - M - - - - - -<	CO4.	Dete	rmine	the q	uality	and c	uantity	y of bi	iomole	cules					Ana	alyze	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S - - M S M - - - - M - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - M - - - - - M - - - - - - - M - - - - - - - - - - -	MAP	PINO	G WI	TH P	ROG	RAM	ME O	UTC	OMES	AND	PROG	GRAM	ME SI	PEC	IFIC	2	
CO1 S M S M M -	OUT	COM	IES														
	COS	_	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	D1	PSO2	PSO3
	CO1				-	М	S	М	-	-	-	-	-		-		-
	CO2	S	S	M	-	-	-	-	-	-	-	-	-		-	S	-
	CO3	~					-	-	-	-	-	-	-	-			-
CO4 S S S - - - - - - M - S- Strong; M-Medium; L-Low - - - - - - M -	CO4	-				S	-	-	-	-	-	-	-		-	М	-

SYLLABUS

1. pH measurements and Buffer preparations.

TITRIMETRIC EXPERIMENTS

- 2. Estimation of Ascorbic acid by Titrimetric method using 2, 6 Dichloro phenol indophenols.
- 3. Determination of Saponification value of Edible oil
- 4. Determination of Acid number of Edible oils.
- 5. Determination of Iodine value of Oil.

BIOCHEMICAL PREPARATIONS

- 6. Isolation of Chloroplast from Spinach leaves.
- 7. Cheese Production from Milk.
- 8. Casein from Milk.
- 9. Starch from Potato.

REFERENCES:

1. Laboratory Manual.

000				
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

17B	BTCC8	32		CEL	L BIC	LOG	Y LAB		C	ategor	y	L	Т	Р	,	Credit
		-		022		200				CC		0	0	4		2
PRE	AMBI	LE														
To of	fer han	ds on	trainii	ng in tl	ne areas	s of cell	culture,	cell id	lentific	cation a	nd to d	emonst	rate v	vario	us tech	niques t
learn	the mor	rphol	ogy, ic	lentific	ation a	nd prop	pagation	of cell	s.							
PRE	REQU	JISIT	Γ Ε - Ν	IIL												
COU	RSE (OBJI	ECTI	VES												
1	Demo	onstra	ite woi	king p	rincipl	es of m	icroscop	y								
2					-		with cell	-								
3	Diffe	rentia	te the	cells h	v stain	ing tech	nniques.									
4					•	of mitos	-									
5	-				Ū.	d cells.										
-	URSE (• •	51 0100	u cens.										
					n of the	COURSE	, student	s will 1	he ahle	e to						
				•			erilizatio						Under	retan	hd	
					-		ir microe		-				Under			
							ental res			hinlo	v		Analy			
	4. Cate	-				-			01 001	1010102	9		Analy			
		•		•			cell e.g. c	ell div	visions				Analy			
				-	-		JTCOM				RAMN		•			
	COM															
COS		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-			-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	-	-+	М	-
CO3	М	S	-	L	-	-	-	-	-	-	-	-	L		L	-
CO4	S	М	-	-	-	-	-	-	-	-	-	-	-		-	-
CO5	М	L	-	-	-	-	-	-	-	-	-	-	-			-
S-St	rong; N	A-Me	edium	; L-Lo	OW		.						-			
SYL	LABU	S														

- - 1. Introduction to principles of sterilization techniques and cell propagation.
 - 2. Principles of Microscopy.
 - 3. Isolation of Cell organelle Mitochondria, Microtubules, Actin and Myosin filaments.
 - 4. Cell Fractionation Separation of peripheral blood mononuclear cells from blood.
 - 5. Cell staining Gram's staining, Leishman staining
 - 6. Cell counting Tryphan blue assay, Alamar blue assay.
 - 7. Osmosis and Tonicity.
 - 8. Staining for different stages of mitosis in Allium cepa (Onion).

REFERENCES

- 1. Rickwood, D. and J.R. Harris "Cell Biology: Essential Techniques", Johnwiley, 1996.
- 2. Davis, J.M. "Basic Cell Culture: A Practical Approach", IRL, 1994

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant	Biotechnology	nirmala@vmkvec.edu.in
		Professor		
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

SYLLABUS SEMESTERS III TO VIII

CATEGORY 'A' – FOUNDATION COURSES – HS, BS AND ES COURSES (i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT COURSES)

17EGHS02	BUSINES	S ENG	GLISH	[(Category	L	Т	Р	Credit
							HSS	3	0	0	3
PREAMPLE											
Language is one of the most											
languages English, the interna							ler for th	e advai	ncement	of kno	wledge
in different fields and as a tele	escope to v	iew the	e drean	n of the	e future	2					
PREREQUISITE											
NIL COURSE OBJECTIVES											
1To impart and enhance	e cornorate	comn	nunica	tion							
2 To enable learners to	*										
3 To build confidence in					siness	rontext					
4 To make them experts			-		5111035	context.					
5 To assist students und					all forr	ns of co	mmunia	ration			
6 To equip students with				-			mmanne	anon			
COURSE OUTCOMES	ii empioyu	u onity u	.nu joo	searen	III <u>S</u> SKI	115					
After Successful completion of	of this cour	se the	studer	nts will	be abl	e to:					
CO1. Communicate with a rai						• •••		Unders	and		
CO2. Students will undergo	<u> </u>					on skill		Apply			
consider how own communication								11 2			
CO3. Strengthening of oral ar								Apply			
CO4. Create interest among	the studen	ts abo	ut a to	pic by	exploi	ring tho	ughts	Underst	and		
and ideas				1 2	1	U	U				
CO5. Make the students to	start with	pleasir	ng note	e and	make	them to	give	Apply			
different ideas		_	-				_				
CO6. Make them in better per								Apply			
MAPPING WITH PROGRA	AMME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS PO1 PO2 PO3 P	O4 PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO	PSO	2 PS
						0					03
CO1 L M M	- M	L	М	М	М	S	-	М	-	-	-
CO2 L	L -	М	-	-	-	S	М	L	-	-	-
CO3 - L M		-	L	-	М	S	-	-	-	-	-
СО4 М М -	- L	S	-	М	S	S	-	L	-	-	-
CO5 M		М	-	М	М	S	-	-	-	-	-
CO6 S M M		S	М	-	-	S	-	-	-	-	-
S- Strong; M-Medium; L-Lov	N										

SYLLABUS

SUBJECT -VERB AGREEMENT

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs - E- Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION

Corporate Communication - Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles -Project Proposals-Making Presentations on given Topics - Preparing Power Point Presentations

CRITICAL READING

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing

TEXTBOOK

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

Course	e Designers:	
S.No.	Name of the Faculty	Mail ID
1.	Dr.P.Saradha / Associate Professor - English	saradhap@vmkvec.edu.in

17	MBHS	04		Т	OTAL	QUAL	JTY		C	ategory	L	Т	Р	Credit
]	MANA	GEME	ENT			HSS	3	0	0	3
PREAM	IBLE:										·		<u> </u>	
Total Q	Juality	Mana	gemer	nt (TQ	M) is	a mana	igemer	nt appr	oach d	escribes	to long	g–term	succes	s throug
custome	er satisf	faction	and, i	s an in	tegrati	ve phil	osoph	y of ma	anagen	nent for	continu	lously	improv	ing the
quality	of prod	lucts ar	nd proo	cesses.										
PRERE	QUISI	TE: No	t Requ	ired										
COURS	E OBJ	ECTIV	/ES:											
	1. To u	ndersta	and the	e intro	ductior	n about	Quali	ty and	Total (Quality 1	Manage	ement.		
	2. To u	ndersta	and the	e TQM	l princi	ples.								
	3. To u	ndersta	and the	e statis	tical pi	rocess	contro	1						
	4. To ir	mpart t	he var	ious T	QM to	ols								
	5. To u	ndersta	and the	e quali	ty syste	ems.								
COURS	E OUT	COM	ES:	-										
After su	ccessful	compl	etion o	f the co	ourse, st	tudents	will be	able to)					
	CO1: U	Jndersta	and the	impor	tance of	f quality	y and T	'QM at	manag	erial leve	el.	1	Understa	und
	CO2: E			L		-		-					Apply	
	CO3: A	-			-		-	o of stat	istical	tools.		-	Analysir	ıg
	CO4: E		•		-]	Evaluate	
	CO5: P	-	-	•	•	nent Sy	vstems i	in a dif	ferent				Apply	
organization environment														
MAPP	ING W	VITH I	PROG	RAM	ME O	UTCC	MES	AND	PROG	GRAMN	1E SPI	ECIFI	C OUT	COME
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	M	L	L	L	L	L	L	L	L	M	L	L		
CO1		1 1				T	L	М	М	L	L	L		
CO1 CO2	S	S	М	L	Μ	L								
CO2		~						М	М	L	L	М		
	S S M	S S S	M S S	L M L	M S M	L M L	L L L	M M	M M	L L	L L	M M		

SYLLABUS:

S- Strong; M-Medium; L-Low

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management-Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers. **TQM PRINCIPLES**

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals - Measures of central Tendency & Dispersion- Population

and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma-New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	asmanimba@gmail.com
2	B. Rajnarayanan	Assistant Professor	Management Studies	Rajsachin.narayanan@gmail.com

17EG	HS82	P	ROFE PE					ATION PMEN		• C	ategory		Т	Р	Credi	it
											HSS	0	0	2		_
To dev	velop st	udents	with g	ood pr	esentat	tion and	d writii	ng skill	s (Prof	essiona	lly & te	chnica	lly). A	Articu	late and	1
enunci	iate wo	rds and	l senter	nces cle	early a	nd effe	ctively	. Deve	lop pro	per liste	ening sk	ills. U	nders	tand o	lifferen	t
writin	g techn	iques a	nd styl	es base	ed on tl	he com	munic	ation b	eing us	sed.						
PRER	REQUI															
COU	RSE O	NIL														
1			commu		on and	norcon	ality of	zilla								
$\frac{1}{2}$									mina /	researc	hinachi	lition	proco	ntatio	n abrilla	
2			writing		is, uaii		prove s	5011-1Ca	innig /	leseare	ining abi	inues,	prese	mano	II SKIIIS	
3			studen	/	lovabil	itv skil	lls.									
4			commu					ing ski	lls.							
5										values.						
6			cover l				-									
COU	RSE O						<u> </u>			<u> </u>						
On the	e succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to	1						
CO1.	Improv	ve com	munica	ation ar	nd pers	onality	[,] skills.					Apply				
								-		ven task		Apply				
				and c	onfider	nce the	reby er	nhancir	ng emp	loyabili	ty	Apply				
	of the s															
	Train th									1.		Apply				
										eading t		Apply				
										te situati RAMM		Under			IEC	
	-									-		-				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSC	01	PSO2	P
												12				S
																3
CO1	Μ	Μ	-	L	Μ	Μ	Μ	-	Μ	S	-	Μ				
CO2	Μ	Μ	L	-	-	-	-	L	S	Μ	L	-				
CO3	-	-	-	-	L	L	Μ	-	S	S	Μ	-				1
CO4	S	L	L	L	-	L	-	Μ	-	Ē	-	Μ				
CO5	-	-	-	-	L	-	-	-	-	-	L	-				
CO6	S	-	L	L	L	-	L	-	Μ	S	-	Μ				
S- Stro	ong; M-	-Mediu	ım; L-I	LOW												
SVI I	ABUS															

SYLLABUS

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting

errors.

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

UNIT IV. SPEAKING SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

TEXTBOOK

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria & Sons, New Delhi, Rep''nt 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C. and Krishna Mohan, Tata Mc Graw – Hill.

Cours	e Designers:	
COUF	RSE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1.	Dr. P.Saradha/Associate Professor - English	saradhap@vmkvec.edu.in

CATEGORY 'A' – FOUNDATION COURSES – HS, BS AND ES COURSES (ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY COURSES)

17CHBS03	BIOORGANIC CHEMISTRY	Category	L	Т	Р	Credit	
		FC (BS)	3	0	0	3	

Bioorganic Chemistry explains the study of living cell chemistry in an organism. The Bioorganic study gives the knowledge of proximity effects in organic chemistry, molecular recognition and the supramolecular systems. It also deals analogy between organic reaction, energy transfer and biochemical transformations. It gives the basic knowledge of enzymes, peptides, proteins amides and metals and their roles. Acquiring the knowledge of concepts and principles will facilitate students to understand how they work in the research fields and show the way to the higher levels of various fields.

PREREQUISITE - NIL

1	To	acqui	ire the	knowl	edge of	f living	g cells	chemi	istry.						
2	To	study	the pr	oximi	ty effec	ets in o	rganic	chem	istry,	molecu	lar reco	gnition	and th	ne	
	su	pramo	lecular	r syster	ms - co	ncepts									
3	To	know	the in	nporta	nce of o	enzym	e catal	lysis ir	n the l	iving ce	ells.				
4	To	unde	rstand	the var	rious re	eaction	s of m	netal ic	ons in	protein	s and bi	ologica	l mole	cules	
5	To	apply	the ki	nowled	lge of e	enzyme	es desi	igning	in mo	olecular	theft an	nd stero	id tem	plates	5.
6	To	unde	rstand	the bio	omodel	s of ph	otosy	nthesis	s and o	energy	transfer	•			
COU	RSE (OUTC	COME	S											
On th	e succ	essful	compl	etion of	of the c	ourse,	stude	nts wil	l be a	ble to					
CO1.	Discu	ss abo	ut the	chemis	stry of	living	cells					Uno	derstar	nd	
CO2.	Descr	scribe the Proximity effects in organic chemistry, molecular Understand													
recog	nition	and th	ne supr	amoleo	cular sy	stems	- cone	cepts							
CO3.	Gener	alize t	the imp	portanc	e of er	nzyme	cataly	sis in	the liv	ing cell	s.	Ap	ply		
CO4.	Emplo	by the	variou	is react	tions of	f metal	ions i	in prot	eins a	nd biol	ogical	Ap	ply		
mole	cules														
					0					enzyme		App			
CO6.	Recog	gnise t	he bio	models	s of pho	otosynt	hesis	and er	ergy (transfer	•	Une	derstar	nd	
MAP	PING	WIT	H PRO	OGRA	MME	OUT	COM	ES AN	ND PF	ROGRA	MME	SPEC	IFIC (OUTO	COME
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO3
CO1	S	М	М	_	_	М	_	_	_	_	_	S	_	2	_
CO2	M	S	M	L	М	M	-	-	-	-	-	M	-	-	-
CO3	S	L	М	L	L	S	М	-	-	-	-	М	-	-	-
CO4	М	-	L	-	М	М	L	-	-	-	-	-	-	-	-
CO5	М	L	S	М	М	-	-	-	-	-	-	S	-	-	-
CO6	S	-	S	L	S	-	-	-	-	-	-	М	-	-	-

SYLLABUS

INTRODUCTION TO BIO-ORGANIC CHEMISTRY

Basic Considerations - Proximity effects in Organic chemistry -Molecular recognition and the supramolecular systems

BIO - ORGANIC CHEMISTRY OF AMINO ACIDS AND PEPTIDES

Chemistry of living cells, Analogy between organic reactions and Biochemical Transformations, Chemistry of the peptide bond, Asymmetric synthesis of amino acids - Retrosynthetic analysis, Transition state analogues.

ENZYME CHEMISTRY

Introduction to catalysis - Mutifunctional, Acid - base and Covalent catalysis, Introduction to enzymes - Chymotrypsin, Pyruvate dehydrogenase, Ribonuclease, Lysozyme, Enzymes in synthetic organic chemistry, Design of molecular clefts.

ENZYME MODELS

Host guest Complexation chemistry - Cyclodextrin, Development in Crown ether chemistry - Azo Crown ethers and Lariat Crown ethers, Enzyme design using steroid templates -, Co - enzyme chemistry- NAD, NADP, FAD and pyridoxal phosphate.

METAL IONS IN BIOLOGICAL SYSTEMS

Metal ions in proteins and biological molecules - Carboxy peptidase and role of zinc, Hydrolysis of amino acid esters, amides and peptides, Iron and oxygen transport, Biomodels for photosynthesis and energy transfer.

TEXT BOOKS:

1. Zubay, G., 1987. Biochemistry. 2nd Edn., Maxwell Macmillan International Editions.

2. Dugas, H., 1989. Bio-organic Chemistry - A Chemical Ap-proach to Enzyme Action. Springer Verlag.

3. David Van Vranken, Gregory A. Weiss., 2012. Introduction to Bioorganic Chemistry and Chemical Biology. (1st Edition) New York: Garland Science.

REFERENCE BOOKS:

1. Mathew, Van Holde and Athern, 2000. Biochemistry. Pearson Publishers Ltd.

2. Page, M. I. and Williams, A., 1997. Organic and bio-organic mechanisms. Pearson India Edition.

3. Ariya, K. and Kumtake T., 2006. Supramolecular chemistry : Fundamentals and applications. Springer India Edition.

4. Palmer, Trevor, 2004. Enzymes : Biochemistry, biotechnology, clinical chemistry. East - West Press Pvt. Ltd.

5. Fersht, Alan, 1998. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Freeman.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Shanthi	Professor & Head	Chemistry	shanthi@vmkvec.edu.in
2	Mr.A.Gilbert sunderraj	Assistant Professor	Chemistry	gilbertsunderraj@vmkvec.edu.in

17CI	HBS01	E	nviron (C				& Eng ranch	-	ng	Cate	gory	L	Т	Р	Credit
			,					,		FC	< / /	3	0	0	3
													chemica		
													incorpo		
													tal and		
													gineerin	g foc	uses on
	nable de	-	ment fo	or imp	rovin	g env	ironme	ental q	uality 1	n every	/ aspec	l.			
PKEI	REQUI		TT												
COU	RSE O		IL	1											
1			e awar		ofon	vironr	nont at	udios	and its	00000					
$\frac{1}{2}$										-	e natura	1 raco	117000		
3			learnei		-							ii ieso	urces.		
<u> </u>		-	ie impo					ecosys	tem an	u 100u	chann.				
5								roog	oncodu	oncos	ndita	ontro	l measur	00	
6									-			Johno	measur	5.	
7			the way								anda	o o i o l			
		<u> </u>		s to k	now t	ne urt	ban en	ergy re	fated p	roblem	is and s	ocial	issues.		
	RSE O			ion of	41		atrada		1	1					
	e succes										aatiana	of 1	Te danata		
	Discuss a yle on th				unity	01 1110	e în al	1115 101	ms, in	e impli	cations	5 01	Understa	na	
	-					nizo th		ol roon	onsihil	ityin			Apply		
	Initiate (onmenta			s and i	ecogi	nze u		arresp	Olision	ity iii		4	Apply		
	llustrate			ce of	ACOST	retem	and hi	odiver	vity				Apply		
	Interpre									anact			Apply		
	Demons									iipaet.			Apply		
	Recogniz									onmer	nt		Understa	nd	
	Schedul									opiner			Apply	nu	
			1							OGRA	MMF		CIFIC O		OMES
1417 11	I MO		INO	J I N I XI V		001	COM		DIK	JOINT		JI L(511125
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	М	L	-	-	S	S	S	-	-	-	S			
CO2	S	М	М	-	-	S	S	S	-	-	-	S			
CO3	S	L	М	-	-	S	S	S	-	-	-	S			
CO4	S	S	S	L	-	S	S	S	-	-	-	S			
CO5	S	S	S	М	-	S	S	S	-	-	-	S		1	
CO6	S	S	S	М	-	S	S	S	-	-	-	S		1	
CO7	S	S	S	М	-	S	S	S	-	-	-	S		1	
CO8	S	М	S	М	-	S	S	S	-	-	-	S			
S- Str	ong; M	-Mediu	ım; L-l	Low									·	•	-
SVI	LABUS														
	Γ-Ι ΕΝV	IRON	IMEN	T AN	D N Δ	TUR	AL R	ESOU	RCES						
										iess- F	orest re	esourc	es, mine	ral res	ources
	Simon	2011		Jespe	~ m	-1-2-10		- 40110		1000 1	5105010		-5, 11110		

water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development

UNIT-II ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

UNIT-III ENVIRONMENTAL POLLUTION

Pollution - Definition , man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people -Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board **UNIT-V HUMAN POPULATION AND ENVIRONMENT**

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

Text Book

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.

2.Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I & II, Enviro media.

4. Environmental Science and Engineering by Dr. J. Meenambal ,MJP Publication , Chennai Gilbert M. Masters : Introduction to Environmental Engineering and Science , Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G. Jr Environmental Science Wadsworth Publishing Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

	e Designers:		
COUF	RSE DESIGNERS		
S.No	Name of the Faculty	Mail ID	
•			
1.	Dr.T.Shanthi, Professor and Head	Shantht@vmkvec.edu.in	

Subject Code	Subject Title	Category	L	Т	Р	Credit
17PHBS02	NANOTECHNOLOGY	CC	3	0	0	3

Nanotechnology is the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanomaterials exhibit enhanced properties such as higher strength, lighter weight, and greater chemical reactivity than their larger-scale counterparts. The study about nanomaterials is extremely important for an engineer to understand its properties and design equipments.

PREREQUISITE															
COURSE OBJECTIVES															
1	To learn the properties and types of nanomaterialsTo know about the preparation methods of nanomaterials														
2	To kno	ow abo	ut the p	orepara	tion me	thods o	of nano	materia	als						
3	To lea	rn abou	ut lithog	graphy	techniq	ues									
4	To kno	ow abo	ut carbo	on nanc	tubes										
5 To learn about various characterization techniques															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
C01.	CO1. Describe the properties of nanomaterials Understand														
	CO2. Compare the preparation methods of nanomaterials Analyze														
CO3. Utilize the lithographic techniques Apply															
CO4. Interpret the properties of carbon nanotubes Apply															
CO5.	Catego	orize va	rious cł	naracter	ization	techniq	ues						Analyz	e	
MAPE	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	М	L	М			М			М			
CO2	S	М	М	М	М	М			М			М			
CO3	S	S	S	S	S	М			М			М			
CO4	S	S	S	S	S	М			М			М			
CO5	S	S	S	S	S	М			М			М			
S-Stro	ong; M-	Mediu	m; L-I	LOW	-					-	-			-	

SYLLABUS

INTRODUCTION: Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nanoparticlesquantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

PREPARATION METHODS: Bottom-up Synthesis-Top-down Approach: Precipitation, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

LITHOGRAPHY FOR NANOSCALE DEVICES: Introduction to optical/UV electron beam and X-ray Lithography systems and processes, Wet etching, dry (Plasma /reactive ion) etching, Etch resists-dip pen lithography

CARBON NANO TUBE: Introduction to Carbon Nano Tube (CNT) - Types of carbon nano tube - Characteristics of carbon nano tube - synthesis of CNT- Properties of CNT- Application of CNT.

CHARECTERISATION TECHNIQUES: X-ray diffraction technique, Scanning Electron Microscopy – environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS Nano-indentation

TEXT BOOKS

1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.

2. N John Dinardo, "Nanoscalecharecterisation of surfaces & Interfaces", 2nd Edition, Weinheim Cambridge, Wiley-VCH, 2000

REFERENCES:

- 1. Timp (Editor), "Nanotechnology", AIP press/Springer, 1999
- 2. AkhileshLakhtakia (Editor), "The Hand Book of Nano Technology, Nanometer Structure", Theory, Modeling and Simulations", Prentice-Hall of India (P) Ltd, New Delhi, 2007.

COUR	COURSE DESIGNERS								
S.No.	Name of the Faculty	Mail ID							
1	Dr. C. SENTHIL KUMAR	senthilbdu@gmail.com							
2	Dr. R. SETHUPATHI	sethupathivmkv@gmail.com							

17CHBS81	BIOORGANIC CHEMISTRY LAB	Category	L	Т	Р	Credit	
		FC (BS)	0	0	4	2	

The purpose of teaching Bioorganic Chemistry is a fundamental science and has contributed immensely to the improvement of the life of human beings by providing many of human requirements and essentialities. The developments in Bioorganic Chemistry during last few decades are phenomenal. It is also seen that these developments are crossing the traditional vertical boundaries of scientific disciplines; the more inclination is seen towards biological sciences. The practice of Bioorganic Chemistry at industrial scale also is undergoing radical changes and is more or more based on deep understanding the phenomena.

COURSE OBJECTIVES 1 To Recognize the basics of stoichiometry 2 To Express the knowledge about measurements and units 3 To Demonstrate the students in preparation of bioorganic solutions and their material balance equations 4 To Organise the Students should be able to develop their skills in the inter-conversions of one bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply CO2. Illustrate the importance of measurements and units in bioorganic reaction Apply											
2 To Express the knowledge about measurements and units 3 To Demonstrate the students in preparation of bioorganic solutions and their material balance equations 4 To Organise the Students should be able to develop their skills in the inter-conversions of one bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
3 To Demonstrate the students in preparation of bioorganic solutions and their material balance equations 4 To Organise the Students should be able to develop their skills in the inter-conversions of one bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
equations 4 To Organise the Students should be able to develop their skills in the inter-conversions of one bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
4 To Organise the Students should be able to develop their skills in the inter-conversions of one bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
bioorganic compound to desired products. COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
COURSE OUTCOMES After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
After the successful completion of the course, learner will be able to CO1. Describe about the basic bioorganic chemistry Understand & Apply											
CO1. Describe about the basic bioorganic chemistry Understand & Apply											
Apply											
CO2. Illustrate the importance of measurements and units in bioorganic reaction Apply											
procedures											
CO3. Estimate the basics steps involved in the synthesis of various bioorganic Analyse											
substances											
CO4. Evaluate their understanding skills in the inter-conversions Evaluate Apply											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFI											
OUTCOMES											
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03											
^{CO1} M M - M L M S L L											
CO2 M L - M L S L L											
CO3 M M - M L M L M M S L L											
CO4 M L L L S L L											
S- Strong; M-Medium; L-Low											

SYLLABUS

- 1. Synthesis of Aspirin
- 2. Hydrolysis of Sucrose
- 3. Preparation of Pyruvic acid from Tartaric acid.
- 4. Preparation of Oleic acid
- 5. Preparation of alpha D- glucopyranose pentaacetate
- 6. Preparation of Lycopene from Tomato paste
- 7. Preparation of L-Proline.
- 8. Preparation of 1,2,5,6 di- O-Cyclohexylidine-alpha-D-glucofuranose.
- 9. Preparation of s-ethyl hydroxybutonate from ethyl acetoacetate using Yeast.
- 10. Preparation of s-ethyl hydroxybutonate using 3,5 dinitrobenzoate.

REFERENCE BOOKS:

1. Laboratory Manual.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.T.Shanthi	Professor & Head	Chemistry	shanthi@vmkvec.edu.in							
2	Mr.A.Gilbertraj	Assistant Professor	Chemistry	gilbertsunderraj@vmkvec.ed u.in							

CATEGORY 'A' – FOUNDATION COURSES – HS, BS AND ES COURSES (iii) ENGINEERING SCIENCES (BASIC ENGINEERING COURSES)

17BMES01

Category	L	Т	Р	Credit
FC-ES	3	0	0	3

Understand

Understand

Apply

Analyze

Analyze

PREAMBLE

This course is designed to acquire knowledge about the different components of biosensors, bio-amplifier, transducers and display units in biomedical equipment and its working principle and to measure various physiological parameters.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To understand the concepts of transducers and its classification.						
2	To study the various types of transducers and classification of bio-sensors.						
3	To know about bioelectric signals, electrodes and its types.						
4	To know the various Bio potential amplifiers.						
5	To study about various Physiological measurements.						
COURSE OUTCOMES							

On the successful completion of the course, students will be able to

CO1. Know the acquisition of various bio signals using various types of Electrodes.

CO2. Describe about the biosensors and transducers for measuring biosignal.

CO3. Utilize the electrode and amplifier for measuring biosignal.

CO4. Record and analyze various physiological signals.

CO5. Design bio amplifiers and their applications.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	I	1	1	1		1			1	1	1	1	1	1	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	S				S	L		М	L		
CO2	S	М	М	М	S	М			S	L		М	L		L
CO3	S	М	М	М	S	М			S	L		М		S	
CO4	S	М	М	М	S	М			S	L		М		S	L
CO5	S	М	М	М	S	М		S	S	L		М		S	

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

General measurement system – purpose, structure and elements – Transducers – Definition, Classification. Resistance transducers, strain gauges, resistance thermometers, potentiometers. Capacitive transducer, Inductive transducer, LVDT, Biomedical Applications.

TRANSDUCERS AND BIOSENSORS

Temperature transducers, flow transducer, optical transducer, photoelectric transducers, pressure transducer, Biomedical applications. Introduction, biological elements – Enzymes, antibodies, nucleic acids, receptors. Immobilization of biological components.

ELECTRODES AND BIO AMPLIFIERS

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrodes: Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artefacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, EMG, EEG, Electrical conductivity of electrode jellies and creams, Types of electrodes. Bio amplifier, Need for Bio amplifier, Basic operational amplifier circuits, differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier.

BIO SIGNALS RECORDING

ECG – Anatomy and Electrical conducting system of heart, Genesis of ECG, Einthoven triangle, Lead system, Segments and intervals of ECG, Normal and abnormal ECG wave forms, ECG Machine, Recording set up of EMG and EEG. Heart sounds and PCG, ERG, EOG.

CARDIAC FUNCTION MEASUREMENTS

Blood pressure measurement – direct and indirect method, Respiration rate measurement, Measurement of heart rate and pulse rate, Plethysmography technique. Blood flow measurement – electromagnetic, ultrasonic. Cardiac output measurement – Indication dilution method and dye dilution method

TEXT BOOKS:

- 1. Khandpur R.S, **"Hand-book of Biomedical Instrumentation"**, Tata McGraw Hill, 2nd Edition, 2003.
- 2. Arumugam, M, "Biomedical instrumentation", Anuradha Publications, 2008.
- 3. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw Hill, 1995.
- 4. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.

REFERENCES:

- 1. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.
- 2. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & Sons, 1991.
- 3. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in
3	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

COURSE DESIGNERS

1 7 DA	1000		•	IEDI	* A T T	NOTDI			ON		Categor	ry L	Т	P C	Credit
1/BN	AES02		Γ	AEDIO	AL II	NSIKU	JIVIEIN		UN		FC-ES	3 3	0	0	3
	MBLE	students	s to dev	elop kn	owledg	e of pri	nciples	, desigr	n and ap	plication	ns of the l	Biomedi	cal Inst	ruments	
PRER	EQUIS	ITE – I	NIL												
COUR	RSE OB	JECTI	VES												
1	To kn	ow abo	ut bioel	lectric s	ignals,	electro	des and	its type	es.						
2	To kn	ow the	various	Biopot	ential r	ecordin	g meth	ods.							
3	To stu	ıdy abo	ut patie	nt moni	toring of	concept	and va	rious P	hysiolo	gical me	asuremen	its metho	ods.		
4	To stu	idy the	princip	le of op	eration	blood f	low me	eter, blo	od cells	s counter	•				
5	To stu	idy abo	ut bio c	hemica	l measu	irement	s and d	etails th	e conce	ept of bio	telemetr	y and pa	tient sa	fety,	
COUR	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to						
CO6.	Explai	n the di	ifferent	Bio sig	nal or t	piopoter	ntial.						Und	erstand	
CO7.	Identif	y the w	orking	princip	les of d	iagnost	ic and t	herapeı	itic equ	ipments.			Und	erstand	
CO8.	Operat	te vario	us instr	uments	like as	ECG, I	EMG, E	EEG, X-	ray ma	chine.			App	ly	
CO9.	Differ	entiate	the med	lical ins	trumen	ts based	l on pri	nciples	and app	olication	used in h	ospital.	Ana	lyze	
CO1(). Evalua	ate and	calibrat	e funda	mental	biomed	lical ins	strumen	tation u	ised in ho	ospital.		Ana	lyze	
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	S	S				S	L	L	L	L		
CO2	S	М	М	S	S	М			S	L	L	L	L		L
CO3	S	М	М	М	S	М			S	L	L	М		S	
CO4	S	М	М	М	S	М		S	S	М	М	М		S	L
CO5	S	М	М	М	S	М		S	S	М	М	М		S	
~~~	na. M N		I	1	1	1	1	1	1	1			1		1

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### **BIOELECTRIC SIGNALS AND ELECTRODES**

Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, electrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes.

#### **BIO AMPLIFIER AND BIOMEDICAL RECORDERS**

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

#### PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

#### **BLOOD FLOW METERS, BLOOD CELL COUNTERS**

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

#### **BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY**

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

#### **TEXT BOOKS:**

- 1. Khandpur R.S, **"Hand-book of Biomedical Instrumentation**", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Edition, 1997.

#### **REFERENCES:**

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in

#### **COURSE DESIGNERS**

The curriculum of biosensors and measuring devices lab is concerned to enable the students to know and operate the various biomedical instruments for measuring and diagnosing biological signals using basic components such as sensors, amplifiers, signal processing and display unit.

#### **PREREQUISITE – NIL**

#### **COURSE OBJECTIVES**

1	To design of amplifiers for biological signals.
2	To recording and analysis of bio signals.
3	To measurement of Ph, blood pressure.
4	To study and measurement of various transducers like temperature, pressure, optical and piezoelectric.
5	To measurement of galvanic skin resistance.
COUR	SEQUITCOMES

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able toCO11.Design operational amplifier for inverting and non-inverting mode.ApplyCO12.Record and analyze EEG, ECG, EMG signals.AnalyzeCO13.Measure of PH value of a given solution.EvaluateCO14.Measure temperature, pressure, optical and piezoelectric using different sensors.EvaluateCO15.Design Filters for bio signals.Apply

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	S				S	L		М	L		
CO2	S	М	М	М	S	М			S	L		М	L		L
CO3	S	М	М	М	S	М			S	L		М		S	
CO4	S	М	М	М	S	М			S	L		М		S	L
CO5	S	М	М	М	S	М		S	S	L		М		S	
~ ~															

#### S- Strong; M-Medium; L-Low

#### SYLLABUS

List of Experiments

1. Characteristics of temperature transducers.

- 2. Characteristics of pressure and optical transducers.
- 3. Characteristics of strain gauge.
- 4. Blood pressure measurement using sphygmomanometer.
- 5. Design of instrumentation amplifier.
- 6. Measurement PH using PH meter.
- 7. Galvanic Skin resistance measurement.
- 8. Recording of ECG using ECG simulator.
- 9. Recording of EEG using EEG simulator.
- 10. Recording of EMG using EMG simulator.

#### **TEXT BOOKS:**

Department Lab Manual

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in
3	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in

17 <b>P</b> I	MES82		М	EDICA	AT TNG	τριν	IFNIT A	τιον	TAR		Categor	y L	Т	Р	Credit
1/DI	VIE 502		IVI			INUM			LAD		FC-ES	0	0	4	2
To pro	MBLE ovide ha		trainin	g on m	easurer	nent of	physic	ological	parame	eters, bic	ochemical	parame	eters m	easuren	ient and
PRER	EQUIS	ITE –	NIL												
COU	RSE OB	JECTI	IVES												
1	To s	tudy th	e applic	cation o	f optica	l isolati	ion amp	olifier.							
2	To r	ecordin	g and d	liagnosi	s using	bio sig	nals.								
3	То и	Indersta	unding v	working	, princip	ple of b	iotelem	etry.							
4	To s	tudy of	galvan	ic skin	resistan	ce.									
5	To s	tudy th	e huma	n audite	ory resp	onse us	ing aud	liomete	r.						
COU	RSE OU	TCOM	1ES												
	success		•				ts will ł	be able	to						
CO	l. Expla	in abou	t the pH	I and co	onductiv	vity.						U	nderst	and	
CO2	2. Recor	d and a	nalyze	EOG, E	CG, EN	AG sign	nals					A	nalyze		
CO3	<b>3.</b> Measu	ire the l	bio sign	als usir	ng biote	lemetry	7					A	nalyze		
CO4	I. Opera	te diath	ermy fo	or cuttir	ng and c	coagula	tion					A	pply		
COS	5. Calcu	late the	human	auditor	y respo	nse usi	ng audi	ometer				А	nalyze		
MAPI	PING W	/ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(	GRAM	ME SPE	CIFIC C	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	S				S	L	L	L	L		
CO2	S	М	М	S	М	М			S	L	L	L	L		L
CO3	S	М	М	М	М	М			М	L	L	М		S	
CO4	S	М	М	М	М	М		S	М	М	М	М		S	L
CO5	S	М	М	М	L	М		S	М	М	М	М		S	
S- Stro	ong; M-l	Mediun	n; L-Lo	W											
	Plottir	n and ai ng of hu	nalysis o Iman au	of biolo uditory	respons	se using		neter.							

- Recording of ECG signal and analysis
   Recording of EMG-Signal

- 5. Recording of EEG-Signal
- 6. Recording of various physiological parameters using patient monitoring system and telemetry units.
- 7. Measurement of pH and conductivity.
- 8. Study of ESU cutting and coagulation modes
- 9. Study of characteristics of optical Isolation amplifier
- 10. Galvanic skin resistance (GSR) measurement

#### **TEXT BOOKS:**

Department Lab Manual

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
2	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in

# CATEGORY 'B' – CORE COURSES RELEVANT TO THE PROGRAMME – 81 CREDITS

17BTCC01 ESSENTIALS OF BIOCHEMISTRY Catego	-		Р	Credit
CC	3	0	0	3
PREAMBLE				
Essentials of biochemistry deals with the study of biomolecules found				
exposes the students to classification, properties, basic structure and f				
carbohydrate, amino acid, lipids, nucleic acid and vitamins. Knowled				
students to understand the importance of biomolecules and give awar	reness to t	the variou	us dise	ases
associated with the deficiency of biomolecules				
PREREQUISITE - NIL				
COURSE OBJECTIVES				
1 To understand the basic structure, properties and functions of				
2 To emphasize the role of biomolecules by providing basic info	formation	on speci	fic met	abolic
diseases.				
COURSE OUTCOMES				
On the successful completion of the course, students will be able to				
CO1. Explain the classification properties and biological importance	of	Underst	and	
carbohydrates				
CO2. Discuss the classification, nomenclature, structure and propertie	es of	Underst	and	
fatty acids				
CO3. Knowledge about amino acids and proteins		Underst	and	
CO4. Know about the importance of nucleic acid		Apply		
CO5. Distinguish the vitamins and its deficiency		Underst		
CO6. Know about the importance of minerals		Underst		
MAPPING WITH PROGRAMME OUTCOMES AND PROGRA	AMME S	SPECIFI	С	
OUTCOMES				
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO	D11 PO12	PSO1	PSO2	PSO3
CO1 S - L		L	L	-
CO2 S - L		L	L	-
CO3 S - L		L	L	-
CO4 S - L		L	L	-
CO5 S - L M		L	L	-
CO6 S - L - M		L	L	-
S- Strong; M-Medium; L-Low				

#### SYLLABUS CARBOHYDRATE

Biological importance, Classification and Properties of Monosaccharides, Disaccharides and Polysaccharides (Starch, Glycogen, Cellulose and their derivatives, Chitin, Peptidoglycans, Glycoaminoglycans, Glycoconjugates).

# LIPIDS

Biological importance, Classification. Fattyacids: classification, nomenclature, structure and properties of saturated and unsaturated fatty acids. Essential fatty acids, Triacylglycerols: nomenclature, physical properties, chemical properties. Glycerophospholipids (lecithins, cephalins, phosphatidyl serine, phosphatidyl inositol, sphingomyelins).

### **AMINO ACIDS AND PROTEINS**

Amino acids - Classification, Structure, Properties and Biological importance. Proteins -Classification, Structural organization of Proteins – Primary, Secondary ( $\alpha$ -helix,  $\beta$ -pleated structure, triple helix), Tertiary and Ouaternary (Myoglobin and Hemoglobin), Factors stabilizing, Properties and Biological importance, Denaturation and Renaturation.

# NUCLEIC ACIDS

Nucleosides and nucleotides, configuration and conformation, Composition of RNA and DNA, Physico-chemical properties of nucleic acids - effect of alkali, acid and heat (denaturation and renaturation), features of phosphodiester bond, endonucleases. Complementary base pairing, secondary structure of RNA, features of DNA double helix (Watson-Crick model), Nucleoproteins histone and nonhistone

## VITAMINS

Nutritional importance of vitamin, classification, source, daily requirements and functions, Deficiency symptoms – hypervitaminosis of fat-soluble vitamins. Nutritional importance of Minerals - classification, source, daily requirement and deficiency symptoms.

## **TEXT BOOKS**

1. "Fundamentals of Biochemistry", Jain J.L., Sunjay Jain and Nitin Jain., S.Chand & Company Ltd., 6th Edition, 2005.

#### **REFERENCES:**

1. "Text Book of Biochemistry for Medical Students", Ambika Shanmugham, Lippin cott Williams & Wilkins, 7th Edition, 2012.

2. "Biochemistry", Rastogi S.C. Mc. Graw-Hill Publishing Company Ltd, 6th Edition, 2007.

3. "Principles of Biochemistry", David L. Nelson and Michael M. Cox, W. H. Freeman and Company, 4th Edition, 2005.

4. "Text book of Biochemistry", Sathyanarayana U and Chakrapani U., Uppala Author Publishers Interlinks, 3rd Edition, 2006.

COURS	SE DESIGNERS			
S. No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

17BTCC02	CELL BIOLOGY	Category	L	Т	Р	Credit
		CC	3	0	0	3

Cell biology deals with the structures, organization and functions of the cells and organelles, their physiological properties, life cycle, metabolic processes, signaling pathways and their interactions with their environment at microscopic and molecular level. The subject helps to gain knowledge in fundamentals of cells to all biological sciences, for research in bio-medical fields such as cancer, and other diseases and also in research related to genetics, biochemistry, molecular biology, immunology, and developmental biology.

#### **PREREQUISITE -** NIL

#### COURSE OBJECTIVES

 To understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles
 Students will understand how these cellular components are used to generate and utilize energy in cells and the concepts behind cell division.
 To give an overview of cell signaling molecules and their receptors.
 To understand the pathways and intracellular signal transduction
 To make students to apply their knowledge of cell biology to selected examples of changes or losses in cell function

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to CO1. List the fundamental features of prokaryotic and eukaryotic cells, their structure, Understand composition and role of cell membranes and the major stages of the cell cycle CO2. To understand the specific processes and proteins involved in membrane transport Understand CO3. To understand about intercellular chemical messengers, receptor subclasses and Understand their possible uses in cell signaling. CO4. To analyze the mechanisms by which different messenger-receptor interactions Apply bring about long or short-term changes in cell state. CO5. To Integrate the different levels of biological organization, from molecules to cells Apply to organisms. CO6. To apply critical thinking and logical analysis in the assessment and evaluation of Apply issues in cell biology and genetics.

			5	0											
MAP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	М	S	L	L	-	-	-	-	-	-	-	-	-
CO2	L	М	М	L	L	L	-	-	-	-	-	-	-	-	-
CO3	L	М	М	L	М	L	М	-	-	-	-	-	-	-	-
CO4	М	М	S	S	М	L	-	-	-	-	-	-	S	М	М
CO5	М	М	S	S	М	М	М	-	-	-	-	L	-	М	-
CO6	М	М	S	S	S	S	-	-	-	-	-	-	-	S	М
S- Str	ong; N	I-Medi	um; L	-Low	•	•	•		•	•	•	•	•	•	

# CELL AND FUNCTIONS OF THE ORGANELLES

General structure – Prokaryotic and eukaryotic cell, Molecular organization of the cell membrane, Cell membrane – Proteins, Lipids and Carbohydrates, Cell organelles, Cytoskeletal proteins, Types of cell functions, Cell cycle - Mitosis and meiosis, apoptosis.

# CELL MEMBRANE AND PERMEABILITY

Passive and active transport, Permeases, Sodium potassium pump, Ca2+, AT Pase pumps, Lysosomal and vacuolar membrane, Co-transport, Uniport, Symport, Antiport, Protein localization & Membrane trafficking, Endocytosis and exocytosis, Entry of viruses and toxins into cells.

# CELL SIGNALING MOLECULES AND THEIR RECEPTORS

Cytosolic, Nuclear and membrane bound receptors, Examples of receptors, Modes of cell – cell signaling: Autocrine, Paracrine and Endocrine models of action, Secondary messenger's molecules, Quantitation and characterization of receptors.

# PATHWAYS AND INTRACELLULAR SIGNAL TRANSDUCTION

Signal amplification – Different models of signal amplifications, Cyclic AMP, Role of inositol phosphates as messengers, Biosynthesis of inositol triphosphates, Cyclic GMP and G proteins role in signal transduction, Calcium ion flux and its role in cell Signaling, Current models of signal amplification, Phosphorylation of protein kinases.

# CELL CULTURE

Techniques for the propagation of prokaryotic and eukaryotic cells, Cell line, Generation of cell lines, Maintenance of stock cells, Characterization of cell, Morphological analysis techniques in cell culture, Explant cultures, Primary cultures, Contamination, Differentiation

# **TEXT BOOKS:**

- De Robertis E.D.P and De Robertis E.M.F, "Cell and Molecular Biology", 8th Edition, Lippincott Williams & Wilkins, New York, USA, 2001.
- 2. Harvey Lodish, Arnold Berk, Chirs A. Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher, Hidde Ploegh and Paul Matsudaira, "Molecular Cell Biology", 6th Edition, W. H. Freeman and Company, New York, 2008.

# **REFERENCES:**

COURSE DESIGNERS

- B Alberts, A Johnson, J Lewis, M Raff, K Roberts and P Walter, "Molecular Biology of the Cell", (4th Edition) New York: Garland Science, 2002.
- 2. Kimball, T.W., "Cell Biology', Addision Wesley Publishers, 1989.
- 3. Geoffrey M. Cooper and Robert E. Hansman, "The Cell: A Molecular Approach", ASM Press and Sinauer Associates Inc., USA, 4th Edition, 2007.
- 4. Ian Freshney, R, "Culture of Animal Cells", Alan R. Liss Inc., New York, 4th Edition, 2005

cound				
S. No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

#### 70

17BTCC03	MICROBIOLOGY	Category	L	Т	Р	Credit
1/010003	MICRODIOLOGI	CC	3	0	0	3

Microbiology deals with the study of microbes. It will cover wide spectrum of classification, cellular organization and characteristics of microscopic organisms, diseases caused and beneficial effects, environmental damage or stress. Microbiologists often use cutting-edge techniques and sophisticated machinery along with other applied fields of research like biotechnology, genetics to study microbes and their complex mechanisms. Knowledge of these principles will enable students to understand how they react under different conditions and how they cause different diseases and their control.

PRER	REREQUISITE - NIL														
COUR	RSE OF	BJEC	<b>FIVE</b> S	5											
1	To de	escribe	about	t the e	voluti	on of 1	nicroo	organi	sms a	nd mic	roscopy	/.			
2										anisms					
3	To in	terpret	t the et	ffects	of Mie	crobes	in foo	od and	the c	linical	importa	ance of	micro	organis	ms.
4	To ex	plain	about	the va	rious	Contro	ol mea	sures	and a	ssessin	g the er	vironn	nental	impacts	
5		-									-			-	
-		To outline the requirements of Microbial nutrition for growth of microorganisms and the impact of environment on its growth.													
COUR				0											
After th	he succ	essful	comp	letion	of the	cours	e, lea	rner w	ill be	able to					
CO1. F	Recall a	bout h	istorio	cal per	specti	ve of	micro	biolog	y and	its dev	elopme	ents	I	Rememb	ber
				-	-			-	•				T	Indersta	nd
	Describe the fundamental structure and functions of a cell Understand														
CO3. E	Explain the control of microbes using physical and chemical methods Understand														
CO4. I	Demons	strate t	he mi	crobia	l nutri	tional	requi	remen	ts for	growth			1	Apply	
CO5. I	Demons	strate t	he mi	croorg	anism	have	an inc	lisnen	sable	role in	the env	ironme	ent /	Apply	
005.1		filute t		10012	,umom	nuve	un me	nspen	suore			nonne		1pp1y	
CO6. 0	Categor	ize the	e role o	of mic	roorga	anisms	s in en	vironi	nenta	l applic	ations		1	Analyze	
												SDF(			COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C03	M	M	M	F04	-	-	-	-	-	-	-	-		-	-
CO2	L	M	L	M	-	-	-	-	-	-	-	-	-	-	-
CO3	L	L	М	М	-	-	-	-	-	-	-	-	L	L	-
CO4	L	S	М	S	-	-	-	-	-	-	-	-	-	-	-
CO5	S	S	S	S	-	-	М	-	-	-	-	-	-	L	-
CO6	D6 L M S M M M L L														
S- Stro	ng; M-	Mediu	ım; L-	Low											

# WORLD OF MICRORGANISMS AND MICROSCOPY

Historical review of the foundation of microbiology, Characteristics of microorganisms, Taxonomy methods of studying microorganisms, Microscopy - Light, Electron, Micrometry.

# STRUCTURAL ORGANISATION OF MICROORGANISMS

General structural and cellular organization of Bacteria, virus, fungi, algae and protozoa.

# MICROBIAL GROWTH AND NUTRITION

Nutritional requirements, Growth of microorganisms, Aerobic and anaerobic growth, Different methods of microbial enumeration, Methods of preservation of microbes. Effects of physical, chemical and environmental factors on microbial growth.

# FOOD AND CLINICAL MICROBIOLOGY

Food spoilage and poisoning, Clinically important microorganisms and their effects on infections, Formation of toxic materials by microorganisms and their role in clinical microbiology.

# CONTROL OF MICROORGANISMS AND ITS ENVIRONMENTAL APPLICATIONS

Pollution control through use of microorganisms, Recycling of biomaterials, Production of biogas, Leaching of ores by microorganisms, Microbial indicators, Biofouling.

# **TEXT BOOKS:**

- 1. Pelzar, M.J., Chan, E.C. S and Krieg, N.R. 1993.Microbiology. Tata McGraw Hill Edition. New Delhi. India.
- 2. Ananthanarayan and Jayaram Paniker, 1999. Text Book of Microbiology. Orient Longman Publishers.

- 1. Talaro, K., Talaro A. Cassida Pelza and Reid, 1993. Foundation in Microbiology. W.C. Brown Publishers.
- 2. Prescott, Harley and Klen, 2003. Microbiology. McGraw Hill Publications. 5th Edn.
- Frazier, W.S. and Weshoff, D.C., 1988. Food Microbiology, 4th Edn., McGraw Hill Book Co., New York.
- 4. George, J.B., 1987. Basic Food Microbiology. CBS Publishers and Distributors.
- 5. James, M.J., 1987. Modern Food Microbiology. CBS Publishers and Distributors.

COUR	SE DESIGNERS			
S. No	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

17BTCC04	CLASSICAL AND MOLECULAR	Category	L	Т	Р	Credit
1/010004	GENETICS	CC	3	0	0	3
PREAMBLE						

Genetics is a field of biology that deals with the study of genes, genetic variation, and heredity in living organisms that intersects with many other life sciences and information systems. Genetics is concerned with the problem of how the hereditary information in DNA controls, what an organism looks like and how it works. Classically this involved the use of genetic variants to upset the biological function of the cells or organisms and from the effect of these mutations, to make deductions about the way cells and organisms worked.

# **PREREQUISITE** – NIL

CO3

CO4

Μ

Μ

S

Μ

Μ

S

S

Μ

Μ

Μ

Μ

_

_

L

CO	COURSE OBJECTIVES															
1	To de	efine	the ba	sic pr	incipl	es of	inheri	tance	at the	molec	cular, c	ellular	and or	ganism	al levels	s.
2	To ex	xplain	on ho	ow ge	nes, w	ork t	ogethe	er in t	oiolog	ical pr	ocesses	5.				
3							-	-			ule/cel ical" g		-	mena ('	ʻmodern	"
4	To co	orrela	te the	conce	epts of	f linka	ige an	d cros	ssing	over ai	nd Gen	etic m	apping	of chro	omosom	es.
5	To make the students to test and deepen their mastery of genetics by applying this knowledge in a variety of problem-solving situations.															
CO	URSE	RSE OUTCOMES														
Aft	er the successful completion of the course, learner will be able to															
CO	CO1. Recall about the historical background and development of genetic concepts Remember															
	2. Des ssical g			iffere	nces b	etwee	en trar	nsmiss	sion g	enetics	s, mole	cular g	genetics	s and	Unders	tand
	-	-		data	to det	ermin	e the	mode	s of in	nherita	nce, lir	nkage a	and pre	dict	Unders	tand
out	comes	in fu	ture g	enera	tions											
			e the v	ariou	s theo	ries o	f how	new	specie	es form	n and th	ne mol	ecular	role	Apply	
	nherita															
								in th	e proc	cess of	evolut	ion and	d under	rstand	Apply	
	geneti						-									
CO	6. Illu	strate	about	vario	ous ge	netic	transf	er me	thods						Apply	
MA	PPIN	G )	WITH	H P	ROG	RAM	ME	OU	ГСО	MES	AND	PRO	OGRA	MME	SPEC	IFIC
OU	TCO	MES														
COS		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		L	L	Μ	L	-	-	-	-	-	-	-	-	-	-	-
CO2		L	Μ	Μ	L	-	-	-	-	-	-	-	-	-	-	-

_

-

_

_

_

_

_

-

_

_

Μ

_

_

Μ

_

_

CO5	Μ	Μ	М	L	L	-	-	-	-	-	-	L	-	-	-
CO6	Μ	-	Μ	Μ	-	-	-	-	-	-	-	-	-	-	-
C Strong	S. Strong: M. Medium: L. Low														

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

# **BASICS OF GENETICS & GENES**

Classical genetics, Mendelian laws, Mendel's experiment monohybrid and dihybrid inheritance, Fine structure of genes, Gene as the unit of expression, Control sequences - promoter, operator, terminator and attenuator.

## **KARYOLOGY**

Chromosome structure and organization in prokaryotes and eukaryotes, Extra chromosomes and their inheritance, Biology of plasmids, Giant chromosomes – Polytene and Lamp brush chromosome.

#### ALLELES

Classical concept of allelomorphs, Multiple alleles, Sex linkage in Drosophila, Sex determination in Human beings, Sex linkage in Human beings, Colour blindness, Haemophilia, Blood group antigens.

#### LINKAGE AND CROSSING OVER

Coupling and repulsion – Hypothesis, Test cross in maize and Crossing over, Sex chromosomes, Sex linked inherited disorders, Linkage, Crossing over and Genetic mapping of chromosomes.

#### MICROBIAL GENETIC TRANSFER

Identification of the genetic material - Classical experiments, Hershey Chase, Avery McLeod etc., Conjugation, Transduction and Transformation, Transposons- mechanism.

# **TEXT BOOKS:**

- 1. Gardner, Simmons and Snustad, Principles of genetics, John wiley and Sons, inc. New York. 8th Edition, 2005
- 2. Verma, P.S. and Agarwal, V.K., Genetics. S. Chand Publication, 2005.
- 3. Robert H. Tamarin, Principles of Genetics, 7th Edition, Tata McGraw Hill, New Delhi, 2002.

- 1. David Freifelder., Microbial Genetics, Narosa Publishing House, New York, New Delhi, 2nd Edition, 2001.
- 2. Stanly R. Maloy, John E. Cronan and David Freifelder, Jr., 2006. Microbial Genetics. Narosa Publishing House.
- 3. Brown, T. A. Genetics A Molecular Approach.2011.
- 4. Snustad, D. P., 2008. Principles of Genetics. 6th Edition., John Wiley & Sons

COURS	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in

17070005	UNIT OPERATIONS IN PROCESS	Category	L	Т	Р	Credit
17BTCC05	INDUSTRIES	CC	3	0	0	3

In the Engineering related fields, a unit operation is a basic step in a process. Unit operations involve a physical change (or) a chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions. For example, in milk processing, homogenization, pasteurization, and packaging are each unit operations which are connected to create the overall process. A process may require many unit operations to obtain the desired product from the starting materials, or feedstocks. Knowledge of various unit operation principles will enable students to understand to work in any biotechnology industries.

**PREREQUISITE -** NIL

PRE	REQUISITE - NIL														
COU	RSE (	)BJE	CTIV	ES											
1	To dea	scribe	the kr	nowled	lge ab	out th	e vari	ous m	odes c	of heat t	ransfer.				
2	To exp	plain a	about	the rac	liation	, blac	k bodi	ies and	l its ap	pplication	on				
3	To ou	tline a	bout t	he hea	ıt excł	nanger	and i	ts ope	ration						
4	To dis	cuss a	bout t	he flu	ids, ty	pes ar	nd its i	measu	remen	nt.					
5	To evaluate the drying and other mechanical separation processes and its role in industries														
COU	RSE (	RSE OUTCOMES													
After	the su	he successful completion of the course, learner will be able to													
CO1.	Descr	Describe about basic concepts of various models of heat transfer Understand													
CO2.	2. Discuss the concepts of radiation, convection and black bodies and its Understand														
	plication.														
CO3.	Practi	ce the	usage	of he	at exc	hange	r, evaj	porato	rs and	l its app	lication	l		Apply	
CO4.	Demo	nstrate	e the f	luid fl	ow an	d its r	neasu	remen	t.					Apply	
CO5.	Categ	orize a	about	drying	, mec	hanica	al sepa	ration	techn	iques a	nd its a	pplicatio	ons	Analyz	e
CO6.	Test a	nd op	erate v	various	s unit	operat	tions a	and he	at tran	sfer equ	uipment	t in cher	nical	Evalua	te
and b	oiochen	nical i	ndustr	ies.											
MAF	PING	W	TH	PRO	GRA	MMF	E O	UTCO	OMES	5 AN	D PR	OGRA	MME	SPEC	IFIC
OUT	DUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L	L	L	-	-	-	-	-	М	-	-	-
CO2	S	-	L	М	Μ	-	-	-	-	-	-	-	-	-	-

CO1	S	М	М	L	L	L	-	-	-	-	-	М	-	-	-
CO2	S	-	L	М	М	-	-	-	-	-	-	-	-	-	-
CO3	S	М	М	L	L	-	-	-	-	-	S	М	М	-	-
CO4	S	М	S	L	М	-	-	-	-	-	-	L	М	-	-
CO5	S	L	S	М	М	-	-	-	-	-	-	L	L	-	-
CO6	S	М	М	L	-	-	-	-	-	-	S	М	S	-	L
S- Stro	ong; N	I-Mec	lium;	L-Lov	V										

# SYLLABUS CONDUCTION

Modes of Heat Transfer – Heat conduction – Steady state conduction – Heat Conduction through composite wall, Hollow Sphere, Hollow cylinder, Combined Conduction-convection – Extended Surfaces, Critical Thickness of Insulation, individual and Overall Heat transfer Coefficient.

# **CONVECTION AND RADIATION**

Convection – Dimensional Analysis – Forced Convection and Natural convection – Boiling and condensation, Concept of Radiation, Laws of Radiation, Grey & Black Bodies

# HEAT EXCHANGER

Heat Exchanger – Types of Heat Exchangers – Types of Flows, LMTD, Fouling Factor, NTU concept, Types of Evaporators – Calculation for Single and Multiple Effects.

# FLUID MECHANICS

Introduction – Nature of Fluids, Properties of Fluids, Types of Fluids, Fluid Statics, Pressure measurement, Measurement of Fluid flow – Venturimeter, orifice meter, rotameter, Fluidization – Mechanism, types and its applications

# DRYING AND MECHANICAL SEPARATION

Drying – Air properties – Drying Equipment – Drying Rates and Drying time.

Classification of Mechanical Separation processes, Solid Liquid Separation – Filtration – Constant Pressure, Constant Volume, Batch and Continuous Filtration – Industrial Filter, Centrifugal Separation, Settling and Sedimentation.

#### **TEXT BOOKS:**

- 1. Warren McCabe, Julian Smith, Peter Harriott, 2005.Unit Operations of Chemical Engineering 7th Ed., McGraw Hill Inc., New York.
- C.J. Geankoplis, 2003.Transport Processes and separation Principles: Includes Unit Operations, 4th Ed., Prentice-Hall Inc., New Jersey

- 1. R.E. Traybal, Mass Transfer Operations, 3rd Ed, McGraw-Hill, New York, 1981.
- 2. Frank P. Incropera, David T. Dewitt, Theoder I. Bergman. 2013. Fundamentals of Heat and Mass Transfer and Interactive Heat Transfer. *John Wiley & Sons*.
- 3. Gavahane.K. A. 2011 Heat and Mass Transfer. Vol. II. Nirali Prakashan

COURS	COURSE DESIGNERS												
S. No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in									
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									

17			ADV				IEN/I	стру	7	Categ	gory	L	Т	Р	Credit
1/1	BTCC06		Αυν	ANCI		IUCE		<b>51</b> K)		CO	C	3	0	0	3
PREA	MBLE														
Advan	ced Bioch	emist	ry use	es the	knov	vledge	e and	under	standi	ng gair	ned in	the pre	erequis	ite cou	irse and
provid	es underst	andir	g of :	metał	olism	of n	nacror	nolec	ules li	ke carł	oohydr	ate, an	nino ac	cid, lip	oids and
nuclei	c acid. Th	is cou	urse a	lso hi	ighlig	hts th	e pro	cess o	f Biol	ogical	oxidat	ion inv	volved	in the	energy
produc	ction by bu	ırning	g the f	food	materi	als ar	nd giv	e awa	reness	s to the	vario	us dise	ases as	ssociat	ed with
the err	ors of met	abolis	sm of	the bi	omol	ecules									
PRER	EQUISIT	<b>`E</b>													
17BT0	CC01- Esse	ential	s of B	ioche	mistr	у									
COUI	RSE OBJI	ECTI	VES												
1 7	Γο Discuss	the n	netabo	olic pa	athwa	ys of	major	bio-n	nolecu	les					
1.	Fo Describ athways	e the	startir	ng, in	terme	diate a	and er	ding	molec	ule, enz	zymes	and co	factors	in the	
3 7	To Differen	ntiate	bioch	emica	al basi	s of v	ariou	s disea	ase pro	ocesses					
, ]	To Outline	the p	rocess	s of B	iologi	cal or	kidatio	on inv	olved	in the e	energy	produc	ction by	y burn	ing the
$4 \int f$	ood mater	ials			_							-	-		-
COUI	RSE OUT	COM	IES												
After t	he success	ful co	omple	tion c	of the	course	e, lear	ner w	ill be a	able to					
	Explain the		-								ls and	metabo	olic	Unde	erstand
	ers associa			<b>P</b>	<u></u> j =		<u></u> j-								
	Exemplify			ance	of mo	lecule	s deri	ved fr	om an	nino ac	ids			Unde	erstand
	Discuss the													Unde	erstand
	Explain ab						-							Unde	erstand
	olic disord		ie sym		una c	-ograe		Puillin	ajs of		e aera	und no		ena	
	Illustrate th		egrati	on of	energ	v met	abolis	m of	macro	molecu	lles			Appl	v
	Generalize														
				U			1	1	2		1		OUTO	Appl	-
MAPP	ING WITI	H PK	UGRA		E OU.		IES A	IND P	KOGE	KAIVIIVI	E SPEC		ourc	OMES	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	L	-	-	-	-	-	-	-	М	-	-	-
CO2	М	-	-		-	-	-	-	-	-	-	-	-	-	-
CO3	S	L	-	L	-	-	-	-	-	-	-	M	-	-	-
CO4	S	М	-	T	-	-	-	-	-	-	-	М	-	М	-
CO5	S	- M	-	L	-	-	-	-	-	-	-	-	-	-	-
CO6		M	- . T T	l	-	-	-	-	-	-	-	-	-	-	-
S- Stro	ong; M-Me	dium	i; L-L	ow											
SYLL	ABUS														
CARE	BOHYDR	ATE	MET	ABO	LISM	I									
<b>.</b>	uction to I	Metał	olism	- Gly	vcolvs	is- C	itric a	cid c	vcle-G	Hucone	ogeneg	sis- Gl	vcogen	Meta	holism-

Glycogenesis-Glycogenolysis- HMP Shunt. Carbohydrate disorder - Glycogen storage diseases, Diabetes mellitus.

# AMINO ACID METABOLISM

Introduction-Metabolism of amino acids-Transamination-Deamination-Metabolism of ammonia-Urea Cycle-Biosynthesis and degradation of amino acids- Gly, Ser and Cys; Met, Thr, Lys, Ile, Val, Leu, aromatic amino acids. Important molecules derived from amino acids (auxins, DOPA, Serotonin, porphyrins, T3, T4, Adrenaline, Noradrenaline, histamine, GABA, polyamines etc). Amino acid disorder - Alkaptonuria, Albinism, Phenylketonuria, Gout, Cystinuria.

#### FATTY ACID METABOLISM

Introduction-Fatty acid oxidation-Ketone bodies & Ketogenesis-Biosynthesis of Fatty acids-Cholesterol Biosynthesis-Lipoproteins- Metabolism of glycolipids- Lipid disorder - Niemann Pick disease, Gaucher's disease, Fabrys disease, Tay-sach's disease.

## NUCLEIC ACID METABOLISM

Nucleic acids: Biosynthesis of nucleotides, denovo and salvage pathways for purines and its regulation, Biosynthesis of pyrimidines & its regulatory mechanisms. Degradation of nucleic acid by exo and endo nucleases. Nucleic acid disorder -Xanthinuria, Orotic acidiuria, Leasch-Nyhan syndrome, Nucleoside Phosphorylase deficiency.

## **INTEGRATION OF METABOLISM & OXIDATIVE PHOSPHORYLATION**

Integration of major Metabolic pathways of energy metabolism, Organ specialization and metabolic integration, metabolism in starvation.

Introduction-Bioenergetics, High energy compounds, Biological Oxidation-Electron transport chain, Oxidative phospholyration, Chemiosmotic theory-inhibitors of ETC & Oxidative phospholyration, Shuttle pathway – Glycerol phosphate Shuttle, Malate aspartate Shuttle.

# **TEXT BOOKS:**

1. Principles of Biochemistry by Lehninger, D.L., Cox, M.M., McMillan Publishers (2008) 4th edition 2. Biochemistry by Stryer, Lubert. W.H Freeman & Co., (2000) 4th edition.

3. Fundamentals of Biochemistry by Donald Voet, Judith G. Voet and Charlotte W., John Wiley & Sons (2008), 3rd edition Pratt.

#### **REFERENCES:**

1. Fundamentals of Biochemistry by Jain, J L, Jain, Nitin, Sunjay Jain, S. Chand Group, ISBN: 8121924537

2. Text book of Biochemistry by Sathyanarayana, U. and Chakrapani, U., 2006, 3rd Edition, Uppala Author Publishers Interlinks.

COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.M.Sridevi	Professor and Head	Biotechnology	sridevim@vmkvec.edu.in								
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in								

#### COUDCE DECLONEDO

17BTCC07	ENZYME ENGINEERING AND	Category	L	Т	Р	Credit
	TECHNOLOGY	CC	3	0	0	3

Enzyme Engineering is the process of designing and modifying enzymes structures by altering amino acid sequences using recombinant DNA technology. Knowledge of structure and functions of proteins gained from advanced biochemistry can be applied here to design and modify structure of enzymes to perform different useful roles including enhanced catalytic activity, drug discovery and diagnostic applications.

#### **PREREQUISITE -**NIL

	JRSE O	RIF	CTT	VFS												
1	1				o diff	ront		ofa	n711m	a and	their c	horoata	ristics			
$\frac{1}{2}$									•							
2											enzyme					
3	To Ger	nera	lize a	bout	enzyn	ne inh	ibitio	n and	enzyr	ne im	mobiliz	ation a	and its	applica	tions.	
4	To cor	rela	te in o	details	s abou	it perf	forma	nce of	f imm	obilize	ed enzy	mes in	differ	ent type	es of bio	preactor
	and the	eir o	wn d	esign	restrie	ctions	•									
5	To exa	ımir	ne the	know	ledge	ofen	izyme	s to e	nhanc	e bior	eaction	s and t	o desig	gn sens	ors for	
	diagno	ostic	appli	cation	18.											
COU	JRSE O	UT	COM	ES												
After	r the suc	cess	ful co	omple	tion o	f the	course	e, lear	ner w	ill be a	able to					
CO1	. Classif	y ab	out c	lassifi	catior	n of ei	nzyme	es and	l their	chara	cteristi	cs.			Unders	stand
$\overline{\mathbf{CO}}$	. Exemp	1:5.	fund	mont	ol lene	wind				Irinati	ac and	macha	niama	f	Unders	atond
$CO_2$	-	-	Tunua	intent		Jwieu	ge abo	Juten	izyme	KIIIeti	cs and	mecha		1	Unders	stand
00717	manativ	44.7														
enzy	me activ	ity.														
•	me activ		te the	effec	t of e	nzym	e inhi	bition	and e	enzyme	e immo	bilizat	ion.		Unders	stand
CO3		istra				•				-		bilizat	ion.		Unders	stand
CO3 CO4	. Demon . Illustra	istra te al	bout t	he en	zyme	kinet	ics to	desig	n bios	ensors	5.			ect in	Apply	
CO3 CO4 CO5	. Demon . Illustra . Catego	istra te al	bout t	he en	zyme	kinet	ics to	desig	n bios	ensors	5.			ect in		
CO3 CO4 CO5 biore	. Demon . Illustra	istra te al rize	bout t in de	he en tail al	zyme bout c	kinet onseq	ics to uence	desig es of i	n bios mmoł	ensors	s. enzym	ies and	its eff		Apply Analyz	ze
CO3 CO4 CO5 biore MAI	. Demon . Illustra . Catego eactors. PPING V	istra te al rize	bout t in de	he en tail al	zyme bout c	kinet onseq	ics to uence	desig es of i	n bios mmoł	ensors	s. enzym	ies and	its eff		Apply Analyz	ze
CO3 CO4 CO5 biore	. Demon . Illustra . Catego eactors. PPING V	istra te al rize <b>WI</b> T	bout t in de F <b>H P</b> I	he en tail at <b>ROG</b> I	zyme bout c RAM	kinet onseq ME (	ics to uence	desig es of i C <b>OM</b> I	n bios mmot ES Al	ensors pilized	s. enzym ROGRA	es and	its eff	CIFIC	Apply Analyz	ze OMES
CO3 CO4 CO5 biore MAI COS CO1 CO2	. Demon . Illustra . Catego eactors. PPING V	te al rize WIT	bout t in de <b>FH P</b> I PO2	he en tail at <b>ROG</b>	zyme bout c <b>RAM</b> PO4	kinet onseq ME ( PO5	ics to uence DUTC PO6	desig es of i C <b>OM</b> I	n bios mmot ES AN PO8	ensors pilized <b>ND PR</b> PO9	s. enzym ROGRA PO10	es and AMMI PO11	its eff E <b>SPE</b> PO12	CIFIC PSO1	Apply Analyz OUTC PSO2	ze OMES
CO3 CO4 CO5 biore MAI COS CO1 CO2 CO3	. Demon . Illustra . Catego eactors. PPING V	te al rize WIT	bout t in de F <b>H P</b> I PO2 L	he en tail al ROG PO3	zyme bout c <b>RAM</b> PO4 -	kinet: onseq ME ( PO5	ics to uence DUTC PO6	desig es of i C <b>OM</b> I	n bios mmot ES AN PO8	ensors pilized <b>ND PR</b> PO9	s. enzym ROGRA PO10	es and AMMI PO11	E SPE	CIFIC PSO1 - -	Apply Analyz OUTC PSO2 - - -	ze OMES
CO3 CO4 CO5 biore MAI COS CO1 CO2	. Demon . Illustra . Catego eactors. PPING V	stra te al rize WI7 S S	bout t in de I H PI PO2 L M	he en tail al ROG PO3 - L	zyme bout c RAM PO4 - -	kinet onseq ME ( PO5	ics to uence DUTC PO6 - -	desig es of i C <b>OM</b> I	n bios mmot ES AN PO8	ensors pilized <b>ND PR</b> PO9	s. enzym ROGRA PO10 -	es and AMMI PO11	its eff E <b>SPE</b> PO12	CIFIC PSO1	Apply Analyz OUTC PSO2 - -	ze OMES

# CLASSIFICATION, PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM NATURAL SOURCES

Classification of enzymes, Production and purification of crude enzyme extracts from plants, Animals

and microbial sources – Case studies (Isolation and purification of lipase and protease from microbial sources), Methods of characterization of enzymes, Overview of enzymatic assays.

# MECHANISMS AND KINETICS OF ENZYME ACTION

Mechanisms of enzyme action, Concept of active site and energetics of enzyme substrate complex formation, Specificity of enzyme action, Kinetics of single substrate reactions – Michaelis – Menton kinetics, Determination of Km, Lineweaver – Burk plot, Eadie – Hofstee plot, Hanes – Woolf plot, Multi substrate reaction mechanisms (Ping – Pong, Bi – Bi and Random Bi – Bi), Monod Changeux Wyman model.

# INHIBITION OF ENZYME ACTIVITY AND ENZYME IMMOBILIZATION

Types of enzyme inhibition – Competitive inhibition, Uncompetitive inhibition, Non- competitive inhibition, Mixed inhibition, Substrate inhibition, Allosteric inhibition, Irreversible inhibition, Physical and chemical techniques for enzyme immobilization – Adsorption, Matrix entrapment, Encapsulation, Cross - linking, Covalent binding etc., Advantages and disadvantages of different immobilization techniques, Application of immobilized enzyme systems.

# IMMOBILIZED ENZYME REACTORS AND DIFFUSIONAL LIMITATIONS

Immobilized enzyme reactors – Packed bed, Fluidized bed, Membrane reactors, Air - lift bioreactors and CSTRs suited for immobilized enzymes. Diffusion effects in surface – bound enzymes on non-porous support materials, Diffusion effects in enzyme immobilized in a porous material.

# **APPLICATIONS OF ENZYMES**

Applications of enzyme in disease diagnosis, Food industry, Pharmaceutical industry and Paper industry. Enzyme electrodes as biosensors – Calorimetric, Optical and Potentiometric biosensors, Applications of biosensors.

# **TEXT BOOKS:**

- 1. Bhatt S.M, 2014.<u>Enzymology and Enzyme Technology</u>. S Chand & Company, Bengaluru, Karnataka.
- 2. T. Devasena, 2010. Enzymology, Oxford University Press, Oxford, United Kingdom.
- 3. Trevor Palmer, 2008. Enzymes: Biochemistry, biotechnology and clinical chemistry. East West Press, Horwood.
- 4. Zubay, G. L., 1998. Biochemistry, McGraw-Hill Companies, Dubuque, 4th Edn.
- Bailey and Ollis, D.F. 2017. Biochemical Engineering Fundamentals. McGraw Hill. New York. 2nd Edn.

- 1. M. Y. Khan & Farha Khan, 2015. Principles of Enzyme Technology. PHI Learning.
- 2. Butterworth, 1995. Technological Applications of Biocatalysts. BIOTOL Series.
- 3. Cornish-Bowden, A., 1996. Analysis of Enzyme Kinetic Data. Oxford University Press.
- 4. Wiseman, A., Blakeborough, N. and Dunnill, P., 1981. Enzymatic and Nonenzymatic catalysis. Vol. 5, Ellis and Harwood, UK.
- 5. Wiseman, A. Topics in Enzyme and Fermentation Biotechnology. Vol.5 Ellis and Harwood, UK.

6. Kolot, F.B. 1998 Immobilized Microbial Systems, Principles, Techniques and Industrial applications. R.R Krieger Publications.

#### **COURSE DESIGNERS** S. No Name of the Faculty Designation Department Mail ID Mr.N.Jawahar Assistant professor Biotechnology jawahar@vmkvec.edu.in 1 Mrs.G.Arthi 2 Assistant Professor Biotechnology arthi@vmkvec.edu.in

17R7	ГСС08		BI	) INS'	ΓΡΙΠ	MEN	гаті	ON		Categ	ory	L	Т	Р	Credit
1/D1			DI	71115	INUI	VILLIN		UN		CC		3	0	0	3
PREA	MBLE													- I I -	
The Bi	oinstru	nenta	ation	course	e acts	as to	link l	betwe	en aca	demics	and in	ndustry	v. Knov	vledge	gained
in this	course	appl	ied of	n vari	es fie	elds ir	n biot	echno	logy i	ndustr	y. The	techni	iques s	tudied	in this
course	include	prin	ciple,	instru	ment	ation	and aj	pplica	tions o	of the in	nstrum	ent.			
PRER	EQUIS	ITE	- NIL												
COUR	SE OB	JEC	TIVE	S											
1	To Dis	cuss	about	varies	s insti	umen	ts use	ed in h	iotech	nology					
2	To Des									0.	•				
3								_			on tech	mique	s used	in DN	IA and
0	protein						-p								
4	To dist	-			oin str	neture	- usin	σ ther	mal ar	X- ray	<i>i</i> hased	l meth	ode		
5		-		-				-		-				d to	
5						U	cal te	cnniq	ues to	aldenti	TY DIC	molec	ules ar	ia to a	analyze
COUR	differe		-		nnqu	les									
	he succ				n  of  t		irca 1	0011001	will b	a abla	to				
	Knowled			-								<b>X</b> 7		Undo	rstand
		-		-							-	•			
CO2. E	Explain	abou	t spec	trosco	opy ar	nd its j	orinci	ples a	long w	vith ins	trumer	ntation.		Apply	/
CO3. I	Demons	trate	separa	ation a	and p	urifica	tion t	echni	ques ir	1 bioteo	hnolo	gy.		Apply	/
<u>CO4</u> T	Distingu	ish tł	ne bio	molec	ular s	structu	ire hv	thern	nal and	1 X- ray	v hased	lanalv	sis	Analy	/7e
$(')_{4}$										* 11 Iu	, oused	a unur y	515.	Evalu	
	Tualmate		noiec	lies 0	y mm		-		-						
CO5. E											DD/	<b>ACB</b>	MME	SPF	CIFIC
CO5. E	PING	WIT	H F	PROG	RAN	<b>IME</b>	OU	TCO	MES	AND	IN	JUNA			00
CO5. E MAPP OUTC	PING COMES	WIT						-							
CO5. E MAPP OUTC COS	PING COMES PO1	WIT	PO3	PO4	PO5	IME PO6	OU PO7	PO8	MES PO9	AND PO10	PO11	PO12	PSO1	PSO2	PSO3
CO5. E MAPP OUTC COS CO1	PING COMES	WIT PO2 M	PO3 -	PO4 -	PO5 -			-					PSO1 -		
CO5. E MAPP OUTC COS	PING COMES PO1	PO2 M M	PO3 - L	PO4 - L				-					PSO1 - L	PSO2 - -	
CO5. E MAPP OUTC COS CO1 CO2	PING COMES PO1	WIT PO2 M	PO3 -	PO4 -	PO5 -			-		PO10 - -	PO11 - -	PO12 - -	PSO1 -		PSO3 - -

#### **BASICS OF BIOINSTRUMENTION**

Classification and calibration of instrumental methods, Principles and Instrumentation of pH meter & Electronic balance, Gel documentation system, Turbidimetric and Nephelometric titrations.

#### SPECTROSCOPY

General design and components of spectroscopy, Principles, Instrumentation and applications of colorimetry, UV – Visible – IR- Raman spectroscopy –NMR spectroscopy, Auger electron and

## Atomic absorption spectroscopy (AAS)

# SEPARATION AND PURIFICATION TECHNIQUES

Principles and Instrumentation of centrifugation, Paper and column chromatography, Ion exchange, Size exclusion, Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC), Gas chromatography, Electrophoresis of Nucleic acid and protein.

#### THERMAL AND X-RAY

Thermo-gravimetric methods, Differential thermal analysis, Differential scanning calorimetry. X-ray sources, absorption of X-rays, X-ray diffraction, X-ray detectors.

# IMMUNOTECHNIQUES AND ANALYSIS OF BIOPROCESS

Radio Immuno Assay (RIA), Enzyme Linked Immunosorbent Assay (ELISA), Immunoblotting, Measurement of BOD and COD in waste waters, Gas analysis for O2 and CO2, Flow injection analysis.

# **TEXT BOOKS:**

1. Chatwal and Anand, 2016. Instrumental Methods of Chemical Analysis, Himalaya Publishing House,5th Edition

2. Upadhyay, Upadhyay and Nath.,2017. Himalaya Publishing House. Biophysical Chemistry (Principles & Technology,4th Edition.

3. Skoog, D., 2014. Instrumental Methods of Analysis, David Hariss, 6th Edition.

4. Willard, H.H., Merrit, J.A., Dean, L.L. and Setlle, F.A., 1986. Instrumental Methods of Analysis. CBS Publishers and Distributors.

- 1. Dinesh Kumar Chatanta and Prahlad Singh Mehra, 2012. Instrumental Methods of Analysis in Biotechnology. I K International Publishing House.
- 2. P.Asokan. 2003. Analytical Biochemistry. 2nd Edition. China publications.
- 3. Hobart H. Willard, Lynne L. Merrit, John, A. and Frank A. Settle, 1981. Instrumental Methods of Analysis. Van Nostrand.
- 4. Campbell, I.D. and Dwek, R.A., 1986. Biological Spectroscopy, Benjamin Cummins and Company.
- 5. Sewell, P.A. and Clarke, B., 1991. Chromatographic Separations. John Wiley and Sons.
- 6. Ewing, G.W., 1989. Instrumental Methods of Chemical Analysis. McGraw Hill Book Company.

COURSE DESIGNERS												
S. No	Name of the	Designation	Department	Mail ID								
	Faculty											
1	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in								
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in								

17BT(	CC09		ΜΟΙ	ECU	LAR	BIO	LOG	Y	Ca	itegory		L	Т	Р	Credit
1,21,	000					2101				CC		3	0	0	3
PREAM	IBLE														
Molecula	ar Biolo	gy g	gives	in-dep	oth kr	nowled	dge of	f basi	c princ	ciples a	nd Str	ructure	of DN.	A, RN	IA, DNA
Replicati	on, Tr	ansc	riptio	n, Tr	ansla	tion,	Gene	regu	ulation	and	Mutati	on an	d repa	ir me	chanism.
Students	will g	ain	an ur	dersta	anding	g of o	chemi	cal a	nd mo	olecular	proce	esses t	hat occ	cur in	cell and
between	cells ar	nd al	so caj	pable	to exp	plain 1	mecha	anism	which	n occur	in the	living	organis	sms. 7	The paper
starts wi	th the	basi	c org	anizat	tion c	of the	geno	me in	n prok	aryotes	s and	eukary	votes al	ong v	with their
discernin	ig feati	ires.	Thi	s is	follov	wed t	by ch	apter	s on	prokar	yotic	and e	ukaryot	tic re	plication,
transcrip	tion, tra	nsla	tion p	roces	ses, g	ene re	gulati	ion an	nd muta	ation.					
PRERE	QUISI	ГЕ													
17BTCC	04 - CL	LASS	SICA	LAN	D MC	DLEC	ULAF	R GEI	NETIC	CS					
COURS	E OBJ	ECI	TIVES	5											
1	To desc	cribe	e on 1	Nucle	ic act	ids, st	tructu	re, th	eir ch	aracter	istics	and or	ganizat	ion, t	oilogical
i	importa	nce,	replie	cation	proce	ess etc	.,								
2	To disc	uss	about	t the	proce	ss of	Tran	script	ion, n	nechani	sm, ty	pes of	f RNA	and	nhibitors
i	involve	d in	this p	rocess	5.										
3	To inte	erpre	t the	relat	tion of	of get	netic	code	and	transla	tion r	nechan	ism, p	ost ti	anslation
1	modific	atio	n, tran	islatio	n inhi	ibitors	5.								
4	To outli	ne tl	he me	chani	sm of	Gene	regul	lation	in pro	karyote	es and	eukary	otes		
5	To cate	goriz	ze the	muta	tions,	its typ	pes an	ld rep	air me	chanisı	n.				
COURS	E OUT	CO	MES												
After the	succes	sful	comp	letion	of th	e cour	se, le	arner	will be	e able t	0				
CO1. De	scribe t	he b	asic c	oncep	ots and	l prino	ciples	of nu	icleic a	cids in	proka	ryotic	and	Unde	rstand
eukaryoti	ic orgar	nism	s. Dis	cuss a	and di	stingu	ish th	le rep	lication	n of pro	okaryo	tic and			
eukaryoti	ic DNA	L													
CO2. Ex	plain th	e sy	nthesi	s of R	RNA a	ind po	st-tra	nscrip	otional	modifi	cation	S		Unde	rstand
CO3. De	scribe t	he g	enetic	code	and p	oroteir	ı synt	hesis	mecha	nism				Unde	rstand
CO4. De	velop u	nder	stand	ing al	out tl	ne mo	lecula	r mea	chanisr	ns behi	ind dif	ferent		Anal	vse
modes of	-			0					<b>211011</b> 101			1010111		1 IIIui	,50
CO5. Exa									pair m	echanis	sms			Anal	yse
MAPPIN		VIT		ROG	·		U		MES	ANI		SUCB	AMME		PECIFIC
OUTCO		, <b></b> .	1	NUU			00	100			, II		ATATATAT.		
		02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S I	M	L	Μ	-	-	-	-	-	_	-	-	L	-	-
CO2		L	-	L	-	-	-	-	-	-	-	-	-	-	-
CO3	S	Μ	-	-	-	-	-	-	-	-	-	-	-	L	-
CO4		Μ	-	S	-	-	-	-	-	-	-	-	-	-	-
CO5	S	Μ	-	S	-	-	Μ	-	-	-	_	L	Μ	L	-

S- Strong; M-Medium; L-Low

#### SYLLABUS

#### NUCLEIC ACIDS AND DNA REPLICATION

Introduction to Nucleic acids – Primary, Secondary and Tertiary structures, Structure and physicochemical properties of elements in DNA and RNA, Chemical and structural qualities of 3',5'-Phosphodiester bond, Replication in prokaryotes and eukaryotes – Different modes of replication, Inhibitors of replication.

#### TRANSCRIPTION

Structure and function of mRNA, rRNA and t RNA, Exon, Intron, Transcription in prokaryotes and eukaryotes, Inhibitors, Post transcriptional modifications, Reverse transcription.

#### TRANSLATION

Genetic code and its features, Wobble hypothesis and its importance, Colinearity of gene and polypeptide, Translation mechanism, Post translational modifications, Protein folding.

#### **REGULATION OF GENE EXPRESSION**

Organization of genes in prokaryotic and eukaryotic chromosomes, Regulation of gene expression with reference to  $\lambda$  phage life cycle. Gene regulation – Operons: Lac, trp, ara and gal.

#### MUTAGENESIS AND REPAIR

Mutagens, DNA Mutations and their mechanism, various types of DNA repair mechanism.

#### **TEXT BOOKS:**

1. Freifelder, D., "Molecular Biology", 2nd Edition, Narosa Publishing House, 1999.

2. Benjamin L., "Genes IX" Jones and Bartlett, 2008.

3. Jeremy M. Berg, John L. Tymoczko and Lubert Stryer, 2002 "Biochemistry". 5th Edition.

W.H. Freeman and Company.

#### **REFERENCES:**

1. James Watson et al., 1987. Molecular Biology of Gene. The Benjamin / Cummings Publication Co. Inc., California.

COUR	COURSE DESIGNERS												
S. No	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in									
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									

17BTC	C10		PRI			OF ( NEER		/ICA	L		egory	L	Т	Р	Credit
				E.	ngir	ICCN	шıG			(	CC	3	0	0	3
PREAM			1	.1 1	•	•	• 1	1	1 1	· · ·	1 ·		(1 )	• • •	C 1 ·
						-	-				-				of chemic
															of materia
															namics an e chemica
engineer				-				101 1		ennear	engin		0 Iean	ze u	
PRERE	<u> </u>	-		ubseq		nouui	<b>C</b> 5.								
17BTCC				tions	in Pro	icess l	ndust	ries							
COURS							naust								
					liagra	ms ar	nd ma	thema	tical e	xpressi	ions.				
	-				0					-		k auan	titativa	ly by	including
/			l unit		nving	SKIIIS	s, spec	Incai	ly the	aunity	to uni	k quan	litative	iy Uy	including
3 To	o inte	rpret	vagu	e and	ambig	guous	langu	iage ii	n prob	lem sta	tement	ts.			
	o imp oblen		nt juc	licious	s use (	of app	oroxin	nation	s and 1	reasona	able ass	sumpti	ons to s	simpli	ify
			princ	iples	of ope	eration	n and	desig	n for a	range	of item	ns of pl	ant.		
COURS	ΕΟ	JTC	OME	S											
After the	succ	essfu	l con	pletio	on of t	the co	urse,	learne	er will	be able	e to				
CO1. Ex problem							matic	s, scie	nce an	d engi	neering	g princ	iples fo	or	Understan
$\frac{1}{CO2}$ . De							ents o	f dim	ension	s. units	s. psycl	hometr	v. stear	n	Understan
propertie							-			.,	, ps <b>j</b> e		<i>,</i>		0.11001.50011
CO3. Int	1	ting t	he pr	oblem	ns in r	nateri	al and	lener	gy bala	ances r	elated	to cher	nical ar	nd	Understan
bioreacto			1	1	1	1 /		1		1		• ,	1.1		A 1
CO4. An linked to		-	-	-		-	-			-	-	-			Apply
CO5. Pra	actice	mate	erial t	alanc	es on	unit o	perat	ions a	nd pro	cesses	in vari	ious in	dustries	<b>S</b> .	Apply
and to ev	valuat	e hur	nidity	v with	/with	out the	e use	of psy	chrom	etric c	hart.				
CO6. For	rmula	ting	and o	ptimi	zing v	ariou	s para	meter	s with	respec	t to the	e indus	trial		Evaluate
processe		U		1	U		1			1					
MAPPIN	IG W	ITH	PRO	GRAN	IME (	OUTC	COME	ES AN	D PRC	)GRAN	MME S	PECIF	TIC OU	TCO	MES
COS I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	М	-	L	-	-	-	-	-	-	-	-	М	-	-
	М	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	-	М	L	L	-	-	-	-	-	-	-	-	-
CO4	S	S	S	L		-	-	-	-	-	-	-	-	-	-
CO5	S	М	-	М	L	-	-	-	-	-	-	L	-	-	-
CO6	S	М	М	L	L	L	-	-	-	-	-	S	-	M	L
C Charles	r∙ M_	Medi	ium: l	L-Low	V					1	1	1			<b>I</b>

#### **OVERVIEW OF STOICHIOMETRY**

Introduction, Units and dimensions, conversion factors, Stoichiometric principles, Composition relation - Atomic, Molecular, Equivalent weights, Molar concepts - Moles, Mole fraction, Mass fraction, Mixtures and solutions - Molarity, Molality and Normality, Density and specific gravity, Conversion factors, Ideal Gas law, Gaseous mixtures- Dalton's law of additive volumes, Dimensional analysis.

#### MATERIAL BALANCES

Material balances without chemical reactions - Overall and component balances; Material balances with chemical reactions - Limiting reactant, Excess reactant; Unit operations- Distillation, Evaporation, Drying, crystallization; Recycling and bypass; Material balance of unsteady state operations; Problems in industrial applications.

#### VAPOUR PRESSURE, HUMIDITY AND SOLUBILITY

Vapour pressure - Effect of temperature; Vapourization; Humidity and saturation; Condensation, Solubility, Dissolution

#### **ENERGY BALANCE**

Thermochemistry - Calculation of heat of reaction at other temperatures - Hess's law of summation, heat capacity, heat capacities of gases at constant pressure, heat capacities of gas mixture, heat capacities of liquid mixture, Latent heat - Heat of formation, Reaction, Mixing, Theoretical flame temperature.

#### **FLUID MECHANICS**

Fluids; fluid statics and applications in chemical engineering; fluid flow; laminar; turbulent pressure drops; compressible fluid flow concepts.

#### **TEXT BOOKS:**

1. Principles of Biochemistry by Lehninger, D.L., Cox, M.M., McMillan Publishers (2008) 4th edition

2. Biochemistry by Stryer, Lubert. W.H Freeman & Co., (2000) 4th edition.

3. Fundamentals of Biochemistry by Donald Voet, Judith G. Voet and Charlotte W., John Wiley & Sons (2008), 3rd edition Pratt

- 1. George T. Austine, Shreeves chemical process industries, 1984, McGraw Hill International Edition, 5th Edition.
- 2. Finlayson, B. A., Introduction to Chemical Engineering Computing, 2006, John Wiley & Sons, New Jersey.
- 3. Geankoplis, C.J., Transport Processes and Unit Operations, 2002. Prentice Hall India.
- 4. Nicholas Chopey, Handbook of Chemical Engineering Calculations Process Principles", Mc Graw Hill, 2004.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1.	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in								
2.	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in								

17 <b>P</b> '	TCC1	1		Pl	LANT	<b>CANI</b>	D AN	IMAI			Cate	gory	L	Т	Р	Credit
1/D	ICCI	1		I	BIOT	ECH	NOL	OGY			С	С	3	0	0	3
PRE	AMBI	LE											1			
The o	course	is cu	stomiz	zed to	provi	ide a p	percep	otive o	of the b	oasic co	oncepts	s, techr	nique	s and	l met	hods
unde	rlying	plant	and a	nimal	biote	chnol	ogy. '	The le	earners	will g	ain unc	lerstan	ding	of th	eore	tical
princ	ciples e	nabli	ng the	em to	emplo	by the	know	vledge	e to sol	ve pro	blems	related	to pl	lant p	orote	ction
and c	disease	diag	nosis	throug	gh bio	techn	ologi	cal ap	proach	les.						
PRE	REQU	JISIT	<b>TE - N</b>	JIL												
COU	JRSE (	OBJI	ECTI	VES												
1	Summ	arize	about	diffe	rent ty	pes o	f cell	cultu	re metł	hods						
2	To dev	elop	an un	dersta	nding	g on pa	atenti	ng gei	netical	ly engi	neered	anima	ls an	d eth	ical	issues
3	Descri	be ab	out th	e gen	etic tr	ansfo	rmatio	on in 1	plants	by the	aid of o	differe	nt ve	ctor	syste	ms.
				-					-	-					-	e disease
	diagno				-	. 0						1				
COL	JRSE	OUT	COM	ES												
After	r the su	iccess	sful co	omple	tion o	f the o	course	e, lear	ner wi	ll be at	ole to					
CO1	. Expla	in th	e basi	cs of	issue	cultu	re							U	Inder	stand
CO2	. Demo	onstra	te the	techr	niques	for d	evelo	pmen	t of Hy	/brids,	screen	ing and	1	A	pply	
selec	tion pr	oced	ure. A	pply	the tee	chniqu	les in	produ	uction	of Cyb	rids.	-				
CO3	. Appra	aise tl	he pla	nt tiss	sue cu	lture a	and g	enetic	manip	oulation	n of pla	ants		A	naly	se
CO4	. Categ	orize	abou	t the c	liffere	ent ani	imal t	issue	culture	e and M	lolecu	lar		A	naly	se
	ogical to		-	_		-	-									
CO5	. Inspe	ct the	anim	al ger	ne trar	nsfer t	echni	ques a	and the	eir ethio	cal issu	ies		A	naly	se
MAI	PPING	ł W	ITH	PR	<b>DGR</b>	AMM	E C	DUTC	COME	S AN	ND P	ROGE	RAM	ME	SP	ECIFIC
OUI	ГСОМ	ES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PS	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	Μ	Μ	_	_	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	S	M	S	-	Μ	L	-	-	-	-	M		-	-
CO4 CO5	M	S	S	M	L	-	-	L	-	-	-	-		5	S	-
CO5	L S	S L	S	М	L	-	-	L	-	-	-	-		5	S	-
	rong; I		- dium	- • T _T /	-	-	-	-	-	-	-	-	-	-	-	_
5 51	1011 <u>g</u> , 1	VI 1VI(	Junuill	, <b>-</b>												

# **BASICS OF TISSUE CULTURE**

Tissue culture media – Composition and preparation, aseptic techniques, Organogenesis, Somatic embryogenesis, Shoot-tip culture, Embryo culture and embryo rescue, totipotency.

# SOMATIC HYBRIDIZATION AND TRANSFORMATION TECHNIQUES

Protoplast isolation, Culture and fusion, hybrids and Cybrids, Plant vectors, basic features of vectors, Direct gene transfer methods, Agrobacterium mediated gene transfer, applications.

# TRANSGENIC PLANTS AND MOLECULAR MARKERS

Herbicide resistance-use of herbicide in modern agriculture, pest resistance-nature, insect resistant crops-Bt approach to insect resistance and food safety. Molecular markers.

# TRANSGENIC ANIMALS AND DISEASE DIAGNOSIS

Basic techniques of animal cell culture and their application, Gene cloning techniques for mammalian cells, Transgenic animals, *In-vitro* fertilization and embryo transfer, Molecular biological technique for rapid diagnosis of genetic disease and gene therapy.

## TRANSFECTION METHODS, PATENT AND ETHICAL ISSUES

Gene transfer methods in animals, Xenotransplantation, Manipulation of Growth hormone, thyroid hormone, patenting genetically engineered animals- Ethical issues

# **TEXT BOOKS:**

- 1. Gupta, P.K., 1996. Elements of Biotechnology. Rastogi and Co., Meerut.
- 2. Ranga, M.M., 2002. Animal Biotechnology. Agrobios India Limited.
- 3. Ignacimuthu, S., 1996. Applied Plant Biotechnology. Tata McGraw Hill.
- 4. Gamburg, O.L. and Philips, G.C., 1995. Plant Tissue and Organ Culture Fundamental Methods. *Narosa Publications*.
- 5. Singh, B.D., 1998. Text Book of Biotechnology. Kalyani Publishers.
- 6. Ramadas, P. and Meera Rani, S., 1997. Text Book of Animal Biotechnology. Akshara Printers.

- 1. Hamond, J., McGarvey, P. and Yusibov, V., 2000. Plant Biotechnology. Springer Verlag.
- 2. Mantal, S.H., Mathews, J.A. and Mickee, R.A., 1985. Principles of Plant Biotechnology. An Introduction of Genetic Engineering in Plants. *Blackwell Scientific Publication*

COU	RSE DESIGNERS			
S.	Name of the	Designation	Department	Mail ID
No.	Faculty			
1	Dr.M.Sridevi	Professor and Head	Biotechnology	sridevim@vmkvec.edu.in
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

17BTCC12	GENETIC ENGINEERING	Category	L	L T P		Credit	
		CC	3	0	0	3	

Genetic engineering has developed genetic recombination techniques to manipulate gene sequences in plants, animals and other organisms to express specific traits. Applications for genetic engineering are increasing as engineers and scientists work together to identify the locations and functions of specific genes in the DNA sequence of various organisms. Once each gene is classified, engineers develop ways to alter them to create organisms that provide benefits such as cows that produce larger volumes of meat, fuel- and plastics-generating bacteria, and pest-resistant crops.

#### PRERQUISITE

17B	17BTCC09-MOLECULAR BIOLOGY						
CO	COURSE OBJECTIVES						
1	1 To understand the principle of nucleic acid isolation, PCR and their uses in genetic engineering, nucleic acid hybridization						
2	The students after completing this course would be aware of how to clone comm	nercially					
	important genes						
3	The students would be aware Analysis of Gene expression						
4	To discuss the gene cloning methods and the tools and techniques involved in ge	ene cloning					
5	To explain the heterologous expression of cloned genes in different hosts,						
	production of recombinant proteins and its applications						
CO	COURSE OUTCOMES						
Ont	he successful completion of the course, students will be able to						
CO	. Gain knowledge on various recombinant DNA techniques and their	Understand					
appl	ications.						
CO2	2.Familiar with the problems they could encounter and how to trouble shoot	Understand					
then	them learn various types of host-vector systems and steps in creating a recombinant						
DN	DNA molecule						
CO	CO3.Monitor both in-vitro and in-vivo activity. Analyse						
	CO4.Give insight into the functioning of Recombinant DNA molecules, their Apply constructions, analysis and fine tuning.						
CO	CO5. Know about the production of commercially important recombinant proteins. Apply						

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES** COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 М S S L М ----------CO2 S Μ S Μ -_ _ -_ _ _ _ S _ _ L CO3 М Μ S L ----------S CO4 S М L -----------CO5 М S L -М _ _ -_ _ _ _ _

S- Strong; M-Medium; L-Low

#### BASIC TOOLS IN GENETIC ENGINEERING

Role of genes and core techniques in gene manipulations; Restriction enzymes -Cutting and joining of DNA; Gene specific and degenerate primer design- DNA amplification using PCR, Types of PCR - RAPD, RT-PCR and applications of PCR; DNA sequencing - Maxam and Gilbert method and Sanger and Coulson enzymatic chain termination method; DNA labelling Methods; Nucleic acid hybridization techniques – Southern, Northern and Western.

#### **CLONING AND EXPRESSION VECTORS**

Vectors; Plasmid biology, Plasmids as vectors – pBR 322, Derivatives of pBR 322, pUC vectors, Lambda vectors, *In vitro* packaging, M13 vectors, Cosmids, Phasmids, Retroviral vectors, Baculovirus vectors, Cloning vectors in Gram positive bacteria (p1J101), Cloning vectors in Gram negative bacterium (Col E1, R1, pT181, pSC 101), Expression vectors – Prokaryotic expression vectors (*E. coli, Streptomyces*) and Eukaryotic expression vectors.

#### GENE LIBRARIES AND GENE MAPPING

Construction and screening of Genomic DNA and cDNA Library; Analysis of gene expression; Chromosome walking, Chromosome jumping; DNA probes; Molecular markers - Variable Nucleotide Tandem Repeats (VNTR's), Short Tandem Repeats (STR); Mini and Microsatellite sequences; Restriction mapping; Transcript mapping; Gene targeting.

#### **CLONING STRATEGIES**

Safety lines for recombinant DNA techniques; Construction of recombinant DNA; Preparation of competent cells- Transformation and Transfection; Selection and screening of recombinants; Gene transfer - Shotgun method, Nuclear injection method; Cloning in plants-Ti Plasmids of *Agrobacterium*, Structure and function of T-DNA

# GENE MODIFICATIONS AND APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY

Mutagenesis – Deletion mutagenesis, Oligonucleotide derived mutagenesis, Site directed mutagenesis and their applications; DNA Fingerprinting - RFLP analysis; Applications of recombinant DNA technology for the production of recombinant proteins – Insulin, Interferon and Growth hormones; Guidelines for the disposal of recombinant product wastes.

#### **TEXT BOOKS:**

- 1. Primrose SB and R. Twyman "Principles of Gene Manipulation & Geneomics Blackwell Science Publications, 2006.
- 2. Principles of Genome Analysis and Genomics by S.B.Primrose and R.M.Twyman, Third Edition (Blackwell Publishing), 2003.

- Winnacker, Ernst L. "From Genes to Clones: Introduction to Gene Technology", Panima, 2003.
- 2. Glover, D. M., 1984. Gene cloning: The mechanism of DNA manipulation. IRC Press, Oxford University.
- 3. Jose Cibelli, Robert P. Lanza, Keith H.S. Campbell, Michael D. West, 2002. Principles of cloning. Academic Press.
- 4. Glick, B.R. and J.J. Pasternak "Molecular Biotechnology: Principles and Applications of Recombinant DNA", 3rd Edition, ASM, 2003.

- 5. Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols in Molecular Biology "Greene Publishing Associates, NY, 1988.
- 6. Berger Sl, Kimmer AR, "Methods in Enzymology", Vol 152, Academic Press, 1987.
- 7. Genomes 3 by T.A.Brown, Third Edition (Garland Science Publishing), 2007
- 8. Sambrook and Elliot. Molecular Cloning. Vol. III.

COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID					
1	Mrs.G. Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in					
2	Dr.M. Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in					

17BTCC13	THERMODYNAMICS FOR BIOTECHNOLOGY	Category	L	Т	Р	Credit
		CC	4	0	0	4

Thermodynamics for Biotechnology deals with the basic laws and its application. This course deals with various law, volumetric application, Phase equilibria and Chemical Reaction Equilibria, Knowledge of this course will enable students to understand the importance of thermodynamics and its applications in the field of biotechnology.

#### PRERQUISITE

17BTCC10-PRINCIPLES OF CHEMICAL ENGINEERING.

#### **COURSE OBJECTIVES**

1	To list fundamental laws of thermodynamics.
2	To interpret its application to simple biological systems.

3 To discuss properties of pure fluids and property changes in fluid mixtures.

4 To implement the concepts to phase and reaction equilibria.

5 To formulate the equilibrium criteria for the chemical reactions

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

On th	on the successful completion of the course, students will be use to														
CO1. Summarize the fundamentals of thermodynamics and laws of								Understand							
thermodynamics.															
CO2. Explain the laws of thermodynamics to different systems and processes								Understand							
CO3. Describe the thermodynamics concepts to explain the properties of pure fluids								Understand							
and their mixtures.															
CO4. Deduce the concepts of thermodynamic to phase equilibrium.								Analyse							
CO5. Appraise and adapt biochemical reaction equilibrium to biological systems.						5.	Analyse								
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	-	-	-	-	-		-	-	-	-	-	L
CO2 - M L L								-	-	L	М				
CO3 - M L L N									М						
CO4	-	Μ	L	-	-	-	-	-		L	-	-	-	-	М
CO5	-	М	L	-	_	-	-	-	L	L	-	-	-	М	М
S- Stro	S- Strong; M-Medium; L-Low														

# SYLLABUS

#### LAWS OF THERMODYNAMICS AND ITS APPLICATIONS

Introduction - Work, Energy, Heat, Internal energy, Extensive and intensive properties, State and path functions, First law of thermodynamics, Energy balance for closed systems, Equilibrium, The reversible process, Constant - v and Constant - p processes, Enthalpy, Heat capacity, Application of First law to Steady state flow processes, Entropy and Second law of thermodynamics – Limitations of First law, Third law of Thermodynamics. Heat engines, Thermodynamic temperature scale, Power cycles, Calculation of Ideal work.

#### **VOLUMETRIC AND THERMODYNAMIC PROPERTIES OF FLUIDS**

Ideal gas law, Isobaric, Isochoric, Isothermal, Adiabatic and Polytropic process. P-V-T relations of fluid, Equation of state for gases, Compressibility factors, Compressibility charts, The principles of corresponding states, Acentric factor. Thermodynamic properties of fluids – Reference properties, Energy properties, Derived properties, Maxwell's relations. Heat capacity relations, Effect of pressure and volume on heat capacities.

## SOLUTION THERMODYNAMICS

Partial molar properties, Concepts of chemical potential and fugacity; Activity and activity co-efficient, Gibbs Duhem equation, Margules activity model, Ideal and non-ideal solut ions, Excess properties of mixtures, Composition models.

## PHASE EQUILIBRIA

Phase equilibrium – Criteria for phase equilibria, Phase equilibria in single and multi-component systems, Vapour Liquid Equilibria (VLE), Liquid – Liquid Equilibria (LLE), Solid – Liquid Equilibrium.

## CHEMICAL REACTION EQUILIBRIA

Equilibrium criteria for homogeneous chemical reactions, Evaluation of equilibrium constant, Effect of temperature and pressure on equilibrium constant, Calculation of equilibrium conversion for single and multiple reactions, Heterogeneous reaction equilibria.

#### **TEXT BOOK:**

- 1. Narayanan, K.V., 2001. A Text Book of Chemical Engineering Thermodynamics. Prentice Hall India.
- 2. Smith, J.M., Van Ness, H.C. and Abbot, M.M., 2001. Chemical Engineering Thermodynamics. 6th Edn., McGraw- Hill.

#### **REFERENCES:**

- 1. Rao, Y.V.C. Chemical Engineering Thermodynamics.
- 2. Sandler, S.I., 1989. Chemical and Engineering Thermodynamics. John Wiley and Sons.
- 3. Roels, J.A., 1983. Kinetics and Energetics in Biotechnology. Elsevier.
- 4. Donald T. Haynie. Biological Thermodynamics. Cambridge.
- 5. Volker Hessel, 2005. Chemical Microprocess Engineering. John Wiley and Sons.
- 6. Irving J. Dunn and Eth Zurich, 2003. Biological Reaction Engineering. John Wiley.

cocm												
S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in								
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in								
3	Dr G Karthiga devi	Assistant Professor	Biotechnology	karthigadevi@avit.ac.in								

#### **COURSE DESIGNERS**

17BTCC14	IMMUNOLOGY	Category	L	Т	Р	Credit
		CC	3	0	0	3

#### **PREAMBLE**

The course aims in imparting the fundamental knowledge in the science of immunology and a detailed study of various types of immune systems and their classification, structure, and mechanism of immune activation. It discusses about the principles of microbial pathogenesis, production of new drugs and diagnostic methods.

#### **PRERQUISITE -** NIL

	-														
COUR	SE OB	JECT	IVES												
1	To gai	in kno	wledg	e about	the g	eneral	conce	epts of	imm	une syst	tem, im	mune o	rgan an	d cells	
2	To le	earn	the 1	mechan	isms	relate	ed to	cell	me	diated	immur	nity, c	omplen	nent sy	vstem,
	hypers	sensiti	vity a	nd trans	planta	ation i	mmur	ology	,						
3	To acc	quire k	knowl	edge on	the p	rincip	les of	micro	bial pa	athogen	esis the	concep	ots and	principl	e of
	immu	noassa	iy tech	nniques	in rou	tine d	iagno	sis, re	search	l					
4	To de	monst	rate a	capacit	y for p	oroble	m-solv	ving a	bout i	mmune	respon	sivenes	s and be	e able to	)
	provic	le an c	overvi	ew of th	ne inte	ractio	n betv	veen tl	he imr	nune sy	stem a	nd path	ogens		
5	Explo	re stra	tegies	to imp	rove e	xisting	g Imm	uno te	echnol	logy and	d how t	o appro	ach the	se.	
COUR	-		-												
On the s				on of th	ne cou	rse, st	udents	s will	be abl	e to					
CO1. E											s and o	rgans o	f the	Under	stand
immune	-	-		-			•				is und o	- Suiis o	1 1110		Stand
CO2. E				-			-				itv			Under	stand
CO3. II	-		-						• •		-	nmunit	v	Apply	
CO4. St						-							-	Apply	
pathoge															
CO5. D						-					s and e	xplore t	he	Analy	se
diagnos				0		J				1		r			
MAPP			DDOC	DAM				Z A NIT			MME S	DECIL		TCOM	FC
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	L	М	S	М	L	-	-	-	-	-	-	-	М	L	-
CO4	М	S	S	М	L	-	-	-	-	-	-	-	S	S	-

S- Strong; M-Medium; L-Low

S

#### **SYLLABUS**

CO5

#### **INTRODUCTION TO IMMUNE SYSTEM**

S

Μ

L Μ

Phylogeny of immune system, Innate and acquired immunity, Clonal nature of immune response, Organization and structure of lymphoid organs, antigens: chemical and molecular nature, haptens, adjuvants, Cells of immune system - Haematopoiesis and differentiation - B-Lymphocytes, T-Lymphocytes, Macrophages, Dendrite cells

S

Μ

L

#### ASSESSMENT OF CELL MEDIATED IMMUNITY

Identification of lymphocytes and their subsets in blood, T cell activation, Estimation of cytokines, Macrophages activation, Macrophage-microbicidal assays, Hypersensitivity.

#### TRANSPLANTATION AND AUTOIMMUNITY

HLA System, Transplantation – Organ transplantation, Grafting – graft rejection and prevention, Immunosuppressive drugs, Autoimmunity – Auto antibodies in human, Pathogenic

mechanism, Experimental models of Autoimmune disease, Treatment of Autoimmune disorders. **MOLECULAR IMMUNOLOGY** 

Immunity to virus, Bacteria, Parasites, Genetic control of immune response, MHC associated predisposition to disease, Principles and strategy for developing vaccines, Newer methods of vaccine production. Immunodeficiency diseases.

#### **IMMUNOTECHNOLOGY**

Antigen-antibody interaction, Agglutination and precipitation, complement fixation test, Immunodiffusion, Immunoelectrophoretic, Purification and synthesis of antigen, Fluorescence immunoassay – Immuno Fluorescence (IF), SLFIA, DELFIA, Fluorescence Activated Cell Sorter, Immunomics.

#### **TEXT BOOKS:**

- 1. Lydyard, P.M., Whelan, A. and Fanger, M.W., 2003. Instant Notes in Immunology. 2nd Edn., Viva Books Private Limited.
- 2. Dulsy Fatima and Arumugam N., 2014.

#### **REFERENCES:**

- 1. Talwar, G.P. and Gupta, S.K., 1992. A Handbook of Practical and Clinical Immunology. Volume 12., CBS Publications.
- 2. Richard A., Goldsby, Thomas J.Kindt and Barbara A, Osborne, Kuby, Immunology. IV Edition, W.H. Freeman and Company, New York.
- 3. Goding, J.W., 1983. Monoclonal Antibodies: Principles and Practice. Academic Press.
- 4. Benjamin, E. and Leskowitz, S., 1991. Immunology A Short Course. Wiley Liss., New York.
- 5. Kuby J, Immunology, WH Freeman & Co., 7th Edition 2012.

COUR	COURSE DESIGNERS												
S. No	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in									
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in									

# COURCE DEGLOVEDO

17BTCC15	FOOD PROCESSING TECHNOLOGY	Category	L	Т	Р	Credit
		CC	3	0	0	3

#### PREAMBLE

Food Processing Technology deals with the study of food production, processing, packaging, preservation and the use of technology and Engineering techniques in aiding the above-mentioned stages. It also deals with artificial food, artificial edible items, nutrition science and its Chemistry. It allows students to learn about food and nutrients, role of functional foods and the strategies to produce specific food ingredients.

# **PRERQUISITE -** NIL

COU	RSE O	BJ	ECTI	VES												
1	To ex	pla	in dif	ferent	t types	s of f	oods,	facto	ors af	fectin	g food	1 & fo	ood pr	oducts	and the	e micro-
	organi	sm	s whic	ch cau	se foo	d born	e dise	eases								
2	To exp	olai	in the	conce	pts of t	food s	poilag	ge and	l diffe	erent f	ood pr	eservat	tion me	ethods,	and the	ir impact
	on the	sh	elf life	e, qual	ity, an	d othe	er phy	sical a	and se	ensory	chara	cteristi	cs of fo	ods		
3	To discuss the different food processing methods and its applicability in food product preparations															
4	To choose appropriate modern methods of food preservation for industrialization															
5	To Choose the materials and types of packaging for foods and its quality testing															
COU	RSE O	UT	COM	ES												
On th	e succes	ssfi	ul com	pletic	on of th	e cou	rse, st	udent	s will	be ab	ole to					
CO1.	Identify	/ di	ifferen	t mici	robes a	ssocia	ated w	ith fo	ods, a	and fo	od bor	ne dise	eases.	Unde	rstand	
CO2.	Describ	e t	he role	e of m	nicrobe	s in fo	ood sp	ooilag	e and	food	preserv	vation		Unde	rstand	
CO3.	Summa	riz	e all f	ood p	rocessi	ng me	ethods	s and o	demoi	nstrate	e its ap	plicati	on in	Unde	rstand	
food p	product	pre	eparati	on												
CO4.	Illustra	te t	he mo	dern 1	method	ls to n	nodify	y food	ls usin	ig bio	techno	logy.		Appl	у	
CO5.	Demon	stra	ate pac	cking	metho	ds, ma	aterial	s and	factor	rs affe	ecting f	food		Appl	у	
packin	ng.															
MAP	PING V	NI	TH P	ROG	RAMN	AE O	UTC	OME	S AN	D PR	OGRA	AMMI	E SPE	CIFIC	OUTC	OMES
COS	PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L		М	L	М	L	М	L	-	-	-	-	-	-	-	-
CO2	L		S	L	М	L	L	L	-	-	-	-	-	-	-	-
CO3	S		M S	M S	L	M	M	M	-	-	-	-	-	М	- M	- M
CO4 CO5	M S		S M	S M	S M	S M	M L	L M	-	-	-	-	-	-	М	М
005	5		IVI	IVI	IVI	IVI	L	IVI	-	-	-	-	-	-		-

#### S- Strong; M-Medium; L-Low

#### **SYLLABUS**

# FUNDAMENTALS OF FOOD MICROBIOLOGY

Microbiology of different types of foods-Vegetables, fruits, milk and milk products, meat and meat products. Factors affecting the food products. Food borne diseases and causative organisms.

#### FOOD SPOILAGE AND PRESERVATION

Spoilage of foods and Shelf –life-Milk and milk products, meat and meat products. Factors influencing food spoilage. Methods of food preservation-Pickling, salting, drying, freezing, refrigeration, use of food

# additives and irradiation.

#### PROCESSING OF FOODS

Heating, boiling, oxidation, toxic inhibition, dehydration, drying-Yeast based products, Milk products, Jams and jellies, Pickles, Meat and meat products. Labelling Instructions.

#### INDUSTRIALIZATION/ MODERN FOOD PRESEVERVATION

Pasteurization, Vacuum packing, food additives, irradiation, bio preservation, Modified atmosphere packing, cryopreservation.

#### PACKAGING AND QUALITY TESTING

Methods of packaging of foods-Solid, liquid, semi solids, Modified atmosphere packing. Factors affecting packaging. Packaging materials.

#### **TEXT BOOKS**

- 1. Frazier. Food Microbiology. McGraw Hill Publication.4th Edition.2001
- 2. Sivashankar.B.Food processing Preservation, Prenlice Hall of India.Pvt.Ltd.2002

#### **REFERENCE BOOKS**

1. James M Jay, Martin J, Loessner and David A Golden. Food Microbiology, Springer Publication, 7th Edition. 2005

2. Shetty K, Paliyath, Food Microbiology, 2nd Edition, Taylor and Francis, 2006

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

17BT	<b>FCC16</b>		BIO	PROC	ESS I	ENGI	NEE	RING	Ì	Cate	egory	L	Т	Р		Credit
										(	CC	3	0	0		3
	AMBL															
				•							oproce	ss engi	neer	ing. T	his v	vill also
-	he stud		unde	rtake p	roject	in Bi	oproc	ess te	chnol	ogy						
	RQUIS CC07-		ME E	ENGIN	EERI	NG A	ND 7	FECH	INOL	OGY.						
COU	RSE O	BJEC	TIVE	ES												
1	To Exp	lain at	oout th	ne histo	orical	devel	opme	nt of l	Biopro	ocess to	echnol	ogy, D	esigr	and	cons	truction of
	fermen						1		1			0.	U			
2	To Inte	rpret t	he kin	etics o	f Mic	robial	grow	th and	d proc	luct for	rmation	ı				
3	To Sun	mariz	e the	knowle	edge o	n Des	sign a	nd op	eratio	n of Bi	oreact	ors				
4	To Perf	form th	ne Ma	ss tran	sfer p	rincip	les in	biore	actor	and sca	ale-up	criteria	ι.			
5	To Exe	cute th	ne Me	thods of	of Onl	ine an	d Off	line n	nonito	oring of	f biopr	ocess.				
COU	RSE O	UTCO	OMES	5												
On th	e succe	ssful c	omple	etion o	f the c	course	, stud	ents v	will be	e able t	0					
CO1.	Identi	fy the	appr	opriate	bior	eactor	· conf	igurat	tions	and op	eration	n mod	es I	Jnder	stand	1
based	upon t	he nati	are of	Bio pr	oduct	s and	cell li	nes a	nd oth	er pro	cess cri	teria.				
CO2.	Illustra	ite abo	out mo	odellin	g and	simu	lation	of bi	oproc	esses s	so as to	o redu	ce I	Under	stand	1
costs	and to e	enhanc	the the	quality	of pr	oduct	s and	syste	ms.							
CO3.	Review	<i>w</i> a res	search	career	or to	work	in the	e biote	echno	logy in	dustry	with	τ	Under	stand	1
strong	g found	ation a	bout l	bioreac	tor de	esign a	and sc	ale-u	p.							
CO4.	Demor	strate	theory	y, prino	ciple,	desigi	n, app	licatio	on and	l possi	ble		I	Apply		
integr	ations of	of unit	opera	tions i	n biop	proces	sing.									
CO5.	Initiate	e the re	esearc	h lab a	nd In	dustry	; iden	tify p	roble	ms and	seek p	oractica	al A	Apply		
soluti	ons for	large s	scale i	mplen	nentati	ion of	Biote	chno	logy.							
MAP	PING	WITH	I PRC	<b>GRA</b>	MME	OUT	<b>ICON</b>	AES A	AND	PROG	RAM	ME SI	PEC	FIC	OUI	<b>ICOMES</b>
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	502	PSO3
CO1	S	S	S	S	-	-	-	-	-	-	-	-	M		-	-
CO2	S	М	L	Μ	-	-	-	-	-	-	-	-	S		-	-
CO3	S	М	Μ	S	-	-	-	-	-	-	-	I	L		-	-
CO4	S	М	L	S	-	-	-	-	-	-	-	-	-		М	-
CO5	М	Μ	S	L	-	-	-	-	-	-	-		S		-	-
S- Str	ong; M	-Medi	um; L	L-Low										·		
	LABUS															
	RODUC											-		-		
listo	rical de	velopr	nent c	of the f	ermen	tation	indu	stry, (	Gener	al requ	iremen	ts of fe	erme	ntatio	n pro	ocess,

Historical development of the fermentation industry, General requirements of fermentation process, Basic configuration of fermenter and ancillaries, Main parameters to be monitored and controlled in fermentation processes.

# KINETICS OF MICROBIAL GROWTH AND PRODUCT FORMATION

Kinetics of Batch, Fed batch and Continuous culture processes, Comparison of batch and continuous culture in industrial process, Introduction to structured and unstructured models – Using unstructured non-segregated models to predict specific growth rate – Substrate limited growth (Monod equation and alternatives to Monod equation), Models with growth inhibitors (Substrate, Product inhibition and Inhibition by toxic compounds).

# **DESIGN OF BIOREACTORS**

Classification of bioreactors - Immobilized enzyme bioreactors, Packed bed bioreactors, Membrane bioreactors, Airlift loop reactor, Fluidized bed and Trickle bed bioreactors, Design of bioreactors – Aseptic operation and containment, Body construction, Aeration and agitation Types of agitators and spargers, Sterilization of Media, Fermentor, Air supply and Exhaust and Sterilization kinetics.

# **BIOREACTOR SCALE-UP AND MASS TRANSFER**

Scale up of fermentation process – Factors involved in scale-up, Scale-up of aeration / agitation, Oxygen mass transfer in bioreactors, Determination of K_La values – Sulphite oxidation technique, Gassing out technique, Oxygen balance technique, Mass transfer correlations.

# **MONITORING OF BIOPROCESSES**

Methods of measuring process variables – Online and offline analysis for measurement of important biochemical parameters, Biomass estimation, Control systems – Manual and automatic control.

# **TEXT BOOKS**

- 1. Shuler and Kargi, 1992. Bioprocess Engineering. Prentice Hall.
- 2. James E. Bailey and David F. Ollis, 1986. Biochemical Engineering Fundamental. 2nd Edn. Mc Graw Hill.

# **REFERENCES:**

- 1. Trevan, Boffey, Goulding and Stanbury. Biotechnology. Tata Mc Graw Hill Publishing Co. Anton Moser. Bioprocess Technology, Kinetics and Reactors. Springer Verlag.
- 2. James M. Lee. Biochemical Engineering. PHI, USA.
- 3. Atkinson. Handbook of Bioreactors.
- 4. Harvey W. Blanch, Douglas S. Clark. Biochemical Engineering. Marcel Decker Inc. Pauline M. Doran, 2002. Bioprocess Engineering Principles. Academic Press

COURS	COURSE DESIGNERS													
S. No	Name of the Faculty	Designation	Department	Mail ID										
1	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in										
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in										

17BTCC	17	DOWNSTREAM PROCESSING IN     Category     L     T												Credit
I/DICC	1/		B	IOTE	CHN	OLO	<b>)</b> GY			CC	4	0	0	4
processing is PRERQUIS 17BTCC16- COURSE (C 1 To 2 To 3 To 4 To 5	a proce ion of rugs, ncludes <b>SITE</b> <b>BIOP</b> <b>DBJEC</b> interpri explain summa	the fe antibion s separ ROCE <b>CTIVE</b> ret role n in de arize the prod	rment otics, ation, SS EN S of do tail at ne kno uct fra	ation enzy purifi NGINI wunstr pout th pout th pout dg action	or bio ymes, cation EERII eam p e phy ge on ation	otrans hor n, and NG proces vsical isolat and p	forma mone pack sing i metho ion of urifica	n biotec ods of se produc ation.	recove , fro the fe <u>hnolog</u> paration ts.	on-casc er and p m ferme ermented gy.	ade pr urify s ntatior produ	ocess the synthetian broth.	nat oc c bio	curs after
COURSE C After the suc CO1. Expla biotec	cessfu	l comp knowl	oletior								proces	sing in	Une	derstand
CO2.Summ CO3. Expres									cal me	thods of	separa	ation.	_	derstand derstand
CO4.Implen and H CO5. Imple drying	ybrid s ment	eparat	ion Te	chnol	ogy.			-		-				
MAPPING	WITE	I PRO	GRA	MME	OU	ГCON	MES	AND PI	ROGR	RAMME	SPE	CIFIC	OUT	COMES
COS PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	L	-	-	-	-	-	-	-	-	-	L	L	-	-
CO2 S	L	-	-	-	-	-	-	-	-	-	L	М	-	-
CO3 S	L	-	-	-	-	-	-	-	-	-	L	М	-	-
CO4 S	L	-	-	-	-	-	-	-	-	-	-	L	-	-
CO5 S	L	-	-	-	-	-	-	-	-	-	-	М	-	-
S- Strong; N	I-Medi	um; L	Low				<u> </u>	<u>                                     </u>					<u> </u>	

#### DOWNSTREAM PROCESSING IN BIOTECHNOLOGY

Role and importance of Downstream processing in biotechnological processes, Characteristic of Biomolecules and Bioprocesses, Cell disruption for product release - Mechanical, Enzymatic and Chemical methods. Pre-treatment and stabilization of bioproducts.

#### PHYSICAL METHODS OF SEPARATION

Unit operation for solid liquid separation - Removal of Insoluble, Biomass, Flocculation, sedimentation, Centrifugation and Filtration methods.

# **ISOLATION OF PRODUCTS**

Adsorption, Liquid - Liquid extraction, Aqueous two-phase extraction, Membrane separation - Ultra filtration and Reverse osmosis, Dialysis, Precipitation of proteins by Various methods – Salting out, Isoelectric point, Organic solvents, Polyelectrolytes, Polyvalent metallic ions and Non – ionic hydrophilic polymers.

#### PRODUCT FRACTIONATION / PURIFICATION

Partition Chromatography – single dimensional and Two-dimensional Chromatography –Thin layer chromatography, Gas liquid chromatography, Adsorption Chromatography – Column chromatography and, Ion Exchange Chromatography, High performance liquid Chromatography (HPLC) and Hybrid separation Technology.

#### PRODUCT FORMULATION AND FINISHING OPERATION

Crystallization - Basic concepts, Crystal size distribution, Batch crystallisation, Continuous crystallization of pharmaceuticals and Solution crystallization, Drying - Drying equipment - Conduction dryers, Adiabatic dryers, Drying rate and Drying time, Zone refining, Lyophilization in final product formulation.

#### **TEXT BOOKS:**

- 1. H. Sivasankaran. Bioseparation
- 2. Asenjo, J.M., 1993. Separation Processes in Biotechnology. Marcel Dekker Inc.
- 3. Belter, P.A., Cussler, E.L. and Wei Houhu, 1988. Bioseparations Downstream
- 4. Processing for Biotechnology. Wiley Interscience Publications.

#### **REFERENCE BOOKS:**

- 1. Wankat, P.C., 1990. Rate Controlled Separation. Elsevier.
- 2. Satinder Ahuja., 2000 Volume 2 Handbook of Bioseparations, Academic Press.
- 3. Janson, J.C. and Ryden, L., 1989. Protein Purification Principles, High Resolution Methods and Applications. VCH Publication.
- 4. Scopes, R.K., 1994.Protein Purification Principles and Practice. Narosa Publication.
- 5. Jenkins, R.O., 1992. Product Recovery in Bioprocess Technology Biotechnology by Open Learning Series. Butterworth -Heinemann.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.N. Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in
2	Mrs.C. Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

#### 102

17BTCC18	MASS TRANSFER OPERATIONS	Category	L	Т	Р	Credit
		CC	4	0	0	4

#### PREAMBLE

Mass transfer is the net movement of mass from one location, usually meaning stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems. Mass transfer operations include separation of chemical components in distillation columns, absorbers such as scrubbers or stripping, absorbers such as activated carbon beds, and liquid-liquid extraction.

	•	ISITI													
17B	TCC1	3-THI	ERMC	DYN	AMIC	CS FO	R BIO	DTEC	HNOL	OGY.					
CO	URSE	OBJ	ECTI	VES											
1	To	o Expl	ain the	e Mas	s trans	fer pr	inciple	es							
2	To	Dem	onstra	te the	princi	iples o	of adso	orptior	i, absor	ption,	leachin	g and d	rying e	xtraction	n
3	To	Perfo	orm th	e disti	llatior	n, crys	talliza	ntion o	peratio	ns					
4	To	o Expr	ess the	e conc	ept of	Liqui	d – Li	iquid I	Extracti	ion					
5	To	Study	y the c	concep	ot of S	olid –	Fluid	opera	tion						
CO	URSE	OUT	COM	ES											
On t	he suc	cessfu	ıl com	pletio	n of t	he cou	rse, st	udent	s will b	e able	to				
COI	. Des	cribe t	he pri	nciple	s of di	iffusio	n and	apply	the co	ncepts	of inter	phase	Unde	rstand	
mas	s trans	fer													
CO2	2. Ope	rate th	e con	cept of	f abso	rption	in bio	oproce	ss indu	stries	and mu	lti	Appl	у	
com	ponen	t syste	em												
CO3	B.Desc	ribe th	ne con	cept o	f disti	llatior	and 1	multi s	stage tra	ay tow	er appli	cation	Unde	rstand &	& Apply
CO4	.Expl	ain liq	uid-lio	quid e	quilib	rium a	nd Di	ifferen	tial ext	ractor			Unde	rstand	
CO5	5.Expl	ain the	e extra	ction	and it	s appli	ication	n in bi	oproces	ss indu	stries		Unde	rstand &	& Apply
MA	PPIN	G WI	TH P	ROGI	RAM	ME O	UTC	OME	S AND	PRO	GRAM	ME SP	ECIFI	C OUT	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	-	-	-	-	-	-	-	S	-
CO2	S	S	S	-	-	-	-	-	М	-	-	М	-	W	-
CO3	S	М	S	-	-	-	-	-	М	-	-	М	-	-	-
CO4	-	М	-	-	-	-	-	-	М	-	-	-	-	М	-
CO5	-	-	-	-	М	-	W	-	-	-	-	-	-	М	-
S- S	trong;	M-M	edium	;L-Lo	OW	•					-		-		
	TAD														

#### SYLLABUS

#### DIFFUSION

Molecular diffusion in fluids, Mass transfer coefficients, Diffusion in solids, Inter phase mass transfer.

#### GAS – LIQUID OPERATION

Equipment for gas liquid operation, Principles of gas absorption, Equilibrium solubility of gases in liquid, One component transfer material balance, Counter current multistage operation, Continuous

contact equipment, Multi component system, Absorption with chemical reaction.

# DISTILLATION

Vapour – Liquid Equilibria, Single stage- Flash vaporization, Differential or simple distillation, Continuous rectification – Binary system, Multistage tray towers – Mc Cabe- Thiele and Ponchon Savarit principles.

# LIQUID – LIQUID EXTRACTION

Liquid - Liquid Equilibria, Stage wise contact, Stage type extractor, Differential extractor

# SOLID – FLUID OPERATION

Adsorption equilibria – Liquids, Single gases and vapours, Leaching – Unsteady state operation, Steady state continuous operation.

# TEXT BOOKS

- 1. Treybal, R.E., 1981. Mass Transfer Operations. 3rd Edn., *Mc Graw Hill*.
- 2. Geankoplis, C.J., 2002. Transport Processes and Unit Operations. 3rd Edn., *Prentice Hall of India*.

# **REFERENCES:**

- 1. Coulson and Richardson's, 1998. Chemical Engineering. Vol. I & II, Asian Books Pvt. Ltd.
- 2. Badger and Banchero. Introduction to Chemical Engineering. Tata Mc Graw Hill, New Delhi.
- 3. Mc Cabe, W.L., Smith, J.C., Harriot, P., 1993. Unit Operations in Chemical Engineering. 5th Edn., *McGraw Hill Book Co.*, New York.
- 4. Pauline M. Doran, 2002. Bioprocess Engineering Principles. Academic Press.
- 5. Butterworth Heinemann, 1992. Bioprocess Technology: Modelling and Transport Phenomena.

COUR	RSE DESIGNERS			
S. No	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

#### 104

17	втсо	C <b>81</b>		BIO	CHE	MIST	RY L	AB		Categ	ory	I	_	Т	Р	Credit
										CC	1	(	)	0	4	2
	AMB															
				•					-	ng the s	skills o	f the st	udent	s by	' provi	ding
			-		techr	iques	in Bic	chemi	stry							
	REQ															
COU	JRSE															
1				aborat	ory sa	afety a	nd sta	ndard	operati	ing pro	cedure	s of co	mmor	n lal	oorato	ry
	equip						<u> </u>									
2										gical b						
3					in ana	alysis &	¢ esti	nation	of bio	molecu	ıles					
COL	JRSE	OUT	СОМ	IES												
On th	ne suco	cessfu	l com	pletio	n of t	he cou	rse, st	udents	s will b	be able	to					
									dle the	e equip	ment s	afely		App	oly	
	1													App	oly	
CO3.	. Isola	te bio	molec	cules f	rom v	various	sourc	e						Ana	ılyze	
CO4.	. Deter	rmine	the q	uality	and c	uantity	y of bi	iomole	cules					Ana	lyze	
			<b>FH P</b>	ROG	RAM	ME O	UTC	OMES	S AND	PRO(	GRAM	IME S	PECI	FI(	2	
											1	1	-			
COS			PO3					PO8	PO9	PO10	PO11	PO12	PSO	1		PSO3
CO1			-	-	М	S	М	-	-	-	-	-	-			-
CO2	D1       S       -       -       M       S       M       -       -       -       -       M       -       -       -       -       M       -       -       -       -       M       -       -       -       -       -       M       -       -       -       -       -       -       M       -       -       -       -       -       -       M       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -															
CO3				М		-	-	-	-	-	-	-	M	1		-
CO4	~	ł	-	-	S	-	-	-	-	-	-	-	-		М	-
			i; L-Lov	N												
				1.D	66		, <b>.</b>									
-					-	-	tions.									
			-					matha	ducin	~ ) ( [	Vichlor	o nhon	alind	anh	anala	
					•				-	g 2, 0 L	JICIIIOI	o phen	orma	opn	enois.	
				-		of Edi			/11							
						of Oil.		15.								
	CHEN															
						pinach	ı leave	es.								
	neese I		-			r										
	asein fi															
	arch fr															
REF	EREN	NCES	:													
1. L	abora	tory N	/Ianua	ıl.												
COT	JRSE															
		ſ			· · · ·											
S.No				acult		esigna				artme			ail ID			
	Dr.	M.Sri			P	esigna rofesso ssistan	or & H		Biot	artmentechnol technol	ogy	sri	devi@	⁰ vm	kvec.e	edu.in .edu.in

17B	BTCC8	2		CEL	L BIC	DLOGY	Y LAB		C	ategor	у	L	Т	Р	Credit
										CC		0	0	4	2
	AMBL														
				•						cation a	nd to d	emons	trate va	rious tec	hniques to
	the mor	-			cation a	ind prop	bagatior	n of cell	s.						
	REQU														
	IRSE C														
1						es of m									
2						o work									
3						ing tech		•							
4	Ŭ					of mitos	sis.								
5					of bloo	d cells.									
	<b>RSE</b> C														
	the succ														
	1. Demo												Unders		
	2. Interp	-											Unders		
	3. Anal					<b>.</b>	ental re	sults in	of cell	l biolog	у		Analys		
	4. Categ			-									Analys		
	5. Exam												Analys		~
MAP	PING	WIT	H PRO	OGRA	MME	OUTC		S AND I	PROG	RAMN	ME SP	ECIFI	C OUI	COME	S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	-	-	-	-	-	-	-	-	-	-		-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	-	М	-
CO3	М	S	-	L	-	-	-	-	-	-	-	-	L	L	-
CO4	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	М	L	-	-	-	-	-	-	-	-	-	-	-		-
	rong; N		edium	; L-L	OW										
SYL	LABU														
1				-	-	of steril	ization	techni	ques a	and cel	l propa	agation	1.		
2		-		licros								1.7.6			
				0								•		aments.	
4					-			neral bl		iononu	clear c	cells fr	om blo	ood.	
5			•			•		n stain	•						
6			-	onicit		ue assa	y, Alai	nar blu	le assa	ıy.					
7. 8.						a of mi	tonin ir	n Alliun	n aan	(Onio	n)				
0	. Stall	mg		lielen	i stage	s 01 III	10515 11	Alliun	n cept		·II).				
BEE	EREN	CFS													
<b>KLI</b> .				and I	R. Har	ris "C∈	ll Biol	ogv [.] E	ssenti	al Tech	niques	s" Joh	nwiles	, 1996.	
2.			· ·					tical Ap			1		y	, 1770.	
COU	RSE E	DESI	GNE	RS											
S. No				Facul	ty I	)esigna	tion		Dep	artme	nt	Ma	ail ID		
1			irmal			Assistar		essor		echnol				vmkvec	edu.in
2			idevi			rofesso				echnol	0,			vmkvec.	

17 <b>B</b> ′	FCC83		N	<b>/ICR</b>	OBIC	DLOG	Y LA	R		Categ	ory	L	Т	Р	Credit
110			1	non						CC	2	0	0	4	2
PREA	MBLE														
	urse inc			-					-	-			-		
experin	nents, p	erforn	ning t	ests to	ident	ify ba	cteria	and f	ungi, a	nd stud	ying m	icrobi	al grow	th coi	ntrol.
PRER	EQUIS	ITE -	NIL												
COUR	SE OB	JECI	TIVES	5											
1	Descri	be the	e safe	practi	ces in	a mic	robio	logy l	aborate	ory.					
2	Perfor	m var	ious c	ells st	taining	g tech	niques	S.							
3	Demo	nstrat	e prop	er usa	age, id	lentify	the p	arts/fu	inction	s of the	e follov	ving m	icrosco	pes	
4	Perfor	m trai	nsfer o	of livi	ng mi	crobes	s using	g asep	tic tech	nnique.					
5	Differ	entiat	e the 1	nicrol	oes en	umera	ated fr	om va	rious e	environ	ments.				
COUR	SE OU	TCO	MES												
After th	ne succe	ssful	comp	letion	of the	cours	se, lea	rner w	vill be	able to					
CO1. D			-								n of			Und	erstand
microo	rganism	IS													
CO2. D	emonst	rate tl	he me	ethods	for is	olatio	n, sub	cultur	e, and	mainte	nance	of bact	erial	Und	erstand
and fur	ngal spe	ecimer	ns												
CO3 E	nploy t	he use	es of v	arious	s med	ia and	testin	ig prot	cocols	with fo	cus on	clinica	1	App	ly
applica	tions.						6				1.1				
CO4. E					-				al evol	lution a	nd the	genera	tion	Anal	yze
of dive					_		-		1'	•, •					
CO5.In	-						0		olism	as it re	lates to			Anal	yze
identifi MAPP									PRO	GRAM	ME SP	ECIFI	C OUT	COM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1 CO2	S	M	-	-	-	-	-	-	S	-	-	-	-	M	
CO2	S M	L L	-	-	-	-	-	-	-	-	-	-	<u> </u>	- S	
CO4	S	L	_	_	-	-	-	-	_	-	-	_	L	-	_
CO5	M	L	-	-	-	-	-	-	Μ	-	-	М	S	M	_
S- Stro	ng; M-N	Aediu	m; L-	Low	•	•		•		•	I				
SYLL	ABUS														
1. Steri			-												
2. Cult				ions											
	a. Brotl	n meo	lia												

b. Agar

3. Culturing of Micro organisms

a. Pure Culture techniques -Streak plate

-Pour plate

- 4. Isolation, Enumeration and Purification of Microbes from a given sample.
- 5. Preservation of Bacterial Culture.
- 6. Identification of Microorganisms

a. Staining techniques-Simple-Gram-Spore-Hanging drop

- b. Biochemical identification
- 7. Quantification of Microorganisms

Microscopy

- a. Serial dilution and plating
- 8. Environmental Sample Analysis-. MPN Test
- 9. Food Microbiology

-Milk

-Fermented food

- 10. Clinical Microbiology
  - Blood and Urine Culture

- Antibiotic Disc test Assay.

#### **REFERENCES:**

1. Cappuccino, J. G. and Sherman, N., 1999. Microbiology: A laboratory Manual. 4th Edn, Addison - Wesley.

2.Collee, J. G., et al., 1996. Mackie and McCartney Practical Medical Microbiology. 4th Edn,

Churchill Livingstone.

3. Sundararaj, T., 2007. Microbiology laboratory manual. Aswathy Sunndararaj.

4.Laboratory Manual

COUN	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@ vmkvec.edu.in

4800	TOCOL		DIZA	NOT	D DI	oou				Cat	egory	L	Т	Р	Credit
<b>I7B</b>	ГСС84	A	DVA	NCE	D RI	ОСН	EMIS	STRY I	LAB	(	CC	0	0	4	2
	<b>MBLE</b> urse foct as also le			-										lecules	. The
PRER	EQUIS	[ <b>TE-</b> ]	NIL												
COUR	SE OB.	<b>ІЕСТ</b>	IVE	5											
1	Discus	s abo	ut bas	sic rea	oction	s of B	liomo	lecules							
2								macro-	molec	ules					
3		_						samplir	-		stimati	on of l	nemog	lobin	
4	To per	form	vario	us tec	hniqu	es for	separ	ration o	of pign	nents					
	SE OU														
	he succe		1											-	
CO1. E	Examine	the re	eactio	ns of	protei	ns, ca	arbohy	ydrates	and a	nino a	cids			Analy	ze
CO2. E	Estimate	Hemo	oglob	in cor	ncentr	ation	in the	blood						Analy	ze
CO3. S	eparate	plant	pigm	ents u	ising o	chrom	atogra	aphy						Apply	7
CO4. E	Estimate	the va	arious	s bion	nolecu	iles								Analy	vze
CO5. D	Different	iate tł	ne No	rmal	and al	onorm	nal con	nstituen	nts of	Urine				Analy	ze
MAPP	ING	WIT	HI	PROC	GRAN	<b>MME</b>	01	UTCON	MES	AN	D PI	ROGR	AMM	E SI	PECIFIC
	OMES						00			1					Lonie
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	-	М	-	-	-	-	-	-	-	S	-
CO2	S	S	L	L	-	-	-	-	-	-	-	-	-	-	-
CO3 CO4	S S	S S	M M	S	S	- M	- M	-	-	-	-	-	L	M	-
	S	S S	M	- S	-	S	-	-	-	-	-	-	-	M S	-
		5	101	5		5				-	-	-	-	3	-
CO5	ng; M-M	lediu	m; L-	Low											

# **REFERENCES:**

#### 1. Laboratory Manual.

COURSE	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor and Head	Biotechnology	sridevim@vmkvec.edu.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

17	RTCO	CC       0       0       4       2         BLE       ecular Biology laboratory has become a prominent and essential fixture in the training of luate students for careers related to the molecular techniques.       intervalue       interv														
1/	DIC	.05			LCUI		DIUL	JUGI	LAD		CC		0	0	4	2
PRE	AMB	MOLECULAR BIOLOGY LAB       CC       0       0       4       2         IBLE         lecular Biology laboratory has become a prominent and essential fixture in the training of aduate students for careers related to the molecular techniques.         QUISITE - NIL         SE OBJECTIVES         o discuss about sample preparation         o perform the principle of isolation of DNA from bacterial, plant, human and mitochondria.         stimate the nucleic acids- RNA / DNA.         cquire laboratory skills in techniques such as micro pipetting, spectrophotometry and ectrophoresis.         E OUTCOMES         e successful completion of the course, learner will be able to         catice laboratory techniques used for the isolation of nucleic acids from Apply         , plant, human & mitochondria.														
The 1	Molec	ular I	Biolo	gy la	borate	ory ha	as bec	come	a pror	ninent	t and e	ssentia	ıl fixtu	re in t	he trai	ning of
under	rgradu	ate st	uden	ts for	caree	rs rela	ated to	the r	nolecu	ılar te	chniqu	es.				
PRE	REQU	JISIT	Γ <b>Ε -</b> Ι	NIL												
COU	JRSE	OBJI	ECT	IVES												
1	To d	iscuss	s abo	ut sar	nple p	orepar	ation									
2	To p	erfori	n the	e princ	ciple of	of isol	ation	of DN	IA fro	m bac	terial,	plant, l	numan	and mi	tochor	ndria.
3																
4	Acqu	ire la	abora	tory s	kills i	n tecl	hniqu	es suc	h as m	icro p	oipettin	g, spec	tropho	tometr	y and	
	elect	ropho	oresis													
COU	IRSE	OUT	CON	<b>IES</b>												
After	the su	iccess	sful c	ompl	etion	of the	cours	se, lea	rner w	ill be	able to					
CO1.	. Expla	in the	e con	cepts	and p	orincij	oles o	f samp	ole pre	parati	on				Unde	rstand
CO2.	. Pract	ice 1	abora	atorv	techr	iaues	used	l for	the is	olatio	n of n	ucleic	acids	from	Appl	v
				-		-									rr .	
CO3.	To perform the principle of isolation of DNA from bacterial, plant, human and mitochondria.         Estimate the nucleic acids- RNA / DNA.         Acquire laboratory skills in techniques such as micro pipetting, spectrophotometry and electrophoresis.         COURSE OUTCOMES         State the successful completion of the course, learner will be able to         CO1. Explain the concepts and principles of sample preparation       Understand         C02. Practice laboratory techniques used for the isolation of nucleic acids from acterial, plant, human & mitochondria.       Apply         C03. Illustrate the enzymatic action on nucleic acids & proteins       Analyze         C04. Quantify the nucleic acids       Analyze         C05. Examine the Purification of biomolecules by electrophoresis       Analyze         C05. Examine the Purification of biomolecules by electrophoresis       Analyze         C05       P01       P02       P03       P04       P05       P08       P09       P010       P011       P012       PS01       PS02       PS0         C01       S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -<		у													
CO4.	. Quan	tify tł	he nu	cleic	acids										Anal	yze
CO5.	. Exan	ine th	he Pu	irifica	tion c	of bior	nolec	ules b	y elec	tropho	oresis				Anal	yze
MAF	PPING	- N	ЛТН	Π	ROGI	RAM	ME	OUT	CON	IES	AND	PR	GRA	MME	SPF	CIFIC
								001	001				, <b>0141</b>			01110
COS			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		S	-	-	-	-	-	-	-	-	-	-	-	L	-	_
CO2		S	-	-	-	L	-	-	-	L	-	-	-	-	L	-
CO3			-	-	-	-	-	-	-		-	-	-	-	-U	-
CO4				-	-		-	-	-		-	-	-		-	-
CO5				-	-	S	-	-	-	Μ	-	-	Μ	S	Μ	-
5- St	rong; I	VI-IVIE	ediun	n; L-I	LOW											
SYL	LABU	S														
1	. Isol	ation	of B	lacter	ial Ge	nomi	c DN	A								
2	. Isol	ation	of D	NA –	Isola	tion o	f plan	t Gen	omic	DNA						
3	. Isol	ation	of H	uman	geno	mic D	DNA									
4	. Isol	ation	of M	litoch	ondria	al DN	A.									
5	. Qua	ntific	catior	n of R	NA /	DNA	•									
6	. Aga	rose	gel e	lectro	phore	sis										
7	. Ext	actio	n of 1	DNA	from	agaro	ose ge	1.								

#### **REFERENCES:**

- 1. Sambrook, Joseph and David W. Russell "The Condensed Protocols: From Molecular Cloning: A Laboratory Manual", Cold spring harbor Laboratory Press, New York, USA.
- 2. Ausubel, F.M. "Short Protocols in Molecular Biology", 4th Edition, John Wiley, 1999.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

	CC86		CHE	MICA	L EN	GIN	EERI	ING L	AB	Cate	egory	L	Т	Р	Credit
1/01	ccou					<b>GI</b>			ID.	(	CC	0	0	4	2
PREAN	<b>IBLE</b>														
Chemica	al eng	ineeri	ing la	aborat	ory ir	nclude	es pi	lot and	d lab	scale	e expe	riment	al set-	up or	n Fluid
mechani	ics, Un	it Op	eratio	ns, Ma	ass Tra	ansfe	r and	Heat T	ransf	er. It h	elps st	udents	for the	devel	opmen
of their	skills i	n und	erstan	ding a	and op	eratir	ng bas	sic and	more	compl	ex ind	ustrial	system	s.	
PRERC	UISI	Г <b>Е-</b> N	IL												
COURS	-			S											
1					nginee	ering	princi	iples ar	d the	eir prac	tical ar	plicati	ions in	the are	eas of
		-			-	-	-	particle		-	-	1			
2								al proce				ecular	to mac	roscop	ic
	scales				-			-		-				-	
3	To ass	ess di	ifferen	nt coet	ficien	ts and	l facto	ors invo	olved	in flui	d flow				
4	To co	nstruc	t the	govern	ning ec	uatic	ons fo	r desig	ning a	and ana	alyzing	heat t	ransfer	equip	ment
COURS						•									
After the				letion	of the	COUR	<u>se le</u>	arner u	vill be	able t	0				
												acorio	tad	Undo	rstand
CO1. Exwith che	-	-		-	y anu	KIIOW	leuge		ltemp	orary	ssues a	issocia	leu	Unde	Istanu
		-		-	lomon	tond	volid	oto lob	orator	ru prog	aduras	to con	duat	Appl	7
$CO2 D_{c}$	monn,			-		t anu	vanu	ale lab	Jiatoi	ry proc	euures		luuci	Appl	y
CO2. Pe	tive on		many		-	in che	mica	lengin	eerin	σ cours	ses to r	ractics	ป	Appl	V
quantita			nring		icum .		Jiiicu	ii engin	com	5 court		iuetiet	*1	7 <b>1</b> PP1.	y
quantita CO3. Aj	pply pi		princ	- <b>r</b> ~ -											
quantita CO3. Aj situatior	pply pr 1s.	ocess			undam	ental	theor	retical c	once	pts of a	an expe	erimen	tal	Analy	ze
quantita CO3. Aj	pply pr 1s.	ocess			undam	ental	theor	retical c	conce	pts of a	an expe	erimen	tal	Analy	yze
quantita CO3. Aj situatior CO4. Id	pply pr ns. entify	ocess	nalyse	the fu										Analy	
quantita CO3. Aj situation CO4. Id system	pply pr ns. entify bility to	and and an	nalyse yze ir	the fu										-	
quantita CO3. Aj situation CO4. Id system CO5. Al	pply pr ns. entify bility to ndary o	and	nalyse yze in	the function	ial pro	blem	s alon	ng with	appro	opriate	approx	kimatio	ons	Analy	yze
quantita CO3. Aj situatior CO4. Id system CO5. Al and bou <b>MAPPI</b> COS	pply pr ns. entify bility to ndary o	and an o anal condit TH P	nalyse yze in	the function	ial pro <b>1E OU</b> PO5	blem	s alon	ng with	appro	opriate	approx	kimatio	ons C <b>OUT</b> PSO1	Analy COME	yze SS PSO3
quantita CO3. Aj situation CO4. Id system CO5. Aj and bou MAPPII COS CO1	pply pr ns. entify bility to ndary o <b>NG WI</b>	and an o anal condit TH P PO2 M	nalyse yze ir tion. <b>ROGI</b>	e the fundustriandustriandustriandustriandustriandustriandustriandustriandustriandustriandustriandustriandustri PO4 M	ial pro <b>IE OU</b> PO5 S	blem:	s alon MES	ng with	appro	opriate	approz	kimatio E <b>CIFI</b>	ons C OUT PSO1 S	Analy COME PSO2 L	yze SS PSO3 L
quantita CO3. Aj situatior CO4. Id system CO5. Al and bou <b>MAPPII</b> COS CO1 CO2	pply pr ns. entify bility to ndary o NG WI PO1 M -	and an o anal condit TH P	nalyse yze in tion. <b>ROGI</b> - -	e the fundustring RAMM PO4 M L	IE OU PO5 S S	blem TCO PO6 - -	s alon MES PO7 - -	AND P PO8	appro PO9 - -	PO10 - -	approx ME SPI PO11 - -	ximatio ECIFIO PO12 - -	ons C OUT PSO1 S M	Analy COMP PSO2 L L	yze SS PSO3 L L
quantita CO3. Aj situatior CO4. Id system CO5. Al and bou MAPPIT COS CO1 CO2 CO2 CO3	pply pr ns. entify bility to ndary of NG WI PO1 M - M	and an o anal condit TH P PO2 M M -	nalyse yze ir tion. <b>ROGI</b> - - L	e the fr ndustri RAMN PO4 M L M	al pro <b>IE OU</b> PO5 S S S	blem: TCO PO6 - - -	s alon MES PO7 - - -	AND P PO8 - - -	appro PROG PO9 - - -	PO10 - -	approx <b>ME SPI</b> PO11 - - -	kimatic ECIFIC PO12 - - -	ons C OUT PSO1 S M M	Analy COME PSO2 L L L L	yze PSO: L L L
quantita CO3. Aj situatior CO4. Id system CO5. Al and bou <b>MAPPII</b> COS CO1 CO2	pply pr ns. entify bility to ndary o NG WI PO1 M -	and an o anal condit TH P PO2 M	nalyse yze in tion. <b>ROGI</b> - -	e the fundustring RAMM PO4 M L	IE OU PO5 S S	blem TCO PO6 - -	s alon MES PO7 - -	AND P PO8	appro PO9 - -	PO10 - -	approx ME SPI PO11 - -	ximatio ECIFIO PO12 - -	ons C OUT PSO1 S M	Analy COMP PSO2 L L	yze SS PSO3 L L

- 1. Flow measurement a) Orifice meter b) Venturimeter, c) Rotameter
  - 2. Filtration.
  - 3. Heat exchangers.
  - 4. Simple and Steam distillation.

- 5. Fluidization.
- 6. Pressure drop in pipes and packed columns.
- 7. Distillation in packed column.
- 8. Liquid liquid equilibria in extraction.
- 9. Solid liquid extraction
- 10. Adsorption equilibrium.
- 11. Jaw crusher.
- 12. Determination of Screen effectiveness.
- 13. Sedimentation.

# **REFERENCE BOOKS:**

1. Laboratory Manual

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in

17BT(	°C87	Г		ISTDI	IMEN	JT A T	ION LA	R	C	ategory		L	Т	Р	Credit
1/DI				101 N				AD.		CC		3	0	0	3
PREAM	IBLE													1 1	
E	Bioinsti						-				-	and k	nowled	-	
nstrume			-		-	-	d wor	-					highligl	nts th	nevariou
nstrume					otechn	ology	v industr	ries	for vai	rious ar	nalytic	al purp	oose.		
PRERE	QUISI	TE	- NIL	r											
COURS	E OB.	JEC'	TIVE	S											
		ical s			-								that ch nd effec		
		ory i	instru	ments	-	-					-		commo rophoto		-
3	To pro	perly	/ appl	y scie	entific	math	ematica	al sk	ills to	calcula	tions 1	elevar	nt to the	labora	tory.
4	To den	nons	trate of	qualit	ative a	and a	uantitati	ive a	nalvti	cal skil	ls witl	ı vario	us com	mon	
				-		-	chnolog		•						
				-				-				gh data	a analys	is.	
		-			-							-	provem		
COURS							11	,	00	0			1		
After the					n of tł	ne cou	ırse. lea	arner	will b	e able	to				
CO1. Ur				-								nents.	Ur	ndersta	nd
errors as							,					·····,			
CO2. Er							rument	atio	n				At	oply	
CO3. Co	ompare	the	variou	is spe	ctrom	eters	for ana	lysis	purpo	ose			Ar	nalyse	
CO4. Es Potentio		the v	ariou	is para	amete	rs by	using th	ne lil	ke Cor	nductiv	ity me	ter and	l Ar	nalyse	
1000000000000000000000000000000000000		the d	lissol	ved or	vvaen	in the	e given	solu	ition				Fv	aluate	
MAPPIN										GRAM	ME S	PECIF			
COS		PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-		М	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	М	-	-	-	-	-	-	-
CO3	-	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	М	S	-	S	-	-	-	-	-	-	-	-	-	-	-
CO5	М	-	-	-	-	-	S	-	-	-	-	-	-	-	S
S- Stron	g; M-N	1ediu	ım; L	-Low											
	lating						g KMn( or and co		lemen	tary wa	welen	gth			
					-			-							

- 4. Finding the Stoichiometry of the Fe (1,10 Phenanthroline Complex) using Absorption spectroscopy.
- 5. UV spectra of Nucleic Acid.
- 6. Estimation of Alizarin Aluminium complex
- 7. Estimation of Al  $^{3+}$  concentration using Alizarin in the spectrometer.
- 8. Estimation of Sulphate by Nephelometry.
- 9. Experiments on
  - a. Conductivity meter
  - b. Turbidity meter.
- 10. Estimation of Dissolved oxygen.
- 11. Determination of  $Fe^{2+}$  content in fruit juices

# **TEXT BOOKS:**

1. Laboratory Manual.

0001													
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in									
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									
3	AVIT staff												

17BT(	CC88		TENE	FIC F	NCIN	EERIN	CIAB	2	Cate	gory	L	Т	Р	C	redit
1/D1							U LAD	•	С	С	0	0	4		2
PREA	MBL	E													
To une	derstan	d and	develo	op the s	skills ir	nvolved	in rDN	A Te	chnolo	gy.					
PRER	QUIS	ITE -	NIL												
	-			C											
1	RSE O				n of ro	combina	ont DN	A mo	loculo						
2						ifying a		Ame	lecule						
3					-	g using F	-								
4						nd screer		recoi	nhinan	te					
5					_	h SDS-F	_	iccoi	noman	15					
	RSE O		-		unoug	11 505-1	HOL								
					the co	ourse, stu	udents	will h	e able i	to					
						niques s					acid se	paratic	ons	Unders	stand
	and elu		01140	lere der		inquess	aen as	ontra				purune	, <b>11</b> 5	Chuch	Juna
			IA amj	plificat	ion usi	ing Poly	merase	e Cha	in Reac	ction				Apply	
CO3.	Classi	fv the	metho	ds of N	Jucleic	acids cl	haracte	rizati	on, thro	ough th	e appli	cation	of	Apply	
	gene pi										• appi	••••••	01		
			e clon	ing and	l scree	ning of 1	recomb	oinant	s.					Apply	
CO5.	Compa	re the	protei	ns thro	ugh SI	DS-PAG	Έ.							Analyz	ze
			-		-			AND	PROG	RAM	ME SI	PECIF	IC OI	-	
COS	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	S	М	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	L	L	-	-	-	-	S	-	-	-	-	М	-
CO3	M	L	M	M	-	-	-	-	-	-	-	-	- T	S	-
CO4 CO5	S M	L L	M S	S M	-	-	-	-	- M	-	-	- M	L S	- M	-
	ong; M								111				5	111	1
	ABUS		u, <u>L</u>	10.11											
	Isolati		Plasmi	d DNA	۱.										
						omic DN	JA								
	Polym			1 0											
	•					arose ge	el.								
	Restric				-	-									
6.	Restric	ction I	Digesti	on of H	Plasmic	d DNA.									
	Ligatio														
0	D		6.0		<b>C</b> 11	<b>a</b> 1 1									

- 8. Preparation of Competent Cells Calcium chloride Method.
- 9. Transformation in *E. coli* by Heat Shock Induction Method.
- 10. DNA Fingerprinting using Restriction fragment length polymorphism (RFLP)

- 11. DNA Fingerprinting using Random Amplified Polymorphic DNA(RAPD)
- 12. Blue White Screening of Recombinants.
- 13. SDS Poly Acrylamide Gel Electrophoresis.
- 14. Blotting techniques Southern, Western.

#### **REFERENCES:**

- 1. Laboratory Manual.
- 2. Sambrook, Joseph and David W. Russell "The Condensed Protocols: From Molecular Cloning; A Laboratory Manual" Cold Spring Harbor Laboratory Press, 2006.

COUI	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in									
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevim@vmkvec.edu.in									
3	AVIT staff												

1707009	17BTCC89IMMUNOLOGY LABCategoryLTPCre										Credit			
1/11/00	9		1101101	UNUI	LUG	I LA	D		CC	2	0	0	4	2
PREAMBLE														
The Immunol			• •					-		•	-	-	-	
in evaluation	of aut	oimmu	ine dis	sease,	imm	une de	eficier	ncies	etc., as	well a	s havi	ng resp	onsit	oility for
some aspects of	of infe	ctious	diseas	e serol	logy.	To de	velop	skills	of stud	lents in	Immu	nologio	cal teo	chniques
by performing		_	riment	s in th	e lab	orator	у.							
PRERQUISI														
COURSE OB	JECI	TIVES												
1 To	define	about	immu	ne sys	tem, t	their s	tructu	re, cla	ssificat	ion and	l genet	ic cont	rol of	
anti	body p	produc	tion											
				-	s like	blood	grou	ping, 1	ELISA	and ide	entifica	tion of	T-ce	11,
Imr	nunofl	uoresc	ence	etc.										
3 to e	xecute	e skills	in Iso	lation	and p	ourification	ation	of anti	ibodies					
4 To	compa	re the	variou	ıs Imr	nuno	logica	l tech	nnique	es and i	ts app	licatio	ns		
			correl	ate tes	t resu	ılts wi	th ass	ociate	d diseas	ses or c	onditio	ons.		
COURSE OL														
After the succ	essful	comple	etion o	of the c	course	e, lear	ner wi	ill be a	able to					
CO1. Underlin	ie a co	mpreh	ensive	and p	ractic	cal unc	lersta	nding	of basic	c immu	ınologi	cal	Rem	ember
principles invo	olved i	n resea	arch ar	nd clin	ical s	cience	•							
CO2. Interpre	et the l	knowl	edge f	or ide	ntific	cation	of in	nmuno	ologica	l cells,	their		Und	erstand
structure, fun														
CO3. Apply p	rincip	oles of	safety	, qual	ity as	ssurar	ice an	id qua	lity co	ntrol ir	1		App	ly
Immunology.														
CO4. Correlat			ologica	al diso	orders	and the	ne fac	tors ir	nvolved	in it by	y vario	us	Anal	yze
immunologica														
CO5. Assess t			•	to un	dersta	and co	omple	ment	fixatio	n syste	m and		Eval	uate
other diseased	l cond	litions	•											
MAPPING	WIT	H P	ROGE	RAMN	<b>Æ</b>	OUT	CON	IES	AND	PRO	GRA	MME	SPI	ECIFIC
OUTCOMES														
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1 -	L		-	-	-	-	-	-	-	-	-	L	-	-
CO2 -	М		-	-	-	-	-	-	-	-	-		М	-
CO3 -		М	-	-	-	-	-	-	-	-	-	-	L	-
CO4 -	S		S	-	-	-	-	-	-	-	-	L	-	-
CO5 -	-	-	S	-	-	-	-	-	-	-	-	S	М	-
S- Strong; M-	Mediu	m; L-L	.OW											

#### **SYLLABUS**

- 1. Handling of animals, immunization and raising antisera.
- 2. Identification of cells in a blood smear.
- 3. Identification of blood groups.
- 4. Immunodiffusion
- 5. Immunoelectrophoresis.
- 6. Testing for Typhoid antigens by Widal test.
- 7. Enzyme Linked Immuno Sorbent Assay (ELISA).
- 8. Isolation of pheripheral blood mononuclear cells.
- 9. Isolation of monocytes from blood.
- 10. Immunofluorescence

#### **REFERENCE BOOKS:**

1. Laboratory Manual

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in
3.	AVIT staff			

17BTCC90	FOO	D PR	OCE	SSIN	G TE	CHN	OLO	GY	Categ	ory	L	Т	Р	Credit
1/610090				LA	B				CC		0	0	4	2
PREAMBLE														
The Course aims	s to pron	note tl	ne cha	nces	of ent	repre	neurial	succe	ss and	to cre	ate	traine	d and	l skilled
human resources	s well ve	ersed	in en	ginee	ring a	spect	s of fo	od pro	ocessin	g to	cate	r the	need	s of the
rapidly growing	food pro	cessir	ng sec	tor.										
PRERQUISITE	E - NIL													
COURSE OBJ	ECTIVE	S												
1 Recognis	e the bas	sic kn	owled	lge ab	out th	e pre	paratio	n of in	stant a	nd Co	nve	nienc	e foo	d.
2 Students	can inter	pret t	he tec	hniqu	ies to	impro	ove the	nutriti	ive valu	ie and	l mi	nimiz	e los	s of
essential	nutrients	durii	ng pro	ocessi	ng and	d pres	ervatio	on.						
3 Impleme	ntation o	f app	ropria	te pro	cessii	ng, pr	eservat	ion an	d packa	aging	met	hod.		
4 To differ	entiate a	nd co	mpare	e meth	ods o	f frui	ts and v	vegetal	ble pro	cessir	ıg.			
5 Formulat	o the mi	nainal	la inv	alwad	in na	monot	ion of	lifform	nt Eco	1	fa			
	-	-	IS IIIVO	olved	in pre	eparat		Intere	III FOO	I Stur	IS			
COURSE OUT														
After the success	-	-			-									
CO1. Define the	properti	es of :	food r	nateri	als ar	id the	ir proce	essing	method	ls		]	Reme	ember
CO2. Interpret t	-	-	rocess	s the d	liffere	nt cat	egories	s of fo	od and			I	Unde	rstand
mechanisms of p														
CO3. Schedule t			w diag	grams	, com	binati	ion and	seque	ence wi	thin a			Appl	У
process of food i														
CO4. Develop an	-		-				it opera	ations a	and the	scien	tific	;	Analy	/ze
principles behind							61			•		.1.1	C1-	4 -
CO5. Validate th				g duri	ng va	rious	rood pi	cocessi	ng tecr	inique	es ar	ia I	Evalu	late
during storage an														
MAPPING WIT	H PROG	RAM	ME O	DUTC	OME	S ANI	) PRO	GRAM	IME SF	PECIE	FIC	OUT	COM	ES
COS PO1 PO	D2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	501	PSO	PSO3
CO1 - I		-	-	-	-	-	-	-	-	-	М		-	-
CO2 - I		-	-	-	-	-	-	-	-	-	L		-	-
	1 -	S	-	-	-	-	-	-	-	-	М		-	-
CO4 - ·	. <u>-</u>	-	-	-	-	-	-	-	-	-	M		-	-
	- 4	S	-	-	-	-	-	-	-	-	S		-	-
S- Strong; M-Me	edium; L	-Low												
SYLLABUS														
1. Preparation	n of oran	ge squ	ıash.											
2. Preparation	n of man	go jan	n and	guava	a jelly	<b>.</b>								
3. Preparation	n of toma	to ke	tchup											
4. Preparation	n of cann	ed pe	as/ pii	ne app	ole.									

- 5. Preparation of mango pickle /garlic pickle
- 6. Experiment on preparation of fruit bar.
- 7. Preparation of frozen prawn.
- 8. Experiment on preparation of sauce
- 9. Preparation of bread
- 10. Identification of Adulterants

#### **REFERENCE BOOKS:**

- 1. Ramaswamy H and Marcott M, Food Processing Principles and Applications CRC Press, 2006.
- 2. Laboratory Manual

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in									
3	AVIT Staff												

1 <b>7</b> D	DTCC	11	DIOD	DOC	TESE D		NEEI	DINC	I A D	Cat	egory	L	Т	Р	Credit
1/6	BTCC9	1	BIOP	KUU	E99 L	INGI	NEEI	RING	LAD	(	CC	0	0	4	2
PRE	AMBI	LE													
This	biopro	cess er	nginee	ring l	ab cou	rse w	ill pro	ovide p	ractica	al train	ing on	upstre	eam an	d down	nstream
proce	ss ope	rations	s, desi	gning	of fer	menta	tion 1	nediun	n, effe	ect of v	varies p	parame	eters of	n ferme	entation
and b	ioprod	uct pro	oducti	on inc	luding	recoi	nbina	int prot	ein sy	nthesi	s.				
PRE	RQUI	SITE ·	Nil												
COU	RSE (	OBJE	CTIV	ES											
1	To I	nterpre	et the (	Grow	th facto	ors.									
2	To S	Summa	rize tł	ne me	dium c	ptimi	zatior	1.							
3	ToI	Describ	e Enz	yme a	activity	- /.									
4	To E	Execute	e Enzy	me Ir	nmobi	lized	React	ion.							
5	To F	Perform	n large	e scale	e produ	iction	of bio	oprodu	cts.						
COU	RSE (	DUTC	OME	S											
					on of th	ne cou	rse, l	earner	will b	e able	to				
				-				wth of				growt	h 1	Unders	tand
	medi						C			U		C			
CO2.	Sum	narize	know	ledge	about	optim	izatic	on on g	rowth	mediu	ım.		۱	Unders	tand
CO3.	Revie	ew info	ormati	on on	activi	ty of e	enzym	e and	param	eters a	ffects	enzym	e 1	Unders	tand
	activi	ity.													
CO4.	Utiliz	ze the l	cnowl	edge o	of Enz	yme I	mmoł	oilized	to use	in bio	reactor	rs.	1	Apply	
CO5.	Empl	oy the	know	-how	to pro	duce ł	oiopro	ducts	in read	ctors.				Apply	
MAP	PING	WI	ГН	PRO	GRAN	<b>IME</b>	OU	TCON	<b>AES</b>	AND	PRO	OGRA	MME	SPE	CIFIC
OUT	COM	ES													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	S	-	-	-	-	-	-	-	L	-	L
CO2	-	_	-	_	S	-	_	-	-	-	-	-	М	-	L
CO3	-	-	-	-	S	-	-	-	-	-	-	-	М	-	L
CO4	-	-	-	-	S S	-	-	-	-	-	-	-	L	-	M M
CO5													M		

#### SYLLABUS

- 1. Growth of microorganism Estimation of Monod parameters.
- 2. Medium optimization PlackettBurman design.
- 3. Enzyme activity Effect of pH.
- 4. Enzyme activity Effect of temperature.
- 5. Enzyme Immobilization Gel Entrapment.
- 6. Enzyme Immobilisation Cross linking.
- 7. Production of Wine by Yeast.
- 8. Production of Amino acid.
- 9. Production of Yogurt.

#### **TEXT BOOKS:**

- 1. Pauline M. Doran, 2002. Bioprocess Engineering Principles. Academic Press.
- 2. James E. Bailey and David F. Ollis, 1986. Biochemical Engineering Fundamental. 2nd Edn. McGraw Hill.
- 3. Shuler, M.L. and Kargi, F. Bioprocess Engineering : Basic concepts, 2nd ed., Prentice-Hall, 2002.
- 4. Doran Pauline M, Bioprocess Engineering Principles, Academic Press, 1995.

#### **REFERENCE BOOKS:**

- 1. Jenkins, R.O., 1992. Product Recovery in Bioprocess Technology Biotechnology by Open Learning Series. Butterworth -Heinemann.
- 2. Harvey W. Blanch, Douglas S. Clark. Biochemical Engineering. Marcel Decker Inc.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in									
3	AVIT staff												

17BT	BTCC92 DOWNSTREAM PROCESSING ENGINEERING LAB Category L T P Credit									Credit						
				E	CNGI	NEER	ING	LAB			(	CC	0	0	4	2
	MBL								1 .1				1			
		-			•			-				-			-	chniques
	-	-	-			-		-		-				-	-	g of bio- ques in
-	stream					oursej	piovic	ies ut	eper	unders	stanum	ig abo	ut ti			ques m
		-	-	•												
	RSE O			ES												
1	T				ance	of dow	nstre	am pro	ocessi	ng in b	iotech	nology				
2										-		such a		ntrif	iugati	on
			ation.		ibout		IIU-LI	iquiu .	separe		emous	such a		111111	ugan	on,
3				know	ledge	on cel	ll disri	untion	techr	niques f	o extr	act valu	iable	bio	nole	cules
4					-			-		-						
5	To demonstrate in detail aboutChromatography techniques for product purification.To demonstrate the knowledge of extraction techniques to separate biomolecules.															
COUI	To demonstrate the knowledge of extraction techniques to separate biomolecules. <b>OURSE OUTCOMES</b>															
	e succe				of the	e cours	se, stu	dents	will b	e able	to					
	Descrit													Un	derst	and
	hnolog		• • • • • •		porte				p. o					011		
CO2. ]	Identify	y the	funda	menta	al knov	wledg	e abou	ut the	solid-	liquid s	separat	ion.		Un	derst	and
CO3. 1	Demon	strat	e the i	nform	ation	on cel	l disru	uption	techn	iques f	for sep	aration	of	Un	derst	and
biomo	lecules	5.														
CO4. 1	Employ	y the	know	ledge	about	produ	ict fra	ctiona	tion a	nd pur	ificatio	on by		Ap	ply	
chrom	atograj	phy 7	Fechni	ique.												
CO5. 1	Employ	y the	know	ledge	of flo	cculat	ion an	nd aqu	eous t	wo pha	ase ext	raction	to	Ap	ply	
extract	t living	or n	on-liv	ing ce	ells / in	ntrace	llular	materi	ials su	ch as e	enzyme	es,				
protein	ns, etc.															
	PING		H PR	OGR	AMM	E OU	JTCO	MES	AND	PRO	GRAM	IME S	PEC	IFI	С	
	COME			<b>D</b> O (	205	<b>D</b> O (				DOLO	DOIL	DOID			200	
COS CO1	PO1 S	PO2 L	PO3 M	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 L	PS0		PSO2	PSO3
CO1 CO2	S	L L	M	-	-	-	-	-	-	-	-	L L	I N		-	
CO3	S	L	M	-	-	-	-	-	-	-	-	L	N		-	L
CO4	S	L	S	-	-	-	-	-	-	-	-	-	S	5	-	М
CO5	S	L	S	-	-	-	-	-	-	-	-	-	Ν	Л	-	М
S- Stro	ong; M	-Mee	dium;	L-Lov	N											
<b>SYLL</b> 1.	ABUS Solid		uid Se	paratio	on – C	Centrif	ugatic	on, Mi	crofilt	ration.						

- 2. Mechanical cell disruption homogeneizer
- 3. Cell Disruption Techniques Ultra sonication.
- 4. Separation of Pigments by Thin Layer Chromatography.
- 5. Precipitation Ammonium Sulphite Precipitation.
- 6. Ultra Filtration Separation.
- 7. Aqueous Two Phase Extraction of Biologicals.
- 8. Flocculation

# **TEXT BOOKS**

- 1. Wankat, P.C., 1990. Rate Controlled Separation. Elsevier.
- 2. Satinder Ahuja., 2000 Volume 2 Handbook of Bioseparations, Academic Press.
- 3. Asenjo, J.M., 1993. Separation Processes in Biotechnology. Marcel Dekker Inc.
- 4. Belter, P.A., Cussler, E.L. and Wei Houhu, 1988. Bioseparations Downstream
- 5. Processing for Biotechnology. Wiley Interscience Publications.

#### **REFERENCE BOOKS**

- 1. Janson, J.C. and Ryden, L., 1989. Protein Purification Principles, High Resolution Methods and Applications. VCH Publication.
- 2. Scopes, R.K., 1994. Protein Purification Principles and Practice. Narosa Publication.
- 3. Jenkins, R.O., 1992. Product Recovery in Bioprocess Technology Biotechnology by Open Learning Series. Butterworth -Heinemann.

COUR	COURSE DESIGNERS												
S.No	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									
2	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									

# COUDSE DESIGNEDS

17BTCC93	<b>BIOINFORMATICS LAB</b>	Category	L	Т	Р	Credi t
		CC	0	0	4	2

#### PREAMBLE

Bioinformatics is the field emerging from biology which is the combination of biology and computer science. There are number of computer programs developed to maintain, analyse biological data to support research and development. This field of science is used to simulate various biological process in virtual environment to investigate the already available along with newly produced data to predict new structures and functions of biomolecules.

PRER	QUI	ISITE	2- NIL	_											
COUR	SE	OBJI	ECTI	VES											
1	To Summarize the significance of biological databases.														
2	То	To Perform sequence alignment using various sequence alignment tools.													
3	То	To Distinguish the structure and functions of protein molecule using 3D structure of the protein.													
4	То	To Construct phylogenetic tree to analysis the evolution.													
5		To Generate, compare and analyse 3D structure of ligand and receptor complex.													
COUR										-		-	-		
On the	suce	cessfu	l com	pletio	n of th	e cour	se, stu	dents v	will be	able to	)				
On the successful completion of the course, students will be able toCO1. Discuss in detail about impotence of biological databases.Understand															
CO2. Demonstrate sequence alignment by different opensource software Apply															
programs															
CO3. Compare the structure of protein molecule to predict its functions. Analyse															
CO4. E	Evalı	late th	ne phy	logen	etic tre	ee Con	structi	on.				Evalu	ate		
CO5. A	Asse	mble	ligand	l and r	recepto	or com	plex u	sing Do	ocking	g progra	ums.	Creat	e		
MAPP	INC	G WI	<b>FH P</b>	ROGI	RAMN	AE OU	UTCO	MES	AND I	PROG	RAMN	IE SPI	ECIFIC	OUTCO	OMES
COS	Р	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	0 1														
CO1	S	М	-	S	L	-	-	-	-	-	-	L	L	-	-
CO2	М	L	М	М	L	-	-	-	-	-	-	L	М	-	-
CO3	L	L	L	L	S	-	-	-	-	-	-	М	L	-	-
CO4	S	M	L	L	М	-	-	-	-	-	-	S	S	-	-
CO5	S	S	L 1'	M	L	-	-	-	-	-	-	М	М	-	-
S- Stro	ng;	WI-IVI¢	edium	; L-L(	OW										
SYLL	ABU	JS													
1.			al Dat	abase	(DNA	) - NC	BI-Ge	nbank,	EMB	L					
<ol> <li>Biological Database (DNA) - NCBI-Genbank, EMBL</li> <li>Biological Database (Protein) – Uniprot, Protein Data Bank</li> </ol>															

- 3. Sequence Alignment Programs BLAST, FASTA, Clustal W
- 4. Protein 3D Structure Prediction Programs Swissmodel, Rasmol
- 5. Phylogenetic Analysis Program Phylip

6. Docking Studies – PatchDock

# **TEXT BOOKS**

- 1. Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press.
- 2. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by R.Durbin, S.Eddy, A.Krogh, G.Mitchison.
- 3. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press.

# REFERENCES

1. Introduction to Bioinformatics by Arthur K. Lesk , Oxford University Press.

S.No.	Name of the Faculty	Designation	Department	Mail ID									
1.	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									
2.	Dr. R. Deepapriya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in									

# CATEGORY 'C' – ELECTIVE COURSES - PROGRAMME SPECIFIC – 12-15 CREDITS GENERAL

17BTEC01	PLANT AND ANIMAL DISEASES	Category	L	Т	Р	Credit
TIDIECOI	AND THEIR CONTROL	EC (PS)	3	0	0	3

#### PREAMBLE

Plant and animal diseases and their control deals with the study of different types of pests and their impact on agriculture and live stocks. Students will learn about the fungus, bacteria, virus or nematodes that can cause damages to the plant parts above or below the ground. The farmers challenges will be solved by identifying the proper ecofriendly control measures will pave the new path in the area of plant breeding. To familiarize the students with principles of insect pest management, including concept and philosophy of Integrated Pest Management. Knowledge of these principles will enable students to understand the different factor that threatens the agricultural productivity and humans.

PREREQUISITE

17BTCC03 - MICROBIOLOGY

#### **COURSE OBJECTIVES**

- 1 To recognize the pest morphology and its corresponding pesticides
- 2 To describe the pest in agriculture and their control measures.
- 3 To choose the appropriate pest control method
- 4 To outline the vector plant pathogen interaction and management of vectors for controlling diseases.
- 5 To formulate the different sampling methods and monitoring protocol

#### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

-	
CO1. To recall the epidemiology of diseases caused by pests in plant and	Remember
CO2. Discuss about the common plant pathogens in agriculture.	Understand
CO3. Classify about the plant and animal disease & integrated control	Apply
CO4. Examine the diseases in plants and animal & its control	Analyze
CO5. Validate the different samplings methods	Evaluate

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	-	-	L	L	-	-	L	L	L	-	-	-
CO2	М	М	М	М	L	М	L	-	-	-	L	L	-	-	-
CO3	S	S	S		-	-	S	-	М	-	-	L	-	L	-
CO4	М	-	М	-	М	М	S	-	-	-	-	L	-	L	-
CO5	L	L	-		S	-	-	-	L	-	М	М	-	М	-
S-St	S- Strong; M-Medium; L-Low														

# SYLLABUS

# CLASSIFICATION OF PESTS AND PESTICIDES

Pests – Definition, Morphology and Life cycle, classification of pests – Vertebrate pests, Invertebrate pests and plant pests, Classification of pesticides on chemical nature and according to target species, mode of action.

# AGRICULTURAL PESTS AND THEIR CONTROL

Concept of Pest and Types of pests in agricultural products - stored grains- veterinary- forestry and nursery. Major insect pests of agricultural- importance -Marks of identification- life cycle- nature of damage, chestnut blight, potato late blight, downy mildew, Damage economic threshold level and control measures.

# PEST CONTROL PRACTICES

Issues, Challenges and Opportunities in the Control of Insects in Vegetable Crops, Control measures-Cultural, Physical, Mechanical, Chemical, Herbal and Biological control. Pheromonal and autocidal control.

# EMERGING CONCEPTS AND PRACTICES IN INTEGRATED CONTROL MEASURES

The integrated control/IPM concept, Damage thresholds, Forecasting, Increasing agro-ecosystem resistance, Pesticide selectivity, Eradication versus control, Pests and humans – direct pests and vectors of plant and animal diseases, potential human practices and the occurrence of pests, Prevention of communicable diseases after the disaster.

# SAMPLING AND MONITORING ARTHROPODS

Methods of sampling and monitoring, Components of a sampling plan, Types of sampling plans, Allocation of Sampling units.

# **TEXT BOOKS:**

- 1. Principles and procedures of plant protection, 1993. S.B.Chattopadhyay, Oxford-IBH.
- 2. Agricultural pests of India and south East Asia A. S. Atwal, 1986. Kalyani Publishers.
- Francisco Prieto Garcia, Sandra Y. Cortés Ascencio, John C. Gaytan Oyarzun, Alejandra Ceruelo Hernandez and 3Patricia Vazquez Alavarado (2012) Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks. Journal of Research in Environmental Science and Toxicology (Vol. 1(11) pp. 279-293.

- 1. Agricultural insect pests of the crops and their control-D.S.Hill, Cambridge Univ. Press Insect pest of crops S.Pradhan, National Book trust.
- 2. Healthy Roses: Environmentally friendly ways to manage pests and disorders in your garden and landscape, 2nd Edition , John Karlik, Mary Louise Flint, and Deborah Golino.
- Hayes' Handbook of Pesticide Toxicology, Editor-in-Chief: Robert Krieger, University of California, Riverside, U.S.A. Published by January 2010, imprint: Academic Press, ISBN: 978-0-12-374367-1.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in									
2	Ms.G.Arthi	Assistant Professor	Biotehnology	arthi@vmkvec.edu.in									

170000			~	CEAT					Ca	tegory		L	Т	Р	Credit
17BTEC	:02		0	CEA	N SCI	IENC	E		EC	C (PS)		3	0	0	3
PREAM	BLF	£									1				
Ocean sc	eienc	e dea	ls wit	h the	vario	us asp	pects	of ma	rine e	cosyste	em. It	gives	the ba	asic kno	wledge
about av	ailat	oility	of th	e bio	resou	urces	and i	its ap	plicati	ions. It	also	deals	with	explora	tion of
various c	cultu	ring t	techni	ques	of fev	<i>w</i> mai	rine o	organi	sms ii	n the la	aborat	ory co	nditio	ons. Thi	s study
further fa	cilit	ates t	he stu	dent t	o und	erstar	nd the	econ	omic i	importa	ance of	f marin	ne dei	rived pro	oducts.
PREREC	QUI	SITE	- NII												
COURS	E O	BJEC	CTIV	ES											
1 To	o sate	e the	art of	mar	ine ec	osyste	em an	d thei	r prop	perties					
2 To	o des	scribe	the a	bout ł	oiodiv	ersity	in m	arine	enviro	onment	and th	neir res	source	es	
3 To	o per	form	vario	us cul	ture t	echni	ques o	of mai	rine of	rganisn	ns				
4 To	o dev	velop	drug	from	marin	e com	npoun	ds and	d theii	econo	mic V	alues			
5 To	o ass	ess th	ne hur	nan in	npact	on ma	arine	enviro	onmer	nt					
COURS	E O	UTC	OME	S											
After the	succ	cessfu	ıl con	pletio	on of t	the co	urse,	learne	er will	be abl	e to				
CO1. Red	call t	the M	arine	ecosy	vstem	sourc	es and	d their	. prop	erties			]	Rememl	ber
CO2. Des	scrib	e the	biodi	versit	y in n	narine	envi	ronme	ent				1	Underst	and
CO3. Der	mon	strate	the d	iffere	nt cul	ture te	echnic	ques o	of mar	ine org	anism	s	1	Apply	
CO4 Ass	ess t	he de	velop	ed dru	ıg									Analyse	
CO5. Cri			-		0	n mari	ine en	viron	ment					Evaluate	
				-											
MAPPIN OUTCO			H F	ROG	KAN	IME	ΟU	TCO	MES	AND	PR(	JGRA	MM	E SPE	CIFIC
	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1	PSO	PSO2	PSO3
CO1	М	-	-	_	-	L	L	-	-	-	-	Ĺ	-	-	-
CO2	S	М	-	S	L	М	-	-	L	-	-	L	-	-	-
CO3	М	-	М	М	L	-	М	-	М	-	-	L	-	-	-

М S- Strong; M-Medium; L-Low

L

# **SYLLABUS**

L

S

CO4

CO5

# INTRODUCTION TO MARINE ENVIRONMENT

L

L

S

Μ

-

М

Stratification of coastal environment- Bathymetric map, Thermo cline; components of marine ecosystem; Biotic and Abiotic and their interrelationships-Role in food chain, food web ;Tropic systems; Taxonomy of marine flora and fauna; Physico chemical properties of marine water.

-

-

S

Μ

-

-

Μ

-

Μ

S

-

-

-

-

-

-

S

М

# **BIODIVERSITY AND BIORESOURCES**

L

L

Biodiversity of marine ecosystem - Phytoplankton; Algal bloom; Indicator organisms. Bio-

geocycles; Bioresources and their economic importance; Adaptations of flora and fauna in marine & estuarine environment.

# **CULTURE TECHNIQUES**

Culture Techniques of microalgae; seaweeds; tiger shrimp; lobsters; Common marine pathogens and symptoms; Transgenesis and cryopreservation.

### ECONOMIC VALUE

Economic importance of marine products; Economic value - corals, sponges, pearls, oysters, molluscs; Drug development from natural marine derived compounds.

### IMPACTS ON MARINE ENVIRONMENT

Human Impact on Marine Environment – Oil spill, Nuclear reactors, Thermal impact, Bio fouling; Heavy metal pollution.

### **TEXT BOOKS:**

- 1. Milton Fingerman and Rachakonda Nagabhushanam, Recent Advances in Marine Biotechnology (Series) Biomaterials and Bioprocessing, Science Publishers 2009.
- 2. Proksch and Werner E.G.Muller, Frontiers in Marine Biotechnology. Horizon Bioscience, 2006

- Le Gal, Y.Ulber, marine Biotechnology 1: Advances in Biochemical Engineering/Biotechnology (Series editor: T. Scheper) Springer – Verlag Berlin Heideberg. Vol. 96,97, 2007
- Mun and Munn, Marine Microbiology Ecology & Applications. BIOS, Scientific Publisher. 1996

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. G. Karthiga Devi	Assistant Professor	Biotechnology	vinoth@avit.ac.in								
2	Dr. R. Subbaiya	Associate Professor	Biotechnology	subbaiya@avit.ac.in								
3	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in								

17BTEC	503		P	PRINO	CIPL	ES O	F		(	Catego	ry	L	Т	Р	Credit
I/DIEC	.05		BI	OINF	ORM	IATI	CS		]	EC (PS	5)	3	0	0	3
PREAM	BLE	E							1			1			
Principle	s	of	B	ioinfo	rmati	cs	is a	an inte	erdisc	iplinar	y field	that	t co	mbines	Computer
Science,	Mole	ecula	r Bio	logy,	Gene	tics ,I	Mathe	matic	s, Sta	tistics	and Er	ngineer	ing etc	c. to a	nalyze and
interpret	biol	ogica	l data	a. Bio	inform	natics	has	been	used	for in	silico	analyse	es of t	oiologi	cal queries
using ma	them	natica	l and	sta	tistica	l te	chniq	ues.	This	cou	irse	include	es th	e us	e computer
programm	ning	as p	part (	of th	eir n	nethod	lolog	y, in	the	field	of gen	omics,	, the	identif	fication of
candidate	e gen	ies, g	enetic	basi	s of	disea	se eta	c. lea	ding	to spe	cific o	drug d	liscove	ery by	molecular
modelling	g.														
PREREC	QUIS	SITE	2 - NII	Ĺ											
COURS															
									-	al field					
	-			silico	analy	vsis of	biolo	ogical	queri	es usin	g matł	nematio	cal and	l statist	ical
		iques				Lina an	£4		40.010	haad			4:000		
										based				eries us	ing
			atics t		enetic	uee i	Jaseu	on un		Jgicai	morm	ation a	ina que		sing
					ics to	ols in	vario	us fie	ld like	e medio	rine a	oricult	ure etc		
COURS		-			103 10	013 111	vario	us ne			cine, a	Silcult		• •	
After the					on of	the co	urse,	learne	er will	be ab	le to				
CO1. Rel				-								cts rela	ated to	R	emember
Bioinform					1				-	1 2	5				
CO2. Der	mon	strate	the in	mport	ance	of bio	logica	al data	bases	and th	eir sig	nificar	nce in	U	nderstand
Biotechn				I			0								
CO3. Op	-	•	varion	is tool	s and	softw	are u	hich	can he	adont	ed in (	lifferer	nt field	s A	pply
of Biotec			variot	13 1001	is and	5011	are w	men		udopi			it nero		ppiy
CO4. Me		0.		C. a a m a	f -	14		. 4.0 4.		- Diain	f	4:00 40	-la and		
software	asur	e the	signi	incanc	e or e	voiuu	onary	/ traits	s using	д БЮШ	norma	tics too	ois and		valuate
CO5. Val	lidat	a tha	vario	us bio	infor	natio	tool	in di	fforon	t fields				E	valuate
MAPPIN OUTCO		Wľ. S	ΙĦ	rku	GKA	MMF	U	UIC	OME	S AN	ND F	PROG	KAWI	VIE S	SPECIFIC
		9 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	M	L	-	L	L	-	-	-	L	-	-	L	-	-	-
	S	-	-	S	L	-	-	-	-	-	-	L	L	-	-
CO3	М	L	-	М	L	S	-	-	-	-	-	L	М	-	-
CO4	S	М	L	L	М	-	-	-	-	-	-	S	-	-	-

CO5	-	L	L	L	Μ	-	-	-	-	-	L	S	-	-	-
S- Strong: M-Medium: L-Low															

S- Strong; M-Medium; L-Low

### SYLLABUS

# INTRODUCTION TO BIOINFORMATICS

Introduction, Scope of bioinformatics – Introduction to UNIX- Files and processes, Basic UNIX commands for listing files and directories, Making directories, Changing to a different directory, Copying and moving files, Removing files in directories, Clear, CAT and Less commands, Word count, Help, Redirection, Access rights, Running background process and killing processes, ftp, telnet, Internet, http, Search engines.

# DATABASES

Introduction to databases – Flat files, Relational databases, Object oriented databases and hypertext databases, Biological databases and their uses, Introduction to EMB net and NCBI, Classification of biological databases; Primary nucleic acid sequence databases – Gen Bank, EMBL, DDBJ; Primary protein sequence databases – PIR, SWISS-PROT; Composite databases – NRDB, OWL, SWISS-PROT+TrEMBL; Secondary databases – PROSITE, PRINTS; Structural databases – PDB, MMDB.

### SEQUENCE ALIGNMENT

Introduction to sequence alignment and its significance, Types – Global, Local, Pairwise and Multiple alignment. DOT PLOTS, Scoring matrices – PAM, BLOSSUM. Dynamic programming algorithms, BLAST, FASTA. Multiple sequence alignment by PSI- BLAST.

### PHYLOGENETIC ANALYSIS

Terminology and basics of Phylogenetics – Clades, Taxons, Baranches, Nodes; Orthologs and Paralogs. Steps to construct a Phylogenetic tree – Constructing a Multiple Sequence Alignment, Determining the substitution model, Tree building and tree evaluation.

### **APPLICATION OF BIOINFORMATICS**

Application of bioinformatics in various fields – Medicine, Agriculture and Industries.

# **TEXT BOOKS:**

- 1. Rastogi, S.C., Namita Mendiratta, Parag Rastogi. 2006. Bioinformatics Concepts, Skills, Application. CBS Publications.
- 2. Westhead, D.R., Parish, J.H., Twyman, R.M., 2000. Instant Notes in Bioinformatics. *BIOS Scientific Publishers*.
- 3. Teresa, K., Attwood and David J. Parry-Smith, 2007. Introduction to Bioinformatics. *Pearson Education Ltd.*

- 1. Bergeran, B., 2002. Bioinformatics Computing. PHI.
- 2. Richard Durbin, Sean Eddy, Anders Krogh and Graeme Mitchison, 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. *Cambridge University Press*.

- 3. Bishop, M.J., Rawlings, C.J., 1997. DNA and Protein Sequence Analysis. A Practical Approach. *IRL Press*, Oxford.
- 4. Gibas, C. and Jambeck, P., 1999. Developing Bioinformatics Skills. O'Reilly.
- 5. Dan Gusfield, 2007. Algorithms on Strings Tree and Sequence. *Cambridge University Press*.
- 6. Baldi, P. and Brunak, S., 1998. Bioinformatics: A Machine Learning Approach. *MIT Press*
- 7. Essential Bioinformatics. Jin Xiong. Cambridge University Press. 2006.
- 8. An Introduction ti Bioinformatics Algorithms. Neil C Jones, Pavel A Pevzner. MIT Press.2004.
- 9. The New Avenue in Bioinformatics. Joseph Seckbeck Eitan Rubin. Springer.2010.

### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.R.Devika	Professor	Biotechnology	devika@avit.com								
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in								

17BTEC04	DIAGNOSTICS AND	Category	L	Т	Р	Credit
1/DILC04	THERAPEUTICS	EC (PS)	3	0	0	3

The Diagnostics and Therapeutics is to explore the fundamental mechanisms of disease and use the knowledge to design, test and evaluate new drugs and develop innovative drug delivery and release strategies. It creates technologies and tools to combat disease, promote health, and safeguard the environment. The Knowledge gained will help in realization of physical systems at scales and dimensions similar to biological entities such as bacterial and mammalian cells, viruses, spores, etc.

### PREREQUISITE

17BTCC03- MICROBIOLOGY

I/DIC	05 1	ment	JUIOI	2001												
COUR	RSE OI	BJEC	<b>FIVES</b>	5												
1	List	the nat	ure of	infect	tion, p	rocedu	ıral sk	ills to	collec	t and in	nterpre	t data.				
2	Class	sify the	e cause	e of in	fection	n and t	the pat	thoger	ns.							
3	Dem	onstra	te the g	geneti	c natu	re of H	Iuman	ı disea	ses.							
4	Orga	inize ci	urrent	Mole	cular d	liagnos	stics o	f infec	ctious	disease	es.					
5	Asse	Assess the biosafety aspects involved in molecular diagnosis.														
COUR																
After t	he succ	cessful	comp	letion	of the	cours	e, lear	ner wi	ill be a	able to						
After the successful completion of the course, learner will be able to CO1. Recall about infection, sample collection, transport and the data.													R	ememb	er	
CO2. Explain about the most appropriate infectious agent.														ndersta	nd	
CO3. I	Demon	strate t	he mic	croorg	ganism	have	an ind	ispens	able r	ole in o	lisease		A	pply		
diagno	sis			-	-			-								
CO4. A	Apprais	se the g	genom	ic kno	wledg	ge.							A	nalyze		
CO5. 0	Choose	the to	ol for a	diseas	e diag	nosis.							E	valuate		
CO6. F	Plan dia	agnosti	ics bas	ed on	the bi	o-safe	ty asp	ects					C	reate		
MAPP	PING V	VITH	PRO	GRAN	MME	OUT	COMI	ES AN	ND PR	ROGR	AMME	E SPEC	CIFIC	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	L	-	L	-	-	-	-	-	-	-	-	-	-	-	
CO2	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO3	М	L	-	М	-	-	М	-	-	-	-	L	-	-	-	
CO4	L	L	L	-	-	-	-	-	S	-	-	М	-	-	-	
CO5	S	M S	L L	L	М	-	-	-	-	-	-	S	-	-	-	
CO6	S			Μ	L	L	L	Μ		-	1	Μ	-	-		

# SYLLABUS

# INTRODUCTION TO DIAGNOSTICS AND THERAPEUTICS

Mode of transmissions of infection, Pre-disposing factors of microbial pathogenicity, Normal microbial flora of the human body, Types of infectious diseases, Host - Parasite relationships, Clinical specimens – Collection, Transport and Processing of samples, Interpretation of results.

### MICROBIAL INFECTIONS AND DIAGNOSIS

Pathogenicity and diagnosis of major bacterial infections: Streptococcus, Coliforms, Salmonella, and Mycobacterium, Pathogenicity and diagnosis of major fungal infections: Dermetophytosis, Candidiosis and Aspergillosis, Pathogenicity and diagnosis of major Protozoan infections: Amoebiosis, Malaria, Leishmaniasis, DNA and RNA Viruses: Pox viruses, Hepatitis viruses, Adeno viruses and Retro viruses.

### **MEDICAL GENETICS**

Organization of Human genome, Identifying human disease genes, Genetic disorders - Sickle cell anemia, Duchenne muscular Dystrophy, Retinoblastoma, Cystic Fibrosis, Neonatal and Pre-natal disease diagnostics, Gender identification, Analysis of mitochondrial DNA for maternal inheritance, Genetic counselling.

### METHODS IN MOLECULAR DIAGNOSTICS

Isolation and purification of nucleic acids, Nucleic acid labelling, Hybridization, PCR and types, PCR based molecular typing, Molecular diagnosis of pathogens based on 18S and 16S rRNA sequences, Automated DNA sequencing, Microarrays - types and applications.

### **BIOSAFETY FOR MOLECULAR DIAGNOSTICS**

Good Laboratory Practices, Different levels of biosafety containments for rDNA experiments, Biosafety aspects of tissue / Cell transplantation.

### **TEXT BOOKS:**

- 1. Lele Buckingham and Maribeth L. Flaws, 2007. Molecular Diagnostics: Fundamentals, Methods & Clinical Applications.
- 2. David E. Bruns, Edward R. Ashwood and Carl A. Burtis, 2007. Fundamentals of MolecularDiagnostics.
- 3. Griffiths, A. J. F., Miller, J. H. and Suzuki, D. T., 2000. An Introduction to Genetic Analysis.
- 4. Jeremy M. Berg, John L. Tymoczko and LubertStryer, 2002. Biochemistry. W.H. Freeman andCompany.5thEdn.
- 5. Parasitology, Chatterjee K.D, Chatterjee Medical Publishers

- 1. Lodish, Berk, Zipursky, Matsudaira, Baltimore Darnell, 2000. Molecular Cell Biology. W.H. Freeman and Company. 4thEdn.
- 2. Benjamin L., 2008. Genes IX. Jones and Bartlett.
- **3.** Turner, P. C., McLennan, A. G., Bates, A. D. and White, M. R. H., 2003. Instant Notes in Molecular Biology. *Viva Books Private Limited*

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in								
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in								

17BTI	C05		ſ	VTO	GENI	FTIC	2		(	Catego	сy	L	Т	Р	Credit
1/011	2005		C	110	GENI		3			EC (F	PS)	3	0	0	3
PREA	MBLE											1			1
Cytoge	netics i	is the l	branch	of ge	enetics	that s	tudies	the s	tructu	re and l	oehavio	our of c	hromo	somes a	and their
relation	to hu	man d	isease	and c	lisease	e proc	esses.	It als	o deal	s with	chrom	osomes	and th	neir inh	eritance,
particul	arly as	s appli	ed to	medic	al ger	netics.	The a	applica	ation o	of cytog	genetic	is to n	nonitor	mutag	enic and
clastog	enic e	xposu	res, ar	nd eva	aluates	s the	impor	tance	of th	ese tes	ts for	preven	tive h	ealth m	easures.
Cytoge	netics	often	use cu	tting-	edge t	ool fo	r the	diagno	osis of	variou	is gene	tic disc	orders,	paving	the way
for pos	sible tr	eatme	nt and	mana	igemei	nt.									
PRER	EQUIS	SITE -	- NIL												
COUR	SE OI	BJEC	<b>FIVES</b>	5											
1	State	the ba	asic co	ncept	of gen	netic r	nateria	al and	their	structu	al orga	nizatio	n		
2	Com	pare th	ne stru	cture	of the	gene	and th	eir ge	netic r	nappin	g				
3	Diffe	Compare the structure of the gene and their genetic mapping Differentiate the sex in plants and animals													
4	Assess the effects of Structural changes in chromosomes and their translocations														
5										equenc					
COUR			-			1 1				1					
After th	e succ	essful	comp	letion	of the	cours	se, lea	rner w	ill be	able to					
CO1. R												acters	R	ememb	er
CO2. C													τ	Jndersta	nd
CO3. P	-				-		-		-				A	nalyze	
CO4. V														valuate	
CO5. A										wofo		oo in		valuate	
1 /	•														
MAPP	ING V	VITH	PRO	GRA	MME	OUT	СОМ	ES A	ND Pl	ROGR	AMM	E SPE	CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	M	- -	-	-	-	-	-	L	-	-	-	-	-	-
CO3 CO4	L	L	L	L	-	-	-	-	-	- C	-	-	-	-	-
CO4 CO5	S S	M M	L L	L L	- M	-	-	S	-	S	-	-	-	-	-
			ım; L-		141	-	_	_	-	-	-	-	-		

### SYLLABUS

### **GENETICS AND HEREDITY**

Introduction to genetics. Genotype and phenotype, Mendelian laws of Inheritance, Test cross, back cross; Structural organization of eukaryotic chromosomes: Nucleosome structure, Euchromatin, heterochromatin, telomeres, Satellite DNA, centromeres, Types of chromosome on the basis of centromeres; Lampbrush chromosomes; polytene chromosomes; Extrachromosomal inheritance; maternal effects and cytoplasmic inheritance, Chi square analysis.

### LINKAGE AND CROSSING OVER

Fine structure of the gene: cistron, recon, mutan; Linkage; crossing over: molecular mechanism - double strand break model, Holiday model, Genetic mapping of chromosomes: Diploid mapping - two point cross, three point cross, Haploid mapping; Lod score analysis.

### SEX DETERMINATION

Sex determination in plants and animals: Concepts of autosomes and allosomes, XX - XY, XX - XO, ZW - ZZ, ZO – ZZ Types; Sex differentiation; Dosage compensation; Sex linked inheritance, Sex influenced inheritance Multiple Alleles; Lethality and Interaction of genes. Karyotyping - amniocentesis; banding techniques

### CHROMOSOMAL ABERRATIONS & MUTATIONS

Structural changes: duplications, translocations, inversions; Numerical changes: aneuploidy; Euploidy; polyploidy; Types of mutations; Spontaneous & Induced mutation, lethal mutations, silent mutations, adaptive mutations, biochemical mutations & chemical mutagens, ionizing and non- ionizing radiations; Ames Test.

### GENETIC MATERIAL IN POPULATIONS

Population genetics: gene pool, gene frequencies, Hardy - Weinberg law and its applications, factors affecting allele frequencies - selection, mutation, migration and genetic drift; Inbreeding depression; Heterosis; speciation; pedigree analysis.

### **TEXT BOOKS:**

- 1. Tamarin, R.H. 2008. "Principles of Genetics", Tata McGraw Hill, New Delhi.
- 2. Verma, P.S. and Agarwal, V.K. 2006. "Cell Biology, Genetics & Evolution & Ecology", S. Chand & Co., New Delhi.

- 1. Simmons, M.J, and Snustad, D.P. 2008. "Principles of Genetics", John Wiley & Sons, New Delhi.
- 2. Strickberger, M.W. "Genetics", Pearson Education India, New Delhi. 2015

COUR	COURSE DESIGNERS											
S.No.	Name of the	Designation	Department	Mail ID								
	Faculty											
1	Dr.R.Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com								
2	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in								
3	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in								

<b>17BTEC06</b>	

STEM CELL BIOLOGY AND
TISSUE ENGINEERING

Stem cells in regenerative medicine holds promise for improving human health by restoring the function of cells and organs damaged due to degeneration or injury. Stem cell biology has potential application in several areas of biomedical research that includes drug development, toxicity testing, developmental biology, disease modeling, tissue engineering etc.

<b>PREREQUISITE</b> – NIL
---------------------------

COUR	SE (	OI	BJE	CTIVE	S	
	_					

1	To define topics related to stem cells and regenerative biology
2	To describe Stem cell basics and their applications for the benefit of mankind.

- 3 To execute technologies in engineering stem cells
- 4 To organize scaffold for tissue engineering
- 5 To Assess the ethical issues in stem cell research

# **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. To recall the basics of stem cellRememberCO2. To identify the basic applications of stem cell in regenerative medicineUnderstandCO3. To Illustrate the latest tissue engineering conceptsApplyCO4. To develop the scaffold tissue using stem cellAnalyseCO5. To validate the research in tissue engineering.Evaluate

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	L	L	-	-	-	-	L	-	L	L	-	-	-
CO2	S	М	S	S	-	М	-	-	-	-	L	L	-	-	-
CO3	М	-	М	М	L	S	-	М	М	-	М	L	-	-	-
CO4	L	L	L	-	S	L	-	-	-	-	L	М	-	-	-
CO5	S	М	L	L	М	М	М	S	М	-	S	L	-	-	-

S- Strong; M-Medium; L-Low

# SYLLABUS

# INTRODUCTION TO STEM CELL BIOLOGY

Definition and concepts of stem cell terminology. Classification of stem cells. Basic biology of stem cells - Types & sources of stem cell with characteristics. Stem cells in embryonic and adult tissues. Overview of basic and translational research of stem cells modeling disease states, gene/cell therapies, **EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT STEM CELLS** 

Early steps in human reproduction (Zygote to blastocyst stage), Totipotent vs Pluripotent stem cells, Embryonic stem cells: Sources, characterization and experimental manipulations, Discovery of Induced pluripotent stem cells (iPSC) and its experimental differentiation into specific tissue types, Generation and characterization of pluripotent stem cells. Experimental breakthroughs and limitations.

# ADULT STEM CELLS

Multipotent stem cells from adult tissues and organ systems, stem cell niches. Advantages and disadvantages for use, characterization, experimental manipulations, Immune markers and tissue/organ rejection, Hematopoietic stem cells - characteristics and differentiation pathways, Lymphoid vs myeloid cell pathways and stem cells ,Cord blood transplantation, Mesenchymal stem cells – Isolation, characterization and functional assessment.

# TISSUE REGENERATION AND BIOENGINEERING OF TISSUE AND ORGANS

Overview of regeneration and bioengineering of tissues. Role of stem cells in controlling tissue regeneration. Experimental strategies to bioengineer tissues and organs from cultured stem cells. 3-D organoid cultures and tissue scaffolds. Characterization of functional bioengineered organs.

# ETHICAL, POLITICAL AND SOCIETAL IMPLICATIONS

Future innovations, trends and misconceptions of using human stem cells. Practicalities and feasibilities of using stem cells to treat human disease and injuries. Commercialization of stem cell-based therapies.

# **TEXT BOOKS:**

- 1. Robert Lanza, John Gearhart, Brigid Hogan, Douglas Melton, Roger Pedersen, James ThomsonE and Donnall Thomas. Essentials of Stem cell Biology. Elsevier Academic press.
- 2. Robert Lanza, Robert Langer and Joseph Vacanti, "Principles of Tissue Engineering", Academic Press, 2007

- 1. Scudellari, Megan "A decade of iPS cells" Nature, 534: 310-312.
- 2. Bredenoord, AL, Clevers, H, Knoblich J (2017) "Human tissues in a dish: The research and ethical implications of organoid technology" Science 355.
- 3. ThomsonE and Donnall Thomas.Essentials of Stem Cell Biology. Elsevier Academic press.
- 4. Stewart Sell. Stem Cell Handbook, 2004. *Humana Press*.
- 5. Freshney, R. and Ian. Alan, R. Culture of Animal Cells : A Manual of Basic Techniques. Liss Inc.
- Modlinske, J.A., Reed, M., A., Wagner, T.E. and Karasiewicz, J., 1996. Embryonic Stem Cells: Developmental Capabilities and their Possible Use in Mammalian Embryo Cloning. *Animal Reproduction Science* 42: 437 – 446.

COUR	COURSE DESIGNERS												
S.No.	Name of theDesignationDepartmentMail ID												
	Faculty												
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in									
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									

	L
<b>17BTEC07</b>	

GENETICALLY MODIFIED
ORGANISMS AND ETHICAL ISSUES

Category	L	Т	Р	Credit	
EC (PS)	3	0	0	3	

L

I M

L

### PREAMBLE

Genetically modified organisms and ethical issues course deals with the study of modified genes found in and around us. Genetically modified organisms classifies the genetic modification and characteristics of modified genes and beneficial effects. Genetically modified organisms use pioneering techniques in science along with other applied fields of research like biotechnology, genetics to study microbes and their complex mechanisms. Knowledge of these principles will enable students to understand how they react under different conditions and how they cause different diseases and their control.

PREREQUISITE
--------------

1

### 17BTCC12- GENETIC ENGINEERING

### **COURSE OBJECTIVES**

To state the knowledge on concept of Genetically modified organ	isms
-----------------------------------------------------------------	------

- 2 To explain the principles of risk benefit analysis of genetically modified organisms
- 3 To classify the legislation, regulations and ethical values relevant to genetic modification
- 4 To categorise the importance of crop protection and improvement.
- 5 To design various laws for the selection of genetic changes.

### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. List out the basic knowledge about genetically modified microbes and													Remember		
CO2. Classify the modified gene copy number and chromosomal changes Understand											tand				
CO3. Compare the genetically engineered organisms and methods of bio confinement Understand										tand					
CO4. Categorise the economic and political aspects of genetic modification Analyze											e				
CO5. Appraise the advantages of structural changes and numerical changes											Evalua	e			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	-	L	-	-	-	-	-	L	-	-	-	L	-	-	-

COI	-	L	-	-	-	-	-	L	-	-	-	L	-	-
CO2	-	М	-	-	L	М	-	L	L	-	L	L	-	L
CO3	_	_	_	S	_	_	М	I	_	I	_	I	_	_
CO4	-	-	L	-	-	-	-	М	-	-	-	М	L	-
CO5	-	-	L	М	-	-	-	S	-	S	-	S	-	Μ

S- Strong; M-Medium; L-Low

### SYLLABUS

# **GENETIC MODIFICATION**

Generation of Genetic Modification- Genetically Modified Microbes (bacteria and yeast) and Genetically Modified Organism (plants and animals) - Recombinant DNA technology for GMOs with examples of applications in plants - applications of GMM and GMO within basic science- Biological and medical research.

### DETECTION AND ANALYSIS OF GMOS AND GMO PRODUCTS

Modified gene copy number determination, detection of chromosomal changes, toxicological studies, residual DNA analysis, product analysis – microbial, biochemical and molecular, toxicological evaluation.

### SEX DETERMINATION

Sex determination in plants and animals: Concepts of autosomes and allosomes, XX - XY, XX - XO, ZW - ZZ, ZO – ZZ Types; Sex differentiation; Dosage compensation; Sex linked inheritance, Sex influenced inheritance Multiple Alleles; Lethality and Interaction of genes. Karyotyping - amniocentesis; banding techniques.

### CHROMOSOMAL ABERRATIONS & MUTATIONS

Structural changes: duplications, translocations, inversions; Numerical changes: aneuploidy; Euploidy; polyploidy; Types of mutations; Spontaneous & Induced mutation, lethal mutations, silent mutations, adaptive mutations, biochemical mutations & chemical mutagens, ionizing and non- ionizing radiations; Ames Test.

### GENETIC MATERIAL IN POPULATIONS

Population genetics: gene pool, gene frequencies, Hardy - Weinberg law and its applications, factors affecting allele frequencies - selection, mutation, migration and genetic drift; Inbreeding depression; Heterosis; speciation; pedigree analysis.

### **TEXT BOOKS:**

- 1. David E Newton. 2014. Genetically Modified Organisms food, Santa Barbara, California: ABC-CLIO
- 2. Debra A Miller, 2012, Genetically Engineered Food, Detroit Green haven press.
- 3. Tamara Thompson, 2015. Genetically modified food. Farmington Hills Mich, Greenhaven press, a part of Gale, Cengage learning.

- 1. Noel Merino, 2014. Genetically modified food. Farmington Hills, MI, Greenhaven press
- 2. Ronald Ross Watson and Victor Preedy, 2015, Genetically modified Organisms in Food, 1st edition Academic press
- 3. R. R. Vittal and R. Bhat, Biotechnology, Concepts and Applications (2009)
- 4. S. C. Rastogi, Biotechnology, Principles and Applications (2007)

COUR	COURSE DESIGNERS										
S.No.	Name of the	Designation	Department	Mail ID							
	Faculty										
1	Dr.R.Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com							
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in							

17BTEC08       MOLECULAR EVOLUTION $EC(PS)$ $3$ $0$ $0$ PREAMBLE         This course provides a review of current knowledge in molecular evolution, with attention evolutionary theory, the patterns and mechanisms of molecular change, the reconstruction evolutionary trees from gene sequences, the evolution of gene families and their functions, and evolution of development.         PREREQUISITE       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       10
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Genes and gene structure- Protein-coding genes, RNA-specifying genes, Un transcribed genes Mutation- Substitution mutations, Recombination, Deletions and insertions, Inversions, Mutation rates, Spatial distribution of mutations.

# **EVOLUTIONARY CHANGE IN NUCLEOTIDE SEQUENCES**

Nucleotide substitution in a DNA sequence- Jukes and Cantor's one-parameter model, Kimura's twoparameter model, Number of substitutions between two noncoding sequences, Substitution schemes with more than two parameters

### ALIGNMENT OF NUCLEOTIDE AND AMINO ACID SEQUENCES

Manual alignment by visual inspection, The dot matrix method, Distance and similarity methods, Alignment algorithms, Multiple alignments

### **MOLECULAR PHYLOGENETICS**

Impacts of molecular data on phylogenetic studies, Advantages of molecular data in phylogenetic studies, Rooted and unrooted trees, Scaled and unscaled trees, The Newick format, Number of possible phylogenetic trees, True and inferred trees, Gene trees and species trees, Taxa and clades. Methods of tree construction

### GENE DUPLICATION, EXON SHUFFLING, AND CONCERTED EVOLUTION

Types of gene duplication, Domain duplication and Gene elongation- The ovomucoid gene, Enhancement of function in the allele of haptoglobin, Origin of an antifreeze glycoprotein gene, Dating of gene duplication.

### **TEXT BOOKS:**

- 1. D. Graur and W-H Li. Fundamentals of Molecular Evolution. Sinauer, 1999.
- 2. D.B. Futuyma. Evolutionary Biology, Third Edition. Sinauer, 1997. This is an excellent general evolution textbook. While it is expensive, it is a great reference and learning tool for anyone interested in evolution in general.

### **REFERENCES:**

- 1. RDM Page and LC Holmes. Molecular Evolution: A Phylogenetic Approach. Blackwell Science, 1998. A very good introduction with an emphasis on techniques and concepts in molecular systematics, one of the major weak points in Graur and Li.
- 2. D.B. Futuyma. Evolutionary Biology, Third Edition. Sinauer, 1997. This is an excellent general evolution textbook. While it is expensive, it is a great reference and learning tool for anyone interested in evolution in general.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

# COURCE DEGLOVEDO

17BTEC09	MICROBIAL BIOTECHNOLOGY	Category	L	Т	Р	Credit
1/DIEC0/	MICRODIAL DIOTECHI(OLOGT	EC (PS)	3	0	0	3

Microbial Biotechnology deals with the study of Microbial products, organization and function of prokaryotes. As the pioneering field in the area of microbial it clearly shows that the industrially important microbes and metabolites. Industrially important microbial metabolites were identified and they were taken to the different steps for the production of antibiotics. Genetically modified organisms are concerned with the application of microbial metabolites in pharma industry and also the types of drugs, how the biofertilizers and biopesticides are useful to the agriculture for the enormous amount of production. Classically recovery and purification of microbial products were analysed for the application in agriculture.

### PREREQUISITE

1

17BTCC03- MICROBIOLOGY

1		To learn the basic principles of isolation and purification of microbial products
---	--	-----------------------------------------------------------------------------------

- ² To understand the kinetics of microbial metabolites and their actions
- ³ To understand the recovery and product identification from the microbes
- ⁴ To know the importance and application of microbial metabolites in the Parma industry
- 5 To make the students to test and deepen their mastery of microbial products by applying this knowledge in a variety of problem-solving situations.

### **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1: To describe the historical background and cultural characteristics of microbes	Remember
CO2: To describe the differences between culturing techniques, product purification and recovery process	Understand
CO3: To analyze the production of microbial metabolites	Analyse
CO4: To compare and contrast the production of primary and secondary metabolites	Analyse
CO5: Identify the factors that play a role in the production of antibiotics.	Evaluate

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	L	L	L	-	L	-	-	-	-	-	L	-	-
CO2	-	М	S	S	L	-	S	-	-	-	L	-	-	-	-
CO3	-	-	L	L	S	-	-	М	-	-	L	М	-	М	-
CO4	-	-	-	-	-	-	S	-	-	-	L	М	-	М	-

CO5	-	-	L	-	М	-	-	-	-	-	-	S	S	М	L
S- Sti	S- Strong; M-Medium; L-Low														

### SYLLABUS

### MICROBES AND APPLICATION

Introduction, aims and scope: Organization and function of prokaryotes, Isolation of industrially important microorganisms from different sources. Extremophiles and their applications: Characteristics of selected groups of microbes. Control of micro organisms- physical and chemical agents. Culture concept and cultural characteristics

### ISOLATION OF INDUSTRIALLY IMPORTANT MICROBES

Methods in microbiology- Pure culture techniques, Microbial nutrition and growth principles. Growth measurement techniques: Isolation of microorganisms from various sources, long term preservation and improvement of cultures. Design and Preparation of Media- fermentation processes. Study of various methods of biomass measurement- Growth curve studies of microbes in Batch culture and continuous culture. Determination of yield coefficient and Monod's constant

### INDUSTRIALLY IMPORTANT MICROBIAL METABOLITES

Industrially important microbial metabolites- Process technology for the production of primary metabolites e.g. enzymes (Amylases, Proteases, Lactases, Pectinase and Lipases), baker's yeast, ethanol, citric acid, polysaccharides, nucleosides and bioplastics. Production of secondary metabolites- penicillin, Tetracycline, streptomycin, vitamins etc

### APPLICATIONS OF GREEN CONCEPTS

Applications of microbial metabolites: Pharmaceutical industry, Therapeutics, and Clinical analysisglucose isomerase, aminopeptidase; amylase, cellulase, penicillin acylase, lipase, oxido-reductase; protease etc. for the production of different types of drugs and drugs intermediates. Biogenic synthesis of nanoparticles from microbes-mechanism, characterization, and applications. Microbes in environmental management, Biocontrol, Biofertilizers, and biopesticides

# **RECOVERY AND PURIFICATION OF MICROBIAL PRODUCTS**

Removal of microbial cells- Precipitation, filtration, centrifugation. Cell disruption- extraction and chromatography, Drying and crystallization

# **TEXT BOOKS:**

- 1. Michael T. Madigan, John M. Martinko, Paul V. Dunlap, and David P. Clark "Brock Biology of microorganisms", Prentice Hall, 12th Edition, 2008
- Michael J. Pelczar, S. Chan, and Noel R. Krieg "Microbiology", McGraw Hill, 7th Edition, 2011 3.
- 3. Richard Harvery, Cynthia Nau Cornelissen, Bruce D Fisher, 2011, Microbiology, Lippincott illustrated Reviews: Microbiology.
- 4. Stanier Y. Roger, Adelberg A. Edward, and Ingraham John "General Microbiology", Prentice Hall, 5th Edition, 1986.

### **REFERENCES:**

- 1. Geo Brooks, Karen C. Carroll, Janet Butel, and Stephen Morse "Medical Microbiology", McGraw-Hill Medical, 26th Edition, 2012 6.
- 2. Lansing M. Prescott, Donald A. Klein, and John P. Harley, "Microbiology", McGraw Hill, 5th Edition, 2002 7.
- 3. G. Reed, Prescott and Dunn's, "Industrial Microbiology", 4th Edition, CBS Publishers, 2009.
- 4. P. E. Stanbury, A. Whitaker, and S. J. Hall, "Principles of Fermentation Technology", Indian Edition, Hall Books, 2007

### **COURSE DESIGNERS**

COUL											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com							
2	Ms.G.Arthi	Assistant Professor	Biotehnology	arthi@vmkvec.edu.in							

# 17BTEC10

<b>CRYOPRESERVATION THEORY</b>	Catego
AND APPLICATIONS	EC (PS

Category	L	Т	Р	Credit
EC (PS)	3	0	0	3

### PREAMBLE

Cryopreservation Theory and Applications subject deals with the basic knowledge in the preservation techniques. The course often use cutting-edge techniques and sophisticated machinery along with other applied fields of research to study how the eggs and sperm are preserved for later uses. Knowledge of these principles will enable students to understand the various free drying preservation techniques and its usefulness.

COUP	RSE OBJE	ECTIV	<b>'ES</b>												
1	To recog	gnise th	ne bas	ics of	cryop	oreser	vatior	and e	effects	caused	l by it.				
2	Summar														
3	To imple	ement	cryop	reserv	ation	in fer	tilizat	ion pr	ocess.						
4	To outli	ne the	knowl	edge	of cry	opres	ervati	on in	therap	eutics	and oth	ner fert	ilizatio	n proces	S
5	To asses	s the r	ole of	cryop	oreserv	vation	n in th	erapei	utics.						
COUF	RSE OUT	COMI	ES					-							
After t	he success	ful cor	npleti	on of	the co	ourse.	learn	er wil	l be ab	le to					
	Recall the		-											Remen	nber
	Discuss ab	-	-		-			tion						Unders	
				• 1										Unders	tand
CO3. I	Practice the	e cryop	oreser	vation	techr	niques	s in fe	rtiliza	tion pi	ocess				Apply	
CO4. I	Distinguisl	n the ci	yopre	serva	tion te	echnic	ques f	or stor	rage sy	stem				Analyz	e
CO5. /	Appraise tl	ne imp	ortanc	e of c	ryopr	eserva	ation	proces	ss.					Evaluat	te
MAPI	PING WI	TH PR	OGR	AMN	IE O	UTCO	OME	S AN	D PR(	OGRA	MME	SPEC	IFIC C	OUTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	-	-	L	-	-	-	-	L	L	-	-
CO2	S	М	-	-	L	-	-	-	-	-	L	L	-	-	-
02	М	L	М	-	-	-	-	-	-	-	L	L	-	L	-
CO3							-	-	-	-	М	-	-	-	М
	L	L	L	-	-	-									

# INTRODUCTION

Cryopreservation - History and Definition, temperature factor - normal biochemical reaction leading to

death, Damages caused by general freezing of cell and tissues, Natural cryopreservation, Gaia theory (James Love Lock), freezing and refrigeration.

# VARIATION IN CRYOPRESERVATION

Cryobiology, Cryogenics, Frozen zoo, ex situ conservation, Long time preservation.

### **TECHNOLOGY OF CRYOPRESERVATION**

General Biotechnology in cryopreservation, Cellular cryobiology and hydrobiology, Deep freezing damages, *in vitro* storage and cryopreservation.

### **CRYOPRESERVATION AND FERTILITY**

Fertility failures, Embryo cryofreezing, techniques in embryo freezing, Storage thawing, retrieval, Cryoprotectant solution.

### **CRYOPRESERVATION MAN'S HOPE**

Cryopreservation of egg, Sperm of *Homosapiens*, Techniques employed in aquaculture (Fish Plankton), Cawthron collection, Design and use of thermal transport containers for cryopreservation, Role of cryopreservation in therapeutics.

### **TEXT BOOKS:**

- 1. Annamaria Pardo, John M. Baust and Todd Upton, 2005. Improving Quality in Cryopreserved Cells.
- 2. Gardner, Weissman, Howles and Shoham, 2009. Textbook of Assisted Reproductive Technology. Informa Health Care. 3rd Edn.

- 1. Walvekar, V. R., Jassawalla, M. J., Anjaria, P. H. And Wani, R. J., 2001. Reproductive Endocrinology. Federation of OGS of India. Jaypee Publications. 2nd Edn.
- 2. Benson, E., Paul T. Lynch and Glyn N. Stacey, 1998. Advance in Plant Cryopreservation Technology Current Application. Erica.
- 3. Peter R. Brinsden, 2005. Textbook of in vitro Fertilization and Assisted Reproduction Guide to Clinical Lab Practice. Taylor & Francis. 3rd Edn.
- 4. Steven R. Bayer, Michael M. Alperand Alan S. Perzias, 2007. Handbook of Infertility. Informa Health Care. 2nd Edn.
- 5. Igor I. Katkov, 2012. Current Frontiers in Cryopreservation. Intech Publisher.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.R. Devika	Professor and Head	Biotechnology	devika@avit.ac.in							
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in							

17BTEC11	PROTEIN ENGINEERING	Category	L	Т	Р	Credit
17DILCII		EC (PS)	3	0	0	3

The aim of the course is to explain the molecular mechanisms at the basis of the structure-function relationships of proteins and the experimental approaches to modulate the protein functionality and to evolve a desired function or structure. The course is also aimed to provide the most updated knowledge/skills related to the production of recombinant proteins. This course is a blend of modern discoveries and applications in protein sciences.

PRERE(	QUISI	<b>FE -</b> N	IIL												
COURSI	E OBJ	ECTI	VES												
1	To re	call the	e tran	slation	n and	post t	ransla	tional	modi	fication	proces	ses.			
2		scuss t seque		ucture	e, func	ctiona	l corre	elatior	n and t	the pred	liction o	of propert	ies of J	protein b	based
3		ustrate ctions		ole of	analyt	tical n	netho	ds to d	leterm	ine pro	tein stru	icture and	d prote	in – prot	ein
4										-	oup of l l protei	having si ns.	milar f	unction,	
5	To provide updated knowledge about recombinant proteins and its application in therapeutics														
COURSI	E OUT	COM	ES												
After the	succes	sful co	omple	tion o	f the c	course	, lear	ner wi	ll be a	able to					
CO1. Rec	cognize	e the st	ructu	re and	class	ificati	on of	protei	ins				R	ememb	er
CO2.Des				-				ure of	protei	ns, and	relate tl	his	U	Indersta	nd
CO3. Out solubility							l amir	no acio	ds and	their e	ffect on	the	U	Indersta	nd
CO4. Dev and modi	-		nical	metho	ods to	const	ruct p	lasmio	ds for	the exp	ression	of natura	l A	nalyze	
CO5. Val	idate a	simpl	e rese	earch p	olan fo	or a pi	otein	engin	eering	g and de	esign		E	valuate	
MAPPIN	IG WI	TH P	ROG	RAM	ME C	OUTC	OME	ES AN	D PR	OGRA	MME	SPECIF	IC OU	TCOM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	М	М	-		L	-	-	-	-	-	-	L	L	-	-
CO4	M	M	-	-	S	-	L	- -	-	-	-	-	-	M	-
CO5	М	М	L	L	S	S	-	L	-	-	-	-	-	L	L

S- Strong; M-Medium; L-Low

### SYLLABUS

### BONDS AND ENERGIES IN PROTEIN MAKEUP

Covalent and Non-covalent interactions in Protein structure, Translation and Post Translational Modifications

### **PROTEIN ARCHITECTURE**

Primary structure, Secondary structures, Super secondary structures, Topology diagrams, Nucleotide binding folds, Tertiary structures, Modular nature and Formation of complexes in Quaternary structures.

### PROTEIN FOLDING AND STRUCTURE DETERMINATION

Protein Denaturation and Renaturation, Protein folding pathways, Stability of folded conformation of proteins, Methods to determine primary, tertiary and quaternary structure - Peptide mapping, Peptide sequencing, Circular Dichroism, Mass spectroscopy and X-ray diffraction.

### **PROTEIN STRUCTURE - FUNCTION RELATIONSHIP**

Helix-turn-Helix motifs, Cro, Lamda and Trp repressor, Zn fingers, Tata Box binding proteins, Homeodomain, Leucine zippers, Enzyme - Understanding the catalytic design by engineering trypsin, chymotrypsin and elastase.

### PROTEIN ENGINEERING AND PROTEIN DESIGN

Site directed mutagenesis, Engineering of T4 Lysozyme and Recombinant Insulin, Protein design - Principles and examples.

### **TEXT BOOKS:**

1. Branden, C. and Tooze, J., 1999. Introduction to Protein structure. 2nd Garland Publishing, NY, USA. Edn.,

2. Daniel C. Liebler, "Introduction to Proteomics - Tools for the New Biology," Humana Press, 2001

### **REFERENCES:**

1. Moody P.C.E. and Wilkinson A.J., 1990. Protein Engineer-ing. IRL Press, Oxford, UK.

2. DoanaldVoet and Judith Voet, G., 2001. Biochemistry. 3rd Edn., John Wiley and Sons, 2001.

3. Stefan Lutz and Uwe T. Bornscheuer, 2009. Protein Engineer-ing Handbook. Vol 1 & 2, 1st Edn., Wiley Publishers.

4. Berg, J. M., Tymoczko, J. L. and Stryer, L., 2002. Biochemis-try. 5th Edn., W.H. Freeman and Company.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in							
2	Dr.M.Sridevi	Professor& Head	Biotechnology	sridevi@vmkvec.edu.in							

17BTEC12	NEUROBIOLOGY AND	Category	L	Т	Р	Credit
17DIEC12	COGNITIVE SCIENCES	EC (PS)	3	0	0	3

Neurobiology is the scientific study of the nervous system. It is a multidisciplinary branch of biology, that deals with the anatomy, biochemistry, molecular biology and physiology of neurons and neural circuits. It also drawn upon other fields, with the most obvious being pharmacology, psychology and medicine. The scope of neuroscience has broadened over time to include different approaches used to study the molecular, cellular, developmental, structural, functional, evolutionary, computational, psychological and medical aspects of the nervous system.

**PREREQUISITE -** NIL

			0												
CO	URSE														
1				-	-			stem and							
2	To dev	velop	knowl	edge o	on neu	irophy	siology	v and sy	naptic	transm	ission				
3	To une	dersta	nd the	basic	conce	ept of 1	neuropł	narmaco	ology a	and neu	ronal fu	inction			
4	To une	dersta	nd the	conce	pts of	appli	ed neur	obiolog	gy and	its mec	hanism				
5	To ma	ake th	e stud	dents	to tes	t and	deeper	n their	maste	ry of r	neurobi	ology a	nd the	import	ance of
	behavi						1					01		1	
CO	URSE		COME	ES											
					on of	the co	urse. le	arner w	ill be	able to					
				-				on of ne			s			Reme	mber
					•				Ji vous	system	15				
	2: To de													Under	
CO3	: To an	alyze	how d	lrugs a	affect	cellula	ar funct	ion in t	he ner	vous sy	stem			Analy	se
CO4	: To an	alyze	the ba	isic m	echani	isms a	ssociate	ed with	behav	ioural s	cience			Analy	se
CO5	: Identi	ify the	neuro	ologica	al resp	onses	associa	ated wit	h nerv	ous sys	tem.			Evalua	ate
MA	PPING	WIT	H PR	OGR	AMM	IE OU	TCON	MES Al	ND PH	ROGRA	AMME	SPEC	IFIC O	UTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	М	L	М	L	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	L	-	-	-	-	-	-	-	-	-	-
CO3	S	М	L	L	1	-	-	-	-	-	-	-	-	L	-
CO4	М	М	-	S	S	-	-	-	-	-	-	-	-	L	-
CO5	S	Μ	L	S	S	-	-	-	-	-	-	L	М	L	L

S- Strong; M-Medium; L-Low

### SYLLABUS

### NEUROANATOMY

Central and peripheral nervous systems; Structure and function of neurons; types of neurons; Synapses; Glial cells; myelination; Blood Brain barrier; Neuronal differentiation; Characterization of neuronal cells;

Meninges and Cerebrospinal fluid; Spinal Cord.

### NEUROPHYSIOLOGY

Resting and action potentials; Mechanism of action potential conduction; Voltage dependent channels; nodes of Ranvier; Chemical and electrical synaptic transmission; information representation and coding by neurons.

### NEUROPHARMACOLOGY

Synaptic transmission, neurotransmitters and their release; fast and slow neurotransmission; characteristics of neurites; hormones and their effect on neuronal function

### **APPLIED NEUROBIOLOGY**

Basic mechanisms of sensations like touch, pain, smell and taste; neurological mechanisms of vision and audition; skeletal muscle contraction

### **BEHAVIOUR SCIENCE**

Basic mechanisms associated with motivation; control of feeding, sleep, hearing and memory; Disorders associated with the nervous system

### **TEXT BOOKS:**

1. Mathews G.G. Neurobiology, 2nd edition, Blackwell Science, UK, 2000.

2. Gordon M. Shepherd G.M, and Shepherd Neurobiology, 3rd Edition Oxford University Press, USA, 1994

### **REFERENCES:**

1. Mason P., Medical Neurobiology, Oxford University Press, 2011.

### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Subbaiya	Associate professor	Biotechnology	rsubbaiya80@gmail.com
2.	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in

17		110		EO		CDOD				Catego	ory	L	Т	Р	Credit
171	BTEC	13		FO	OD MI	CROB	IOLOG	Ϋ́		EC (P	S)	3	0	0	3
PREA	AMBL	Æ													
							-								luding the
-			-		-	-		-		-			-	-	if food is
-						-						-	-		beer, and
							-	cing pro	obiotic	es. Knov	vledge	of these	e princ	iples v	vill enable
-				g food s	ubstanc	es care	fully.								
PREI	REQU	ISITE	- NIL												
			CTIVES												
1		U						ety leve							
2	To d	liscuss	s variou	s factor	rs affect	ing the	growth	of mic	roorga	anisms.					
3	To c	lassif	y the ro	le of fo	od pres	ervation	n techni	iques							
4	To c	ategoi	rise the	fermen	ted dain	y produ	ıcts								
5	To c	heck a	and pre	vent the	e ways o	of food	spoilag	e substa	ances						
COU			OMES												
After	the su	iccess	ful con	pletion	of the	course,	learner	will be	able t	0					
CO1:	Reca	ll the	various	food sa	afety lev	vels.								Rem	ember
CO2:	Expla	ain the	e variou	is factor	rs affect	ing gro	wth of	microo	ganis	ms				Unde	erstand
CO3:	Ident	ify the	e role o	f food p	oreserva	tion tec	hnique	S						Unde	erstand
CO4:	Anal	yze th	e risk ii	nvolved	l in fern	nented of	lairy pr	oducts						Anal	yse
CO5:	Diffe	rentia	te the v	arious	food spo	oilage s	ubstanc	ces						Anal	yse
CO6:	Pract	ice the	e safety	proced	lure in 1	ab and	others r	research	instit	utions.				Appl	у
MAP	PING	WITH	H PROC	GRAM	ME OU	ГСОМІ	ES AND	PROG	RAM	ME SPE	CIFIC	OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	2 PSO3
CO1	L	L	L	L	-	-	-	-	-	М	-	L	S	М	-
CO2	М	L	-	М	-	-	-	-	-	-	М	L	-	-	М
CO3	S	-	М	L	L	-	-	М	-	-	-	-	-	-	-
CO4	M	S	L	М	L	-	-	S	-	-	-	-	-	М	
CO5 CO6	S M	M S	L L	- L	L	-	-	- S	-	-	-	- L	-	-	-
					-	-	-	3	-	-	-	L	-	-	
			dium; l	L-LOW											
	LABU														
SCO	DE U	F FO		CDOR		$\mathbf{V}$									

# SCOPE OF FOOD MICROBIOLOGY

The Scope of Food Microbiology. Microorganisms and Food, Food Spoilage/Preservation, Food Safety, Microbiological Quality Assurance. Micro-organisms and Food Materials- Diversity of Habitat, Micro-organisms in the Atmosphere - Airborne Bacteria, Airborne Fungi, Micro-organisms of Soil, Micro-organisms

of Water, Micro-organisms of Plants, Micro-organisms of Animal Origin.

# FACTORS AFFECTING THE GROWTH OF MICROORGANISMS

Factors Affecting the Growth and Survival of Micro-organisms in Foods. -Microbial Growth, Intrinsic Factors-Nutrient Content, pH and Buffering Capacity, Redox Potential, Antimicrobial Barriers and Constituents, Water Activity and Extrinsic Factors - Relative Humidity, Temperature and GaseousAtmosphere

# FOOD PRESERVATION

The Microbiology of Food Preservation - Heat Processing, Irradiation, High-pressure Processing – Pasteurization, Low-temperature Storage and Chemical Preservatives.

# FERMENTED DIARY PRODUCTS

Production of fermented dairy products: Cheese, yoghurt, butter milk, sour cream Fermented vegetables; Sauerkraut, pickles, olives and soy sauce. Fermented meat, Fermented Indian foods - leavening of bread.

# FOOD SPOILAGE

Food spoilage: Spoilage of fruit and vegetables. Spoilage of cereal and cereal products – cereal grains, and bread. Spoilage of meat and meat products – Bacon and Ham. Spoilage of milk and milk products – butter and frozen desserts. Food borne diseases – indicators of pathogens & food poisoning

# **TEXT BOOKS:**

- a. Adams, M.R. and Moss, M.O. 2008. Food Microbiology, RSC Publishing, Cambridge, UK.
- b. Benwart, G.J. 1987. Basic Food Microbiology, CBS Publishers & Distributors, New Delhi.
- c. Blackburn C. de W. 2006, Food spoilage microorganisms, Woodhead Publishing, Cambridge,UK
- d. Frazier, W.C., and Westhoff, D.C. 1988. Food Microbiology (Reprint 1995), Tata McGraw Hill Publishing Ltd., NewDelhi

### **REFERENCES:**

1. Garbutt, J. 1997. Essentials of Food Microbiology, Arnold – International Students edition, London.

2. Jay J.M. 2000. Modern Food Microbiology. 6th Edition. 2000. Chapman & Hall, New York.

3. Prescott, L.M., Harley, J.P. and Helin, D.A. 2008. Microbiology, Fifth Edition, McGraw Hill, New York.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. R. Subbaiya	Associate professor	Biotechnology	rsubbaiya80@gmail.com									
2	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in									

17BTEC14	ENDOCRINOLOGY	Category	L	Т	Р	Credit
I/DIECI4	ENDOCKINOLOGI	EC (PS)	3	0	0	3

Endocrinology is a branch of biology and medicine dealing with the endocrine system, its diseases and its specific secretions known as hormones. It is also concerned with the integration of developmental events proliferation, growth and differentiation and the psychological or behavioural activities of metabolism, growth and developmental events proliferation, growth and differentiation, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction and sensory perception caused by hormones. Specializations include behavioural endocrinology and comparative endocrinology.

### PREREQUISITE - NIL

COU	RSE (	<b>)BJE</b>	CTIV	ES											
1	To define the basic principles of endocrine system which consists of several glands														
2	To explain about hormones and behavioural endocrinology														
3	To Outline the basic concept of female reproductive tract and endocrine regulation of ovarian														
	functions														
4	To compare the concepts of fertilization and conception of sexual reproduction														
5	To develop diagnostic method for detection of diseases related to endocrine system.														
COU	RSE (	OUTC	COME	S											
After	the su	ccessf	ul con	npletio	on of th	ne cou	rse, lea	rner w	ill be	able to					
CO1:	CO1:Define the historical background and development of endocrine system Remember														
CO2:1	CO2:Describe the importance of sexual differentiation and the role of biochemical Understand														
and h	and hormonal aspects														
CO3:	CO3: Examine the sources of ovarian hormones and regulation of ovarian functions Analyse														
CO4	Compa	are and	d cont	rast th	e inter	nal and	d exterr	nal fer	tilizati	on and	genetic		Ana	lyse	
	nbinati														
				of hor	mones	in dev	velopme	ental s	tages	and the	basis of		Eval	uate	
	tionary		0	000				<b>TG A</b>						maan	
											AMME S				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	L	L	-	-	-	-	-	-	-	-	-
CO3	L	L	L	L	M	-	L	M	L	-	-	L	-	L	-
CO4	M	M	- T	S	S	-	-	-	-	L	М	L	- M	L	- T
CO5	S	М	L	L	М	-	-	-	-	-	-	L	M	L	L

S- Strong; M-Medium; L-Low

### SYLLABUS GENERAL ENDOCRINOLOGY

Endocrine glands and hormones, Classification of hormone, Brief account of structural features of endocrine glands. Hormonal effects and regulation – basic concepts and methods. Biosynthesis and secretion of pancreas, adrenal, ovary, testis and thyroid hormones. Factors influencing secretion. Endocrine disorders- brief description.

### **GONADAL DIFFERENTIATION**

Sexual differentiation: Genetic sex- gonadal sex- somatic sex. Differentiation of testis and Ovary: Morphological, biochemical and hormonal aspects. Development abnormalities of male and female sex organs: genetic and endocrine aspects. Hypothalamo- hypophyseal- gonadal axis.

### FEMALE REPRODUCTIVE TRACT-I

Study of ovary Ovary: Structure, folliculogenesis, Ovulation. Sources of ovarian hormones, Ovarian androgen, inhibin, Endocrine regulation of ovarine functions

### CONCEPTION

Fertilization, Conception, Parturition, Maternal- foetal placental hormones.

### APPLIED ENDOCRINOLOGY

Hormones, growth and development, Hormones and human health. Production of hormones as Pharmaceuticals.

### **TEXT BOOKS:**

- 1. Endocrinology: Adult and Pediatric 7th Edition) J. Larry Jameson and Leslie J. De Groot ISBN: 978-0-323-18907-1. 2011.
- 2. Endocrinology Adult and Pediatric: Reproductive Endocrinology 6th Edition. J. Larry Jameson David de Kretser John Marshall Leslie De Groot. 2013.

- 2. General Endocrinology 6th Edition, C. Donnell Turner and Joseph T. Bagnara. 2009
- 3. Endocrinology 6th Edition, Mac E Hadley and Jon E Levine, Pearson Publishers. 2010

COU	COURSE DESIGNERS									
S.No	Name of the	Designation	Department	Mail ID						
•	Faculty									
1	Dr.R.Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com						
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in						

17BTEC15	BIOREMEDIATION	Category	L	Т	Р	Credit
1/012015	TECHNOLOGY	EC (PS)	3	0	0	3

Bioremediation technology is one of the emerging technologies in the branch of biotechnology which deals with controlling the pollution with the help of microorganism. Bioremediation technology often use leading-edge techniques and sophisticated machinery along with other applied fields of research like biotechnology, genetics to study microbes and their complex mechanisms in degrading the waste materials. With the Knowledge of these principles students will enable to understand the different approaches to reduce the waste and turning them into valuable bio products.

		ISITE		<b>1</b>											
	RSE (	DRIEC	TIVES	<b>)</b>											
1	То	To discuss the basics about the bioremediation and biodegradation.													
2	То	To describe about the various techniques involved in bioremediation.													
3	То	To outline the role of microorganism in decomposition process.													
4	То	To categorise the different transformation process during bioremediation.													
5	То	To develop a high value bioproducts from renewable sources.													
COU	RSE (	OUTCO	OMES												
After	the su	ccessfu	l comp	letion o	f the c	ourse, l	earner v	will be at	le to						
CO1.	Explain about the concepts of bioremediation and biodegradation. Understand														
CO2.	Expla	in abou	t the us	age of	differe	nt techi	niques i	nvolved	in bio	remedia	tion		Uı	nderstand	1
CO3.	Comp	are the	aerobic	and ar	naerobi	c mode	of deco	ompositi	on				A	nalyse	
CO4.	Comp	are the	energy	transfo	ormatio	n proce	ess						A	nalyse	
CO5.	Appra	ise the	produc	t produ	ced fro	m the r	enewat	ole source	es				Ev	valuate	
MAP	PING	WITH	I PROG	GRAM	ME O	UTCO	MES A	ND PR	OGRA	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	РО	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	-	-	L	-	-	-	L	L	L	_	-
CO2	S	М	S	-	-	-	S	-	-	-	L	L	-	_	-
CO3	М	-	М	М	-	-	М	-	-	-	L	-	-	L	-
	L	-	-	L	-	-	S	-	-	-	-	-	-	-	-
CO4				L	-						L	S	Μ	L	

### SYLLABUS

### **BASIC STUDIES ON BIOREMEDIATION**

History, stages to set up study on bioremediation (Preliminary investigation, site evaluation, laboratory studies, start up, operational support), limitation of bioremediation, relative biodegradability, Process design of aerobic

and anaerobic system – Activated sludge process – Trickling filter – Rotating biological contactors – Fluidized bed reactor – Up flow anaerobic sludge blanket reactor (UASB).

# **BIOREMEDIATION TECHNIQUES**

Bioremediation types - In situ and ex situ bioremediation, biophiles, bioventing, land forming, bio stimulation, bioaugmentation, biosparging, biofilters, bio scrubbers and phytoremediation – bioleaching, bio precipitation, bioaccumulation and biosorption. Merits and demerits.

# MICROBIAL METABOLISM IN BIODEGRADATION AND BIOREMEDIATION PROCESS

Aerobic and Anaerobic degradation of aliphatic and aromatic compounds – Biodegradation of herbicides and pesticides. Decomposition of organic compounds in natural ecosystems – Co-metabolic degradation of organo-pollutants - Hydrolysis of biopolymers by aerobic and anaerobic microorganisms – Anaerobic degradation of carbohydrates, proteins, lipids – Nitrogen removal – Ammonification, nitrification, denitrification.

# **BIOREMEDIATION PROCESS**

Bioremediation process, metabolic process, energy transformation process, growth requirement, microbial and enzymatic biodegradable mechanism on heavy metals like cadmium and mercury nuclear waste, Bioremediation of greenhouse gas, hydrocarbons. Environmental variation in field.

# **BIOPRODUCTS FROM RENEWABLE SOURCES**

Overview of renewable sources, Production of bio compost and vermicomposting, Production of biofertilizers and biopesticides, Production of biomethane, bioethanol, biohydrogen, biodiesel, Production of bioplastics and biopolymers, Bioelectricity generation and value-added products from renewable sources.

# **TEXT BOOKS:**

- 1. Mohapatra P.K., 2016. Text Book of Environmental Biotechnology 5th edition, I.K. International Publishing House Pvt. Ltd., New Delhi.
- Chatterji. A.K., 2011. Introduction to Environmental Technology, 3rd edition Prentice Hall of India Pvt. Ltd., New Delhi,
- 3. Evans, G.G. and Furlong, J., Environmental Biotechnology: Theory and Application, 2nd Edition, John Wiley & Sons, 2011.
- 4. Henze, M., Harremoes, P., Jansen, J.C. and Arvin, E., "Wastewater Treatment: Biological and Chemical Processes", 2 nd Edition, Springer, 2013.

- Popular Biotechnology Lecture Series Focus: Bioremediation by Division of Biotechnology, PSCST, 2013.
- 2. R.C. Dubey., 2014. A Text Book of Biotechnology by Fifth Revised Edition S. Chand Publications.
- 3. Wong J.W-C., Tyagi R.D., and Pandey. A., 2016. Current Developments in Biotechnology and Bioengineering Solid waste, Elsevier.

COUR	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in						
2	Dr. B. Prabasheela	Associate professor	Biotechnology	prabasheela@avit.ac.in						
3	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in						

17BTEC16	CANCER BIOLOGY	Category	L	Т	Р	Credit
		EC (PS)	3	0	0	3

Cancer Biology is to learn the foundation principles in cancer mechanisms. It creates a broad base of knowledge to differentiate normal and cancerous cell and also about different types of agents leading to carcinogenesis. It aims to provide the strength to acquire an advanced knowledge and understanding of the molecular mechanism, diagnosis, prevention and therapeutic management

#### PRERQUISITE

17BTCC09-MOLECULAR BIOLOGY

#### **COURSE OBJECTIVES**

<ol> <li>To define the basic principles in cancer biology.</li> <li>To discuss about the carcinogens.</li> </ol>															
2	To dis	cuss ab	out th	e carc	inogei	ns.									
3	To der	monstra	te stu	dents	on var	ious g	genetic	and r	noleci	ular cha	nges no	ormal ce	ells und	ergo durin	ıg
5	transformation into malignant cancer														
4	4 To outline mechanism of cancer development and progression														
5 To have an understanding in a multidisciplinary approach to <i>cancer treatment</i>															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
COI	. Rela	te the h	nallma	rks of	cance	er.								Rememb	ber
CO2	2. Diffe	rentiate	the ty	pes of	f gene	mutat	tions a	ind ca	ncer fo	ormatio	n.			Understa	and
CO3	B. Den	nonstrat	the the i	molec	ular m	lechan	isms ı	underl	ying t	he deve	lopmer	nt of car	ncer	Apply	
CO4	l. Corr	elate the	e geno	mic k	nowle	edge.								Analyse	
COS	5. Infe	r the ca	ncer p	rogres	ssion,	metas	tasis a	nd ne	w ther	apies.				Analyse	
MA	PPING	WITH	I PRC	)GRA	MMI	E OU'	ГСОМ	AES A	AND I	PROGE	RAMM	E SPE	CIFIC	OUTCON	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	-	L	L	L	-	L	S	-	-	-	-	-	-
CO2	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	S	-	М	-	-	S	-	-	-	-	-	-	-	-
CO4	M	M	L	- T	-	-	-	-	М	-	-	- T	-	-	-
CO5	M	M	M	L	-	-	-	-	-	-	-	L	-	-	L
S- S	trong; I	M-Med	ium; L	L-Low											

#### SYLLABUS

## FUNDAMENTALS OF CANCER BIOLOGY

Cell cycle and check points, Cancer mechanism, Receptors, Signal molecules, Signal transduction – Modulation study, Tumour suppressor gene, Different forms of cancers, Diet and cancer. Detection using biochemical assays, Tumor markers, Molecular tools for early diagnosis of cancer.

# PRINCIPLES OF CARCINOGENESIS

Theory of carcinogenesis, Chemical carcinogenesis, Metabolism of carcinogenesis, Principles of physical carcinogenesis -X – ray radiation, Mechanism of radiation carcinogenesis.

# PRINCIPLES OF MOLECULAR CELL BIOLOGY OF CANCER

Signal targets and cancer, Activation of kinases, Oncogenes, Identification of Oncogenes, Retroviruses and oncogenes, Detection of oncogenes. Oncogenes / Proto oncogene activity. Growth factors related to transformation. Telomerases.

## PRINCIPLES OF CANCER METASTASIS

Clinical significances of invasion, Heterogeneity of metastatic phenotype, Metastatic cascade, Basement membrane disruption, Three step theory of invasion, Proteinases and tumour cell invasion, Angiogenesis.

# NEW MOLECULES FOR CANCER THERAPY

Different forms of therapy, Chemotherapy, Radiation therapy, Detection of cancers, Prediction of aggressiveness of cancer, Advances in cancer detection, Use of signal targets towards therapy of cancer, Gene therapy

# TEXTBOOKS

- 1. Maly, B.W.J., 1987. Virology A Practical Approach. IRLI Press, Oxford.
- 2. Dunmock, N.J. and Primrose, S.B., 1988. Introduction to Modern Virology. Blackwell Scientific Publications, Oxford.

## **REFERENCES:**

1. An Introduction Top Cellular and Molecular Biology of Cancer, Oxford Medical Publications, 1991.

2. Primrose, S.B. and Twyman, R.M., 2006. Principles of Gene Manipulation and Genomics. Blackwell Publishing.3. Lewis J. Klein Smith, 2005. Principles of Cancer Biology. Benjamin Cummings.

4. MomnaHejmadi, 2000. Introduction to Cancer Biology. Asian Publishing Exchange Pvt. Ltd.

5. Leonard Maurice Franks L., Natalie N., 2007. Cellular and Molecular Biology of Cancer. Oxford University Press.

## **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.B.Prabasheela	Professor & Head	Biotechnology	prabasheela@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vvec.ac.in

17BTEC17	APPLIED BIOTECHNOLOGY	Category	L	Т	Р	Credit
I/DIECI/	AFFLIED BIOTECHNOLOGI	EC (PS)	3	0	0	3

This is a multidisciplinary course deals with various aspects like plant and animal biotechnology, medical biotechnology, Biopharmaceutical technology, Bioprocess and Environmental biotechnology to educate students within the field of Biotechnology. Students will gain theoretical and practical competence within the broad field of Biotechnology, both in the molecular level as well as with its applications.

#### PREREQUISITE

17BTCC11-PLANT AND ANIMAL BIOTECHNOLOGY

#### **COURSE OBJECTIVES**

1	To list the basic techniques of plant tissue culture for crop improvement.
---	----------------------------------------------------------------------------

- 2 ToDescribe novel techniques used in medical biotechnology
- 3 To outline the recombinant therapeutics in pharmaceutical industry
- 4 To distinguish the uses of different microbes in various industry
- 5 To execute theuse of genetically engineered organisms in environment

# COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Recall the basic information about plant tissue culture techniques	Remember
CO2. Demonstrate the various novel techniques used in medical field	Understand
CO3. Validate the different methods for the production of therapeutics agents in	Evaluate
pharmaceutical industry	
CO4.Examine the uses of genetically engineered microbes in Industrial application	Analyze
CO5. Employ the uses of genetically engineered organism in Environmental issues	Apply

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	S	-	S	-	М	S	-	-	-	М	-	-	-
CO2	S	М	М	-	S	-	М	-	-	-	-	L	-	-	-
CO3	S	М	-	S	М	S	-	S	-	-	-	М	-	-	-
CO4	М	L	М	-	S	М	М	S	-	-	-	L	-	-	-
CO5	М	-	-	-	М	L	S	S	-	-	-	L	-	-	-
a a		e 11	<b>T T</b>												

#### S- Strong; M-Medium; L-Low

# SYLLABUS

# PLANT AND ANIMAL BIOTECHNOLOGY

Plant tissue culture and application of transgenic for crop improvement in agriculture, horticulture and forestry, Plantibodies, plastic from plant, genetically modified soybean, transgenic animals and its uses.

#### MEDICAL BIOTECHNOLOGY

Gene therapy – gene delivery methods, New approaches, Applications of stem cell in the treatment for major diseases in reparative medicine, Hematopoietic Stem Cell transplantation, Applications of tissue engineering – reconstruction of connective tissues, epithelial and endothelial surfaces, DNA fingerprinting, DNA based diagnosis of Genetic disease.

## **BIOPHARMACEUTICAL TECHNOLOGY**

Production of recombinant pharmaceutical products – Biotechnology derived products (Therapeutic proteins): Study of hematopoietic growth factor, Interferon's and Interleukins, Insulin, Growth hormones, Vaccines and Monoclonal antibody-based pharmaceuticals, Recombinant coagulation factors and thrombolytic agents, Somatostatin, Somatotropin.

#### **BIOPROCESS TECHNOLOGY**

Application of microbes in industry – Industrial Processing, recovery, extraction and purification, Production of antibiotics, solvents, organic acids, amino acids, enzymes, vitamins, single cell protein, food substances from brewing and dairy industry.

## ENVIRONMENTAL BIOTECHNOLOGY

Use of genetically engineered organisms, bioleaching and its applications in environmental science, Fuel technology – Ethanol and Biogas. Biotechnological applications in waste management, Novel methods for pollution control, Biosensors, Biodegradable plastics, Biotechnology in Pesticide, Tannery and Paper industry.

## TEXT BOOKS

1. Gupta, P.K., 2015. Elements of Biotechnology. Rastogi Publications.

- 2.Vaidyanath Pratap Reddy and Sathya Prasad, 2004. Introduction to Applied Biology and Biotechnology. 1st Edn., *B. S. Publications*. Hyderabad.
- 3. Gary Walsh. Biopharmaceutical: Biochemistry and Biotechnology. 2nd Edn., John Wiley & sons Ltd.
- 4. Samuel E. Lynch and Be Roberts J. Geng. Tissue Engineering.

## **REFERENCE BOOKS**

- 1. Maulik and Patel, 1996. Molecular Biotechnology Therapeutic Applications and Strategies. *Wiley & Sons*.
- 2. Cruger, W. and Cruger, A., 2004. Biotechnology : A Text Book of Industrial Microbiology. 2nd Edn., *Panima Publishers*.
- 3. Kumar, H.D. Modern Concepts and Biotechnology. Vikas Publication House Pvt. Ltd.
- 4. Casida, L.E., 2000. Industrial Microbiology. New Age International, Delhi.
- 5. Bernhard Palsson, Jeffery A. Hubble, Robert P. Lonsey, Joseph D. Bronzino, 2005. Tissue Engineering, Principles and Applications in Engineering, *CRC Press*.
- 6. Sharma, B.K. Environmental Chemistry.

COU	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. S. Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com									
2	Dr.M.Sridevi	Professor&Head	Biotechnology	sridevi@vmkvec.edu.in									

17BTEC18	METABOLIC ENGINEERING	Category	L	Т	Р	Credit
	WIE I ADULIC ENGINEERING	EC (PS)	3	0	0	3

Metabolic engineering involves the redesign of metabolism to enable cells to produce new products such as valuable chemicals and biofuels, and/or remediate toxins. This field is growing rapidly in both academia and industry. The biotechnology industry requires skilled engineers with knowledge of how to apply engineering principles to metabolic pathways in order to analyse, design, and alter cell functions. The introduction of basic concepts, current technologies, and challenges within the field will provide students with a valuable toolset to address metabolic engineering problems that are relevant to the emerging biotechnology industry.

PREREQUISITE – 17BTCC06-ADVANCED BIOCHEMISTRY															
17BTC	C06-AE	VAN	CED ]	BIOCI	IEMI	STRY	ζ								
COUR	SE OBJ	IECT	IVES												
1	To defi	ne the	appro	priate	host a	nd/or	· meta	bolic	pathw	ays to p	produce	e a desi	red pro	duct of	
1	remedia	ate a to	oxin												
2	To desc	ribe a	nd cor	npare	the po	otentia	al met	abolic	engir	neering	strateg	ies usir	ng quar	ntitative	e
2	metabolic modeling - concepts														
3	To analyze metabolic flux and to determine metabolic pathway utilization using 13C-labeling														
5	strategies														
4															
5															
COUR	SE OU	ГСОМ	AES					-							
After th	ne succe	ssful c	comple	etion o	f the c	course	e, lear	ner wi	ill be a	ble to					
CO1. R	lecall ab	out en	ergeti	cs of c	ellula	r meta	abolis	m					Reme	mber	
CO2.D	escribe t	he str	ucture	and re	gulati	ion of	meta	bolic	netwo	rks			Under	rstand	
CO3. E	xplain t	he opt	imal s	trategy	for i	ntrodu	ucing	direct	ed ger	etic ch	anges i	n the	Under	rstand	
microo	rganism	s with	the ai	m of o	btaini	ng be	tter p	roduct	tion st	rains					
CO4. D	Demonstr	rate th	e mod	ern bi	ology	with	engin	eering	princ	iples.			Apply	ý	
CO5. D	Design C	ase sti	udies o	on met	abolic	ally e	engine	ered p	produc	ts and	process	ses in	Apply	Y	
various	express	ion sy	vstems												
MAPP	ING W	ITH H	PROG	RAM	ME C	OUTC	COMI	ES AN	ND PR	OGRA	MME	SPEC	CIFIC (	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	М	-	-	-	-	-	-	-	-	-	-	-	L
CO2	S	М	М	L	М	-	-	-	-	-	-	-	-	-	-
CO3	S	L	-	L	L	М	-	-	-	-	-	-	-	-	L
CO4	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO5	М	S	М	L	-	-	-	-	L	-	-		-	-	-

S- Strong; M-Medium; L-Low

# SYLLABUS INTRODUCTION

Overview of metabolism, Basic concept of metabolic engineering, Cellular metabolism, Transport Processes-Active and passive transports, Biosynthetic and degradation pathways of amino acids, nucleotides, fats and nucleotides

#### METABOLIC FLUX ANALYSIS

Introduction to metabolic engineering, comprehensive models of cellular reactions with stoichiometry and reaction rates; metabolic flux analysis of exactly/over/under determined systems. Shadow price, sensitivity analysis.

#### CONSTRAINT BASED GENOMIC SCALE METABOLIC MODEL

Underdetermined systems- linear programming, sensitivity analysis, Development of Genomic scale metabolic model, Flux balance analysis, Regulatory on-off Minimization and Minimization of metabolic adjustments and Opt knock tool development, Elementary mode analysis, Extreme pathways.

#### METABOLIC FLUX ANALYSIS BY ISOTOPIC LABELLING

Methods for the experimental determination of metabolic fluxes by isotope labeling metabolic fluxes using various separation-analytical techniques. Validation of flux estimates by 13C labeling studies in mammalian cell culture

#### CASE STUDIES IN METABOLIC ENGINEERING

Metabolic engineering examples for bio-fuel, bio-plastic and green chemical synthesis. Study of genome scale model in various systems for the production of green chemicals using software tools. Validation of the model with experimental parameters

## TEXTBOOKS

- 1. Smolke, C. (2009). "The Metabolic Pathway Engineering Handbook", 1st Edn., CRC press.
- 2. Kholodenko, B. (2004). "Metabolic Engineering in the Post Genomic Era", New edition Edn., Taylor & Francis.
- 3. Torres N. V. and Voit, E. O.( 2002). "Pathway Analysis and Optimization in Metabolic Engineering", 1st Edn., Cambridge University Press.
- 4. Cortassa, S, Aon, M.A. Iglesias, A.A. and Lloyd, D (2002). "An Introduction to Metabolic and Cellular Engineering", 1st Edn., World Scientific Pub. Co.

#### REFERENCES

- 1. NéstorV.Torres and Eberhard O. Voit (2011) Pathway Analysis and Optimization in Metabolic Engineering Ist edition, Cambridge University Press.
- 2. Gregory N. Stephanopoulos, Aristos A. Aristidou, and Jens Nielsen (1998) Pathway Analysis and Optimization in Metabolic Engineering by Metabolic Engineering: Principles and Methodologies, Academic Press
- 3. Routledge Chapman & Hall and E. Goldberg (1997), Handbook of Downstream Processing, Inc

Sta	aff			
COUR	SE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	G. Karthiga Devi	Assistant Professor	Biotechnology	karthigadevi@avit.ac.in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

17B'	ГЕС19			CLI	NICA	LTRI	IALS			Ca	ategory	/	Ĺ	Т	Р	Credit
				0	12012					E	C (PS)	í	3	0	0	3
PRE	AMBL	Æ													•	
Clini	ical Tria	al is to	expos	se the	studen	ts to I	literat	ure su	rvey	and to	unders	tand re	esea	urch o	objecti	ves, learn
the a	advance	ed inst	rume	ntal te	chniq	ues to	o be	used	in re	search	, and	compu	utati	ional	appli	cation in
Phar	maceuti	cal an	d Me	dicina	Chei	nistry	resea	arch. '	The s	tudent	s shou	ld also	be be	mac	le awa	are of the
resea	urch eth	ics, pr	incipl	es and	condu	ict of	clinic	cal tria	als for	medic	cal rese	earch a	nd	Intell	lectual	Property
Righ	Right.															
PRERQUISITE - NIL																
COURSE OBJECTIVES																
1	To reco	gnize	the re	search	objec	tives										
2	To disc	uss wi	th the	essen	tial co	mpon	ents r	necess	ary to	condu	ct clin	ical tri	al re	esear	ch	
3	To discuss with the essential components necessary to conduct clinical trial researchTo Demonstrate the basic principles for design of clinical trials															
4																
5	To Che	ck the	interv	ventior	IS											
COU	JRSE C	DUTC	OME	S												
On the	he succe	essful	compl	etion of	of the	cours	e, stud	dents	will b	e able	to					
C01	Relate	the res	search	work.										Rem	ember	•
CO2	Identif	y the r	esearc	ch com	poner	nt								Und	erstand	đ
CO3	Illustra	te the	proce	dures f	for cli	nical t	rial							App	ly	
	Demor		-					g deve	lopme	ent				App	-	
	Assess							-	-					Eval		
MAI	PPING	WITH	H PRO	OGRA	MMI	E OU	TCO	MES	AND	PROG	GRAM	IME S	PE	CIFI	C	
OUT	COMI	ES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO 2	PSO3
CO1	М	-	-	L	-	L	-	L	L	_	-	-		-	-	-
CO2	S	М	-	-	L	-	-	L	-	-	-	L		-	L	-
CO3	Μ	L	Μ	M	-	-	М	-	-	-	-	-		-	-	-
CO4	L	L	L	L	-	- -	-	-	М	-	- *	-		-	-	M
CO5	S	- / ) / '	S	M	-	L	-	S	-	-	L	S		-	-	L
	rong; N		ium; I	L-LOW												
SYL	LABU	5														

# PURPOSEOF RESEARCH

Research –Meaning, Purpose, Types, (Educational, Clinical, Experimental, Historical Descriptive, Basic applied and Patent oriented research), Objectives of research, Literature survey –Use of Library, Books and Journals–Medlines–Internet, Patent Search and Reprints of articles as a source for Literature survey, Selecting a problem and preparing research proposals.

# BASIC TERMINOLOGY USED IN CLINICAL RESEARCH

Research –Meaning, Purpose, Types,(Educational, Clinical, Experimental, Historical Descriptive, Basic applied and Patent oriented research), Objectives of research, Literature survey –Use of Library, Books and Journals–Medlines–Internet, Patent Search and Reprints of articles as a source for Literature survey, Selecting aproblem and preparing research proposals.

# CLINICAL TRIALS

New drug discovery process – Purpose, Main steps involved in new drug discovery process, Timelines of each steps, Advantages and purposes of each steps, Ethics in clinical research, Unethical trials, Thalidomide tragedy, Phase – I, II, III, IV trials (Introduction and designing, Various phases of clinical trials, Post marketing surveillance, Methods, Principles of sampling, Inclusion and exclusion criteria, Methods of allocation and randomization, Informed consent process in brief, Monitoring treatment outcome, Termination of trial, Safety monitoring in clinical trials).

# PRECLINICAL TOXICOLOGY

General principles, Systemic toxicology (Single dose and repeat dose toxicity studies), Carcinogenicity, Mutagenicity, Teratogenicity, Reproductive toxicity, Local toxicity, Genotoxicity, Animal toxicity requirements.

# APPLICATIONS

Study of various clinical trials (completed or ongoing), Clinical trial applications in India Import and export of drug in India, Investigational New Drug application (IND), Abbreviated New Drug Application (ANDA), New Drug Application (NDA).

# TEXTBOOKS

1. Katzung, B. G. Basic and Clinical Pharmacology. Prentice Hall International.

- 2. Laurence, D. R. and Bennet, P. N. Clinical Pharmacology. Scientific Book Agency.
- 3. Krishna, D. R. and Klotz, V. Clinical Pharmacokinetics. Springer Verlab.
- 4. Lippincott, Williams and Wilkins. Remington Pharmaceutical Sciences.

5. Kven Stockley and Hamsten. Drug interaction.

# **REFERENCES:**

COUDCE DECICNEDO

1. Ethical Guidelines for Biomedical Research on Human Subjects. *Indian Council of Medical Research*, New Delhi, 2000.

- 2. Rick, N.G., 2004. Drug from Discovery to Approval. John Wiley & Sons Inc..
- 3. Mehra, J. K. Drug interaction. Basic Bussiness Publication.
- 4. Grahame smith and Aronson. Clinical Pharmacology and Drug Therapy.
- 5. Richard A. Helms. Text Book of Therapeutics Drug and Disease Management. Hardbound.
- 6. Herfindal, E. T., Hirschman, J. L., Williams and Wilkins. Clinical Pharmacy and Therapeut

COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in						
2	Dr.S.Anusuya	Associate Professor	Biotechnology	anusuya@vmkvec.ac.in						

<b>17BTEC20</b>	AGRICULTURAL BIOTECHNOLOGY	Category	L	Т	Р	Credit
		EC (PS)	3	0	0	3

This course deals about the biology of plants, plant microbe's interaction, genetic manipulation of crops, different vectors and their applications and how plant act as factories for the production of various compounds. This course will prepare the students for a variety of careers, including modern plant biotechnology processes, breeding of healthy plants, plants with improved characteristics and p`lants for biomolecule production.

#### **PREREQUISITE -** NIL

#### **COURSE OBJECTIVES**

- 1 To state the basic of cell structure and function
- 2 Todescribe the interaction of microbes and plants
- 3 To perform the novel techniques used in genetic manipulation in crops
- 4 To categorise the uses of different vectors in biotechnology
- 5 To produce the different organic compounds using Plants as Factories

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Recall the basic information about cell structure and functionsRememberCO2. Interpret about plant and microbes interactionsUnderstandCO3. Demonstrate the novel techniques used in genetic engineering and genetic manipulation in<br/>crop improvementApplyCO4. Examine the uses of different vectors and their application in biotechnology fieldAnalyze

CO5. Prepare the different organic compounds like vitamins, amino acids and proteins etc, using plant as a major source.

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	L	L	-	L	-	-	L	L	-	L
CO2	-	М	-	S	-	М	S	L	-	-	L	L	L	L	-
CO3	М	-	М	-	L	S	М	М	М	М	-	L	L	-	-
CO4	L	-	L	-	S	L	S	М	-	-	-	-	М	-	-
CO5	S	-	L	-	L	L	L	М	-	-	-	М	М	-	-

S- Strong; M-Medium; L-Low

#### **SYLLABUS**

## **BIOLOGY OF PLANTS**

Plant cell structure and functions. Plant nutrition, Water and mineral availability and uptake. Growth regulators-Phytohormones, auxins, cytokines, Gibberellins, Abscisic acid, ethylene.

#### PLANT –MICROBES INTERACTIONS

Biotic and Abiotic stress. Plant response to pathogens. Toxins of fungi, algae and bacteria. Systemic and

induced resistance, pathogen derived resistance. Genetic engineering for biotic stress resistance.

## GENETIC MANIPULATION IN CROPS

Genetic engineering- scope and methods. Gene guns, electroporation, transformation, microinjections, CRISPR, TALEN. Types of modifications- Transgenic, cisgenic, subgenic. Stress resistance, pest resistance, herbicide tolerance and other modified traits.

# PLASMIDS AND PROMOTERS

Ti and Ri plasmids, Antisense and RNAi in crop improvement. Disarming Ti plasmid, opines and their significance. Co integrate and binary vectors. Screenable and selectable markers. Promoters and poly A signals.

# PLANTS AS BIO –FACTORIES

Seed storage proteins, essential amino acids, vitamins and minerals, heterologous protein production in transgenic plants for agriculture, industry and pharmaceuticals uses, biodegradable plastics.

# TEXT BOOKS

1. Ahindra Nag. Textbook of Agricultural Biotechnology. PHI Publisher. 2008.

# **REFERENCE BOOKS**

- 1. Adrian Slater, Nigel Scott and Mark Fowler. 2003. Plant Biotechnology: The genetic manipulation of plants. I edition, Oxford University Press.
- 2. Vidhyasekaran P. 2005. Bacterial disease resistance in plants. Molecular Biology and Biotechnological applications. Haworth food and agricultural products press. New York.
- 3. Pessarakti M. 1999. Handbook of plant and crop stress, 2nd edition. Marcel Dekkar Inc. New York.
- 4. Melvin J oliver. Agricultural Biotechnology. Wiley Blackwell. 2009

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	A.Nirmala	Assistant professor	Biotechnology	nimmi_aruna@yahoo.com
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

17 <b>R</b> TEC21	17BTEC21 GENOMICS AND PROTEOMICS	Category	L	Т	Р	Credit
	GENOMICS AND I KOTEOMICS	EC (PS)	3	0	0	3

Genomics and Proteomics deals with a rapidly evolving scientific area that introduces students into genomes, proteomes and databases that store various data about genes, proteins, genomes and proteomes. Students would learn about genomics, proteomics and bioinformatics and offer basic knowledge of genome sequencing, major differences between prokaryotic and eukaryotic genomes, basic proteomics and its applications. Students would gain skills in applied bioinformatics, comparative, evolutionary, human genomics and functional genomics. The acquired knowledge during the course would be helpful to those students who want to work in core facilities and commercial biological and medical laboratories as well as in their postgraduate studies.

#### PREREQUISITE

17BTCC12- GENETIC ENGINEERING

#### **COURSE OBJECTIVES**

1	To explain advanced theoretical knowledge on the organization and function of genomes
---	---------------------------------------------------------------------------------------

- 4 To outline the identification, separation and sequencing of proteins
- 5 To evaluate the principles of bioinformatics and databases

# COURSE OUTCOMES

After the successful completion of the course, learner will be able to	
CO1. To describe the organisations genes in prokaryotes and eukaryotes	Understand
CO2. To illustrate various genome mapping techniques and its strategies.	Apply
CO3. To relate the flow of genetic information from DNA to RNA to protein	Apply
CO4. To compare the advantages and the drawbacks of various proteomics technologies with the	Analyse

emerging technologies CO5. To evaluate the role of proteomics in drug discovery

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	L	L	L	L	-	L	-	-	-	-	L	L	L	L
CO3	М	L	-	L	L	L	-	-	-	-	-	-	-	L	-
CO4	L	L	L	-	L	-	L	-	L	-	-	-	L	-	-
CO5	S	М	L	L	-	-	-	-	L	-	-	-	S	М	L
S- Stror	S- Strong; M-Medium; L-Low														

Evaluate

# **SYLLABUS**

#### **OVERVIEW OF GENOMES OF PROKARYOTES, EUKARYOTES AND HUMAN**

Organisation of genes, Coding and non-coding chromosomes and high order structures, Genome relatedness, Introduction of genomics.

## **MAPPING TECHNIQUES**

Mapping strategies, Maps – Physical and Genetic maps, Comparative map, Integrated map, Top down and bottom up approach, linking and jumping of clones, STS maps, Human Genome Project

#### **FUNCTIONAL GENOMICS**

Gene identification and prediction, Annotation, Functional prediction, Gene expression and micro arrays, Substractive DNA library screening, differential display and representational difference analysis, SAGE.

#### **PROTEOMIC TOOLS**

Edman protein microsequencing, Proteome analysis, 2D gel electrophoresis, Metabolic labeling, Detection of protein on SDS gels. Mass spectrometry – MALDI - TOF, Tandem MS - MS, Peptide mass finger printing.

#### PROTEIN PROFILING AND APPLICATION OF PROTEOMICS

Protein – protein interaction, Post translational modification, Proteomics in drug discovery.

#### **TEXT BOOKS:**

- 1. Rastogi, S.C., Mendiratta, N. and Rastogi, P, 2008. Bioinformatics Methods and Applications. Prentice-Hall of India (Private), Limited.
- 2. Andreas D. Baxevanis and Francis Oueliette, B.F, 2004. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition. John Wiley and Sons Inc.

#### **REFERENCES:**

- 1. David W. Mount, 2001. Bioinformatics, Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.
- 2. Pennington and Dunn, 2001. Proteomics. BIOS Scientific Publishers.
- 3. Liebler, 2002. Introduction to Proteomics. Humana Prem.
- 4. Primrose and Twyman, 2003. Principles of Genome Analysis and Genomics. Blackwell Publishing Co.
- 5. Westhead, D.R., Parish, J.H. and Twyman, R.M., 2003. Instant Notes Bioinformatics. 1stEdn., Viva Books Private Limited.
- 6. Ignacimuthu, S., 2005. Basic Bioinformatics. Narosa Publishing House.

COURS	SE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

1 <b>7</b> D	TEC22	MC	OLECU	LAR I	MOD	ELLII	NG A	ND D	RUG	Cate	gory	L	Т	Р	Credit
1/D	IEC22			D	ESIG	NINC	r T			EC (	(PS)	3	0	0	3
PRE	AMBLE	1								1					
	course e					iden th	eir in	terests	to use s	structu	re-base	d and n	on-line	ar	
	ification		ds in di	ug des	ign.										
	REQUIS														
	TEC03-F J <b>RSE OI</b>			OF BI	JINF	JRMA	ATICS	)							
COL	KSE UI	DJEU	IIVES												
1	To list c	concep	ots invol	lved in	molec	ular n	nodeli	ng							
2	To sum	marize	e molec	ular me	echani	sms in	volve	d in ei	nergy m	inimiz	ation				
3	To summarize molecular mechanisms involved in energy minimizationTo execute the molecular dynamics using different models														
4	To develop basic steps involved in modeling of proteins														
5	To justify the molecular dynamics in drug designing and discovery														
COL	JRSE OU	JTCO	MES												
After	the succ	essful	comple	etion of	the c	ourse,	learne	er will	be able	to					
CO1	. Recogn	ize ab	out mo	lecular	mode	ling co	oncept	S					Rem	ember	
CO2	. Classify	mole	cular m	echanis	sms be	ehind e	energy	mini	nizatio	n probl	ems		Und	erstand	
CO3	. Illustrat	e the r	nodels	to study	y the r	nolecu	ılar dy	mamic	s				Und	erstand	
CO4	. Compa	re mol	lecular	dynami	cs wit	h drug	g desig	gning	concept	s			App	ly	
CO5	. Design	new te	chniqu	es for t	he dis	covery	of dr	ugs					App	ly	
MAP	PING W	ITH P	ROGR	AMME	OUT	COMI	ES AN	D PR(	OGRAN	IME SI	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L													
CO2	M	L	-	_	_	-	_	-	-	-	_	-	-	-	_
CO3	М	Μ	-	L	-	-	-	-	-	-	-	-	-	-	-
CO4	S	Μ	L	Μ	Μ	-	-	-	-	-	-	L	-	-	-
CO5	S	Μ	S	L	Μ	L	-	-	-	-	-	L	-	-	-
S- St	rong; M-	Mediu	ım; L-L	ωw											
SYL	LABUS														
QUA	NTUM	MEC	HANIC	CS & C	ONC	EPTS	IN M	IOLE	CULAI	R MOI	DELIN	G			
Intro	duction -	- coo	rdinate	system	ns — j	otenti	ial en	ergy s	surfaces	– int	roducti	on to	quantur	n mech	anics
nosti	ılates –	Schro	odinger	wave	equa	tion -	- hyd	rogen	molec	ule –	Born-	Oppenh	eimer	approxi	matio

introduction to computer hardware and software

# MOLECULAR MECHANICS AND ENERGY MINIMIZATION

Empirical force field models – Bond stretching – angle bending – torsional term – nonbonding interactions – thermodynamics properties using a forcefield – derived and non-derived energy minimization method – simplex – sequential univariate method – steepest descent method – conjugate gradient method- Newton-Rapson method.

## MOLECULAR DYNAMICS AND MONTE CARLO SIMULATION

Introduction – Using single Model – time steps – Multiple steps – Setting up MD – energy conservation in MD Simulation Examples – Monte Carlo – Random number generation – Difference in MD & MC

#### **HOMOLOGY MODELING**

Comparative modeling of proteins – comparison of 3D structure – Homology – steps in homology modeling – tools – databases – side chain modeling – loop modeling.

## **DRUG DESIGN**

General approach to discovery of new drugs - lead discovery - lead modification - physiochemical principles of drug action - drug stereo chemistry -drug action - 3D database search - computer aided drug design - docking - molecular modeling in drug design - structure based drug design - pharmacophores - QSAR

# **TEXTBOOKS:**

- 1. Leach R. (1996), "Molecular Modeling Principles and Application", 2nd edition, Longman Publications.
- 2. Baxivanis D. and Foulette Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition edition, Wiely-Blackwell Publishers
- 3. Kothekar V. (2001), "Essentials of Drug Designing", Indian Edition, Dhruv Publications
- 4. Gerhard Edwin Seibold, Alexander Hillisch, Rolf, (2002) "Modern Methods of Drug Discovery", Hilgenfeld Publisher.

## **REFERENCES:**

- 1. Attwood, T K , parry-Smith, D J (2005), "Introduction to Bioinformatics", Pearson Education, 1st Edition, 11th Reprint
- 2. Alan Hinchliffe, (2003), "Molecular Modelling for Beginners", John-Wiley
- 3. "Drug Design: Cutting Edge Approaches". AngewandteChemie, International Edition,Vol.42 "Advanced Drug Design and Development" Kourounakis Taylor and Francis

	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	G. Karthiga Devi	Assistant Professor	Biotechnology	karthigadevi@avit.ac.in
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in

17BTEC	12		NIA	NO	IOTI	CUN		OCV		Categ	ory	L	Т	Р	Credit
I/DIEC.	23		INA	INUE	01011		IOLU	JGI		EC (F	PS)	3	0	0	3
PREAM	BLE												1	1	
One of ma	ajor app	licati	ons	of nar	noscie	nce is	in bi	otechn	ology	field. I	n vario	ous disci	plines	, a singl	e course
which sta	arts by	sensit	tizin	g stu	dents	from	a va	ried b	ackgro	ound al	bout th	ne biolo	gical/ł	oiotechn	ological
basics and	d culmir	nates	into	mode	ern da	y app	licatio	ons of	nanoso	cience	in biote	echnolog	gy fiel	d will b	e highly
useful. Th	nis cours	e wil	l act	as a	bridge	betw	een st	tudent	s from	non-bi	iology	course a	ıt all le	evels	
PREREQ	QUISIT	E - N	ΊL												
COURSE	E OBJE	CTIV	VES												
1 T	Γo define	abou	it the	e basi	c con	cepts	of Na	notech	nolog	v.					
	Fo explai					-			-		omater	rials			
	-														
4	To classify the nanoscale elements delivery in Biosystems To outline the interaction of Microorganism in Nanobiotechnology.														
	To outline the interaction of Microorganism in Nanobiotechnology.         To design the novel drug delivery system for <i>in vivo</i> studies														
	-			el arug	g denv	ery s	ystem	lor in	vivo s	ludies					
				ation	oftha	2011	100		411 ha	abla to					
After the			-						III be	able to				D	1
CO1. Rec							-							Remen	
CO2. Inte	-					-		-		-	S			Unders	stand
CO3. Illus														Apply	
CO4. Exa	amine th	e role	e of 1	micro	organi	isms i	n Nar	nobiote	echnol	ogy				Analys	e
CO5. Ass	sess the 1	ole o	of Na	ın par	ticles	in trea	atmen	t of di	sease					Evalua	te
MAPPIN	IG WIT	H PF	ROG	GRAN	<b>IME</b>	OUT	COM	ES A	ND PH	ROGR	AMM	E SPEC	CIFIC	OUTC	OMES
COS F	PO1 PO	D2 P	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1			-	-	-	-	L	-	-	-	-	L	-	-	-
CO2	S -		S	-	L	-	-	-	L	-	L	L	S	L	L
CO3			М	-	-	-	-	-	-	-	-	L	L	-	-
	L ·		-	-	S	-	S	-	S	-	M	M	L	M	-
CO5 S- Strong			М • Т Т	-	М	М	-	S	М	S	L	S	S	М	L
s- suong	, 111-1110	ululli,	, L-L	_0.w											

# SYLLABUS

# INTRODUCTION TO NANOBIOTECHNOLOGY

Introduction to types and properties of nanoparticles, Overview of nanodevices and techniques, Inorganic nano scale systems for biosystems–Nanostructured materials–Fullerenes: Properties and characterization – Carbon nanotubes: Characterisation and application–Quantum dots and wires–Gold Nanoparticles –Nanopores

# FABRICATION AND CHARACTERISATION

Synthesis -Top-down and Bottom-up Methods, Epitaxial growth, Characterization: X-Ray Diffraction

(XRD), Transmission Electron Microscopy(TEM), Scanning Electron Microscopy (SEM), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Energy Dispersive of X ray spectrum (EDS)

# NANOMOLECULES IN BIOSYSTEMS

DNA, RNA, Proteins and Lipids–Nanoscale elements for delivery of materials into cells, Nanotechnology in cell –Cell motility: Nanomotors and cellular navigation– Chemotaxis – Transmembrane signalling and related proteins.

# MICROORGANISMS AND NANOBIOTECHNOLOGY

Nanobiotechnology and microorganisms – Polyhydroxy alkanotes (PHA) Cyanophycin inclusions– Magnetosomes– Alginates s-layer proteins–Bacteriorhodopsin.

# APPLICATIONS OF NANOBIOTECHNOLOGY

Nanomedicine, Nanobiosensor–Electrochemical DNA sensors, Nanobiochips, Nanocrystals in Biological Detection, Small scale systems for *in vivo* drug delivery, Nanotechnology for diagnosis and treatment (Cancer and Leprosy), Commercializing Nanobiotechnology. Nanotechnology for disaster relief – Decontamination Emergency equipment, Lab on a chip and sustainability.

# **TEXT BOOKS:**

- 1. BhushanBharat (Ed.). Hand book of Nanotechnology. Springer 3rd Edition (2010)
- 2. Ajayan P.A. and Schadler L, Braun P. V., Nanocomposite Science and Technology. *Wiley–VCH* (2003).
- 3. Nlemeyer, C.M. (Ed.) and Mirkin, C.A. (Ed.) Nanobiotechnology–Concepts, Applications and Perspectives. *Wiley–VCH* (2004)
- 4. GeoffOzin and Arsenault, A., Nanochemistry: A Chemical Approach to Nanomaterials. 1st Edn., *Royal Society of Chemistry* (2005)
- 5. Charles P. Poole and Junior Frank J. Owens, Introduction to Nanotechnology. *John Wiley and Sons* (2003).

## **REFERENCES:**

1. Rosenthal, S.J. and Wright, D.W. Nanobiotechnology Protocols in methods in Molecular Biology Series. *Humana Press* (2005).

2. Michael Crichton. Understanding Nanotechnology. Scientific American Publisher (2002).

3. RalphS.Greco,FritzB.Prinz and LaneSmithm,R., Nanoscale Technology in Biological systems. *CRC Press* (2005).

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Deepapriya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

<b>17BTE</b>	C24	Т	BIOFI	ттт	[ <b>17</b> ]	о те	CUN		<b>N</b>	Catego	ory	L	Т	Р	Credit
1/DIE	<i>IC</i> 24	1	SIUFI			KIL	CHN	ULU	<b>GI</b> –	EC (P	S)	3	0	0	3
PREA	MBLE	2												<b>.</b> 1	
This co	ourse w	ill pro	vide k	nowl	edge o	of con	nprehe	ensive	under	standin	g of th	ne biof	ertilizei	techno	ology and
its curr	ent trei	nds. It	devel	ops th	e entr	epren	eurshi	ip to c	atch w	ith the	curren	t trend	s as we	ll as cre	eating the
industr	y ready	/ profe	ssiona	ls.											
PRER	EQUIS	SITE -	NIL												
COUR	SE OI	BJECT	TIVES	5											
1	To st	ate the	basic	know	ledge	on bi	ofertil	izer in	1 agric	ulture.					
2					-					uction					
3									1 1	ertilizei	r techn	റിറ്റെ			
4												ыоду			
		utline t		rketin	g stra	tegies	OI DIO	ofertil	izer.						
					6.1		1		•11.1	11 /					
After th									vill be	able to				D	
CO1. R														Reme	
CO2. [				out th	e diff	erent	chemi	cal fe	rtilizer	, green	manu	ring an	d its	Under	stand
role in															
CO3. II		e the f	unctio	ns of	micro	organi	ism fr	om va	rious s	sources	and th	eir ma	SS	Apply	
produc										01.0					
CO4. A	Apprais	e in de	etail ab	out th	ie app	licatio	on and	l limit	ation c	of biofe	rtilizer	in cro	p	Analy	ze
field CO5. E	letimat	a tha n	romot	ion ar	d stra	tarias	impr	over	ant in a	listribu	tion st	etom		Evalu	nto
COJ. L	simai	e uie p	TOIHOL	ion ai	iu siia	legies	mpr	oveni		iisuituu	tion sy	stem.		Lvalu	ale
MAPP	ING V	VITH	PRO	GRAN	MME	OUT	COM	ES A	ND PI	ROGR	AMM	E SPE	CIFIC	OUTO	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	-	-	L	-	-	-	L	L	-	L	-
CO2	S	М	S	-	-	-	S	-	-	-	L	L	L	L	-
CO3	М	-	М	М	-	-	М	-	-	-	L	-	-	-	-
	L	-	-	L L	-	-	S	-	-	-	- L	- S	-	- M	-
CO4 CO5	S	М	L					-							

# SYLLABUS BIOFERTILIZER

Definition and types, importance of biofertlizers in agriculture, Characteristics of biofertilizers-*Rhizobium, Azotobactor, Azospirillum*, Phosphate solubilizing microorganisms, cyanobacteria, *Azolla*, Mycorrhizae. Symbiosis- Physiology, biochemistry and molecular genetics of symbiosis, Enzymes and their regulation: Nitrogenase, hydrogenase

# **BIOFERTILIZER AND ITS ROLE IN CROP PRODUCTION SYSTEM**

Different chemical fertilizer, its function and effect on agriculture. Role of organic matter on crop production and soil health. Various type of bio-inocula and techniques application and keep soil environment free from pollution. Green manuring, its sources, use and role in cropping system.

# FUNCTION AND MASS SCALE PRODUCTION

Total and differential count of microorganisms from soil, water and carrier material. Nitrogen cycle andnitrogen fixation technology. Isolation, purification, screening, selection, mass scale production and preservation of *Rhizobia/Bradyrhizobia*, *Azotobacter*, *Azospirillum*, PSB and KSB. General biology, function, use and important of green manuring, particularly Sesbania and Azolla.

# APPLICATION TECHNOLOGY

Strain selection, sterilization, growth and fermentation, mass production of various biofertilizers. Application technology: Standards and quality control, application for field and tree crops, nursery plants and seedlings. Limitation of bio-fertilizer and bio-pesticide application in agriculture.

## **EXTENSION, PROMOTION AND MARKETING**

Extension strategies, diagnosis for the effectiveness of inoculation, improvement in distribution system.

# **TEXT BOOKS:**

- 1. Dr. HLS Tomdon, Fertilizers, organic manures, recyclable water and biofertilizer, Fertilizer development and consultation organization 204-204 A New Delhi.
- 2. S.L. Tisdale, J.D. Beaton, W.L. Nelson, J.L. Havling, Soil fertility and fertilizers, fifth edition, Mc millan publishing company 866 third avenue new yark.
- 3. R. Serraj, Symbiotic nitrogen fixation prospects for enhanced application in tropical agriculture, Oxford & IBH publishing Co Pvt. Ltd New Delhi.

## **REFERENCES:**

- 1. HLS. Tandan, Biofertilizer technology marketing and uses, Fertilizer development.
- 2. N.S. Subba Rao, Biofertilizer in Agriculture, Oxford & IBH Publishing co.pot ltd.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	R. Deepa Priya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in

				0.07						Cat	egory	L	Т	Р	Credit
17BT	EC25		BIOL	OGY	FOR	NON	N BIO	LOGIS	STS	EC	C (PS)	3	0	0	3
PREAN	<b>IBLE</b>									•			•		
The pur	pose o	f this	cour	se is	to pr	ovide	a ba	sic und	erstan	ding	of biolo	gical 1	mecha	nisms	of living
organism	ns fror	n the	e pers	specti	ve of	engi	neers	. In ad	lditior	n, the	course	is ex	pected	d to e	ncourage
engineer	ring stu	dents	to thi	nk ab	out so	lving	biolog	gical pro	oblem	s with	enginee	ering to	ools.		
PRERE	QUISI	<b>TE -</b>	NIL												
COURS	SE OBJ	<b>ІЕСТ</b>	IVES	5											
1	To list	out t	the stu	idents	with	the b	asic c	organiza	tion c	of orga	anisms a	and sub	seque	nt buil	ding to a
	living							C		U			•		C
2				oout t	he m	achin	erv of	f the co	ell fu	nction	s that i	s ultin	nately	respon	sible for
	various						5						5	1	
3					vledg	e abo	ut bio	logical	probl	ems th	nat requ	ires en	gineer	ing ex	pertise to
_	solve t	-			0			0	I				0	0 1	
COURS			MES												
After the				etion	of the	cours	se lea	rner wi	ll be a	ble to					
CO1: Re			-											Reme	mber
CO2: Di	iscuss a	bout	the bi	ologic	al div	versity	of lif	e.						Under	stand
CO3: Cl	lassify t	the ap	plicat	ion of	enzy	mes ii	n indu	strial le	vel.					Apply	
CO4: De	etect the	e uses	s of B	iorem	ediati	on and	d Bios	sensors	using	molec	ular ma	chines.		Analy	se
CO5: Aj immune			tail ab	out th	e prir	nciples	s of ce	ell signa	lling i	in nerv	vous sys	tem an	d	Evalua	ate
MAPPI	NG W	ITH ]	PROG	GRAN	AME	OUT	COM	IES AN	D PR	OGR	AMME	SPEC	CIFIC	OUTC	COMES
COS		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO	PSO2	PSO3
CO1	М	-	-	-	-	-	-	-	-	-	-	L	L	L	-
CO2	S	М	S	-	-	М	S	-	L	L	-	L	L	L	-
CO3	-	L	М	-	L	S	М	-	М	М	L	L	М	L	L
CO4	L	L	L	L	-	L	S	М	S	L	-	М	L	М	М
CO5	S	М	L	L	-	-	-	-	-	S	L	S	S	М	L
S- Stron	g; M-N	lediu	m; L-1	Low											
SYLLA INTRO		ION	то в	IOL	)GY -	- CEI		ND CEI	LLSI	TRUC	TURE	AND I	TUNC	TION	
Introduc															
INTRO		-		-						-			-		
Prokary	otes – I								,		,				–Friends
and Foe.	•														

# FOOD DIET NUTRITION

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

## **ENVIRONMENT**

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management –water-waste water management – personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha, Okhi. Recycled products -Paper, No to plastic, go green.

# HEALTH, IMMUNE SYSTEM AND MEDICINE

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis –Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

## **TEXT BOOKS:**

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. Student Companion to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

#### **REFERENCE BOOKS:**

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

#### **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Deepapriya	Assistant Professor	Biotechnology	deepapriya21@gmail.com
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in

17 <b>R</b> ′	ГЕС26	E	CO F	RIEN	DLY	MULT	TI STO	OREY	(	Categoi	ÿ	L	Т	Р	Cı	redit
170				]	BUIL	DING			]	EC (PS	5)	3	0	0		3
PREA	AMBLE	L														
The b	uilt envir	onmer	nt is a	majoi	sour	ce of so	ciety's	s envir	onmen	tal imp	act, ar	nd is a	major	op	oortunit	y to find
soluti	ons. Rece	ent atte	ntion	to "gi	een c	onstruct	tion" e	emerge	s in ma	any dor	nains	includi	ng en	ergy	y system	is, water
use, c	constructi	on pro	ocesse	es, arc	chitect	tural de	sign,	site pl	anning	g and l	orown	field d	levelo	pme	ent, At	present,
enviro	onmental	issues	can b	e con	sidere	d in see	mingl	y unlin	nited a	reas of	the de	sign ar	nd cor	istru	iction p	rocess.
PREF	REQUIS	ITE - I	NIL													
COU	RSE OB	JECT	IVES													
1	To state	e about	t the in	nfrasti	ructur	e prović	ling cl	ean dr	nking	water,	clean	air to b	reath	and	safe bu	ilding
	to live i	in.														
2	To exp	lain the	e stude	ents a	bout t	he threa	ts due	to pol	lution	leading	to sus	stainab	le infi	astr	ucture	
3	To dem	onstra	te the	impa	ct and	aspects	of gro	een bui	lding a	and Arc	chitect	ure				
COU	RSE OU	TCON	AES													
On the	e success	ful cor	npleti	on of	the co	ourse, st	udents	s will b	e able	to						
CO1.	Underlin	e the c	oncep	ots rela	ated to	o polluti	on pro	blem o	luring	constru	action.				Remen	nber
CO2.	Classify	the des	sign o	f syste	em foi	comfo	rtable	living							Under	stand
CO3	Employ	geoche	emical	trans	port n	nodel to	main	tain the	e therm	odvna	mics e	auilibr	ium a	nd	Apply	
	c control	-	mea	truns	portin	10401 10	mann			louynu		quinor	iuiii u	na	rippij	
CO4.	Appraise	the Co	onstru	ction	of bui	ildings f	for eco	onomic	ally, ei	nvironr	nental	ly and	social	lv	Analy	se
	nable to f					0			<i>,</i>			5		5	5	
CO5.	Evaluate	the res	source	es and	susta	inability	y of co	onstruc	tion an	d greer	ı build	lings			Evalua	ate
	PING W									-		-	FIC (	)U7	COME	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	М	L	L	L	L	L	L	-	L	L	L	L	L		-	-
CO2	S	М	S	S	-	-	-	-	-	-	L	-	-		L	-
CO3	М	L	М	М	-	-	-	-	M	М	L	L	M		-	-
CO4	L	L	L	L	-	-	-	-	S	L	-	M	L		М	М
CO5	S	M	$\frac{L}{\mathbf{n} \cdot \mathbf{L}}$		-	-	-	-	-	-	-	S	S		-	-
	rong; M-N LABUS	vieulul	11, L-L	70M												
	LABUS CEPTS (	OF CC	)NST	RIIC'	TING	MIII	LI ST(	OREV	RIII	DING						
	of water											Identit	ficatio	n a	nd deve	lonment
-	hnical so					-		-								opment
	CEPT O					-			.,	usine a						
	n of syste						electri	cal circ	uits (1e	ess con	sumpt	ion) te	chnol	ogie	es and st	ructures
518					, . Jiiti						- <b></b>			-0.0		

to suit the growing population for comfortable living.

# **GEOCHEMICAL ASPECTS OF GREEN BUILDING**

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

#### **ENGINEERING ARCHITECTURE**

Impact of architecture, engineering and construction on individuals, communities and nation. Construction of buildings which are economically, environmentally and socially sustainable to future - knowledge, tools and materials that enhance the safety and cost effective

#### **RESOURCES AND SUSTAINABILITY**

Environmental chemistry, advanced air and water treatment technologies durability of construction, green building (sustainable buildings). Resource efficient building from planning to design, construction, maintenance, renovation and demolition.

#### **REFERENCE BOOKS:**

- 1. Adaptation and mitigation of climate change Scientific Technical Analysis. Cambridge University Press, Cambridge, 2006
- 2. Arvind Krishnan et al. Climate Responsive Architecture, Tata Mcgraw –Hill New Delhi 2001.
- 3. Sandra Mendler, William Odell, The Guide Book Of Sustainable Design, John Wiley & Sons, 2000.
- 4. 4. Lawson.B , Bulding Materials, Energy And The Environment; Towards Ecologically Sustainable Development Raia, Act, 1996

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com
2	Dr. S. Chozhavendhan	Associate Professor	Biotechnology	scvibt@gmail.com
3	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

17BTE	E <b>C27</b>	RE	NEWA	BLE	ENEF	RGY AND	O CON	STRU	CTION	Cat	egory	L	Т	Р	Credit
1/011	1021				Μ	ETHODS	5			EC	C(PS)	3	0	0	3
PREA	MBL	£										1		I	
Course	prov	ides a	an intr	oducti	on to	energy	system	is and	renewa	ble en	ergy re	esources	s, with	n a sc	ientific
examin	nation	of the	e ener	gy fie	ld and	l an emp	hasis	on alte	rnate er	nergy s	sources	and th	neir teo	chnolog	gy and
applica	tion.														
PRER	EQUI	SITE	- NIL												
COUR	SE O	BJEC	TIVE	S											
1 7	To list	out th	e expl	ore soc	iety's	present ne	eeds ar	nd futur	e energy	y demai	nds.				
2 7	To exp	lain c	onvent	ional e	nergy	sources a	nd sys	tems, in	cluding	fossil	fuels an	d nucle	ar ener	gy.	
3 7	To per	form o	on alter	rnate, r	enewa	ble energ	y sour	ces such	n as sola	r, biom	ass (co	nversio	ns), wi	nd pov	ver,
Ę	geothe	rmal, a	and hy	dro.											
4 7	To out	line th	e energ	gy con	servat	ion metho	ds will	l be emp	phasized	1.					
COUR	SE O	UTCO	OMES												
On the	succes	ssful c	omple	tion of	the co	ourse, stud	ents w	ill be al	ble to						
CO1. 7	Γo stat	e the	challer	nges ai	nd pro	blems ass	ociate	d with	the use	of vari	ous en	ergy so	urces,	Reme	mber
includi	ng fos	sil fue	ls, witl	h regar	d to fi	iture supp	ly and	the env	rironmen	nt.					
CO2. I	Discus	s rem	edies/p	otentia	al solu	itions to t	he sup	oply an	d enviro	onment	al issu	es asso	ciated	Unde	rstand
with fo	ssil fu	els an	d other	energ	y reso	urces.									
CO3. I	llustrat	te and	descri	be the	prima	ry renewa	ble ene	ergy res	ources a	and tecl	nnologi	es.		Apply	y
CO4. I	Demon	strate	the bas	sic elec	ctrical	concepts a	and sy	stem co	mponen	ıts.				Apply	y
CO5. ]	Estima	te the	e quar	ntify e	nergy	demands	and	make d	compari	sons a	mong	energy	uses,	Analy	/se
resourc	ces, and	d tech	nologie	es.											
MAPP	PING V	WITH	I PRO	GRAN	<b>IME</b>	OUTCON	AES A	ND PR	ROGRA	MME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L	L	L	-	-	-	-	-	-	-	-
CO2	S	М	S	S	-	М	S	-	L	-	-	L	L	-	-
CO3	М	L	М	М	-	S	М	-	-	-	-	L	М	-	-
CO4	L	L	L	L	-	L	S	-	-	-	-	M	L	-	-
CO5	S	M	L	L	-	М	М	-	-	-	-	S	S	-	-
S- Stro	0,		um; L-	LOW											
SYLLA			COL		DIAT	NON									
PRINC						ION									

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

# SOLAR ENERGY COLLECTION STORAGE AND APPLICATIONS

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors. Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

# WIND ENERGY

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria **BIO-MASS** 

Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation and economic aspects.

## OCEAN ENERGY AND DIRECT ENERGY CONVERSION

OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. Need for DEC, Carnot cycle, limitations, principles of DEC.

#### **TEXT BOOKS:**

- 1. GD Rai- Non-Conventional Energy Sources, Khanna Publishers, 2004
- 2. Twidell & Wier Renewable Energy Resources 3rd Edition –, CRC Pres, Taylor & Francis, 2015

#### **REFERENCES:**

1. D.O.hall and R.P. Overeed - Biomass Renegerable Energy – John Wiley and Sons, New york, 1987.

COUR	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com
2	Ms.G.Arthi	Assistant Professor	Biotehnology	arthi@vmkvec.edu.in

1 <b>7</b> BTE	C28	ENV	IRON	MENT	FRIE	NDLY	PRACI	TICES II	N CIVI	$\mathbf{L}$ Ca	ategory	L	Т	Р	Cr	edit
I/DIL	~C20				ENG	INEER	ING			Е	C (PS)	3	0	0		3
PREAN	MBLE	2														
This co	ourse v	vill ma	ake the	e stude	nt awai	e of the	e vario	us consti	ruction	techni	ques, p	ractice	s and	the e	equip	ment
								the end of								
	-					-		r sub to s	-		e and als	so the e	equipn	nent r	neede	ed foi
construe	ction c	of varic	ous typ	es of st	ructure	s from t	foundati	on to sup	per struc	cture.						
PRERE	EQUIS	SITE -	NIL													
COUR	SE OI	BJECT	TIVES													
1 7	To list	out th	estude	nts, wh	o can w	ork in a	a multi-o	disciplina	ary envi	ronme	nt to an	ticipate	e and a	ddre	SS	
		-	-	s of the		-										
				•				gineering				•				
					ustainal	ole, safe	e and ec	onomical	l engine	ering	solution	is to en	vironr	nenta	1	
	-	ering p														
						-		and man				• •	•			
			e fund	amenta	l knowl	edge of	the inte	er-relation	nships t	betwee	n the bu	uilt env	ironm	ent ai	nd na	atural
	system		toohn		1	otiona	aadad t	o cofo cu	and image		and ago	nomia	infra	aturnat		and
	society	-	e techn	lologica	li innov	ations i	ieeded t	o safegua	ard, imp	prove,	and eco	nomize	e inira	struct	lure a	and
			and an	nlv higt	nerfor	mance	eco-frie	ndly stru	ictural n	nateria	ls and s	vstems	1			
				pry mgi	i perior	manee		nary stru		liateria	15 4114 5	ystems	•			
COUR	SE U		NES													
On the s	succes	sful co	mpleti	on of th	ne cours	se, stud	ents wil	l be able	to							
CO1. R					-	•								Re	emen	nber
		-						ering pro						Ur	nders	stand
CO3. II	lustrat	e the p	rofessi	ional ar	d ethic	al respo	onsibility	y. An abi	ility to c	commu	nicate e	effectiv	ely.	Aŗ	pply	
	-					•		erstand th	he impa	ct of e	engineer	ring sol	lutions	Ar	nalys	e
in a glo																
							-	y energy	y demar	nds an	d make	compa	arisons	Ev	valua	te
among	energy	v uses,	resour	ces, and	d techno	ologies.										
MAPPI	ING V	VITH	PROC	GRAM	ME OU	TCON	AES AN	D PRO	GRAM	ME S	PECIF	IC OU	TCOI	AES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	SO2	PSO
CO1	S	M	L	L	S	M	S	-	М	L	-	-	-		-	-
CO2 CO3	S S	M M	L M	M M	-	L M	S S	- S	-	-		S M	S M		-	-
CO3	S S	M	M	M	-	-	S	-	-	L	-	L	S		-	-
CO5	S	M	L	L	-	-	S	-	-	-	-	S	M		-	-
1	3.4	Madin	m; L-I	OW	1	1		1 I					1			

# SYLLABUS

# CIVIL ENGINEERING IN TWENTY FIRST CENTURIES

Essential skills and strategies- critical thinking, finance and economics, design skill, communication, law and ethics, heritage and future.

# **ENVIRONMENTAL IMPACT DESIGN (EID)**

Definition, scope and strategies of EID, categorical types- Direct, indirect and cumulative and its impact. Focus on construction process, materialization and building efficiencies and its life cycle.

#### **GEOCHEMICAL ASPECTS OF GREEN BUILDING**

Geochemical transport model maintaining thermodynamics equilibrium and kinetic control-Hydrology transfer resources and impact of bioremediation, treatment plant design, problem solving techniques, civil and environmental application of engineering science and creative problems solving methods

#### ENVIRONMENTAL GEOLOGY

Introduction, definition, scope, geological factors- location, design, construction, operation and maintenance (residential, commercial and industrial development)  $\Box$  stormwater drainage system, sewage treatment plant, geohazards.

#### ENVIRONMENTAL PUBLIC HEALTH PROTECTION

Definition, discipline - epidemiology, toxicology, exposure science, environmental engineering, law. Environmental health profession.

## **TEXT BOOKS**

1.Prof. D. Venkat Reddy, NIT-Karnataka, Engineering Geology, Vikas Publishers, 2010 ISBN 978-81259-19032 *2. Novice, Robert (editor) (1999-03-29).* "Overview of the environment and health in Europe in the 1990s" (*PDF*). *World Health Organization.* 

3. Neil S. Grigg, P.E.D.WRE, Marvin E. Crisus, P.E.Darrell, G. Fontune, J.Siller. 2001. Civil Engineering practice in twenty first century. ASCE Press.

## **REFERENCE BOOKS**

 Legget, Robert F., and Karrow, Paul F., 1983, Handbook of geology in civil engineering: McGraw-Hill Book Company, 1,340 pages, 50 chapters, five appendices, 771 illustrations. ISBN 0-07-037061-3
 Price, David George, Engineering Geology: Principles and Practice, Springer, 2008 ISBN 3-540-29249-7

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com							
2	Mrs.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in							

17D	TEC29		GRE	EN BU	UILDIN	NG AND S	SUSTAI	NABLE	Ξ 0	Category	L	Т	Р	Credi
1/D	IEC29		<b>ENVIRONMENT</b> EC (PS)		3	0	0	3						
PREA	MBLE	2							I					
Befor	re starti	ng wit	h this	course,	one m	ust get a c	ear knov	wledge	on the l	pasics of	green b	ouilding,	learning	g the
plan	details o	of HV.	AC for	a build	ling, en	ergy effici	ent mode	elling.						
PRER	EQUIS	SITE -	NIL											
COUH	RSE OF	BJEC	<b>FIVES</b>											
Γ	o defin	e, dev	elop an	d & Pl	an the c	letails of I	nplemen	tation.						
2 Т	o sumn	narize	the fur	ndamen	tals of o	electric po	wer syste	ems and	l buildir	ng electri	ic wiring	g.		
3 Т	To demo	onstrat	e about	the Bi	oclimat	tic design a	ind conce	epts.						
	To demonstrate about the Bioclimatic design and concepts. To construct the water conservation & water management systems.													
F 1	To assess the key components of remodelling project.													
						modelling	project.							
5 Т	To asses	s the k	tey con			modelling	project.							
5 T COUR	o asses:	s the k U <b>TCO</b>	tey con MES	nponen	ts of rei									
5 T COUR	o asses:	s the k U <b>TCO</b>	tey con MES	nponen	ts of rei	modelling se, student		able to						
5 T C <b>OUH</b> On the	o asses:	s the k U <b>TCO</b> sful co	tey con MES ompleti	nponen on of t	ts of ren he cours	se, student		able to					Rer	nember
5 T COUH On the	To assess RSE OU e success Define t	s the k U <b>TCO</b> sful co the bas	mey con MES Completi	nponen on of ti green b	ts of ren he cours puilding	se, student	s will be		s					
5 T C <b>OUH</b> On the CO1. I CO2. I	To assess <b>RSE OU</b> e success Define t Discuss	s the k U <b>TCO</b> sful co the bas the ad	MES MES ompleti sics of p	on of the green b	ts of ren he cours uilding benefit	se, student	s will be puilding j	practice		ial build	lings		Unc	
5 T COUE On the CO1. 1 CO2. 1 CO3. 1	To assess <b>RSE OU</b> e success Define t Discuss Illustrate	s the k UTCO sful co the bas the ad e low	MES MES ompleti sics of p lvantag energy	on of the second	ts of ren he cours building benefits ecture fe	se, student sof green l	s will be puilding j esidentia	practice	ommerc		lings		Unc	lerstand
5 T COUE On the CO1. I CO2. I CO3. I CO4. I	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop	s the k UTCO sful co he bas the ad e low o prope	mey con MES ompleti sics of p lvantag energy er wate	on of the green be and archite	ts of ren he cours uilding benefits ecture fe	se, student sof green l eatures in 1	s will be puilding j esidentia o make u	practice	ommerc		lings		Und A	pply
5 T COUH CO1. I CO2. I CO2. I CO3. I CO4. I CO5. Y	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate	s the k UTCO sful co he bas the ad e low prope e the g	mey con MES ompleti sics of a lvantag energy er wate reen su	on of the green be green be and archite r conse	ts of ren he cours benefits ecture fe ervation ble mate	se, student sof green l eatures in 1 systems to	s will be puilding j esidentia o make u practices	practice Il and co p a heal	ommerc lthy bui	lding		UTCON	Und A A A	lerstand Apply Apply
5 T COUH CO1. 1 CO2. 1 CO2. 1 CO3. 1 CO3. 1 CO4. 1 CO5. Y MAPI	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate	s the k UTCO sful co he bas the ad e low prope e the g	mey con MES ompleti sics of a lvantag energy er wate reen su	on of the green be green be and archite r conse	ts of ren he cours benefits ecture fe ervation ble mate	se, student sof green l eatures in 1 systems to erials and p	s will be puilding j esidentia o make u practices <b>S AND I</b>	practice Il and co p a heal	ommerc lthy bui	lding		UTCON	Und A A A	lerstand Apply Apply halyze
5 T COUE On the CO1. 1 CO2. 1 CO2. 1 CO3. 1 CO4. 1 CO5. 7 MAPI COS	Fo assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate <b>PING V</b>	s the k UTCO sful co he bas the ad e low o propo e the g VITH	mey con MES ompleti sics of a lvantag energy er wate reen su PROG	on of the green be gr	ts of ren he cours building benefits ecture fe ervation ble mate <b>ME OU</b>	se, student sof green l eatures in 1 systems to erials and p J <b>TCOME</b>	s will be puilding j esidentia o make u practices S AND I	practice il and co p a heal <b>PROGR</b>	ommerc lthy bui RAMM	lding E SPEC	TIFIC O		Und A A A MES	lerstand Apply Apply halyze
5 T COUH On the CO1. I CO2. I CO3. I CO3. I CO5. V MAPI COS CO1	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate <b>PING W</b> PO1	s the k UTCO sful co he bas the ad e low o prope e the g VITH PO2	mey con MES ompleti sics of a lvantag energy er wate reen su PROG	on of the green begin architeer conservational stainabect of the servation	ts of ren he course benefits cture fe ervation ble mate <b>ME OU</b> PO5	se, student sof green l eatures in 1 systems to erials and p J <b>TCOME</b> PO6 PO	s will be puilding j esidentia o make u practices S AND I 7 PO8	practice il and co p a heal <b>PROGR</b> PO9	ommerco Ithy bui RAMM PO10	lding <b>E SPEC</b> PO11	CIFIC O PO12		Und A A MES PSO2	lerstand Apply Apply halyze
5 T COUH COL I CO2. I CO2. I CO3. I CO4. I CO5. V MAPI CO5 CO1 CO2 CO3	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate <b>PING V</b> PO1 L	s the k JTCO sful co he bas the ad e low o prope e the g VITH PO2 - M	mey con MES ompleti sics of a lvantag energy er wate reen su PROG	on of the green begin architeer conservational stainabect of the servation	ts of ren he cours benefits ccture fe ervation ble mate ME OU PO5 - L	se, student sof green l eatures in 1 systems to erials and p J <b>TCOME</b> PO6 PO  	s will be puilding j esidentia o make u oractices <b>S AND I</b> 7 PO8	practice il and co p a heal PROGR	Commerce Ithy bui RAMM PO10	lding E SPEC PO11 -	PO12	PSO1	Und A A A MES PSO2	lerstand Apply Apply
5 T COUH CO1. I CO2. I CO2. I CO3. I CO4. I CO5. V MAPI COS CO1 CO2	To assess <b>RSE OU</b> e success Define t Discuss Illustrate Develop Validate <b>PING W</b> PO1 L M	s the k UTCO sful co he bas the ad e low o prope the g VITH PO2 - M	mey con MES ompleti sics of a lvantag energy er wate reen su PROG	on of the green begin architeer conservational stainabect of the servation	ts of ren he cours benefits benefits cture fe ervation ble mate ME OU PO5 -	se, student sof green l eatures in 1 systems to erials and p J <b>TCOME</b> PO6 PO 	s will be puilding j esidentia o make u ractices S AND I 7 PO8 - -	practice Il and co p a heal PO9 -	AMM PO10 -	lding E SPEC PO11 -	PO12	PSO1 -	Und A A MES PSO2 - -	lerstand Apply Apply nalyze PSO3 -

# SYLLABUS

# GREEN BUILDING BASICS AND PRACTICES:

Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

# ENERGY MANAGEMENT SYSTEM OF BUILDINGS

The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

# LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN

Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

# WATER MANAGEMENT, BUILDING METHODS & MATERIALS

Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Autoclave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

# ENERGY EFFICIENT REMODELLING

Key components of remodelling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

# **TEXT BOOKS:**

1.Kibert, C. J. "Sustainable Construction: Green Building Design and Delivery," Second Edition, New York:

- 1. John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
- 3. Passive building desing by N.K. Bansal, G. Hauser, and G. Minke.

## **REFERENCES:**

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

# **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.P.Sangeetha	Professor & Head	Biotechnology	sangeetha@avit.ac.in
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in

1500000		Category	L	Т	Р	Credit
17BTEC30	NATURAL RESOURCES MANAGEMENT	EC (PS)	3	0	0	3

Bioresource management showers the knowledge on importance of various resource available in the world and its economic importance. Students will gain the knowledge in wide spectrum of bioresource availability and its culturing method. This paper also deals with the conservation of wild resource and cultivation of valuable products for the sophistication of human life.

	RSE OI	BJECI	IVES	<b>`</b>											
1	To sta	te abou	it the k	kinds	and in	nporta	nce o	f biore	esource	e mana	gemen	t.			
2	To des	scribe a	ıbout t	the va	rious	types	of aqu	ıacultı	ire and	l its bre	eeding	types.			
3	To construct the characteristics of vermiculture and its scope and importance.														
4	To categorise and preserve the afforestation process with certain conservation policies.														
5	To develop the economic importance of value-added products.														
COU	RSE OU	U <b>TCO</b>	MES												
After	the succ	essful	compl	letion	of the	cours	se, lea	rner w	vill be	able to					
CO1.	Recogn	ize the	basic	conce	pts ar	nd imp	ortan	ce of ]	Biores	ource n	nanage	ment	R	emember	Ċ
$\overline{CO^2}$	Explain	the cu	lturing	, nroc	ess an	d vari	ious t	vnes o	facua	culture				nderstan	4
	-							-	-						-
CO3.	Demons	strate th	he sco	pe and	d ecor	nomic	impo	rtance	of ver	micult	ure and	sericultu	re. U	nderstan	d
CO4.	Develop	the st	rategie	es on	conse	rvatio	n and	mana	gemen	t of for	est res	ource.	A	nalyze	
		e the cr	rop im	prove	ement	techno	ologie	es in th	ne proc	luction	of bio	resource	A	nalyze	
produ															
MAP	PING V	VITH	PRO	GRAN	ИМЕ	OUT	COM	IES A	ND PI	ROGR	AMM	E SPECI	FIC O	UTCOM	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	L	L	-	-	L	-	-	-	-	М	L	L	-
CO2	L	-	Μ	L	L	-	Μ	-	S	-	L	М	S	Μ	Μ
CO3	S	S	-	-	-	-	Μ	L	-	-	L	I	-	L	-
	L	-	L	L	-	L	S	L	-	-	-	-	-	-	L
CO4 CO5	L	L		L			L					S	Μ	L	Μ

Basics of Bioresources - Concept, kinds, importance. Human Resource: Management, scope and importance

of human resource management (HRM) and personnel management; human development index (HDI). Animal Resources Conservation and Management: Concept on livestock and livestock production management; role in livelihood and nutritional securities; sustainable livestock production, problems and opportunities

## AQUACULTURE

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important of fishes. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control.

## VERIMICULTURE AND SERICULTURE

Introduction and scope, Species of earthworm, Characteristics features of earthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer. Overview of scope, economic importance and the product of Sericulture.

## FOREST MANAGEMENT AND PLANTS CULTIVATION

Classification and distribution of forests, current strategies of conservation and management of forest resource; agro-forestry, social forestry; Joint Forest Management; National Forest Policy; Forest (conservation) Act, 1980. A brief account of Harlan and Hawkes theories; practices of floriculture, agroforestry, BT crops (brief account).

## VALUE ADDED BIORESOURCE PRODUCTS

Economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

## **TEXT BOOKS:**

- 1. Manju Yadav. 2010. "Economic Zoology" Discovery publishing housePvt.Ltd., New Delhi
- 2. Trivedi, T, R. (2011) "Forest Management" Discovery Publishing Pvt.Ltd. New Delhi
- 3. Milton Fingerman, RachakondaNagabhushanam 2000. "Recent Advances in Marine Biotechnology" IstEdition Science Pub Inc.

## **REFERENCES:**

1. Peter Bettinger Kevin Boston Jacek Siry Donald Grebner 2017. Forest Management and Planning 2nd Edition. Academic press.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in								
2	Mrs.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in								

17BTEC31	APPLICATIONS OF ENZYME IN WASTE	Category	L	Т	Р	Credit
17DIEC31	MANAGEMENT	EC (PS)	3	0	0	3

This course explains about different waste generation in environment, management of waste, general characters of enzymes, their immobilization process, makes an attempt to bring students in direct contact with nature, to find the environmental problems and possible solutions. To empower the students to enrich their knowledge on waste treatment using biocatalyst to solve the environmental pollution.

DDFI	PREREQUISITE - NIL														
	RSE OI														
	1     To state the basic knowledge on different wastes														
2	To discuss about the waste management methods														
3	To perform the waste treatment using enzymes														
4	To imp	olemen	t the b	asics	of enz	zyme i	immo	bilizat	tion proce	ess					
5	Tooutl	ine the	stude	nts to	basic	know	ledge	conce	erning bio	odeg	radation	with the	usag	ge of en	zymes
COU	RSE OU	UTCO	MES												
After	the succ	essful	compl	letion	of the	cours	se, lea	rner v	vill be ab	le to					
CO1.	List and	l classi	fy the	differ	ent wa	astes i	n env	ironm	ient					Remen	ıber
CO2.	Describ	e abou	t the g	enera	l wast	e man	agem	ent m	ethods					Unders	tand
CO3.	Illustrat	e the w	vaste t	reatm	ent usi	ing en	zyme	S						Apply	
CO4.	Demons	strate th	ne bas	ics of	enzyr	ne im	mobil	izatio	n process					Apply	
CO5.	Appraise	e differ	ent m	ethod	of bio	degra	datio	n of w	aste usin	g en	zymes			Analys	e
MAP	PING V	VITH	PROG	GRAN	AME	OUT	COM	ES A	ND PRC	GR	AMME	SPECI	FIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	Р	PO11	PO12	PS	PSO	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	М	М	-		L	-	-	-	-	-	-	L	L	-	-
CO4	М	М	-	-	S	-	L	-	-	-	-	-	-	М	-
CO5															
S-Str	ong; M-	Mediu	m: L-]	Low					•		•	•			

S- Strong; M-Medium; L-Low

## SYLLABUS

# CLASSIFICATION AND TECHNOLOGIES IN REDUCING WASTE

Definition of waste, and its classification, Waste treatment technologies including waste incineration and energy from waste, advanced conversion technologies of pyrolysis and gasification, anaerobic digestion, composting and biological treatment of wastes.

# WASTE AND RESOURCE MANAGEMENT

3 RS, Advances in waste recycling and recovery technologies to deliver added value products; Landfill engineering, Sustainability and resource efficiency with consideration for materials flow through the economy, steps towards designing out waste and maximizing the value of outputs from waste treatment processes.

#### **ENZYME IN WASTE TREATMENT**

Enzymes in enhanced oil recovery; treatment of wastewater of brewery, pharmaceutical, textile dyeing, metal processing, petrochemical, pulp and paper industry; role of natural/stimulated, dead/spent microbial cultures, GMOs, phytoremediation. Biological indicators of waste by enzyme.

#### **ENZYME ACTION AND IMMOBILIZATION**

Action of enzyme on xenobiotic compound, phenolic compounds, pesticides (organo chlorinated, organo phosphorous and carbonated) immobilization techniques.

#### **BIOSENSOR AND OPTICAL INSTRUMENTS**

Birth of biosensors, advantages and disadvantages, construction of biosensors- enzyme and microbial biosensor. Transducers- piezoelectric, potentiometric, amperometric and fiber optics.

#### **TEXTBOOKS:**

- 1. Instant Notes in Ecology by A. Mackenzie, A.S. Ball and S.R. Virdee, Bios Scientific Publishers Ltd., UK, 1999.
- 2. Biotechnology-Applications to Environmental Protection by M.M. Pandey, Himalaya Publishing House, 1993.
- 3. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 4. Basic Environmental Science by G.S.P. Iyer, Educational Publishers and Distributers, New Delhi, 1997.

#### **REFERENCES:**

- 1. Popular Biotechnology Lecture Series Focus: Bioremediation by Division of Biotechnology, PSCST, 2013.
- 2. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 3. Introduction to Environmental Technology by A.K. Chatterji, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

COUR	SE DESIGNERS							
S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Dr. A. Nirmala	Assistant professor (Gr-II)	Biotechnology	nimmi_aruna@yahoo.co m				
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.ac.in				

# **COURSE DESIGNERS**

171	втес	127		р			ΙΠΛ	ГАВАЅ	F		Categ	gory	L	Т	Р	Credit
1/1	DIEC	.32		D	OULU	GICA	LDA	IADAS	E		EC (	PS)	3	0	0	3
PREA	AMBI	LE	•													
This c	course	is des	igned	to imp	art the	know	ledge o	on <i>Biold</i>	ogical a	latabase	e and th	ney deal	s with	libra	ries	of life
scienc	ces inf	ormati	on, co	llected	from	scienti	fic exp	periment	ts, publ	ished li	terature	e, high-t	hrough	nput	exp	eriment
	0.		-	ntional	analys	is.										
PREF	REQU	ISITE	E – NII													
COU	RSE (	OBJE	CTIVE	ES												
1 T	'o state	e the k	nowled	lge on	Bioinf	ormati	cs and	Databas	se mana	gement						
2 T	'o expl	lain the	e basic	s of Ge	enome	databa	ses									
3 T	'o dem	onstra	te the o	differe	nt meth	nods of	seque	nce data	bases							
4 T	'o outl	ine the	basics	s of ho	nolog	y mode	lling									
5 T	'o asse	ss the	regulat	tory of	structi	ıral sin	nilariti	es								
COU	RSE (	OUTC	OME	5												
After	the su	uccessf	ful con	pletio	n of th	e cours	e, lear	ner will	be able	to						
CO1:	Reca	ll the d	lesign	and Da	tabase	manag	gement						Reme	mbe	r	
CO2:	Discu	ss the	genom	e brow	vsers a	nd data	bases						Unde	rstan	d	
CO3:	Class	ify diff	erent r	nethod	s of se	quence	datab	ases					Apply	Y		
CO4:	Infer	the Mo	lecula	r mode	lling a	nd enz	yme da	atabases					Analy	/se		
CO5:	Asse	ss the s	sequen	ce and	motif	-based	search	engines	S				Evalu	ate		
MAP	PING	WIT	H PRC	<b>)GRA</b> ]	MME	OUTO	COME	S AND	PROG	RAMN	IE SPF	CIFIC	OUT	COM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-		-	-
CO2	М	М	-	-	-	-	-	-	-	-	-	-	-		-	-
CO3	М	М	-	1	L	-	-	-	-	-	-	L	L		-	-
CO4	М	М	-	-	S	-	L	-	-	-	-	-	-	] ]	M	-
CO5	М	М	L	L	S	S	-	L	-	-	-	-	-		L	L
S-Str	ong; N	A-Med	ium; L	L-Low												
	-															

# SYLLABUS

# INTRODUCTION TO BIOINFORMATICS DATA AND DATABASES

Types of Biological data:- Genomic DNA, Complementary DNA (cDNA), Recombinant DNA (rDNA), Expressed sequence tags (ESTs), Genomic survey sequences (GSSs). Primary Databases: - GenBank, EMBL, DDBJ, Composite Databases:-NRDB, UniProt, Literature Databases:- Open access and open sources, PubMed, PLoS, Biomed Central

#### GENOME DATABASES

Viral genome database (ICTVdb, VirGen), Bacterial Genomes database (Genomes OnLine Database –GOLD, Microbial Genome Database-MBGD), Organism specific Genome database (OMIM / OMIA, SGD, WormBase, PlasmoDB, FlyBase, TAIR), and Genome Browsers (Ensembl, VEGA genome browser, NCBI-NCBI map viewer, KEGG, MIPS, UCSC Genome Browser).

#### SEQUENCE DATABASES

Nucleotide sequence Databases (GenBank, EMBL, DDBJ).). Protein sequences Databases (Swiss-Prot, TrEMBL, UniProt Knowledgebase – UniProtKB, UniProt Archive –UniParc, UniProt Reference Clusters – UniRef, UniProt Metagenomic and Environmental Sequences –UniMES. Sequence motifs Databases:-Prosite, ProDom, Pfam, InterPro. Sequence file formats:- GenBank, FASTA, PIR, ALN/ClustalW2, GCG/MSF.

## STRUCTURE AND DERIVED DATABASES

The primary structure databases (Protein Data Bank –PDB, Cambridge Structural Database –CSD, Molecular Modeling Database -MMDB). The secondary structure databases (Structural Classification of Proteins –SCOP, Class Architecture Topology Homology –CATH, Families of Structurally Similar Proteins –FSSP, Catalytic Site Atlas –CSA. Molecular functions/Enzymatic catalysis databases (KEGG ENZYME database, BRENDA).

#### **BIOINFORMATICS DATABASE SEARCH ENGINES**

Text-based search engines (Entrez, SRS, DBGET / LinkDB). Sequence similarity based search engines (BLAST and FASTA). Motif-based search engines (ScanProsite and eMOTIF). Structure similarity based search engines (VAST and DALI). Proteomics tools at the ExPASy server, GCG utilities and EMBOSS

## **TEXT BOOKS**

1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004

2. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009

#### **REFERENCES BOOK**

1. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith. Pearson Education. 1999.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Subbaiya	Associate Professor	Biotechnology	rsubbaiya80@gmail.com
2	Dr. R. Balachandar	Assistant Professor (Gr-II)	Biotechnology	balaclone1@gmail.com
3	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in

#### **COURSE DESIGNERS**

# CATEGORY 'C' – ELECTIVE COURSES - PROGRAMME SPECIFIC – 12-15 CREDITS SPECIALISATION

# SPECIALISATION – INDUSTRIAL BIOTECHNOLOGY

		Category	L	Т	Р	Credit
17BTSE01	INDUSTRIAL BIOTECHNOLOGY	EC(SE)	3	0	0	3

#### PREAMBLE

Industrial Biotechnology deals with the chronological development of fermentation process. This subjects aims to deliver a detailed method of production product recovery process of all primary, secondary metabolites and biological products. Industrial Biotechnology syllabus students are able to understand the use of more advances and sophisticated instruments for the production and purification of biological products. Knowledge of these production process will enable students to carry out their project effectively and individually.

PRER	PREREQUISITE - NIL														
COUR	SE OF	BJECT	IVES	5											
1	To lis	t the o	verall	indus	trial fo	ermen	tation	proce	ess and	the pr	ocess f	low sh	eet.		
2	To su	mmari	ze the	know	ledge	on pr	oduct	ion of	comm	nerciall	y impo	rtant p	rimary	metabol	ites.
3	To pe	rform	the kn	owled	lge on	n prod	uction	n of co	ommerc	cially in	mporta	nt secc	ondary 1	netaboli	ites.
4	To de	velop	produ	ction	proces	s for	differe	ent bio	ologica	ıl produ	icts.				
5	To formulate the production of therapeutic products.														
COUR	RSE OUTCOMES														
After the	er the successful completion of the course, learner will be able to														
CO1. F	1. Recall the overall view of industrial fermentation and the process flow sheet       Remember														
CO2. I	Discuss	the me	ethods	for th	ne pro	ductio	on of p	orimar	y meta	bolites				Unders	tand
CO3. F	ractice	the kn	owled	lge on	com	nercia	al proc	ductio	n of pr	imary	metabo	lites		Unders	tand
CO4. ]	Illustrat	te abou	it the j	produ	ction of	of enz	zyme	from o	differei	nt sour	ces			Apply	
CO5. S	elect th	ne meth	hods f	or the	comn	nercia	l prod	luction	n of mo	odern b	oiologia	al pro	ducts.	Analyz	e
MAPP	ING V	VITH	PROG	GRAN	AME	OUT	COM	IES A	ND PI	ROGR	AMM	E SPE	CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L	L	-	L	L	-	-	L	-	-	L	L	-	-
CO2	S	Μ	S	S	L	М	-	-	L	-	-	L	L	-	-
CO3	S M S S L M L - L L														
CO4	М	L	Μ	-	L	-	-	-	Μ	-	-	-	М	L	-
CO5	L	L	L	L	-	L	-	-	-	-	-	-	L	Μ	-

#### S- Strong; M-Medium; L-Low

#### **SYLLABUS**

#### INTRODUCTION TO INDUSTRIAL BIOPROCESS

Fermentation - Bacterial, Fungal and Yeast, Biochemistry of fermentation. Traditional and Modern Biotechnology – A brief survey of organisms, processes, products. Basic concepts of Upstream and Downstream processing in Bioprocess, Process flow sheeting – block diagrams, pictorial representation. **PRODUCTION OF PRIMARY METABOLITES** 

Primary Metabolites- Production of commercially important primary metabolites like organic acids (citric acid, acetic acid, lactic acid) amino acids (L- cysteine, L- Tryptophan and L-phenylalanine), alcohols (ethanol, butanol, propanol) and vitamins Vitamin B12 and Vitamin C).

# PRODUCTION OF SECONDARY METABOLITES

Secondary Metabolites- Production processes for various classes of secondary metabolites: Antibiotics natural and semisynthetic penicillin, chloramphenicol Erythromycin, macrolides and Steroids transformation process and its biological significance

# PRODUCTION OF ENZYMES AND OTHER BIOPRODUCTS

Production of Industrial Enzymes (protease and lipase), Biopesticides, Biofertilizers, Bio preservatives (Nisin), Biopolymers (PHA and PHB Xanthaan Gum) Biodiesel - production process, characteristics, merits and demerits, Production process of Cheese, Beer, SCP & Mushroom culture.

# PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS

Production of recombinant proteins having therapeutic and diagnostic applications (Insulin, Interferon, Interleukins and Growth stimulating Hormone), Vaccines - Subunit vaccine, recombinant vaccine advantages and disadvantages. Bioprocess strategies in Plant Cell and Animal Cell culture.

# **TEXT BOOKS:**

- 1. Satyanarayana, U. (2013) "Biotechnology" Books and Allied (p) Limited.
- 2. Dubey, R.C. (2014)"A Textbook of Biotechnology" 5th revised Edition S. Chand Publishing. Ltd.,
- 3. Kumar, H.D. (1998) "A Textbook on Biotechnology" 2 nd Edition. Affiliated East West Press Pvt.Ltd.,

Ratledge, Colin and Bjorn Kristiansen (2001)"Basic Biotechnology" 2 nd Edition Cambridge **University Press** 

# **REFERENCES:**

- 1. .F.A Bryce and EL.Mansi (2011) Fermentation microbiology & Biotechnology, 3rd Edition CRC Press.
- 2. Presscott, S.C. and Cecil G. Dunn, (2005). "Industrial Microbiology", Agrobios (India).
- 3. Cruger, Wulf and Anneliese Crueger (2000) "Biotechnology: A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing,
- 4. Moo-Young, Murrey, "Comprehensive Biotechnology", 4 Vols. Pergamon Press, (An Imprint of Elsevier) 2004.
- 5. K.G.Ramawat & Shaily Goyal, Comprehensive Biotechnology, 2009, S.Chand publications.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in

1500000		Category	L	Т	Р	Credit
17BTSE02	CHEMICAL REACTION ENGINEERING	EC (SE)	3	0	0	3

#### PREAMBLE

Principles of Chemical Engineering deals with the material and elemental balance in a reaction. A chemical engineers have a broad knowledge on ideal and non- reactor flow models. This paper also impart the knowledge on reaction rate of the reaction and its kinetics gas liquid reactions. Knowledge of these principles will enable students to understand vital role of engineer in a process industry.

PRE	REQUI	SITE -	NIL												
COU	JRSE O	BJECT	IVES												
1	To defin	ne the b	asic kn	owled	ge on	the ma	terial	balanc	e equa	ations.					
2	To disc	uss the	perforn	nance	of ide	al react	ors								
3	To dem	onstrate	e the dif	fferend	ce betv	ween ic	leal flo	ow and	l non-	ideal fl	ow.				
4	To outli	ine the	heterog	eneou	s react	tion of	gas- li	iquid a	nd sol	id.					
5	To deve	elop the	knowle	edge o	n vari	ous che	emical	l reacto	ors						
COU	JRSE O	UTCO	MES												
After	the suc	cessful	comple	tion of	f the c	ourse,	learne	r will	be able	e to					
CO1	. Recall	the bas	ics of n	nateria	l bala	nce in o	chemi	cal rea	ction				Rem	ember	
CO2	. Explai	n the ef	fective	ness of	f an id	eal rea	ctor						Und	erstand	
CO3	. Classif	y the v	arious f	low pa	attern	of fluic	ls						App	ly	
CO4	. Differe	entiate t	he vari	ous id	eal and	d non –	- ideal	fluid	model				Anal	yze	
CO5	. Test th	e heter	ogeneo	us reac	ctions.								Eval	uate	
MA	PPING	WITH	PROG	RAM	ME O	UTCC	MES	AND	PRO	GRAM	ME SF	PECIFI	COUT	COME	S
COS	-	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L	-	-	-	-	-	-	L	L	L	-
CO2	S	М	S	S	L	-	-	-	-	-	-	-	L	L	-
CO3	М	L	М	М	L	S	-	-	-	-	-	-	М	L	-
CO4	L	L	L	L	L	S	-	-	-	-	М	М	-	-	-
CO5	CO5 S M - L M M S S M -														
$S_{-}S_{+}$	rong M	Mediu	m· I_I	ow											

S- Strong; M-Medium; L-Low

# SYLLABUS

# MATERIAL BALANCE

Overall and component balances; material balances without and with chemical reactions; degrees of freedom; steady and unsteady state; unit operations; recycle and by pass; humidity calculations.

# **IDEAL REACTORS**

Ideal reactors- Definition Isothermal - batch reactor, Continuous flow reactor, semi-batch reactors; performance equations for single reactors; multiple reactor systems; multiple reactions.

# IDEAL FLOW AND NON IDEAL FLOW

Conditions for a non-ideal reactors, RTD in non-ideal flow; E- Curve, F- curve. Non-ideal flow model- – laminar flow; turbulent flow, pressure drops; compressible fluid flow concepts. Reactor performance with non-ideal flow.

# GAS-SOLID, GAS-LIQUID REACTIONS

Resistances and rate equations; heterogeneous catalysis; reactions steps; resistances and rate equations.

# FIXED BED AND FLUID BED REACTORS

Broad outline of chemical reactors; Industrial scale reactors. Gas liquid reactions on solid catalysis; trickle bed, slurry reactors; three phase-fluidized beds; reactors for fluid-fluid reactions; tank reactors

# **TEXT BOOKS:**

- 1. Levenspiel O. 2006. Chemical Reaction Engineering. 3rd Edition. John Wiley.
- 2. Fogler H.S. 2016 Elements of Chemical Reaction Engineering.5th Edition Prentice Hall India.
- 3. Hill, Jr., C.G.; Root, T.W. 2014. Introduction to chemical engineering kinetics and reactor design. 2nd Edition. Wiley.

# **REFERENCES:**

- 1. Missen R.W., Mims C.A., Saville B.A. 1999. Introduction to Chemical Reaction Engineering and Kinetics. John Wiley.
- Froment, G.F.; Bischoff, K.B.; De Wilde, J. 2011. Chemical reactor analysis and design. 3rd Edition. John Wiley & Sons

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mrs.G.Arthi	Assistant professor	Biotechnology	arthi@vmkvec.edu.in

		FE	RMEN	TER	DESI	GN A	ND		Categ	ory	L	Т	Р	C	redit
17BTSE03			A	ANAL	YSIS	•			EC (S	E)	3	0	0		3
PREAMBLE														1	
Fermentation	design	and an	alysis o	deals v	with th	he bas	sic des	ign of	fermer	nter a	nd its c	concep	ots. Th	is pa	per also
deals with the	e aera	tion and	d agitat	ion e	quipm	ents	which	were	used for	or pro	oper m	ixing	substi	rate v	with the
microorganism			-						-		-			-	
scale up and	scale o	lown is	sues fo	r their	r com	plex 1	nechai	nisms.	Know	ledge	of the	se pri	nciple	s will	enable
students to un	dersta	nd the f	low me	chanis	sms, b	iomas	ss grov	th and	d inlet a	nd ou	ıtlet ga	s anal	ysis		
PREREQUIS															
COURSE OF	BJECT	TIVES													
1 To label	the bo	dy cons	truction	n and	types	of fer	menter								
2 To descr	ibe the	e power	require	ement	for ae	rated	and no	n-aera	ated fer	mente	er.				
3 To const	ruct th	e vario	us desig	gns for	study	ving tł	ne heat	and n	nass tra	nsfer	in the	fermei	nter.		
4 To outlin			-				-			-					
5 To asses			nstrum	entatio	on inv	olved	in the	monit	oring a	nd co	ntrol o	f ferm	entatio	on pro	ocess.
COURSE OU															
After the succ		-													
CO1. Recall h	ow to	constru	ct the f	ermen	ter an	d the	materi	als use	ed for it	•		]	Remer	nber	
CO2. Interpre	t the p	ower re	quirem	ent for	r aerat	ed an	d non-	aerate	d ferme	nter		I	Unders	stand	
CO3. Classify	the va	arious d	esign o	f heat	transf	er me	chanis	m in f	ermente	or des	ign	1	Apply		
CO4. Categor	ize the	issues	involve	d in so	cale u	p and	scale o	lown	process			1	Analyz	ze	
CO5. Validate	the p	aramete	rs invo	lved in	n the i	nstrur	nentati	ion an	d contro	ol		1	Evalua	ite	
MAPPING V		PROC	<b>ΡΑΜΙ</b>		TCO	MES		PDU	CRAM		SDECI				79
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12	PSO			PSO3
CO1 M	L	L	L	L	-	-	-	-	-	L	L	Ĺ	I		L
CO2 S	М	L	М	L	-	-	-	-	-	L	L	L	Ι		-
CO3 M	L	L	М	L	-	-	-	-	-	М	L	L	Ι		L
CO4 L	L	L	L	М	-	-	-	-	L	L	М	М	I	_	-
CO5 S	М	М	L	М	-	-	-	-	-	М	М	S	Ν	1	L
S- Strong; M-	Mediu	m; L-L	OW												

# SYLLABUS

# **BASIC FERMENTER CONCEPTS**

Define Fermenter, body construction of fermenter, Bioreactor Operation, Batch operation, fed-batch operation and Continuous Operation, Chemostat, turbidostat, Microbiological reactors, Enzyme reactors, Tank-type, Column-type biological reactors.

# AERATION AND AGITATION IN BIOPROCESS SYSTEMS

Mass transfer in agitated tanks, Effect of agitation on dissolved oxygen, Correlations with kLa in Newtonian and non - Newtonian liquid, Power number, Power requirement for mixing in aerated and non - aerated tanks for Newtonian and non-newtonian liquid-Agitation rate studies, Mixing time in agitated reactor, residence

time distribution, Shear damage, bubble damage, Methods of minimizing cell damage, Laminar and Turbulent flow in stirred tank bioreactors

# SELECTION AND DESIGN OF BIOPROCESS EQUIPMENT

Materials of construction for bioprocess plants, Design considerations for maintaining sterility of process streams processing equipments, selection, specification, Design of heat and mass transfer equipment used in bioprocess industries, Requirements, design and operation of bioreactor for microbial, plant cell and animal cell

#### SCALE UP AND SCALE DOWN ISSUES

Effect of scale on oxygenation, mixing, sterilization, pH, temperature, inoculum development, nutrient availability and supply, Bioreactor scale-up based on constant power consumption per volume, mixing time, impeller tip speed (shear), mass transfer co-efficients, Scale up of downstream processes, Adsorption (LUB method), Chromatography (constant resolution etc.), Filtration (constant resistance etc.), Centrifugation (equivalent times etc.), Extractors (geometry based rules), Scale–down related aspects.

#### FERMENTER INSTRUMENTATION AND CONTROL

Bioreactor controlling probes, Characteristics of bioreactor sensors, Methods of measuring process variables, Temperature, Flow measurement and control, Pressure measurement and control, Agitation, shaft power, rate of stirring. Detection and prevention of foam, Measurement of Microbial biomass, Measurement and control of Dissolved oxygen, Inlet and outlet gas analysis, pH measurement and control - Biosensors.

#### **TEXT BOOKS:**

- Impre, J.F.M.V., Vanrolleghem, P.A. and Iserentant, D.M., "Advanced Instrumentation, Data Interpre and Control of Biotechnological Processes", Kluwer Academic Publi 2010.
- 2. Panda, T. 2011. Bioreactors analysis and design, Tata McGraw Hill, New Delhi, New York.
- 3. Mann, U., "Principles of Chemical Reactors Analysis & Design: New tools for Industrial Chemical Reactor Operations", Willey–VCH, 2009.

#### **REFERENCES:**

- 1. Mansi, E.M.T.EL., Bryce, C.F.A., Demain, A.L. and Allman, A.R., "Fermentation Microbiolog Biotechnology", 3rd edition Taylor and Francis, 2012.
- 2. Towler, G. and Sinnott, R., "Chemical Engineering Design: Principles, Practice, Econ of Plant and Process Design", 2nd edition, Butterworth Heinemann ltd., Elsevier, 2012.

COUR	SE DESIGNERS											
S.No.												
1	Dr. S. Chozhavendhan	Associate Professor	Biotechnology	chozhavendhan@avit.ac.in								
2.	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edi.in								

17BTSE04	BIOSEPARATION TECHNOLOGY	Category	L	Т	Р	Credit
		EC (SE)	3	0	0	3

#### PREAMBLE

Bioseparation technology deals with the economics and importance of bioproducts purification process. In this subjects the purification process comprises various unit operation in levels of purification process. Bioseparation technology often use pioneering techniques and sophisticated machinery along with other applied field's chemical engineering and instrumentation for purification of biological products. Knowledge of these principles will enable students to understand various steps involved in purification process of biological products.

PREREQUISITE - NIL															
COU	J <b>RSE OB</b>	JECTI	VES												
1	To list th	e down	strean	n proce	esses ei	mploy	ed in	the bio	otechno	logy inc	lustry.				
2	To classi	fy the p	hysica	al and	chemic	al sep	aratio	n proc	esses in	n DSP.					
3	To demo	nstrate	separa	tion p	rocesse	es by r	neans	of me	mbrane	separat	tion tecl	hniques	in DSP	).	
4 To perform the various types of chromatography for the separation process.															
5	To devel	op the c	concep	ots for	separat	tion ar	nd pur	ificatio	on.						
	JRSE OU														
After	r the succ	essful c	omple	tion of	f the co	ourse, I	learne	r will	be able	to					
CO1	. Define t	he need	of do	wnstre	eam pro	ocessii	ng in ł	oiotech	nology	industr	У		Reme	mber	
CO2	. Identify	the imp	ortanc	ce of s	eparatio	on pro	cess i	nvolve	ed in the	e downs	tream		Under	stand	
CO3	. Illustrate	the var	rious t	ypes c	of mem	brane	separ	ation p	rocess	employ	ed in th	e DSP	Apply	,	
CO4	. Categori	ze the v	ariou	s parai	neters	that go	overns	s chror	natogra	phy tec	hniques	5	Apply		
CO5	. Assess t	he vario	ous fin	ishing	operat	ions i	nvolve	ed in th	ne DSP				Evalua	ate	
MAI	PPING W	ITH P	ROG	RAM	ME OU	JTCC	MES	AND	PROG	RAMN	AE SPE	ECIFIC	COUTO	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L	-	-	-	-	-	-	L	L	L	L
CO2	S	М	М	S	L	-	-	-	-	-	-	L	L	L	L
CO3	М	L	М	L	L	-	-	-	-	-	-	L	М	L	L
CO4	М	L	L	М	L	-	-	-	-	-	-	L	М	L	L
CO5	CO5 S M L L M S S M L														
S-St	S- Strong; M-Medium; L-Low														
SYL	SYLLABUS														
DOV	VNSTRE	AM PF	ROCE	SSIN	G IN B	SIOTI	ECHN	IOLO	GY						
			_										_		

Role and importance of downstream processing in biotechnological processes - Problems and

requirements of bio product purification – Economics of downstream processing in Biotechnology, cost-cutting strategies – Separation characteristics of proteins and enzymes – size, stability, properties – Flocculation and conditioning of broth – Process design criteria for various classes of bio products (high volume, low value products and low volume, high value products) – Upstream production methods affect downstream purification strategies.

#### PHYSICO-CHEMICAL BASIS OF BIO-SEPARATION PROCESSES

Cell disruption methods for intracellular products – Physical, chemical, mechanical – Removal of insoluble, biomass and particulate debris separation techniques – Filtration at constant pressure and at constant rate – Empirical equations for batch and continuous filtration – Types of filtration – Centrifugal and cross – flow filtration – Types of filtration equipments – Centrifugation – Basic principles, design characteristics – Types of centrifuge and applications – Sedimentation

#### MEMBRANE SEPARATIONS AND ENRICHMENT OPERATIONS

Theory, Design consideration and configuration of membrane separation processes – Reverse osmosis, microfiltration, ultra filtration and dialysis – Structure and characteristics of membranes – Membrane modules – Enrichment Operations – Extraction–equipment for extraction – Aqueous two-phase extraction process – Evaporators – Types of evaporators – Adsorption isotherms and techniques – Protein precipitation – Methods of precipitational

#### MECHANISM AND MODES OF CHROMATOGRAPHIC SEPARATION

Chromatography – Classification of chromatographic techniques – General description of column chromatography – Chromatographic terms and parameters – Practice of chromatography – Partition, normal-phase, displacement, reversed-phase, size exclusion, ion exchange, hydrophobic, affinity chromatography – Scale-up of chromatography – Process considerations in Preparative liquid chromatography and HPLC

#### FINISHING OPERATIONS AND FORMULATIONS

.Drying – Mechanism, methods and applications, Types of dryers – Tray, spray, rotary, belt, disc – Crystallization – Nucleation , growth – Types of crystallizers – Tank, scrapped surface, Oslo, Circulating-magma evaporator – Freeze drying – Principle, process, applications

#### **TEXT BOOKS:**

- 1. Belter, P.A., Gussler, E.L. and Hu, W.S., "Bioseparation: Downstream Processing for Biotechnology", John Wiley and Sons, 2011.
- Peter F. Stanbury, Stephen J. Hall & A. Whitaker, 2013. Principles of Fermentation Technology, Science & Technology Books 2nd edition. Pergamon Press.
- 3. Sivasankar, B., 2009. Bioseparations: Principles and Techniques. PHI Learning Private Limited, New Delhi.

#### REFERENCES

1. Ghosh, R., "Principles of Bioseparation Engineering", World Scientific Publishers, 2006.

2. Ladisch, M.R., "Bioseparation Engineering: Principles, Practice, and Economics", John Wiley & Sons, 2001.

3. Roger, H., 2015. "Bioseparation Science and Engineering", 2nd Edition Oxford University Press COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edi.in

170					<b>T XX</b> 7						ategory	L	]	Г	Р	Credit
1/B.	rseo5	J		SIKIA		ASIE	MAN	IAGEN	VIENI		C (SE)	3	(	)	0	3
PREAM	MBLE														I I	
This co	urse wi	ill prov	vide a	n overv	view o	of mana	ageme	ent tech	iniques	s for in	dustria	l waste	es, as	we	ell as S	State and
				-				-					-	-		business
-	-	-				the o	econo	mic fe	easibili	ity of	the	enviro	nmen	tall	y sus	stainable
technol				nageme	ent.											
PRERI	EQUIS	ITE -	NIL													
COUR	SE OB	JECT	IVES													
	'o state															
2 T	o expla	in the	know	ledge o	on sou	rces ar	nd cha	racteri	stics of	f vario	us indu	strial v	vaste	s ar	nd	
2 To explain the knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control																
3 T	o exect	ite abo	out the	onsite	pollu	tion fr	om m	ajor inc	lustrie	S						
4 T	o outli	ne the	variou	is effec	ts and	l dispo	sal op	tions fo	or the i	industr	ial was	te.				
5 T	o checl	c the n	nainte	nance of	of haz	ardous	waste	e								
COUR	SE OU	TCO	MES													
After th	e succe	essful	compl	etion o	f the c	course,	learn	er will	be abl	e to						
CO1: R					ollutio	n from	n majo	or indus	stries in	ncludiı	ng the s	sources	5	Re	ememt	ver
and cha			-													
CO2: Id														Uı	ndersta	ınd
CO3: I1	lustrate	the fa	acilitie	s for th	ne pro	cessing	g and	reclam	ation o	of indu	strial w	aste		Aţ	oply	
CO4: C										waste.					nalyse	
CO5: A	sses th	e phys	io che	mical	treatm	ent foi	haza	rdous v	vaste.					Εv	aluate	;
MAPP	ING W	ITH	PROC	GRAM	ME C	DUTC	OME	S AND	PRO	GRAN	MME S	SPECI	FIC	OU	TCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3
CO1	М	-	-	L	L	L	-	-	-	L	-	L	L		L	-
CO2	S	-	-	М	L	М	-	-	-	L	L	L	-		-	-
CO3	М	L	-	-	L	-	-	-	-	-	L	L	L		L	L
CO4	L	L	S	L	S	L	-	-	М	L	М	М	-		-	-
CO5	S	М	М	_	М	М	-	L	-	S	L	S	L	T	L	М
S- Stroi		Mediu	m; L-I	LOW												

# SYLLABUS

# INTRODUCTION TO INDUSTRIAL POLLUTION

Types of Industries And Industrial Pollution, Characteristics Of Industrial Wastes, Population Equivalent, Bioassay Studies, Effects Of Industrial Effluents On Streams, Sewer, Land, Sewage Treatment Plants And Human Health Environmental Legislations Related to Prevention And Control Of Industrial Effluents And Hazardous Wastes

# **CLEANER PRODUCTION**

Waste Management Approach, Waste Audit, Volume And Strength Reduction, Material And Process Modifications, Recycle, Reuse And Byproduct Recovery – Applications.

# POLLUTION FROM MAJOR INDUSTRIES

Sources, Characteristics, Waste Treatment Flow Sheets For Selected Industries Such As Textiles, Tanneries, Pharmaceuticals, Electroplating Industries, Dairy, Sugar, Paper, Distilleries, Steel Plants, Refineries, Fertilizer, Thermal Power Plants, Wastewater Reclamation Concepts

# TREATMENT TECHNOLOGIES

Equalisation, Neutralisation, Removal of Suspended and Dissolved Organic Solids, Chemical Oxidation, Adsorption, Removal of Dissolved Inorganics, Combined Treatment Of Industrial And Municipal Wastes, Residue Management, Dewatering, Disposal.

# HAZARDOUS WASTE MANAGEMENT

Hazardous Wastes, Physico Chemical Treatment, Solidification, Incineration, Secure Land Fills.

# TEXT BOOKS

1. Rao M. N. & Dutta A. K. "Wastewater Treatment", Oxford - IBH Publication, 1995.

2. Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.

3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi 2010.

# REFERENCES

- 1. Shen T.T., "Industrial Pollution Prevention", Springer, 1999.
- 2. Stephenson R.L. and Blackburn J.B., Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New York, 1998
- 3. Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi, 1995.
- 4. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw Hill, 2000.
- 5. Pandey, "Environmental Management" Vikas Publications, 2010.
- 6. Industrial Wastewater Management, Treatment and Disposal", (WEF MOP FD3) McGraw Hill, 2008

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in								
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edi.in								

17BTSE06	FUNDAMENTALS OF FLUID	Category	L	Т	Р	Credit
17D1SE00	MECHANICS	EC (SE)	3	0	0	3

#### PREAMBLE

Fundamentals of fluid mechanics deals with fundamental concepts of fluid flow with Newtonian laws and application of fluid static equation. This papers also deals with the need of dimensional analysis and dimensionless parameter. Helps to regain the knowledge in type of flow and flow measurement in pipes. Fundamentals of fluid mechanics often use cutting-edge techniques and sophisticated machinery along with other applied fields of research like biotechnology, mechanical engineering and chemical engineering. Knowledge of these principles will enable students to understand various types of fluid flow and their importance in the industry.

#### PREREQUISITE

NIL

COU	RSE (	)BJE(	CTIVE	ES											
1	Toa	acquire	know	ledge a	bout t	he fun	dame	ntals o	concep	ts of flu	uid flov	w.			
2	To a	apply t	he kno	wledge	on flu	uid sta	tic eq	uatior	l.						
3	To analyze the need for dimension analysis and dimensionless parameter.														
4	To understand the various type of flow through pipes.														
5	To analyze the various types of pumps with its working principle.														
COU	JRSE OUTCOMES														
After t	ter the successful completion of the course, learner will be able to														
CO1: 1	: Recall the concepts of fluid flow Remember														
CO2: 1	Repor	t the fl	luid sta	tic equ	ation l	based	on flu	id flo	W					Understa	nd
CO3:	Comp	are the	e dimer	nsion a	nd din	nensio	nal ar	nalysis	water					Apply	
CO4:	Calcu	late the	e types	flow n	neasur	ement	t in pi	pes.						Analyse	
				lary lay										Evaluate	
COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	L	L	L	L	L	-	-	L	L	L	L	L	-
CO2	S	М	S	-	L	-	S	-	-	L	L	L	-	L	L
CO3	M L - M - S M - L											М	L	L	
CO4	L	L	L	L	S	L	S	-	S	S	М	М	-	М	М
CO5	S	S M L L - M M S - S L S S M L													
S-Stro	ong: N	/I-Med	ium: L	-Low											

S- Strong; M-Medium; L-Low

#### SYLLABUS FUNDAMENTAL CONCEPTS

Definition of Fluid, Continuum concept of fluid, Terminologies of fluid flow, velocity – local, average, maximum, flow rate – mass, volumetric, velocity field; dimensionality of flow; flow visualization – streamline, pathline, streak line, stress field; viscosity; Newtonian fluid; Non-Newtonian fluid; Reynold's number—its significance, laminar, transition and turbulent flows: Prandtl boundary layer, compressible and incompressible flows

#### FLUID STATICS

Fluid statics - basic equation - equilibrium of fluid element - pressure variation in a static fluid application to manometry – Differential analysis of fluid motion – continuity, equation of motions, Euler's equation, Bernoulli equation, and Navier-Stokes equation.

#### **DIMENSIONAL ANALYSIS**

Formal procedure for dimensional analysis - Dimensional homogeneity - Buckingham's Pi theorem -Need for dimensional analysis - methods of dimensional analysis - Similitude -types of similitude -Dimensionless parameters- application of dimensionless parameters - Model analysis

#### **FLOW MEASUREMENT**

Reynolds number regimes, internal flow – flow through pipes – pressure drop under laminar and turbulent flow conditions - major and minor losses; Line sizing; External flows - boundary layer concepts, boundary layer thickness under laminar and turbulent flow conditions- Flow over a sphere – friction and pressure drag – flow through fixed and fluidized beds.

# **PUMPS**

Impact of jets - Euler's equation - Theory of roto-dynamic machines - various efficienciesvelocity components at entry and exit of the rotor- velocity triangles - Centrifugal pumps- working principle – work done by the impeller – performance curves – Reciprocating pump- working principle – Rotary pumps -classification

# **TEXT BOOKS:**

- 1. Bansal R. K. 2016. "A Text book of Fluid Mechanics" Laxmi Publications
- 2. Modi P.N. and Seth, S.M. 2004."Hydraulics and Fluid Mechanics", Standard Book House, New Delhi.
- 3. Graebel. W.P, "Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2011.

# **REFERENCES:**

- 1. Streeter, V. L. and Wylie E. B., "Fluid Mechanics", McGraw Hill Publishing Co. 2010
- 2. Kumar K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi, 2004
- 3. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 2011

COUP	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
•		_	_										
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in									
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in									

# COUDCE DECLONEDO

17BTSE07	BIOPROCESS ECONOMICS AND REACTOR DESIGN	Category	L	Т	Р	Credit
		EC (SE)	3	0	0	3

#### PREAMBLE

The aim of this course is to develop in students the ability to synthesise design solutions for the biochemical engineering sector that take into account consideration of good design practice, that are inherently safe and that are most economically viable.

# **PREREQUISITE -** NIL

#### **COURSE OBJECTIVES**

I	To define economic evaluation of Bioprocess technology
---	--------------------------------------------------------

2 To discuss cost estimation analysis of process design and development

3 To describe and synthesise a design in terms of safety and provide measures for its safe operation

4 To demonstrate a design using best practice economic principle

5 To perform experimental design for screening & optimizing the process parameters.

# **COURSE OUTCOMES**

After the successful completion of the course, learner will be able to

CO1. Recall the economic evaluation concepts involved in bioprocess techniquesRememberCO2.Describe the different costs involved in the total product for a typical Chemical ProcessUnderstandCO3. Explain the optimal strategy for design and analysis of various BioreactorsUnderstandCO4. Demonstrate the instrumentation and control of bioprocess using engineering principles.Apply

Apply

CO5. Illustrate case studies on screening designs and optimization of various bioprocess

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

		1	1		1		1			1		1			
С	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
0		2						8							
С	М	L	L	-	-	-	-	-	-	-	-	-	-	-	L
С	S	М	S	S	L	-	-	-	-	-	-	-	L	-	-
С	М	L	-	М	L	S	М	Μ	-	М	-	-	-	L	L
С	L	L	L	-	-	-	-	-	-	-	Μ	-	-	-	-
С	S	М	L	L	-	-	-	-	М	-	-		-	-	-
S_ 9	S- Strong: M-Medium: L-Low											-			

S- Strong; M-Medium; L-Low

#### SYLLABUS ECONOMIC EVALUATION

Capital cost of a project; Interest calculations, nominal and effective interest rates; basic concepts in tax and depreciation; Measures of economic performance, rate of return, playout time; Cash flow diagrams; Cost accounting-balance sheet and profit loss account; Break even and minimum cost analysis.

# **BIOPROCESS ECONOMICS**

Cost Estimation: Capital investments (Fixed and working capital), Types of capital cost estimates, Cost

Indexes, Estimating equipment costs by scaling 6/10 Factor Rule, Purchase Equipment Installation, Insulation costs, Instrumentation & Control, Piping, Electrical Installation, Service facilities, Land, Engineering. & Supervision, Start –up expenses. Methods of Estimating Capital Investment, Estimation of total product cost, Different costs involved in the total product for a typical Chemical Process plant. Interest & Investment Costs: Types of interest (simple & compound interest), Nominal & Effective Rates of interest, Continuous interest, Present worth & discounts, perpetuities, capitalized costs, Interest & Investment costs.

# DESIGN AND ANALYSIS OF BIOREACTORS

Chemostat model with cell growth kinetics, Plug flow reactor for microbial processes; optimization of reactor systems; Multiphase bioreactors, packed bed with immobilized enzymes or microbial cells; three phase fluidized bed trickling bed reactor; Component of Fermenter and their design, a sceptic operations, RTD studies in bioreactors, Design and analysis of the above reactor systems; Gas liquid reactors; Reactor with non-ideal mixing; dispersion model; Tanks in series Model; Bubble column reactors, airlift fermenters etc. Air and medium sterilization Mechanical fittings in a bioreactor: vessel, agitation system materials, welds, finish, valves, piping and valves for biotechnology, cleaning

# INSTRUMENTATION AND CONTROL OF BIOPROCESSES

Physical and chemical sensors for the medium and gases. Online sensors for cell properties, off-line analytical methods; Biosensors.

# DESIGN OF EXPERIMENTS – SCREENING DESIGNS, OPTIMIZATION

Screening designs: Fractional factorial design – General 2k-p design, Placket-Burman design, confounding and aliasing, resolution of design, main effects, interaction effects, screening criteria, Numerical. Optimization: Response surface methodology, Linear model (method of steepest ascent), Second order models (CCD, CCRD, Taguchi design); generation of experimental design; response variables; model terms: linear, quadratic & interaction terms; ANOVA table, data diagnostics & outlier analysis, contour & surface plots, optimization criteria, D-optimal design, Numerical.

# TEXTBOOKS

- 1. Stanbury P F and Whitaker A, "Principles of Fermentation Technology," Pergamon Press (1995)
- 2. Bailey J E and Ollis D F, "Biochemical Engineering Fundamentals", McGraw Hill (1986)
- 3. Peters, M S & Timmerhaus K D, "Plant Design and Economics for Chemical Engineers", McGraw Hill, New York , 4th Edition (2003)
- 4. Ulrich, G D, "A Guide to Chemical Engineering Process Design and Economics", John Wiley (1984)

# **REFERENCES:**

- 1. Aiba S, Humphrey A E and Millis N F, "Biochemical Engineering", Academic Press (1973
- Peters, M S & Timmerhaus K D, "Plant Design and Economics for Chemical Engineers", McGraw Hill, New York, 4th Edition (2003)
- 3. Biochemical Engineering–Atkinson

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	G. Karthiga Devi	Assistant Professor	Biotechnology	karthigadevi@avit.ac.in								
2	Ms.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in								

# 219

PREAM Bioreac	ctor the		D.	BIOREACTOR THEORY											
Bioreac principl	ctor the	REAMBLE					ULUI	1	E	C (SE)	3	0		0	3
he elen nodels	ts. Bion fields of mental b of mic:	ory s is sub react of res balan robes	oject al or theo search nces. H s to fit	lso pro ory oft to stu Knowl	ovides en use dy hov edge o	a wid cutting w the p of thes	e knov ng-edg nutrie e prin	wledg ge tech nts are ciples	e on va niques up tak will er	rious ty and sog	pes of l phistica nicrobe idents t	bioreact ated mades and co o under	or and chiner	y along v ed into pr	vorking merits and vith other roducts wi rent kineti
	EQUIS SE OB			S											
					e on th	e hasi	c prin	cinle	and cor	nponen	ts of bi	reactor	·s		
		-					-	-		orking p			.5		
													oduct	formatio	n.
	To outl							-			0	1			
	To asse			-											
	SE OU					-		0							
After th	ne succe	essfu	l com	oletior	of the	e cour	se, lea	rner v	vill be a	able to					
CO1. R	Recall th	ne ba	sic pri	nciple	and c	ompo	nents	of bio	reactor	s.			R	emembra	ance
CO2. D	Discuss	abou	ıt diffe	rent ty	pes of	f biore	actors	s with	its wor	king pri	inciple.		U	nderstan	d
CO3. D Formati		trate	for fer	rmenta	ation p	rocess	s for b	iomas	s grow	th and p	roduct		Α	pply	
	Estimate	e the	microl	oial gr	owth a	and pr	oduct	forma	tion.				А	nalyze	
				-		-				obial gr	owth			valuate	
	Create a									oolul gi				reate	
							-		ND PF	ROGRA	MME	SPECI		DUTCO	MES
		202	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
.05		02	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502	1505
CO1 1	M I		L	L	-	-	М	-	-	-	-	L	L	-	-
202	S N	М	S	-	L	-	-	-	-	-	L	L	-	-	-
CO3 1	M I		М	L	-	-	-	-	-	-	L	L	-	L	-
CO4 ]	L I		L	-	-	-	-	-	-	-	М	-	-	-	-
CO5	S N	М	L	-	-	-	-	-	-	-	-	-	М	L	-
CO6	s -		L	М	L	_	_	_	-	-	S	М			
	ng. \1	Mad	. т	Lorr				I				I	I		
S- Suoi	ng; M-l ABUS	wieul	uIII, L	-LOW											
OVER	VIEW													s of Bior	

Classification of bioreactors, body construction of basic bioreactor, configuration of bioreactors and ancillaries parts, Removal of Heat in bioreactor main parameters to be monitored and controlled in fermentation process.

# **BIOREACTOR TYPES**

Unconventional bioreactors, Packed bed reactor, slurry bioreactor, Hollow fibre reactor., Multiphase Bioreactor - Air lift Bioreactors, bubble column bioreactor, fluidised bioreactor, Hydrodynamic three phase flow, Perfusion reactor for animal and plant cell culture. Merits and demerits.

# **DESIGN OF FERMENTATION PROCESSES**

Kinetics of substrate utilization, biomass growth and product formation, inhibition on cell growth and product formation. Design and operation of continuous cultures, chemostat in series, batch and fed batch cultures, total cell retention cultivation.

# METABOLIC STOICHIOMETRY AND ENERGETICS

Stoichiometry of cell growth and product formation, elemental balances, degrees of reduction of substrate and biomass, available electron balances, yield coefficients of biomass and product formation, maintenance coefficients, energetic analysis of microbial growth and product formation, oxygen consumption and heat evolution in aerobic cultures, thermodynamic efficiency of growth.

# KINETICS OF MICROBIAL GROWTH AND PRODUCT FORMATION

Batch cultivation and continuous cultivation. Morphologically structured model, genetically structured models, cybernetic model, modelling of recombinant systems. Simple unstructured models for microbial growth, Monod model, growth of filamentous organisms, product formation kinetics, Leudeking-Piret models, substrate and product inhibition on cell growth and product formation. Biomass estimation - Direct and Indirect methods.

# TEXT BOOKS

1. Doran M Pauline, 2012. "Bioprocess Engineering Principles". 2 nd Edition, Elsevier.

2. Bailey, James E. and David F. Ollis, 2010. "Biochemical Engineering Fundamentals", 2 nd Edition. Mc Graw Hill India.

3. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, 2013. Principles of Fermentation Technology, Science & Technology Books 2nd edition. Pergamon Press.

4. Ghasem D.Najafpour, 2009. "Biochemical Engineering and Biotechnology", Elsevier.

# REFERENCES

1. Tapobrate Panda, 2011. "Bioreactors: Analysis and Design", Tata McGraw Hill,

2. Villadsen, John, Nielsen, Jens, Lidén, Gunnar, Bioreaction Engineering Principles, Springer 3rd edition 2011.

COU	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in									
2	Dr. G. Karthiga Devi	Assistant Professor	Biotechnology	devigk19@gmail.com									
3	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edi.in									

1 <b>7</b> D	TSE09		]	INDU	STRI	[AL			Cate	egory		L	Т	Р	Cre	dit
170	13209	В	BIOTI	ECHN	OLC	)GY L	AB		EC	(SE)		0	0	4	2	
PRE	AMBLE												1			
	curricului								-	-						
-	and the	-								ion part	it may d	eals w	ith the j	produ	iction	of
	form cere <b>REQUIS</b>			antible	Sties t	ising s	irepiomy	ces spec	les.							
	JRSE OF			2												
1	To acqu				the n	norpho	logy of c	lifferent	microbe	es.						
2	_			-												
3	To Interpret and analyse the different types of media															
4							y product		8							
5			•	•		0.	nicroorg									
COU	JRSE OU			-			U									
On th	n the successful completion of the course, students will be able to															
CO1	. Determi	ne the	produ	iction	of cit	ric acio	1						Remer	nber		
CO2	CO1. Determine the production of citric acidRememberCO2. Outline the steps involved in the production of ethanol from yeastUnderstand															
CO3	. Illustrate	e the m	nechai	nism c	of win	e prod	uced from	n black	grapes				Analys	se		
CO4	.Understa	and the	proce	ess of	produ	ction of	of antibic	otics from	m Strept	omyces s	pecies.		Evalua	ite		
CO5.	. Outline	the pro	ocess i	involv	red in	the pro	oduction	of prote	ease from	n differer	nt source	s	Evalua	ite		
MAI	PPING V	VITH	PRO	GRAN	MME	OUT	COMES	AND F	ROGR	AMME	SPECIF	IC OI	UTCON	AES		
COS	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSC	01	PSO2	Р
																S O
																3
CO1	М	L	L	-	-	L	L	-	L	-	L	-	-		-	-
CO2	S	-	S	-	L	М	-	-	L	-	-	L	-		-	-
CO3 CO4	М	L	M	- T	L	S	-	-	М	-	L	-	-		-	-
C04	- S	L	L L	L L	S M	-	S M	-	-	-	-	-	-		-	-
	rong; M-	- Mediu			IVI	-	IVI	-	-	-	-	-	-		-	
	LABUS	Iviculu.	III, L-													
1		uction	of Cit	ric aci	id											
2	. Produ	uction (	of eth	anol f	rom h	lack gi	rapes									
- 3		uction				-	L									
4		action (														
						ng Ct-	antorn -	anna	20							
5	. Produ	iction	of An	ubioti	cs usi	ng Stre	eptomyce	es specie	es							

- 6. Production of Vitamins
- 7. Production of growth regulators
- 8. Production of Biofertilizers (N Fixers & P Solubilizers)
- 9. Production of Biocontrol Agents
- 10. Production of Single cell Protein (Spirulina)
- 11. Production of Vermicompost

#### **REFERENCE BOOKS**

1. Cruger, W., Cruger, A., "Biotechnology: A textbook of Industrial Microbiology", Panima Publishing Corporation, New Delhi, 2000

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in

17BTSE10		FFP	MEN	тат	ION L	AR	(	Categor	у	L		Т	Р		Credit
17DISEI0		T L'N				AD	]	EC (SE	L)	0		0	4		2
PREAMBI	Æ														
The curricu							-	-		-	-			•	
for various These study							-				-	ms in f	ermen	tation	process.
PREREQU					iportain	i aspecis i		lentatio	in engli	neering	5				
COURSE															
				ize th	e morpl	hology of	f differ	ent mic	robes.						
2	-				-	it types of									
2	-					aracters o			sms						
						gy produ		Joiguin	51115						
~			-			r microor		15							
COURSE (				<u>r</u>			0								
On the succ				of th	e cours	e. student	ts will	be able	to						
CO1. Deter		-				· · · · · · · · · · · · · · · · · · ·				omass	specifi	c grow	th	Rer	nember
rate and yie	ld coef	fficier	nt			-					-	υ			
CO2. Descr															derstand
CO3. Devel	-								-			olites			alyse
CO4. Evalu	-		-					-	-	-		~			luate
CO5. Asses	s the p	roces	s invo	lvea	in the p	roduction	i or pro	itease n	rom an	iierent	source	s		EVa	luate
MAPPING	WIT	H PR	OGR	AMN	IE OU'	ГСОМЕ	S ANI	) PRO	GRAN	IME S	SPECI	FIC OU	UTCO	MES	5
COS PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PS	02	PSO3
CO1 L	S	L	-	-	L	L	-	L	-	М	-			-	-
CO2 L CO3 M	- L	M S	-	L L	L L	-	-	L M	-	- S	L			-	-
CO3 MI CO4 -	M	L	L	M	L -	- M	-	-	-	-	-			-	-
CO5 L	-	M	L	M	-	M	-	-	-					-	-
S- Strong; N	A-Med	lium;	L-Lov	N	1 1			1		1	1		I		
SYLLABU	S														
1.Growth of		•				Biomass	, Calcu	lation	of µ ar	nd Yp/	S				
2. Producti				-											
3. Producti															
4. Growth									0 ~	_					
5. Solid Sta								-	y & Se	conda	ry)				
6. Producti				-	g Strept	tomycin	species	S							
7. Residence				10n											
8. Producti				ma /NT	<b>D</b> i		2.1.1.11	incret							
9. Production 10. Product						15 & P - S	SOLUDII	izers)							
10.110000		IVIICI	Joural	ווטום	1433										

- 11. Production of Single cell Protein (Spirulina)
- 12. Production of Vermicompost

#### **REFERENCE BOOKS**

- 1. Irwin H.Segel, "Biochemical Calculations", John Wiley & Sons, 2nd Edition, Wiley Publishers, New Delhi. 2011.
- 2. Pierre-Yves Bouthyette, "Fermentation Technologies", 2nd edition, Rai University, Ahmedabad, 2005.

S.No.	Name of the Faculty	Designation	Designation Department			
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in		
2	Mrs.G.Arthi	Assistant Professor	Biotechnology	arthi@vmkvec.edu.in		

17BTSE11		FI	LUID N	MECI	HANI	CS FO	OR		Cate	gory	L	Т	Р	Credit
TIDISEI		B	ΙΟΤΕ	CHN	OLO	GY LA	B		EC	C (SE)	0	0	4	2
<b>PREAMB</b> This lab cc		designe	ed to in	npart	good ]	knowle	edge i	n flui		. ,	oncept		<u> </u>	
PRERQUI	SITE -	Nil												
COURSE	OBJEC	TIVE	S											
1 To l	earn cal	libratio	n of flo	ow me	eters									
2 То с	lescribe	in deta	ail abou	ut the	pressi	ure los	s for f	luid fl	ows					
³ To a	lescribe	about	pump	chara	cteris	tics								
4 To a	emonst	trate in	detail	about	hydro	odynan	nic co	ncepts	•					
COURSE						<b>J</b>		r ~						
On the succ	essful c	complet	tion of	the co	ourse,	studer	nts wil	l be al	ole to					
CO1. Stude	nts will	be fan	niliar w	vith va	arious	varia	ble are	a flov	v meter	s and v	ariable	e Und	lerstan	ł
head flow r	neters													
CO2. Identi	fy the f	undam	ental k	nowle	edge a	bout tl	ne ope	n cha	nnels			Unc	lerstan	d
CO3. Demo	nstrate	the tec	hnique	s for	analy	sing t	he flo	w of f	uids th	rough	closed	App	oly	
conduits														
CO4. Empl	by the k	cnowled	dge of	pump	s for t	he trai	nsporta	ation o	of fluids	s based	on	App	oly	
process con		_												
MAPPING														
COS PO1 CO1 S	PO2 L	PO3 M	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 L	PSO1 L	PSO2	PSO3 L
CO1 S	L	M	-	-	-	-	-	-	-	-		M	-	L
CO3 S	L	М	-	-	-	-	-	-	-	-	L	М	-	L
CO4 S	L	S	-	-	-	-	-	-	-	М	-	S	-	М
S- Strong; I		um; L-	Low											
SYLLABU								~ .	_					
1.		cosity n												
2.		bration					e head	meter	S					
3.		bration					_							
4. 5.	-	n drum				ng um	le							
5. 6.		v throu v throu	-		-									
0. 7.		v throu	-	-	-	sniral	coil							
8.		ses in p	-			-	COII							
9.		racteris	-	-										
10.		sure dr				-	umn							
			•		1		226							

- 11. Hydrodynamics of fluidized bed
- 12. Drag coefficient of solid particle

# TEXT BOOKS

- 1. Frank M. White, Fluid Mechanics (Sixth Edition), Tata McGraw-Hill, New Delhi (2008).
- 2. J. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall (1999).
- 3. W. L. McCabe, W. L. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill International Edition (Sixth edition) (2001).

# **REFERENCE BOOKS**

- 1. R. B. Bird, W. L. Stewart and E. L. Lightfoot, Transport Phenomena (Secondedition), Wiley Singapore (2002).
- 2. M. M. Denn, Process Fluid Mechanics, Prentice Hall (1980).
- 3. Ron Darby, Chemical Engineering fluid Mechanics, Marcel Dekker Inc, NY (1996).

0001					
S.No	Name of the Faculty	Designation	Mail ID		
1	Dr. G. KarthigaDevi	Associate professor	Biotechnology	karthigadevi@avit.ac.in	
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in	

# SPECIALISATION -MEDICAL AND PHARMACEUTICAL BIOTECHNOLOGY

17BTSE12	INDUSTRIAL MANAGEMENT AND	Category	L	Т	Р	Credit
1/010212	PHARMACEUTICAL MARKETING	SE (PS)	3	0	0	3

#### PREAMBLE

This course is designed to impart advanced knowledge and skills required such as Industry plant location, lay out, to learn the concept of pharmaceutical industry, drug manufacture and marketing, various regulatory affairs.

#### PREREQUISITE - NIL

COU	RSE (	)BJE(	CTIVE	S											
1	To s	state th	e know	vledge	about	industr	y layou	it and I	Design						
2	Тое	explain	the ba	sics of	indust	try proc	luction	, storag	ges, qu	ality co	ntrol an	d Perso	nnel m	anage	ment
3	Тос	lemon	strate t	he diff	erent n	nethods	of Pro	duct p	lanning	g, metho	od of m	arketing	g Distril	outior	n police
4			the ba and Lo				ountan	icy and	Princi	ples of	Costing	g, Estim	ating B	alanc	e sheet
5	To a	assess t	he reg	ulatory	v affair	s which	involv	ved in j	pharma	aceutica	l indust	ry			
COU	RSE (	OUTC	OMES												
After	the su	ccessf	ul com	pletior	n of the	e course	, learn	er will	be able	e to					
CO1:	Unde	rline th	ne indu	stry la	yout ar	nd Desi	gn						R	emen	nber
	Discu: gemen		ndustr	y prod	uction	and obs	serve th	ne qual	ity cor	trol and	l Persor	nnel	U	nders	tand
			erent n	nethod	s in ma	arketing	and d	istribut	ion				A	pply	
		•				ing, pro								nalys	e
									maceu	tical ind	lustry			valua	
MAP	PING	WITH	I PRO	GRAN	MME	OUTC	OMES	S AND	PROG	GRAM	ME SP	ECIFIC	COUT	СОМ	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3
CO1	М	L	L	L	-	-	-	-	-	-	-	-	-		-
CO2	S	L	L	L	L	-	L	-	-	-	-	L	L	L	L
CO3	М	L	-	L	L	L	-	-	-	-	-	-	-	L	-
CO4	S	L	L	-	L	-	L	-	L	-	-	-	L	-	-
004		М	L	L	-	· ·	1 -		L	1 .		· ·	S	М	L

# SYLLABUS

# PLANT LOCATION AND LAY-OUT OF AN INDUSTRY

Various factors affecting locational aspect, layout of building and equipment product lay-out v/s process layout, drug store location and selection of premises, drug store management.

# PRODUCTION PLANNING AND CONTROL

Scientific purchasing, quality control, problems of productivity, stores organization, location of stores, receiving, inspection of materials, issue from the store, control of stores and stocks, Store Accounting and Records. Personnel management: Selection, Appointment, training, transfer, Promotion, demotion policies,

remuneration, job evaluation, human relations.

# SALES ORGANISATION

Market, definition–Determent approaches to the study of marketing, institutional approach, Market planning – Product planning, method of marketing, wholesale retailers, functional approach, cost and efficiency in marketing commodity approach. Distribution polices: pharmaceutical product marketing, sales promotion policies-Detailing to physician, professional persons, sampling, window and interior display, product advertising, sales promotion, publicity.

# ELEMENTARY INDUSTRIAL ACCOUNTANCY

Elements of Double entry book Keeping, Books of Accounts-Journal and ledger, cash book. Balance sheet, Profit and Loss Account, Principles of Costing and Estimating.

# **REGULATORY AFFAIRS**

Schedule M of Drugs and Cosmetics act, Drug Development Stages - NDA and NADA filing, ICH guidelines - Introduction.

# TEXT BOOKS

1. New Drug Approval Process: Accelerating Global Registrations by Richard A Guarino, MD,5th edition, Drugs and the Pharmaceutical Sciences, Vol.190.

2. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons.Inc

# **REFERENCES BOOK**

1. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics/edited By Douglas J. Pisano, David Mantus.

2. Guidebook for drug regulatory submissions / Sandy Weinberg. By John Wiley & Sons.Inc.

3. FDA regulatory affairs: a guide for prescription drugs, medical devices, and biologics/edited By Douglas J. Pisano, David Mantus.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A. Nirmala	Assistant professor	Biotechnology	nimmi_aruna@yahoo.com
2	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in

17 <b>P</b>	TSE	12	P	HARN	IACE	UTIC	AL PI	НУТО		Catego	ory	L	Т	Р	Cre	dit
1/D	ISE	13			CHE	MIST	RY			SE (P	PS)	3	0	0	3	5
PREA	MBI	Æ							•			ľ				
	-		-	-		-				nces in					-	
						-				onal dru	ıg desi	gn, pro	drug a	and a	analog d	lesign,
pharma				from n	nedicii	nal plai	nts and	d their	applica	ations.						
PRER	EQU	ISITE	E- NIL													
COUR	RSE (	OBJE	CTIVE	S												
1	То	list the	e Medi	cinal p	lants,	constit	uents,	isolati	on, Ch	aracteri	zation	and pur	ificatio	on of	phyto	
1	cor	nstitue	nts.													
2	То	interp	ret the	basic	conce	pts inv	olved	in drug	g disco	overy						
3	То	execu	te the d	lifferer	nt mec	hanism	of ac	tion in	volved	l in pro	drug d	esign a	nd ana	log d	lesign	
4										medicir						
5	То	genera	ate the	monog	graphs	of herl	oal dru	ıgs								
COUR	RSE (	DUTC	OMES	5												
Recall	the b	oasic ii	nforma	tion of	diffe	rent me	edicina	al plan	ts ,esti	mation	of phyt	0		Re	member	•
constit	uents	, isola	tion pro	ocedure	e and o	charact	erizati	ion of <b>j</b>	phytoc	onstitue	nts					
Demor	nstrat	e the o	concept	ts invo	lved ir	n drug (	discov	very						Un	derstan	d
Practic	e the	prodru	ıg desi	gn and	analo	g desig	gn							Ap	ply	
Estima	te th	e diffe	rent ph	ytocor	nstitue	nts der	ived fi	rom the	e medi	cinal pla	ants			An	alyse	
Design	the 1	nonog	raphs o	of herb	al drug	gs								Cre	eate	
MAPP	PING	WIT	H PRO	GRA	MME	OUTO	COMI	ES AN	D PRO	OGRAN	AME S	SPECIE	FIC O	UTC	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	L	S	-	М	-	-	-	-	-	-	L	-		М	-
CO2	М	L	М	L	S	-	-	-	-	-	-	М	-		М	-
CO3	М	М	М	L	М	-	-	-	-	-	-	М	-		М	-
CO4	S	М	L	М	М	-	-	L	-	-	-	L	-		S	-
CO5	S	М	S	L	М	L	S	L	-	-	-	L	-	-	S	L
S- Stro	ng; N	/I-Med	lium; L	-Low												

# SYLLABUS MEDICINAL PLANTS

Medicinal plants constituents & their Biosynthesis, Isolation, Characterization and purification with a special reference to their importance in herbal industries of following phyto-pharmaceuticals containing drugs-Alkaloids, Glycosides, Steroids and Terpenoids:

# DRUG DISCOVERY

Stages of drug discovery, lead discovery; identification, validation and diversity of drug targets. Biological drug targets: Receptors, types, binding and activation, theories of drug receptor interaction, drug receptor interactions, agonists vs antagonists, artificial enzymes

# PRO DRUG DESIGN AND ANALOG DESIGN

**Prodrug design:** Basic concept, Carrier linked pro drugs / Bio precursors, Pro drugs of functional group, Pro drugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action.

Analog Design: Introduction, Classical & Non classical, Bio isosteric replacement strategies, rigid analogs, alteration of chain branching, changes in ring size, ring position isomers, design of stereo isomers and geometric isomers, fragments of a lead molecule, variation in inter atomic distance

# PHARMACEUTICALS FROM MEDICINAL PLANTS

New pharmaceuticals for the following class of drugs- Drugs Affecting the Central Nervous System: Morphine Alkaloids, Anticancer Drugs: Paclitaxel and Docetaxel, Etoposide Cardiovascular Drugs: Lovastatin, Teprotide and Dicoumarol.

# MONOGRAPHS OF HERBAL DRUGS

General parameters of monographs of herbal drugs and comparative study in IP, USP, Ayurvedic Pharmacopoeia, Siddha and Unani Pharmacopoeia. WHO guidelines in quality assessment of herbal drugs.

# TEXT BOOKS

1. Herbal drug industry by R.D. Choudhary (1996), Eastern Publisher, NewDelhi.

2. GMP for Botanicals - Regulatory and Quality issues on Phytomedicine by

Pulok K Mukharjee (2003), Ist Edition, Business horizons Robert Verpoorte, New Delhi.

3. Text book of Pharmacognosy and Phytochemistry by Vinod D. RangarI (2002), Part I & II, Career Publication, Nasik, India.

# **REFERENCE BOOKS**

1. Drug Formulation Manual by D.P.S.Kohli and D.H.Shah (1998), Eastern Publisher, New Delhi.

2. Quality control of herbal drugs by Pulok K Mukarjee (2002), Business Horizons Pharmaceutical Publisher, New Delhi.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	A.Nirmala	Assistant professor	Biotechnology	nimmi_aruna@yahoo.com								
2	S.Anusuya	Associate Professor	Biotechnology	dr.s.anusuya@vmkvec.edu.in								

17BTSE1	1	M	EDIC	CAL P	HAR	MA(	COLO	GY	0	Catego	ry	L	Т	Р	Credi
1/01561	4		ANI	D DR	UG D	ELI	VERY			SE (PS	)	3	0	0	3
PREAMBLE	E														I
This course is		-	-	-		-			-					-	
systems, cont										t of dis	ease, f	formula	tion, ev	aluation	of nove
drug delivery	syste	ems, n	nerits,	deme	erits a	nd its	applic	cations							
PREREQUI	SITE	– NI	L												
COURSE O	BJEC	TIV	ES												
1	To re	cogni	ze the	e knov	vledo	e on	Molec	ular an	d Cell	ular m	echani	sm of a	ction of	hormon	es
2										agents	centain	5111 01 0		normon	65
											nmune	e respo	nse and	hyperse	ensitivit
	reacti											, iesho			
4	Το εα	onstru	ct the	Rate	Conti	olled	Drug	Delive	rv Svs	stems a	nd thei	ir feedb	ack reg	ilation	
5															
		<u> </u>		ne Nov	vel Di	ug D	elivery	/ Syste	ms and	d their	merits	and de	merits		
COURSE O				<u> </u>	1		1		11						
After the succ			-												
CO.1 Underli	ne the	e mol	ecula	r and o	cellula	ar me	chanis	m of a	ction c	of horm	iones a	ind their	r R	emembe	r
regulation.	.1 1		<b>C</b> 1					1 1		1 1					1
CO2. Discuss	s the b	basics	of ch	nemot	herap	y, An	titung	al and	antıvı	ral dru	gs		L	nderstar	ld
CO3. Illustrat	te the	diffe	rent m	nechar	nism o	of acti	on of i	immun	e resp	onse a	nd		A	pply	
hypersensitiv															
CO4. Employ		ate co	ontrol	led dr	ug de	livery	syster	n and	their fo	eedbac	k regul	lated D	rug A	pply	
Delivery Syst	tems														
CO5. Demon	strate	the c	liffere	ent kir	nd of 1	novel	drug d	leliver	y syste	em			A	pply	
MAPPING V	NITH			AMM											S
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	L	-	-	-	-	-	L	S	-	-	-
CO2 CO3	S	- T	-	L	M	L	-	-	-	-	L	M	-	-	-
CO3	M S	L M	- T	S S	S S	L	-	-	-	-	M M	L	-	-	-
C04 C05	S S	M	L	S M	S S	-	- M	-	-	- L	-	- M	- M	-	-
S- Strong; M-					C	_	141	_	_		-	141	141	1	<u> </u>
0	-wieul	uIII, I		v											
<b>SYLLABUS</b>															

Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones. Anti-thyroid drugs, Oral hypoglycaemic agents, Oral Contraceptives, Corticosteroids. Drugs affecting calcium regulation.

# CHEMOTHERAPY

Cellular and molecular mechanism of actions and resistance of antimicrobial agents such as ß-lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs

# **IMMUNOPHARMACOLOGY**

Cellular and biochemical mediators of inflammation and immune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD. Immuno suppressants and Immuno stimulants

# RATE CONTROLLED DRUG DELIVERY SYSTEMS

Principles & Fundamentals, Types, Activation; Modulated Drug Delivery Systems; Mechanically activated, pH activated, Enzyme activated, and Osmotic activated Drug Delivery Systems Feedback regulated Drug Delivery Systems; Principles & Fundamentals.

# NOVEL DRUG DELIVERY SYSTEMS

Introduction, formulation, merits, demerits, Application and evaluation of following— Mucosal drug delivery system, Transdermal drug delivery system (TDDS), Parenteral implants, ophthalmic inserts, Intrauterine drug delivery system (IUDs), Liposomes, Probiotics and Prebiotics. Gastro retentive drug delivery system, Colon targeted drug delivery system, externally modulated devices and delivery

# **TEXT BOOKS:**

- 1. Y W. Chien, Novel Drug Delivery Systems, 2nd edition, revised and expanded, Marcel Dekker, Inc., New York, 1992.
- 2. Robinson, J. R., Lee V. H. L, Controlled Drug Delivery Systems, Marcel Dekker, Inc., New York, 1992.
- 3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York, Chichester/Weinheim

# **REFERENCES:**

- 1. N.K. Jain, Controlled and Novel Drug Delivery, CBS Publishers & Distributors, New Delhi, First edition 1997.
- Laurence Brunton, Bruce A. Chabner, Bjorn Knollman, "Goodman and Gillman's The Pharmacological basis of therapeutics", 12th Edition, 2011, Publisher: McGraw Hill Education.
- David E Golan, Armen H. Tashjian Jr., Ehrin J. Armstrong, April W. Armstrong, "Principles of Pharmacology. The Pathophysiologic basis of drug therapy", 3rd Edition, 2011, Publisher: LWW.
- 4. Katzung , Bertram, "Basic and Clinical Pharmacology", 14th Edition, 2018, Publisher: McGraw-Hill.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in
2	Dr.S.Anusuya	Associate Professor	Biotechnology	dr.s.anusuya@vmkvec.edu.in

1 <b>7</b> PT	CF15	P	PHARMACEUTICAL ASPECTS OF						C	Categor	У	L	Т	Р	Credi
17BTSE15		MICROBIOLOGY					,	)	3	0	0	3			
PREA	MBLI	£													
This s	ubject	is desi	gned to	o provid	le the a	advance	d knov	vledge	to the	studen	ts in i	nvalual	ole are	as of a	dvance
microł	oiology	whick	h plays	a cruc	ial rol	e in det	termin	ing its	future	use a	nd app	olicatio	ns in 1	medicir	ne, dru
discov	ery, m	echanis	sm of a	ction of	antibio	otics, an	d uses	in pha	rmaceu	utical in	ndustry	<i>.</i>			
		~													
PRER	EQUI	SITE	- NIL												
COU	RSE O	<b>BJEC</b> '	TIVES												
1	Tod	iscuss	the kno	wledge	about	industr	ially ir	nnorta	nt micr	oorgan	ism an	d their	applic	ation	
2		To discuss the knowledge about industrially important microorganism and their application													
		To summarize the basic concepts of Antibiotics and Synthetic antimicrobial agents action													
3		To outline the Mechanism and action of antibiotics													
4	To outline the Mechanisms and action of Bacterial VirulenceTo check the disease causing microorganisms and the corresponding diseases														
5				se caus	ing mic	croorgan	nisms a	and the	corres	pondin	g disea	ises			
	RSE O														
			-			urse, lea									
CO1: 1	Recall	the ba	sic info	ormation	n of inc	dustriall	y impo	ortant r	nicrooi	rganisn	n and t	heir	J	Jnderst	and
applica															
CO2: Describe the difference between the Antibiotics and Synthetic antimicrobial agents											J	Understand			
action	<u> </u>														
CO3: 1	Predict	the M	echanis	sm of ac	ction of	antibio	tics						A	Analyze	•
CO4:	CO4: Detect Bacterial Virulence										A	Analyze			
<u> </u>															
CO5: \	D5: Validate the disease causing microorganism and their related disease										L	Evaluate			
						JTCOM	IES A								S
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	L	-	-	-	-	-	L	S	-	-	-
CO2	S	-	-	L	М	L	-	-	-	-	L	М	-	-	-
CO3	М	L	-	S	S	L	-	-	-	-	М	L	-	-	-
CO4	S	Μ	L	S	S	I _	- I	I _	I _	1 -	Μ	- 1	- 1	I -	I _

L S- Strong; M-Medium; L-Low

L

L

CO5

L

М

S

-

S

L

-

-

М

Μ

М

S

# SYLLABUS MICROBIOLOGY

Introduction –Bacteria, fungi, actionmycetes and virus - structure, chemistry and morphology, cultural, physiological and reproductive features. Methods of isolation, cultivation and maintenance of pure cultures. Industrially important microorganisms - examples and applications

# ANTIBIOTICS AND SYNTHETIC ANTIMICROBIAL AGENTS

Mechanism of action; microbial resistance; therapeutic, prophylactic usage and adverse reactions; Antibiotic and Synthetic antimicrobial agents:  $\beta$ - lactam, aminoglycosides, tetracyclines. Antifungal antibiotics: Griseofulvin; Antiviral drugs: Amantidines; Nucleoside analogues, Interferons, Peptide antibiotics.

# MECHANISM OF ACTION OF ANTIBIOTICS

Inhibition of cell wall synthesis; nucleic acid and protein synthesis. Bacterial resistance to antibiotics; Penetration of antimicrobial agents (cellular permeability barrier, cellular transport system and drug diffusion). Mode of action of non-antibiotic antimicrobial agents; Mode of action of bacterial killing by quinolinones; Bacterial resistance to quionolinones.

# MECHANISMS OF BACTERIAL VIRULENCE

A step wise process of infection – Crossing physical, chemical and biological barriers, Colonization, Association, Adhesion and Invasion of host tissue and toxigenesis with details account of virulence factors.

# MICROBIAL PATHOLOGY

Identifying the features of pathogenic bacteria, fungi and viruses. Mechanism of microbial pathogenicity, etiology and pathology of common microbial diseases and currently recommended therapies for common bacterial, fungal & viral infections.

# **TEXT BOOKS**

- 1. Agarwal S. S. and Paridhavi M., (2007), Herbal Drug Technology, Universities Press (India) Pvt. Ltd
- 2. Altreuter D., and D S. Clark, (1999), Combinatorial Biocatalysis: Taking the Lead From Nature, Curr. Opin. Biotechnol. 10, 130.
- 3. Burn J. H. (1957) Principles of Therapeutics, Blackwell Scientific Pub. O. Ltd. Oxford.

# **REFERENCES:**

- 1. Bentley's Textbook of Pharmaceutics, Editior E. A. Rawlins, 8th Ed. (2002), Publisher: Bailliere Tindall, London
- 2. Burn J. H. (1957) Principles of Therapeutics, Publisher: Blackwell Scientific Pub. O. Ltd. Oxford.

COUR	COURSE DESIGNERS										
S.No.	Name of the	Designation	Department	Mail ID							
	Faculty										
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in							
2	Dr.S.Anusuya	Associate Professor	Biotechnology	dr.s.anusuya@vmkvec.edu .in							

	F14	PHARMACEUTICAL PROCESS						ESS	Ca	tegory	L	T		Р	Credi
17BTS	E10			CHE	EMIS	TRY			SE	E (PS)	3	0		0	3
PREAN	MBL	E													
			0		-		0			lopment	-		•		0
	-	-	-		pharm	aceut	ical in	dustr	y, Diff	erent me	thods inv	volved in	n Unit (	operation	ons and
Industri	al sa	fety n	neasur	es.											
PRERI	EQU	ISITI	E - NI	L											
COUR	SE C	BJE	CTIV	ES											
1	To a	cauire	e knov	vledg	e on b	oasics	of Pro	ocess	chemis	strv in inc	lustrv				
2	To acquire knowledge on basics of Process chemistry in industryTo know the techniques of Extraction, Filtration, Distillation and Evaporation process														
3	To discriminate the Aerobic and anaerobic fermentation														
4	To predict the Impurities in Active Pharmaceutical Ingredient														
5	_			_						sures and		tional H	lealth		
COUR	SE O	UTC	OME	S											
CO1: A	fter t	he su	ccessf	ful co	mpleti	ion of	the co	ourse,	learne	er will be	able to				
CO2: K	Lnow	the b	asic k	nowl	edge o	on Pro	ocess o	chemi	stry				Ur	ndersta	nd
CO3: O process				iques	of Ex	tracti	on, Fil	ltratio	on, Dist	tillation a	nd Evap	oration	Ur	ndersta	nd
•		•		erenti	ate th	e Aer	obic a	nd an	aerohi	c ferment	ation pro	)Cess	Δr	nalyze	
											_			•	
CO5: V	alida	te the	e Imp	urities	5 in A	cuve	Pnarr	nacei	itical I	Ingredier	10		EV	aluate	
CO6: P	erfor	m the	Indus	strial S	Safety	meas	sures a	and O	ccupat	ional Hea	ulth in wo	ork place	e Ap	oply	
MAPP	ING	WIT	H PR	OGR	AMN	IE O	UTCO	OME	S AND	PROGE	RAMME	E SPEC	IFIC O	UTCC	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	L	-	-	-	-	-	L	S	-	-	-
CO2	S	-	-	L	М	L	-	-	-	-	L	М	-	-	-
CO3	M	L	- T	S	S	L	-	-	-	-	M	L	-	-	-
CO4 S- Stroi	S	M I Mad	L	S	S	-	-	-	-	-	М	-	-	-	-
	0		uum,	L-L0	vv										
SYLLA				<b>D Z</b> 7											
PROC					~~ C4		fasi			Danah		1			
						•				: Bench, j ase studie		0	-		
m-hine		Junio	anu v	anua		1 Iai g	c scale	- hior		ase studie	o or som	i scare l	ap proc	<b>U</b> 00.	

a) Extraction: Liquid equilibria, extraction with reflux, extraction with agitation, counter current extraction.

b) Filtration: Theory of filtration, pressure and vacuum filtration, centrifugal filtration,

c) Distillation: steam distillation.

d)Evaporation: Types of evaporators, factors affecting evaporation.

#### **UNIT PROCESSES**

Fermentation: Aerobic and anaerobic fermentation. Production of Antibiotics- Penicillin and Streptomycin .Vitamins: B2 and B12

#### IMPURITIES IN API (ACTIVE PHARMACEUTICAL INGREDIENT)

Impurities in API and their types including genotoxic impurities. Isolation, characterization and profiling of impurities in APIs with at least one example

#### INDUSTRIAL SAFETY

MSDS (Material Safety Data Sheet), hazard labels of chemicals and Personal Protection Equipment, Fire hazards, Occupational Health, Effluents and its management.

#### **TEXT BOOKS:**

- 1. Burger A., A Guide to the Chemical Basis of Drug Design, Volume 1-8, Wiley Interscience Publication (John Wiley & Sons), New York.
- 2. Sharma A.M., Safety and Health in Industry A Handbook, BS Publications Hyderabaad.

#### **REFERENCES:**

1. Pharmaceutical Manufacturing Encyclopedia, Volume 2.

Gadamasetti K., Process Chemistry in the Pharmaceutical Industry: Challenges in an Ever-Changing Climate-An Overview, Vol-2, CRC Press, London

COURSE DESIGNERS											
S.No.	Name of the	Designation	Department	Mail ID							
	Faculty										
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in							
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in							

17BTSE17	PHARMACOGENOMICS	Category	L	Т	Р	Credit
I/DISEI/	THARMACOGENOMICS	SE (PS)	3	0	0	3

#### PREAMBLE

The course provides fundamental knowledge in pharmacogenomics and implementation of pharmacogenomic studies. The detailed study on human drug response, drug metabolizing enzymes, methods and applications will be focused.

#### **PREREQUISITE - NIL**

COUR	SE O	BJEC	TIVE	S											
1	To st	tudy a	bout i1	npact	of pol	ymorp	ohism	in hur	nan ge	enome a	and app	olication	ns.		
2	To k	now a	bout f	unctio	nal an	alysis	of ger	ne var	iation						
3	To u	nderst	and th	e drug	g dose	respoi	nse rel	ations	ships v	vith pha	armaco	genetic	s.		
4	To u	nderst	and th	e geno	omics	of bio	tech p	roduc	ts						
5	To st	tudy a	bout tl	ne pha	rmaco	genon	nics ap	oplica	tion in	diseas	es				
COUR	SE O	UTCO	<b>)MES</b>												
CO1: K	Lnow a	about t	he dif	ferent	metho	od of a	nalysi	ng the	e gene	variati	on		τ	Understa	nd
CO2: D	Discuss	s the re	espons	se of g	ene to	wards	drug						τ	Understa	nd
CO3: A	analys	e the t	echnic	lues in	biote	ch pro	ducts						A	Analyze	
CO4: A	nalys	e the t	echnic	jues in	medi	cine							I	Evaluate	
CO5: E	xemp	lify the	e geno	mics o	of dise	ase							I	Evaluate	
MAPP	ING V	WITH	PRO	<b>GRA</b> ]	MME	OUT	СОМ	ES A	ND Pl	ROGR	AMM	E SPEC	CIFIC	C OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	L	-	-	-	-	-	L	S	S	-	-

CO3 М S S L L --CO4 S S Μ L S --

_

L

Μ

L

_

S- Strong; M-Medium; L-Low

_

S

# SYLLABUS

CO2

# INTRODUCTION TO PHARMACOGENOMICS

Historical perspectives and current status, Human Genome and Genomic Applications, Genetic Polymorphism of Metabolic Reactions, SNPs, Association Studies in Pharmacogenomics, Study on industries developing pharmacogenomic research

_

-

_

-

-

_

-

-

Μ

L

-

_

-

-

_

-

-

_

_

-

L

М

Μ

# FUNCTIONAL ANALYSIS OF GENE VARIATION

Transfection Assays With Allele-Specific Constructs: Functional Analysis of UDP-Glucuronosyltransferase Variants, CYP 2D6, CYP2C19 in drug metabolism, Snapshot of the Allele-Specific Variation in Human Gene Expression, Genome-Wide Analysis of Allele-Specific Gene Expression Using Oligo Microarrays, Roche Ampli Chip, HaploChIP: An In Vivo Assay.

# HUMAN DRUG RESPONSE

Pharmacological profile of Human drug response, pharmacokinetics in pharmacogenetics, Drug-dose response relationships in pharmacogenetics, the genetic profile of Human drug response, Twin studies in pharmacogenomics

# **BIO-TECH PRODUCTS**

Biotechnology and Related Techniques: Protein engineering, peptide chemistry and peptidomimetics, nucleic acid technology, catalytic antibodies and glycobiology; Present products in medicine: Insulin, GH, Vaccines, Monoclonal antibodies, FSH, Tissue plasminogen activator (t-PA) ; Pharmacokinetics and dynamics of the peptide and protein drugs.

# PHARMACOGENOMICS IN MEDICINE

Pharmacogenomics of Cardiovascular Diseases, Pharmacogenomics of Cancer treatment(Herceptin as model), Pharmacogenomics of Neurodegenerative Diseases, Inflammatory bowel syndrome, Pharmacogenomics in Depression, Pharmacogenomics and Respiratory diseases, Pharmacogenomics in AIDS, Pharmacogenomics in Antibiotics.

# **TEXT BOOKS:**

1. Pharmacogenomics: Methods and Protocols (Methods in Molecular Biology) First Edition (2005) Federico Innocenti, Humana Press Inc, New Jersey, USA.

2. Pharmacogenomics and Personalized Medicine (Methods in Pharmacology and Toxicology) First Edition (2005) Nadine Cohen, Humana Press Inc, New Jersey, USA

# **REFERENCES:**

1. An A-Z Guide to Pharmacogenomics, First Edition (2006) M.C. Catania, Published by American

Association for Clinical Chemistry

2. Pharmacogenomics: Social, Ethical, and Clinical Dimensions, First Edition (2003) Mark A. Rothstein, Wiley-Liss Publications.

COUR	SE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.S.Vinoth	Assistant Professor	Biotechnology	vinoth@avit.ac.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

1 <b>7</b> D	STSE1	Q	п	RBS		יוסח		יחודי	N	Categ	ory	L	Т	Р	Credit
17D	ISEI	0	пе	ADS	AND	DKU	GAU	.110		SE (F	PS)	3	0	0	3
PREA	MBL	E									I			1 1	
This c	ourse	is one	e of th	ne mo	st adv	vance	d intr	oduct	ions ii	n Herb	s and	drug a	action	that is	offered
Studen	ıts wil	l learn	about	classi	ficatio	on of I	Medic	cinal F	Plants,	drugs a	and all	ergic r	eaction	s, their	Science
and me	echani	sm of	action	of dru	ıgs, di	fferer	nt mee	licina	l plant	s used t	for var	ious d	iseases	etc. Ho	ow herbs
influer	ice ou	r physi	iology	and ca	an be l	helpfu	ıl aga	inst se	everal o	disorde	rs.				
PRER	EQU	ISITE													
NIL															
COUF	RSE O	BJEC	TIVE	S											
1	To ac	quire l	knowle	edge a	bout t	he me	edicin	al pla	nts and	l classif	ficatio	n.			
2	To st	udy the	e basic	c conc	epts o	f alle	rgens	invol	ved in	allergi	c react	tion			
3										n living					
4													of com	mon di	sease
5									-	illness					
COUF			OMES												
After t	he suc	cessfu	l comp	oletion	of the	e cou	rse, le	arner	will be	e able to	0				
CO1. 7	Го Kn	ow the	basic	infor	natio	n of c	liffere	ent me	dicina	l plants	their	uses		Reme	mber
CO2. 7	Го Gai	in info	rmatio	n abou	it alle	rgens	invol	ved ir	allerg	gic reac	tions			Under	stand
CO3. 7	Го Eva	aluate	the me	chanis	sm act	ion of	f drug	s in li	ving s	ystem				Analy	rse
CO4. 7	Γο An	alyse t	he vari	ous m	edicir	nal pla	ants u	sed fo	r treat	ment of	f com	mon di	sease	Analy	rse
CO5. 7	Го For	ecast t	the dise	ease m	anife	statio	n and	treatn	nent w	ith med	licinal	plants		Evalu	ate
MAPH	PING	WI	ГН І	PROG	RAN	IME	OU	TCO	MES	AND	) PR	ROGR	AMMI	E SP	ECIFIC
OUTC							00								
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COD			L	М	L	-	S	S	L	L	М	S	М	M	S
CO1	-	-		1	L	-	М	L	L	М	М	S	М	S	-
	-	M	-	L	L	-									
CO1	- - S	M M	-	L L	L M	L	M	М	М	L	М	М	S	S	-
CO1 CO2							M M	M L	M M	L M	M L	M M	S S	S L	- L

S- Strong; M-Medium; L-Low

# SYLLABUS

# INTRODUCTION TO MEDICINAL PLANTS

Terminologies – Definitions – Classification of medicinal plants based on their effects – Ecological status with special reference to India.

# ALLERGENS

Allergens – types – sources – active principles – Chemical nature – Cell modifiers – Lectins – mutagens, teratogens – Allergic reactions with known examples

# **MECHANISM OF DRUG ACTION**

Drugs acting on brain and nervous system – Rheumatic arthritis – Psychoactive drugs – Depressants, Stimulants, hallucinogens – sources, effects, basic mechanism of action

# DRUGS FROM MEDICINAL PLANTS

Cardiovascular diseases – blood pressure – cardiac drugs of plant origins – alkaloids, anticoagulants – basic mechanism of action. Pulmonary / respiratory disorders – asthma – bronchitis – common cold – allergy – Remedy from plants.

# DISEASE MANIFESTATION AND COMMONLY USED MEDICINAL PLANTS

Drugs for urinogenital disorders – roots of *Withania somnifera* – Memory stimulants – *Centella asiatica* – Drugs for dissolving kidney stones – *Musa paradisica* (pseudo stem) – Anti-inflammatory drugs – Cardiospermum – Anticancer drugs – *Catharanthus roseus* 

### **TEXT BOOKS:**

1. R. Cassileth, K. Simon Yeung, Jyothirmai Gubili , 2010. Herb-Drug Interactions in Oncology, 2nd edition 2nd Edition, People\'s Medical Publishing House

### **REFERENCES:**

1. 1. Kumar, N.C. (1993). An Introduction to Medical botany and Pharmacognosy. Emkay

Publications, New Delhi.

2. Rao, A.P. (1999). Herbs that heal. Diamond Pocket Books (P) Ltd., New Delh

COU	COURSE DESIGNERS												
S.N	Name of the Faculty	Designation	Department	Mail ID									
0.													
1	Dr.A.Nirmala	Assistant Professor	Biotechnology	nimmi_aruna@yahoo.com									
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									

17070	<b>F10</b>	GVII	тра	SED	DTI		EDICI	NIE	(	Catego	ſy	L	Т	Р	Credit
17BTS	E19	SKII	LL BA	SED	EIHI		EDICI	NE		EC(SE	)	3	0	0	3
of plant	nedici and a n treat EQUI SE O To st To e To d	ine cou cribed lso ga ting va SITE BJEC tate the emons evelop	both s in kno rious o – NIL TIVE e scope the fu trate th o an un	cienti wledg diseas 8 e and inctio he dif dersta	fically ge on t es. history ns and ferent anding	y of pe tribal of the	culturall	ly. St , cha ad pla s ne us tance	ople a udent racter ant int ed for	and plan s learn ization eractio diseas	nts wit about and th n from e diagr	h a bro the soc the uses the pas	ad surv ial impa of diffe	rey on o act of p erent m	diversity lants on redicinal
COUR	-														
After th				letior	of the	e cours	se, learn	ner w	ill be	able to					
CO1. R	ecall	the ba	asic in	forma	tion a	nd eth	nic kno	wled	ge abo	out plai	nts		Re	ememb	er
CO2. D	emon	strate	the kn	owled	lge abo	out the	uses of	f mec	licina	l plants			Uı	ndersta	nd
CO3. I treatme		te the	uses (	of diff	erent f	ribal ı	medicin	e for	[·] disea	se diag	nosis a	und	Aj	oply	
CO4. A medicir			traditio	onal k	nowle	dge ar	nd utility	y of s	some	commo	only use	ed	Aı	nalyze	
CO5. D	evelo	p the c	cosmet	ics us	ing me	edicina	al plants	s					cre	eate	
MAPP	ING V	WITH	PRO	GRA	MME	OUT	COME	CS Al	ND PI	ROGR	AMM	E SPE	CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-			S		-	М		-	-	-	-	-	-	-
CO2	S	М				М	-	-	-	-	-	-	-	-	-
CO3	S		М		-	-	-	-	-	-	-	S	-	-	-
CO4	S			S	M	S	M	-	-	-	-	-	-	-	-
CO5 S- Stroi	M ng; M·	 -Mediu	 um; L-	S Low	М	S	М	E	-			S	-	-	-

## **SYLLABUS INRODUCTION TO ETHNOMEDICINE**

Ethno medicine – definition, history and its scope – Inter disciplinary approaches in ethno botany – Collection of ethnic information.

# MEDICINAL PLANTS AND HEALTH CARE

Importance of medicinal plants – role in human health care – health and balanced diet (Role of proteins, carbohydrates, lipids and vitamins).

# **TRIBAL MEDICINE**

Tribal medicine – Plants in folk religion – Aegle marmelos, Ficus benghalensis, Curcuma domestica, Cyanodon dactylon and Sesamum indicum- methods of disease diagnosis and treatment.

# MEDICINAL PLANTS IN DAY TO DAY LIFE

Traditional knowledge and utility of some medicinal plants in Tamilnadu - Solanum trilobatum, Cardiospermum halicacabum, Vitex negundo, Adathoda vasica, Azadirachta indica, Gloriosa superba, Eclipta alba, Aristolochia indica, Phyllanthus fraternus and Boerhaavia diffusa. Ocimum sanctum, Centella asiatica, Solanum trilobatum, Cassia auriculata, Aloe vera.

# HERBAL PLANTS USED IN COSMETICS

Plants used as a cosmetics-Almond (Prunus dulcis), Aloe (Aloe vera), Argan Tree (Argania spinosa), Buriti Palm (Mauritia flexuosa), Cinnamon (Cinnamomum verum), Grape (Vitis vinifera), Lemonbalm (*Melissa officinalis*), Malabar Tamarind (*Garcinia cambogia*)

# **TEXT BOOKS:**

- 1. Ethnobiology R.K.Sinha & Shweta Sinha 2001. Surabhe Publications Jaipur.
- 2. Swapan Kumar Kolay, Ethno-medicine for Traditional Health Care, 2016,

Publisher B.R. Publishing Corporation

# **REFERENCES:**

1. Tribal medicine – D.C. Pal & S.K. Jain 1998, Naya Prakash, 206, Bidhan Sarani, Calcutta – 700 006. 2. Contribution to Indian ethnobotany – S.K. Jain 1995, 3rd edition, Scientific publishers, P.B.No. 91, Jodhpur, India.

3. A Manual of Ethnobotany – S.K.Jain, 1995, 2nd edition.

COUR	SE DESIGNERS			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr. A.Nirmala	Assistant Professor	Biotechnology	nimmi_aruna@yahoo.com

17	BTSI	E <b>20</b>				ACEU			7	Categ	ory	L	-	Т	Р	Credit
				IENII	51K	Y LAB	OUKA	TORY		SE (F	PS)	0	)	0	4	2
PRE	AMB	LE														
					•									<b>·</b> ·	-	tion and
devel wash	-	nt of	phari	maceu	tical	produc	cts lik	ke Syr	ups, p	owders	s, supp	ositori	es, g	argle	es an	d mout
PRE	REQ	UISIT	$\mathbf{E} - \mathbf{N}$	١IL												
COU	RSE	OBJE	CTT	VES												
1		To k	now c	ertain	prope	erties c	of raw	materi	als use	ed in dr	ug prej	paration	ns			
2		To cl	assify	com	pound	based	on th	e react	ions							
3		To fo	ormula	ate sy	rup, p	owders	s, supp	positor	ies, ga	rgles ar	nd mou	th wasl	hes			
COU	IRSE	OUT	COM	ES				-								
On th	ne suc	cessfu	l com	pletio	n of tl	ne cou	rse, sti	udents	will be	e able t	0					
CO1.	. Unde	erstand	the c	liffere	nt typ	es of r	eactio	on durii	ng drug	g prepa	ration			Unc	lersta	nd
CO2	. Dem	onstra	te abc	out the	react	ion in	drug p	prepara	tions					App	oly	
CO3.	. Test	the me	elting	and b	oiling	point	of the	given	sample	e				Ana	lyze	
CO4	. Disti	nguisł	the r	reactio	ns in	drug p	repara	ations						Ana	lyze	
CO5.	. Prepa	are the	drug	based	l on ty	pe of a	reaction	on						Cre	ate	
MAI	PPINO	G WI	TH PI	ROGI	RAM	ME O	UTCO	OMES	AND	PROG	RAM	ME SP	ECI	FIC		
	COM			-		-		_		-	-					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	01	PSO2	PSO3
CO1	S	-	-	-	М	S	М	-	-	-	-	-		-	М	-
CO2	S	S	М	-	-	-	-	-	-	-	-	-		-	S	-
CO3         S         S         M         S         -         -         -         -         M         S         -													-			
CO4	S	S	S	-	S	-	-	-	-	-	-	-	1	-	Μ	-

# SYLLABUS

- 1. To analyze the presence of acid radicals (anions) in the given mixture.
- 2. To perform detection of group I and group II radicals
- 3. To perform determination of melting point and boiling points.
- 4. Preparation of simple organic compounds based on different types of reactions
- a) N-Acetylation : Preparation of Acetanilide from Aniline
- b) O-Acetylation : Preparation of Aspirin from Salicylic acid
- c) Bromination : Preparation of p-Bromoacetanilide from Acetanilide
- d) Hydrolysis : Preparation of p-Bromoaniline from p-Bromoacetanilide
- e) Nitration : Preparation of m-dinitrobenzene from Nitrobenzene/picric acid from phenol
- f) Reduction : Preparation of m-nitro aniline from m-dinitro benzene.
- g) Oxidation : Preparation of Benzoic acid from benzyl chloride / benzyl alcohol.
- h) Esterification : Preparation of Benzyl benzoate from benzoyl chloride.

## **REFERENCES:**

1. Laboratory Manual.

#### **COURSE DESIGNERS**

COUR	DEDIGITERD			
S.No.	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

171	BTSE21	זס	IVTO	СПЕ	MISTRY LA	P	Ca	tegory	L	T		Р	C	Credit	
1/1	BISE21	PE	IIIU	CHE	AVIISIKI LA	A D	S	E (PS)	0	0		4		2	
PREA	AMBLE										I				
The c	ourse aims to	o prov	ide stu	udents	s with the nece	essar	y skil	s for se	parati	on of t	he acti	ve con	stituent	ts obtai	ned
from	natural sour	ces (al	kaloio	ds – g	glycosides – C	Coun	narins	Tanni	ns) in	additi	on to t	he dif	ferent n	nethod	s of
separa	ation (chrom	atogra	phy)	and t	hen identify the	hese	active	e ingreo	lients	either	in pur	e form	of a n	nixture	- as
well a	s the differe	nt met	hods t	o eva	luate these co	mpo	nents.								
PREI	REQUISITI	E – Bio	ochem	istry											
COU	RSE OBJE	CTIV	ES												
1	To acquires	and re	cogni	ze the	e basics of san	nple	collec	tion,ide	ntify p	ant pov	vder.				
2	To Interpret	and a	nalyse	the r	outine phytoc	hem	ical ar	alysis t	est	-					
3	-				nds like Alkalo					oids ar	d thei	glylo	sides u	sing	
	different me			-P		,		,	r			8-9		8	
4	To assess th	ne phy	to che	mical	l constituents	of pl	ants								
5					erent phyto con			from pla	ants						
COU	RSE OUTC	OME	S												
On th	e successful	compl	etion	of the	e course, stude	ents v	will be	able to	)						
CO1.J	Recall the b	asic in	forma	tion o	of sample coll	lectio	on. pro	ocess an	d stor	age me	ethods		Remer	nber	
					ochemical con		_			0			Unders		
					ke Alkaloids,			1	noids	and the	eir		Analys	se	
	sides using o		-				,	1					2		
CO4.7	Test, Extract	, isolate	es and	identif	fies the active su	ıbstaı	nces of	the med	icinal p	lants.			Evalua	ite	
CO5.	Validate the	differ	ent ph	yto c	onstituents fro	om p	lants						Evalua	ite	
MAP	PING WIT	H PR(	)GR/	AMM	E OUTCOM	ES .	AND	PROG	RAM	ME SP	PECIF	IC OI	TCON	/IES	
COS		PO2		PO4			PO7	PO8	PO 9		PO11		PSO	PSO	PS
001		~											1	2	0
CO1 CO2	L	S	L	-		M	М	-	L	-	М	-		-	-
CO2 CO3	L M	- L	M S	-	S S	M L	-	-	L M	-	- S	М		-	-
CO3	- IVI	L M	S L	- L	S	L -	- L	-	IVI	-	-	-		-	-
CO5	L	-	M		S	-	M	-	-	-				-	+
	rong; M-Med	lium S									I	1		1	1

I. Preparation of extracts of Organized crude drugs/Herbs by successive solvent extraction method to record the percentage yield and physical status of the respective extracts and for subjecting them to phytochemical screening.

II. Detection of Phytoconstituents such as i) Alkaloids, ii) Steroids, Triterpenoids and their glylosides and Saponins iii) Flavonoids and their glycosides iv) Anthracene Glycosides v) Coumarins vi) Tannins by Test

Tube and TLC methods.

III. a) Identification of alkaloids in a mixture by TLC b) Colour reactions of different groups of Alkaloids.IV) Detection, extraction and estimation of volatile oils by Clevenger's method (Hydro distillation method)TLC of Volatile oils and their pure constituents.

V) Identification of mono saccharides by paper chromatography

VI) Analysis of recorded spectra of some simple phytochemicals.

# TEXT BOOKS

1. Principles and Practice of Phototherapy: Modern Herbal Medicine" (2000) by Mills S., Bone K., Corrigan D., Duke J.A. and Wright J.V. Churchill Living Stone, Edinburgh; New York.

# **REFERENCE BOOKS**

1. Medicinal Plant Constituents" (1981), 3rd ed. by Balbaa S., Hilal S.H. and Zaki A.Y., Egyptian Dar Elkotob, Cairo.

2. The Systemic Identification of Flavonoids" (1970) by Mabry T.J., Markham K.R. & Thomas M.B., Springer-Verlag, Berlin–Heidelberg– New York.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.B.Prabasheela	Associate Professor	Biotechnology	prabasheela@avit.ac.in
2.	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in

1707			РНА	RMA	CEUTI	<b>[CAL</b>		Cate	gory	I		Т	Р	Cre	dit
1781	SE22		MICE	ROBIC	DLOGY	Y LAB		SE	(PS)	(	)	0	4	2	
PREA	MBLE														
The c	ourse ai	ms to p	provide	e stude	ents wi	th the i	necessa	ry skil	lls for	the re	search	and c	levelop	ment of	anti-
														in prosp	
0			micro	organis	sms in	the mar	ufactu	re of pl	harma	ceutica	l produ	icts lik	te insul	lin and h	uman
growt	h hormo	ne.													
PRER	REQUIS	ITE													
NIL															
COU	RSE OB	JECTI	VES												
1	To acc	uire and	d recog	gnize tł	ne morp	hology	of diff	erent n	nicrob	es.					
2	To Inte	erpret a	nd anal	lyse the	e differ	ent type	es of me	edia							
3	To dis	tinguish	the bi	ochem	ical cha	aracters	of mic	roorga	nisms						
4	To che	ck the p	oure cu	ltures	by diffe	erent str	eaking	metho	ds						
5	To ass	ess pres	ervatio	on proc	edure f	for micr	oorgan	isms							
COU	RSE OU	-													
On the	e success	ful con	pletio	n of the	e course	e, stude	nts will	be abl	le to						
CO1.F	Recall th	e basic	inform	nation	of mor	phology	y and p	reparat	ion of		Reme	ember			
variou	s culture	e media													
	Describe								S		Unde	rstand			
	Estimate	-	-			-					Anal	yse			
CO4. '	To comp	oare, Ex	tract, is	solates	and ide	entifies	the mic	crobes.			Evalu	iate			
CO5. 1	Estimate	the dis	infecta	nt and	oligod	ynamic	action				Evalu	iate			
MAP	PING W	ITH P	ROGE	RAMM	IE OU'	ГСОМ	ES AN	D PRO	OGRA	MME	SPEC	CIFIC	OUTC	COMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	S	L	-	-	М	М	-	L	-	М	-		-	-
CO2	L	-	М	-	S	М	-	-	L	-	-	М		-	-
CO3	М	L	S	-	S	L	-	-	М	-	S	-		-	-
CO4	-	М	L	L	S	-	L	-	-	-	-	-		-	-
CO5		-	M	L	S	-	М	-	-	-				-	-
	ong; M-l	vledium	1 S; L-I	LOW											
	ABUS	ation to		monto	nd aloo		and in	mianak		lahan	tom				
1.		iction to	1 1		e			merot	norogy		atory.				
2.	Study of	of morp	hology	ot dif	terent r	nıcrobe	S								
3.	-	ation of			re med	ia, culti	vation	of mici	robes a	und obs	servatio	on of			
	colony	charact	eristics	S.											

- 4. Sterilization techniques (moist and dry heat) and their validations.
- 5. Aseptic transfer of culture into different types of media.
- 6. Characterisation of microbes by staining techniques (simple, gram's, acid fast and negative staining).
- 7. Study of motility of bacteria by hanging drop method.
- 8. Characterization of microbes through Bio chemical reactions:
  - a. Indole test.
  - b. Methyl red test.
  - c. Voges proskauer test.
  - d. Starch hydrolysis test.
  - e. Fermentation of carbohydrates.
- 9. Isolation of pure cultures by streak plate, spread plate & pour plate techniques.
- 10. Enumeration of bacteria by pour plate/spread plate technique
- 11. Enumeration of bacteria by direct microscopic count.
- 12. Evaluation of any disinfectant by phenol coefficient test
- 13. Study of Oligodynamic action (of metals on bacteria)
- 14. Preservation of microrganisms (slant and stab cultures)
- 15. Microbiological Analysis of Water.

# **REFERENCE BOOKS**

- Garg, F C Experimental Microbiology 1.
- 2. Gaud.R.S, Gupta G.D, Practical Microbiology
- 3. Vanitha Kale and kishore Bhusari, Pratical microbiology principles and Techniques

COUR	COURSE DESIGNERS:												
S.No.	Name of the	Designation	Department	Mail ID									
	faculty	_											
1.	Dr. S. Vinoth	Assistant Professor	Biotechnology	vinogenes@gmail.com									
2.	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in									

17BT	'SE23	5		ANAI							Categ	ory	L	Т	Р	Credit
1121	011		РНА	RMA	CEU	ТІСА	L LA	BOR	ATOR	Y	SE (F	PS)	0	0	4	2
PREA	MBI	<b>LE</b>														
		ourse i	is desi	gned	to imp	part go	ood kr	nowle	dge in v	variou	s analy	tical to	echr	nique	es in pl	harmaceutio
indust																
<b>PRER</b> Nil	QUI	SITE														
1111																
COU	RSE (	OBJE	CTIV	ES												
1	To i	nterp	ret the	impo	tance	of cal	ibratio	on in a	apparati	18						
2		To express the different types of Titration processes														
3																
	Tos	To summarize the knowledge on gravimetric methods														
4	То	To demonstrate the Chromatographic techniques for product purification.														
5	То	To outline the extraction techniques to separate biomolecules.														
COUI						liiiqu		separa		loiecu	1105.					
				-10	of the	cours	se, stu	dents	will be	able t	0					
			_						pharm			atry		Un	derstan	d
												isti y.				
CO2. 1	Identi	fy the	funda	menta	l knov	wledge	e abou	it the	gravim	etric a	nalysis			Une	derstan	d
CO3. 1	Demo	nstrat	e the t	echnic	ques f	or the	separa	ation (	of amin	oacid	S			Un	derstan	d
CO4.	Emplo	ov the	separ	ation 1	ising o	chrom	atogra	phic	techniq	les				Ap	olv	
CO5. ]	-	•	-				-	- <b>F</b>	1					Ap		
0001	liuoti		speed	loscol	10 100	mqu								• •PI	<u>j</u>	
MAP	PING	WIT	H PR	OGR	AMM	E OU	TCO	MES	AND F	PROG	RAMN	1E SP	EC	IFI	C OUT	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	М	L	L	-	-	-	-	-	-	-	-	L		L	-	L
CO2	S	М	S	-	-	-	-	-	-	-	-	L		L	-	L
CO3	М	L	М	-	-	-	-	-	-	-	-	L		М	-	L
CO4	L	L	L	-	-	-	-	-	-	-	М	-		S	-	М
CO5	S	М	L	-	-	-	-	-	-	-	L	-		S	-	М
S- Stro	ong; N A <b>BU</b>		dium;	L-Lov	V											

- 1. Standardization of analytical weights and calibration of volumetric apparatus.
- 2. Acid Base Titrations ; Preparation and standardization of acids and bases, some exercise related with determination of acids and bases separately in mixture form, some official assay procedure e.g. boric acid should also be covered.
- 3. Oxidation reduction titrations; Preparation and standardization of some redox titrants e.g. potassium permanganate, potassium dichromate, iodine, sodium thiosulphate, etc., some exercises related to determination of oxidizing and reducing agents in the sample shall be covered. Exercises involving potassium iodate, potassium bromate, iodine solution, titanous chloride, sodium 2,6,-di chlorophenol indophenol, ceric ammonium sulphate be designed.

- Precipitation Titrations ; Preparation and standardization of titrants like silver nitrate 4. and ammonium thiocyanate, titrations according to Mohrs Volhards and Fajans methods.
- 5. Gravimetric Analysis : Preparation of Gooch crucible for filtration and use of sintered glass crucible, determination of water of hydration, some exercises related to gravimetric analysis should be covered.
- 6. Non-aqueous Titrations ; Preparation and standardization of perchloric acid and sodium/ potassium/lithium methoxides solutions, Estimations of some pharmacopoeial products.
- 7. Complexometric titrations ; Preparations and standardization of EDTA solution, some exercises related to pharmacopoeial assays by complexometric titrations.
- 8. Separation & identification of amino acids by paper chromatography
- 9. Separation & identification of alkaloids by TLC
- 10. UV spectrometric determination of Ibuprofen

# **TEXT BOOKS**

- 1. Atherden, L.M. "Bentley and Driver's Textbook of Pharmaceutical Chemistry". 8th Edition, Oxford University Press, 1977.
- 2. Siddiqui, Anees A. "Pharmaceutical Analysis". Vol.I & II, CBS, 2006.
- 3. Parimoo, P. "Pharmaceutical Analysis". CBS, 1998.
- 4. Higuchi, Tekeru and Brochmann, Einar "Pharmaceutical Analysis". CBS Publishers, 1997.

### **REFERENCE BOOKS**

- 1. Gennaro, Alfonso R. "Remington : The Science and Practice of Pharmacy" Vol. I & II, 20th Edition, Lippincott Williams & Wilkins / B.I. Publication, 2000.
- 2. Connors, Kenneth A. "A Textbook of Pharmaceutical Analysis". 3rd Edition, Johnwiley & Sons, 1982.
- 3. Ohannesian, Lena and Streeter, A.J. "Handbook of Pharmaceutical Analysis". Marcek Dekker, 2002.
- 4. Stahl, Egon "Thin Layer Chromatography : A Laboratory Handbook". 2nd Edition, Springer, 2005

COUF	RSE DESIGNERS			
S.No	Name of the	Designation	Department	Mail ID
	Faculty		_	
1	Dr. G. Karthigadevi	Assistant Professor	Biotechnology	devigk19@gmail.com
2	Mrs. C. Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in

# CATEGORY 'C' – OPEN ELECTIVE COURSES -6 - 9 CREDITS

17CSCC02	OBJECT ORIENTED	Category	L	Т	Р	Credit
	PROGRAMMING	FC(ES)	3	0	0	3

#### PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions.

# PRERQUISITE

Nil

COU	RSE OBJECTIVES								
1	To implement the concepts of object oriented programming.								
2	To learn the syntax and semantics of C++ programming language								
3	To design C++ classes for code reuse, Constructors and member functions								
4	To learn how inheritance and virtual function implement dynamic binding with polymorphism								
5	To learn and implement the concepts of Templates and Exception handling								

# **COURSE OUTCOMES**

On the successful completion of the course, students will be able to	
CO1. Construct object-oriented programs for a given scenario using the	Apply
concepts of abstraction, encapsulation, message-passing and modularity.	
CO2. Develop object-oriented programs for a given application using the	Apply
concepts of compile-time and run-time polymorphism.	
CO3. Construct object-oriented programs for a given application by	Apply
using constructors	
CO4. Develop object-oriented applications that can handle exceptions.	Apply
CO5. Construct object-oriented applications for a given scenario to	Apply
persist data using files and object-serialization.	

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

C					PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S	S	L	-	-	-	-	М	М	L	L	L	S	М	-
S	S	М	-	-	-	-	М	М	L	L	L	S	S	L
S	S	М	-	-	-	-	М	М	L	L	L	S	L	L
S	S	L	-	-	-	-	М	М	L	L	L	S	S	-
S	S	М	-	-	-	-	М	М	L	L	L	S	М	-
S- Strong; M-Medium; L-Low														
r	S S S	S         S           S         S           S         S           S         S	SSMSSLSSM	S         S         M         -           S         S         L         -           S         S         M         -	S         S         M         -         -           S         S         L         -         -           S         S         M         -         -	S     S     M     -     -       S     S     L     -     -       S     S     M     -     -	S     S     M         S     S     L         S     S     M	S     S     M       M       S     S     L       M       S     S     M       M	S     S     M     -     -     -     M     M       S     S     M     -     -     -     M     M       S     S     L     -     -     -     M     M       S     S     M     -     -     -     M     M	S     S     M     -     -     -     M     M     L       S     S     L     -     -     -     M     M     L       S     S     M     -     -     -     M     M     L	S       S       M         M       M       L       L         S       S       L         M       M       L       L         S       S       M         M       M       L       L         S       S       M         M       M       L       L	S     S     M       M     M     L     L     L       S     S     L       M     M     L     L     L       S     S     M       M     M     L     L     L	S       S       M         M       M       L       L       L       S         S       S       L         M       M       L       L       L       S         S       S       L         M       M       L       L       L       S         S       S       M         M       M       L       L       L       S	S       S       M         M       M       L       L       L       S       L       S       L         S       S       L         M       M       L       L       L       S       L       S         S       S       L         M       M       L       L       L       S       S         S       S       M         M       M       L       L       L       S       S

# SYLLABUS

# INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

#### **OBJECT INITIALIZATION AND FRIEND FUNCTION**

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

#### **OVERLOADING AND GENERIC PROGRAMMING**

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keyword- limitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

### **INHERITANCE AND VIRTUAL FUNCTION**

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function .

#### **EXCEPTION HANDLING AND STREAMS**

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file- file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

### **TEXT BOOKS:**

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

#### **REFERENCES:**

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

COUI	RSE DESIGNERS

S.No	Name of the faculty	Designation	Departmen	Mail Id
			t	
1	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.

S       systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tech         CO4.Apply the I/O Subsystem concepts for a give         CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2         CO1         S         M         L         CO2         M       L	epts of opera also include ng systems. sses commu nemory and	es set of ca	ase stu												
The student will be able to understand the concept computing, mobile computing etc. This course also existing distributed operating systems. <b>PREREQUISITE</b> <b>Operating Systems Concepts</b> <b>COURSE OBJECTIVES</b> 1 To be aware of the evolution of operating 2 To learn what processes are, how processes how to manage processes. 3 To have an understanding of the main me 4 To understand the I/O Subsystem. 5 To have an exposure to the role of operating 3 systems. <b>COURSE OUTCOMES</b> On the successful completion of the course, stude CO1.Apply the concepts of operating system to an identify the features specific to operating systems. CO2.Apply the process synchronization concepts operating systems environment. CO3.Illustrate the different techniques of manage memory and secondary memory management tech CO4.Apply the I/O Subsystem concepts for a give CO5. Identify the role of operating system in clou <b>MAPPING WITH PROGRAMINE OUTCOM</b> CO5 M L -	ng systems. sses commu	es set of ca	ase stu												
Operating Systems Concepts         COURSE OBJECTIVES         1       To be aware of the evolution of operating         2       To learn what processes are, how processes how to manage processes.         3       To have an understanding of the main me         4       To understand the I/O Subsystem.         5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3. Illustrate the different techniques of manage memory and secondary memory management tech         CO4.Apply the I/O Subsystem concepts for a give CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2       S       M       L       -       -       -         CO1       S       M       L       -       -       -       -         CO3       S       M       M       -       M       -       -       -	nemory and	unicate, h													
1       To be aware of the evolution of operating         2       To learn what processes are, how processes how to manage processes.         3       To have an understanding of the main me         4       To understand the I/O Subsystem.         5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an dentify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tech         CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         Cos         P01       P02       P03       P04       P05       P06       P0         CO2       S       M       L       -       -       -       -         CO2       S       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>nemory and</td> <td>unicate, h</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nemory and	unicate, h													
2       To learn what processes are, how processes how to manage processes.         3       To have an understanding of the main me         4       To understand the I/O Subsystem.         5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         C01.Apply the concepts of operating system to an identify the features specific to operating systems.         C02.Apply the process synchronization concepts operating systems environment.         C03.Illustrate the different techniques of manage memory and secondary memory management techniques for a give CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         C0s       P01       P02       P03       P04       P05       P06       P0         C01       S       M       L       -       -       -       -         C02       S       M       M       -       M       -       -	nemory and	unicate, h													
2       how to manage processes.         3       To have an understanding of the main me.         4       To understand the I/O Subsystem.         5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tech CO4. Apply the I/O Subsystem concepts for a give CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2         C01       S       M       L       -       -       -         CO2       S       M       L       -       -       -       -         CO2       S       M       L       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	nemory and														
4       To understand the I/O Subsystem.         5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tech         CO4.Apply the I/O Subsystem concepts for a give         CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2         CO2         S       M         L       -         CO2         S       M         M         CO2         S       M         M         CO2         S         CO2         CO2         S         CO2         CO3         CO3         CO3         CO3		d secondar		ocess syr	nchroniz	ation i	s done	and							
5       To have an exposure to the role of operating systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tech CO4. Apply the I/O Subsystem concepts for a give CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2         C01       S       M       L       -       -       -         C02       S       M       L       -       -       -       -         C03       S       M       M       -       M       -       -       -	ating system		ry mer	nory ma	nagemei	nt tech	niques	•							
Systems.         COURSE OUTCOMES         On the successful completion of the course, stude         CO1.Apply the concepts of operating system to an         identify the features specific to operating systems.         CO2.Apply the process synchronization concepts         operating systems environment.         CO3.Illustrate the different techniques of manage         memory and secondary memory management tech         CO4.Apply the I/O Subsystem concepts for a give         CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         COs         CO1         M         L         CO2         M         CO2         CO2         M         CO2         CO2         CO3         CO3         CO3         CO3         CO3         CO3         CO3         CO3         CO3 <td cols<="" td=""><td>ating system</td><td colspan="13">To understand the I/O Subsystem. To have an exposure to the role of operating system in cloud and mobile environment operating</td></td>	<td>ating system</td> <td colspan="13">To understand the I/O Subsystem. To have an exposure to the role of operating system in cloud and mobile environment operating</td>	ating system	To understand the I/O Subsystem. To have an exposure to the role of operating system in cloud and mobile environment operating												
On the successful completion of the course, studeCO1.Apply the concepts of operating system to anidentify the features specific to operating systems.CO2.Apply the process synchronization conceptsoperating systems environment.CO3.Illustrate the different techniques of managememory and secondary memory management techCO4.Apply the I/O Subsystem concepts for a giveCO5. Identify the role of operating system in clouMAPPING WITH PROGRAMME OUTCOMCO5CO3ML-CO2SML-CO3SML-CO3SML-CO3SML-CO3SMCO3SMCO3SMCO3SMCO3SMCO3		m in cloud	l and n	nobile er	nvironm	ent op	erating	5							
CO1.Apply the concepts of operating system to an identify the features specific to operating systems.         CO2.Apply the process synchronization concepts operating systems environment.         CO3.Illustrate the different techniques of manage memory and secondary memory management tecl         CO4.Apply the I/O Subsystem concepts for a give         CO5. Identify the role of operating system in clout         MAPPING WITH PROGRAMME OUTCOM         CO2         CO1         S         M         L         CO2         S         M         CO2         S         M         CO2         CO3         S         M         CO3         CO3         S         M         CO3         S         M         CO3         S         M         CO3         S         M <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
identify the features specific to operating systems.CO2.Apply the process synchronization conceptsoperating systems environment.CO3.Illustrate the different techniques of managememory and secondary memory management techCO4.Apply the I/O Subsystem concepts for a giveCO5. Identify the role of operating system in clouMAPPING WITH PROGRAMME OUTCOMCO5PO1PO2PO3PO4PO5PO6PCO2SMLCO3SMLCO3SMLCO3SMLCO3SMLCO3SMLCO3SMLCO3SMLCO3SMLCO3															

## **OPERATING SYSTEM**

Introduction & Structure: Basics, OS Architecture, OS Operations, System calls.

#### **PROCESSES & SYNCHRONIZATION**

Process concept – Process scheduling – Operations on processes – Cooperating processes – Inter process communication – Communication in client-server Systems. Case study: IPC in Linux. Threads: Multi-threading models – Threading issues. Case Study: Threads library– Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock Modelling – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection and Recovery - Election Algorithms.

#### STORAGE MANAGEMENT

Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation with paging. Virtual Memory: Background –Demand paging – Process creation – Page replacement – Allocation of frames – Thrashing. Case Study: Memory management in Linux.

#### **I/O SYSTEMS**

I/O Systems – I/O Hardware – Application I/O interface – kernel I/O subsystem – streams – performance. Mass-Storage Structure: Disk scheduling – Disk management – Swap-space management – RAID – disk attachment – stable storage – tertiary storage. Case study: I/O in Linux.

#### CLOUD OS & MOBILE OS

Introduction to Cloud Computing, Features of Cloud OS, Case Studies. - Introduction to Mobile Computing Features of Mobile OS, Case Studies.

#### **TEXT BOOKS:**

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", Sixth Edition, Wiley India Pvt Ltd, 2003.

#### **REFERENCES:**

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.
- 2. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 3. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Fundamentals Of Mobile Computing, Patnaik, Prasant, Kumar, Mall, Rajib, PHI, 2012.
- 5. Mobile Computing Technology, Applications, and Service Creation 1st edition, Asoke K Talukder, Roopa Yavagal, McGraw-Hill, 2006.
- 6. The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Thomas A. Limoncelli Strata R. Chalup, Christina J. Hogan, Addison-Wesley Professional; 1st Edition, 2014.
- 7. Cloud Computing: Concepts, Technology & Architecture, Thomas Erl, Ricardo Puttini, Zaigham Mahmood,

Prentice Hall; 1st Edition, 2013.

S. No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. Nitisha Aggarwal	Associate Professor	CSE	nitishaaggarwal@avit.ac.in								
2	Dr.S.SenthilKumar	Assistant Professor	CSE	senthikumars@vmkvec.edu.in								

#### **COURSE DESIGNERS**

17C	CSCC09	)		JA	AVA P	ROGI	RAMN	IING			Categor y CC	L 3	T 0	P 0	Credi	it
This c progra		of stud skills.	Stude	ents wi	ll desig	0	•				idamenta th Java a	ls and h	elps to	adva	ance Ja	
	<b>REQUIS</b> program		Knowle	dge												
COU	RSE OI	BJECT	<b>FIVES</b>	5												
1		rstand ods, etc		nentals	of pro	gramn	ning su	ch as v	ariable	es, cond	itional aı	nd iterati	ve exe	cution	1,	
2	Under	rstand	fundar		of obj ries, et		ented j	orograr	nming	in Java,	, includir	ng defini	ng clas	ses, i	nvokin	g
3		Be aware of the important topics and principles of software development.														
4	Under	Understand Event Handling and Swing Components.														
5	Understand Generic Programming.															
COUI	RSE OI	UTCO	MES													
On suc	ccessful	l comp	letion	of the o	course,	studer	ts will	be abl	e to							
CO1.Kı	nowledg	ge of tl	ne stru	cture a	nd moc	lel of t	he Java	a progr	ammin	g langu	age	Knowle	dge			
CO2.Us	se the Ja	ava pro	ogramn	ning la	nguage	e for va	rious j	program	nming	technol	ogies	Underst	and			
CO3. D	evelop	softwa	re in tl	he Java	n progra	ammin	g lang	uage				Apply				
	valuate									to decio s	le	Analyse	;			
	noose ai	n engir	neering	g appro	ach to	solving	g probl	ems, S	tarting	from th	e	Evaluati	on			
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	IE SPEC	CIFIC O	OUTCO	OME	8	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSC	33
CO1	S		~	S	S	Μ	S	~	-	_	S	S		_		
CO2	S		S	-	S			S	L	L	<b>.</b>	L				
CO3	S		M	L	S	Μ	C				L	L				
CO4 CO5	S S		S S	M M	S S		S M				<u>S</u>	M M				
		N 7 1'			3		11/1				ى	11/1				
	ong; M-	Mediu	ım; L-I	LOW												
SYLL	ABUS															
	CS OF			ing cor	ncepts -	– objec	ets – cl	asses –	metho	ods and	messages	s – abstra	action	and		

encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method.

### ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

# **EVENTS & GRAPHICS PROGRAMMING**

I/O Streams - Filter and pipe streams – Byte Code interpretation - Basics of event handling – event handlers – adapter classes – actions – mouse events – AWT event hierarchy – Graphics programming – Frame – Components – working with 2D shapes.

# SWING & GENERIC PROGRAMMING

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

# THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

# **TEXT BOOKS:**

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000 (UNIT II).
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999 (UNIT III and UNIT V).

# **REFERENCES:**

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- 3. C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2006.

COURSE	DESIGNERS
--------	-----------

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	T.Vijila			vijila@avit.ac.in
2	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

170	CSCC1	6		CLO	UD CO	OMPU	TING				Categor	y L	Т	Р	Credit
											CC	3	0	0	3
P <b>REA</b> Ν Γο stud		nderst	and the	e conce	pts in c	cloud c	omput	ing and	l apply	them j	practicall	y.			
PRERI NIL	EQUIS	ITE													
COUR	SE OB	JECT	IVES												
1.	To und	erstand	d cloud	l comp	uting c	oncept	s.								
2.	To stud	ly vari	ous clo	oud serv	vices.										
3.	To app	ly clou	d com	puting	in colla	aborati	on wit	h other	servic	es.					
4.	To und	erstand	the cl	loud co	mputir	ng serv	ices.								
5.	To app	ly clou	d com	puting	online.										
	SE OU	-													
On the	success	ful cor	npletic	on of th	e cours	se. stuc	lents w	vill be a	ble to						
			-									Understa	nd		
C <b>O1:</b> A	ble to U	ndersta	ind basi	ics in C	loud Co	omputin	ıg					Chacista			
C <b>O2:</b> A	Able to a	pply cl	oud cor	nputing	concer	ots in re	al time					Apply			
						·						Apply			
2 <b>03:</b> A	ble to de	evelop	cloud c	omputi	ng proje	ects									
C <b>O4</b> : A	ble to ap	oply clo	oud serv	vices								Apply			
CO5∙ A	ble to co	ollahor	ate cloi	ıd servi	ces with	h other	annlica	itions				Apply			
							••								
MAPP	ING W	ITHF	'ROG	KAMN	IE OU	TCO	MES A	ND P	KOGK	AMM	E SPEC	IFIC OU	TCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO1	PO11	PO12			
<b>CO1</b>	М	М								0	L	L			
<b>CO2</b>	М	М		L								L			
CO3	М	М	т	L		М									
004	М	C	L			т				т		м			
CO4	M	S L	L			L				L	Ъſ	M		_	
CO5	M M		<b></b> T. T.			М					M	L			
STLLA	ng; M-N	rediul	и, L-L(	UW											
		TAT													
				UCTIO		1.0		~	1 1	A 1 •.		<u> </u>		***	1 01
Cloud	-	uting latters		•			- ·				cture –	Cloud S	torage		•

the Cloud Today – Cloud Services.

# UNIT - II DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

## UNIT - III CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

### UNIT - IV USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing -Collaborating on Databases – Storing and Sharing Files.

# UNIT - V COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

### TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

# REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	PROFESSOR	CSE	rjaichandran@avit.ac.in
2				

1/0	SCC1	7		CY	BER S	ECUR	RITY			(	Category	y L	Т	Р	Credit		
											CC	3	0	0	3		
PREAN														1 1			
Го unde PRERE			ed for (	Cyber S	Securit	y in rea	al time	and to	study	techniqu	ues invol	ved in it	•				
NIL	QUIS																
COURS	SE OB	JECT	IVES														
1.	To und	lerstanc	d the fu	ındame	entals o	f Cybe	er Secu	rity									
2.	To stuc	ły vario	ous atta	acking	technic	ques											
3.	То арр	ly expl	loitatio	n in cy	ber spa	ice											
4.	To stuc	ly abou	ıt Mali	cious c	odes												
5.	Defend	ling ag	ainst c	yber at	tacks												
COURS	SE OU	TCON	AES														
On the s	success	ful cor	npletio	n of th	e cours	se, stud	ents w	ill be a	ble to								
C <b>O1:</b> A	ale to L	Indersta	nd basi	es in es	bar sac	urity						Understa	nd				
		nuel sta				unty											
C <b>O2:</b> A	ble to a	pply at	tackers	techniq	ues in r	eal tim	e					Apply					
C <b>O3:</b> Al	ole to a	pply ext	ploitati	on in w	eb appli	cations						Apply					
			p101000		ee uppn							Understa	nd and	Ann	V		
C <b>O4</b> : Al	ole to u	nderstai	nd and a	apply m	aliciou	s in net	works.					endersta	ind une	i i ippi	ly		
С <b>05:</b> А	ble to a	pply de	fense a	nd anal	ysis tec	hniques	in real	time				Apply					
		11 5				Ĩ						Understa	nd				
C <b>O1:</b> A	ole to U	Indersta	ind basi	cs in cy	ber sec	urity						endersta	ina				
MAPPI	NG W	TTH P	PROG	RAMN	1E OU	TCON	AES A	ND PI	ROGR	AMME	E SPECI	FIC OU	TCO	MES			
	PO1	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12					
CO1	M	M		-							L	L					
CO2	М	М		L								L					
CO3	Μ	Μ	L	L		Μ											
CO4	Μ	S	L			L				L		М					
CO5	М	L				М					М	L					
S- Stron	0,	Medium	,	OW													

# SYLLABUS:

# UNIT - I INTRODUCTION

Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS – Firewalls – Virtualization – Radio Frequency Identification – Microsoft Windows security Principles.

#### UNIT - II ATTACKER TECHNIQUES

Antiforensics – Tunneling techniques – Fraud Techniques - Threat Infrastructure.

### UNIT - III EXPLOITATION

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

#### UNIT - IV MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation.

# UNIT - V DEFENSE AND ANALYSIS TECHNIQUES

Memory Forensics – Honeypots – Malicious code naming – Automated malicious code analysis systems – Intrusion detection systems – Defense special file investigation tools.

#### **TEXT BOOKS**

1. James Graham, Richard Howard and Ryan Olson, "Cyber Security Essentials", CRC Press, Taylor & Francis Group, 2011.

2. By Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, "Cyber security: The Essential Body of Knowledge", Cengage Learning, 2012.

### REFERENCES

1.. Ali Jahangiri, "Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts", 2009.

# COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	PROFESSOR	CSE	rjaichandran@avit.ac.in

170	CSEC3	0		UN	IX IN	ΓERN	ALS				Category	L L	Т	Р	Credit
											PC	3	0	0	3
PREAN	<b>MBLE</b>													1	
															gramming
								system	n. The	aim is	to introc	luce you	to th	e cor	cepts, the
possibil			ools us	ed in U	Jnix pr	ogram	ming.								
PRERI NIL	QUIS	IIE													
COUR	SE OB	JECT	IVES												
1	To ur	dersta	nd the	design	of the	UNIX	operat	ing sys	tem						
-				-			-								
2				r with	the var	ious da	ita stru	ctures	used						
COUR	SE OU	TCON	AES												
On the s	success	ful cor	npletio	on of th	e cours	se, stud	lents w	ill be a	ble to						
<b>CO1:</b> 1	Fo lear	n The b	oasic U	nix op	erating	systen	ns and	its basi	ic com	mands		Unders	tand		
<b>CO2:</b> 7	Гo anal	yze the	buffer	rs and l	kernel	represe	entation	1				Analys	is		
<b>CO3:</b> 1	Fo und	erstand	the Ul	NIX sy	stem st	ructur	e, syste	em call	s			Remen	nber		
<b>CO4:</b> 1	Fo und	erstand	UNIX	segme	entation	n, sche	duling,	, paging	g			Unders	tand		
MAPP	ING W	TTH P	ROG	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMM	E SPEC	FIC OU	UTCO	MES	}
COs	PO1	<b>PO2</b>	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO1</b>	PO11	PO12			
										0					
CO1	S			L					L			S			
CO2		S					Μ			S	М				
CO3			Μ		S		-		~			S			
CO4	L	A 1'	T T				L		S		М				
S- Stror	ng; M-ľ	viediun	n; L-Lo	OW											

SYLLABUS		
INTRODUCTION		9 -
hours		
General Review of the System-History-System struc	ture-User Perspective-	OperatingSystem Services-
Assumptions About Hardware. Introduction to the K	ernel-ArchitectureSyst	em Concepts-Data Structures-
System Administration		
DISK BLOCKS		9 –
hours		
The Buffer Cache-Headers-Buffer Pool-Buffer Retri		
Disadvantages. Internal Representation of Files-Inoc		es-Path Name to Inode- Super
Block-Inode Assignment-Allocation of Disk Blocks	-Other File Types	
FILE SYSTEM		9 -
hours		
System Calls for the File System-Open-Read-Write-	-	e
Directory and Change Root-Change Owner and Cha	nge Mode-Stat- Fstat-F	Ipes-Dup-Mount-Unmount-Link-
Unlink-File System Abstraction-Maintenance.		0
PROCESS MANAGEMENT		9 -
hours The System Representation of Processes-States-Trar	nitiona System Mome	ry Contant of a Process Serving the
Context-Manipulation of a Process Address Space-S	•	
Awaiting-Invoking other Programs-The Shell-Syster	1	0
MEMORY MANAGEMENT		9 -
hours		7 -
Memory Management Policies-Swapping-Demand F	Paging-a Hybrid Syster	n-I/O Subsystem-Driver Interfaces-
Disk Drivers-Terminal Drivers.		
TEXT BOOKS		
1. Maurice J. Bach, "The Design of the Unix Opera	ating System", Pearson	Education 2002.
REFERENCES		
1. UreshVahalia, "UNIX Internals: The New Front	iers", Prentice Hall, 20	00.
2. John Lion, "Lion's Commentary on UNIX", 6th	edition, Peer-to-Peer C	communications, 2004.
3. Daniel P. Bovet & Marco Cesati, "Understandin	g the Linux Kernel", C	PREILLY, Shroff Publishers
&Distributors Pvt. Ltd, 2000.		
4. M. Beck et al, "Linux Kernel Programming		
COURSE DESIGNERS		
S. No. Name of the Designation	Department	Mail ID

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	R.Kamatchi Priya	Assistant Professor	CSE	kamatchipriya@avit.ac.in
2	V.Amirthalingam	Assistant Professor	CSE	Amirthalingam@vmkvec.edu.in

17(	CSEC3	4	WEB ]	DESIG	SN AN	D MA	NAGE	EMEN'	Г		Category	L	Т	Р	Credit
1											PC	3	0	0	3
PREAM	MBLE													1	
				-	ing lar	iguages	s with	design	of web	o applio	cations. a	nd maint	enanc	e and	evaluation
of web	0	0	ement.												
PRERI Web '	Techno														
COUR		0,	IVES												
1	To lea	arn the	concep	ots of V	Veb de	sign pa	atterns	and pa	ge desi	gn					
2	To un	dersta	nd and	learn t	he scri	pting la	anguag	es with	n desig	n of we	b applica	tions			
3	To lea	arn the	mainte	enance	and ev	aluatio	on of w	eb desi	gn ma	nagem	ent				
COUR	SE OU	TCON	AES												
On the	success	ful cor	npletio	on of th	e cours	se, stud	lents w	ill be a	ble to						
<b>CO1:</b>	To fami	liarize	decisi	on supj	port sy	stems a	and the	ir char	acterist	tics		Unders	tand		
CO2: 7	To stud	y abou	t Intell	igent D	OSS and	d appli	cations	s of DS	S			Apply			
CO3: "	To learr	n the te	chnolo	gies re	lated to	o decis	ion suj	oport s	ystems			Unders	tand		
MAPP	ING W	ITH F	PROG	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMM	E SPECI	FIC OU	JTCO	MES	5
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	PO11	PO12			
<u> </u>	ã		~						т	0	т				
CO1 CO2	S	Л	S	ъл	Μ			<u>с</u>	L		L				
CO2	S	Μ		М		L	М	S			L				
S- Stroi	~	Aediur	n; L-Lo	OW		L	IVI	I		L			I		

-					
SYLLA					0
-	<b>PRGANIZATION</b> A	ND NAVIGATION			9 -
hours	entared Design Wah	Madium Wah Dagian	Drogona Davias of Wah	Design Introduction to Sof	twore
				Design –Introduction to Sof LASH – Evaluating Process	
	U		sic Navigation Practices	e	- Site
• 1	ENTS OF PAGEDE	•	sie Navigation i ractices	s – Searen – Sitemaps.	9 –
hours	ENTS OF TAGEDE	51011			)-
	r Compatible Design	Issues-Pages and Lavo	out – Templates – Text -	- Color – Images – Graphics	and
				bages: Slice– URL in ADOB	
				set, - CSS style – Forms –T	
	ert, Rollover etc., in I	0 1			0015
		S AND ANIMATION	USING FLASH		9 -
hours					2
	ide scripting :XHTM	L – DHTML – JavaSci	ript – XML Server Side	Scripting: Perl–PHP– ASP/	JSP
				LASH, Importing Other File	
0		L		mation–Motion Tweening –	
Tweenin	_		•	Ç	
PRE-P	<b>RODUCTION MAN</b>	AGEMENT			9 -
hours					
Principl	es of Project Manage	ment – Web Project M	lethod – Project Road M	Iap – Project Clarification –	
Solutior	n Definition – Project	Specification - Conten	nt – Writing and Manag	ing Content.	
PRODU	UCTION, MAINTE	NANCE AND EVAL	UATION		9 -
hours					
				- Review and Evaluation $-$ <b>C</b>	Case
-	-	-		ADY, DREAM WEAVER,	
	· • · · · ·	p Portfolios in the Forr	n of Web Pages which	have to be uploaded in Free	Public
Domain					
	BOOKS				
	mas A. Powell, —T	he Complete Referen	ce–Web Design ^{II} , Tata	McGraw Hill, Third Editi	ion,
2003.					
			Morgan Kaufmann Pul		_
	, , ,	<b>U</b>	net and World Wide W	eb – How to Program ^I , Thire	b
	n, Pearson Education,	2004.			
	RENCES		<b>T</b> : <b>D</b> 001		
	· 1	f Web Design ^{II} , Thoms	0,		
			f Sites: Patterns for Cre	ating Winning WebsitesI, Se	cond
	n, Prentice Hall, 2006				C
2	,	, <b>,</b>	ide: Basic Design Princi	iples for Creating Websites,	Second
-	n, Yale University Pre SE DESIGNERS	ess, 2002.			
S. No.	Name of the Faculty	Designation	Department	Mail ID	
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in	
2	Dr.M.Nithya	Professor	CSE	Nithya@vmkvec.edu.in	
	J			J	

17CS	SPI07		LEA	RNIN	G IT E	SSEN	TIAL	S BY I	DOIN	3	Categ v	or L	Т	P C	redit
											PI	3	0	0	3
The p Electi refers	ve incl	d elect udes p basic	orograi tools	nming and te	,Data	base a	nd we	b Tecl	nnolog	y amon	gst othe	er relate	ed topi	odules o cs.This o able stud	course
PREF	REQUI	SITE	– Nil												
COU	RSE O	BJEC	TIVE	S											
1	To lea	rn abou	t the ess	entials of	of Infor	mation '	Technol	ogy							
2	To ge	et an id	lea abc	out the	scripti	ng lang	guages	•							
3	To ge	et an id	lea abc	out the	intern	et prot	ocols								
COU	RSE O	UTCC	OMES												
On the	e succe	ssful c	omple	tion of	the co	urse, s	tudent	s will t	e able	to					
CO1	unders	tand th	e fund	amenta	als of y	web ap	plicati	ions an	d its m	nodeling	; 1	Underst	and		
	To und ations.	erstand	d and l	earn th	e scrip	oting la	inguag	es with	n desig	n of we	b	Underst	and		
CO3. routin		erstand	d n the	netwo	orking o	concep	ot inter	net pro	tocols,	, networ	k	Underst	and		
	Analy ologies	ze th	ie pro	ocess	of m	obile	comm	nunicat	ion a	nd net	work	Analyze	e		
	Build nedia a			eractiv	e app	licatio	ns ,da	itabase	appli	cations	and	Apply			
MAP	PING	WITH	PRO	GRAN	IME (	DUTC	OMES	S AND	PRO	GRAM	ME SP	ECIFI	C OUT	COMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	S				М	М	Μ	L	S	S	S	М			
CO2	S		L	М	S	S	М	L	М	S	М	S			
CO3	L	L		L	S	М		L	М	S		L			
CO4	L	М			Μ	М	S	М	М	М	S	S			
CO5	S	М	L		L		S	М	S	S	L	М			
S- Str	ong; M	-Medi	um; L-	Low											
SYLI	Centr Mem	amenta al Proc	cessing nput/o	g Unit utput c	- Execu levices	ution c - BUS	ycle – S-addre	Instruc	ction ca	0	s – mea	sure of	ĊPU p	erformar ers – Loa	

Operating system – introduction – memory management schemes Process management Scheduling – threads.

Problem solving with algorithms- Programming styles – Coding Standards and Best practices -Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

RDBMS- data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

Objected oriented concepts – object oriented programming -UML Class Diagrams– relationship – Inheritance – Abstract classes – polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool – Application of OOC using Alice tool.

Client server computing - Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers

URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

TOTAL HOURS: 45

# REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

Cours	Course Designers:													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in										
2	Mr. R. Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in										

17CSPI10	
1/031110	

### PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

PREF	REQUI	ISITE	– NIL	1											
COU	RSE O	BJEC	TIVE	S											
1.	Unde	erstand	system	n requi	remen	ts for 1	nobile	applic	ations						
2.	Generate suitable design using specific mobile development frameworks														
3.	Generate mobile application design														
4.	Implement the design using specific mobile development frameworks														
5.	Deploy the mobile applications in marketplace for distribution														
COU	RSE O	UTCO	OMES												
On the	e succe	ssful c	omple	tion of	the co	urse, s	tudent	s will l	be able	to					
	n the successful completion of the course, students will be able to         O1. Be exposed to technology and business trends impacting mobile         plications														
CO2.	Unders	tandin	g enter	prise s	cale re	quiren	nents c	of mob	ile app	lication	s I	Understa	nd		
	Be cor ations	npeten	t with	the cha	aracter	ization	and a	rchitec	ture of	mobile	1	Apply			
CO4.	Famili	arize ii	n the C	Graphic	s used	for A	ndroid	applic	ation d	evelopr	nent A	Apply			
	Be co one ap	-			0 0			ping n	nobile	applica	tions	Apply			
CO6.	Test th	e deve	loped	app an	d publi	ish in					1	Apply			
MAP	PING	WITH	I PRO	GRAN	IME (	OUTC	OME	S ANE	) PRO	GRAM	ME SP	ECIFIC	OUTO	COMES	
COS	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	<b>PO12</b>	PSO1	PSO2	PSO3
CO1	S	S	Μ	М	S	S	М	S	S	S	S	М	М	М	S
CO2	S	S	М	L	S	S	S	М	М	S	М	М	М	М	S
CO3	S	М	М	L	S	М	М	М	S	S	М	М	М	М	S
CO4	S	S	М	М	S	М	М	М	S	S	S	М	М	М	S
CO5	S	S	М	М	S	М	Μ	М	S	S	S	М	М	М	S
CO6	S	S	М	L	S	М	М	L	S	S	S	М	М	М	S

S- Strong; M-Medium; L-Low

# SYLLABUS

# UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications –Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

# UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

# UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

# UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

# UNIT V TECHNOLOGY II –IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

# TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

# REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Cours	e Designers:							
S.No.	Name of the Faculty	Designation	Department	Mail ID				
1.	Mr. M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in				
2.	Mr. R. Bharanidharan	Assistant Professor	CSE					

17DN/			BIOSENSORS AND TRANSDUCERS								Categor	y L	Т	Р	C	redit
1/BN	ICC03		BIOSENSORS AND TRANSDUCERS								CC	3	0	0		3
The co compo	PREAMBLE The course is designed to make the student acquire conceptual knowledge of the transducers and biological components used for the detection of an analyte. The relation between sensor concepts and biological concepts is highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced. PREREQUISITE – Nil														ncepts	
PRER	EQUI	SITE -	- Nil													
COUR	RSE OI	BJECT	<b>FIVES</b>													
1	To use the basic concepts of transducers, electrodes and its classification.															
2	To determine the recording of biological components.															
3	To employ the knowledge in electrochemical and optical biosensors.															
4	To ou	tline tl	ne vari	ous bio	logical	l comp	onents	using	biosens	sors.						
COUF	RSE O	UTCO	MES													
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	idents	will be	able to	)						
CO1.	Respo	nd the	worki	ng prin	ciples	of trans	sducers	S.					Un	ders	tand	
CO2.	Expla	in the	various	types	of elec	trodes.							Un	ders	tand	
CO3.	Utiliz	e vario	us FET	senso	rs for r	ecordi	ng of b	iologic	al com	ponents	•		Ap	ply		
CO4.	Distin	guish v	various	bioser	nsors li	ke elec	ctroche	mical a	and opt	ical bios	sensors.		An	alyz	e	
CO5.	Analy	ze the	biologi	ical con	nponer	nts usii	ng bios	ensors	in vari	ous app	lications	•	An	alyz	e	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND H	PROG	RAMM	E SPEC	IFIC	OUTO	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	502	PSO3
CO1	S	L	L	L								L				L
CO2	S	М	М	М								L	L			L
CO3	S	М	М	М		L	L	L	L	L		L	М			L
CO4	S	S	S	М		L	L	L	L	L		L	S		L	L
CO5	S	S	S	S		L	L	L	L	L		L	S		М	L
S-Stro	ong; M-	Mediu	ım; L-I	LOW							· · · · ·			•		

# SYLLABUS

**INTRODUCTION:** General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

**TRANSDUCERS:** Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

**BIO POTENTIAL ELECTRODES:** Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

**BIOSENSORS:** Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

**APPLICATIONS OF BIOSENSORS:** Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

#### **TEXT BOOKS:**

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

#### **REFERENCES:**

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, "**Principles of Applied Biomedical Instrumentation**", 3rd Edition, John Wiley Publications, 2008.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i n
2	Mrs. R.Indumathi	Assistant Professor (Gr- II)	BME	indhumr@avit.ac.in
3	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in

#### **COURSE DESIGNERS**

17BMCC05	PATHOLOGY AND MICROBIOLOGY	Category	L	Т	Р	Credit
170010000		CC	3	0	0	3

#### PREAMBLE

The curriculum of pathology aims at preparing the students in basic understanding of diseases and their pathogenesis. The topics build the concepts of how human system work in altered and diseased stage under the influence of various internal and external stimuli. Thus the syllabi of pathology compliments and supplements the necessary knowledge students have gained in Physiology.

The Microbiology course has been formulated to impart basic and medically relevant information on the microbes. The microbial structure, growth and development, methods and role of sterilization in the context of study of microbes are included.

### **PRERQUISITE :** NIL

COURSE OBJECTIVES																
1	To explain the cellular responses to stress, cell degeneration, regeneration and neoplasia.															
2	To classify and explain the different fluid and haemodynamic disorders.															
3	To illustrate the working principle of various microscopes and demonstrate the specimen preparation.															
4	To examine the pathogenesis of viral and bacterial diseases and their control.															
5	To categorize the various immunological and sterilization techniques.															
COUR	COURSE OUTCOMES															
On th	On the successful completion of the course, students will be able to															
CO1.	CO1. Describe the cellular responses to stress, cell degeneration, cellular repair and concepts of tumour.										and	Understa	nd			
CO2.	Descri disord		causes	s and p	athoph	ysiolo	gy of d	lifferen	ıt fluid	and Ha	emodyn	amic	Understand			
CO3.				ge to o bserva	-	the dif	ferent	types of	of mici	roscopes	and pre	epare	Apply			
CO4.				0		•		nd prev 1 viruse		n metho	d to co	ntrol	Apply			
CO5.	0						0		0		iniques chniques		Analyze			
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC (	DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	L						L		М			М		L	L	
CO2	L						L		М			Μ		L	L	
CO3	S	М			S	S	М	М	S			S	М	S	S	
CO4	S	М			S	S	М	М	S			S	М	S	S	
CO5	S	S			S	S	S	S	S		М	S	S	S	S	

S- Strong; M-	Medium; L-Low
SYLLABUS	

CELL DEGENERATION, REPAIR AND NEOPLASIA: Introduction to pathology, Cellular responses to stress, Cellular adaptations, Cell injury and Necrosis – causes, mechanism and morphology, Apoptosis, Inflammation, Tissue repair, Neoplasia - Classification, Benign and Malignant tumours, Carcinogenesis, Etiology and Spread of tumours.

FLUID AND HEMODYNAMIC DERRANGEMENTS: Edema, Normal haemostasis and Thrombosis, Disseminated intravascular coagulation, Embolism, Infarction, Shock. Haematological disorders – Red cell Disorders, White cell disorders, Bleeding disorders.

STRUCTURE OF BACTERIA, VIRUSES AND MICROSCOPY: Morphological features and structural organization of bacteria, Bacterial growth and Nutrition, Growth curve, Culture media and its types, Culture techniques and observation of culture. Viruses – Structure, Classification and Replication. Light microscope, Bright field, Dark field, Phase contrast, Fluorescence and Electron microscope (TEM& SEM), Preparation of samples for electron microscope, Staining methods – Simple, Gram's staining and AFB staining.

IMMUNITY, INFECTION AND DISORDERS: Antigen, Antibodies and its types, Immunity – Innate and Adaptive immunity, Immunodeficiency diseases, Genetic disorders, Hypersensitivity diseases, Bacterial, Viral, Fungal, Protozoan and Helminthic diseases.

IMMUNOLOGICAL TECHNIQUES AND CONTROL OF MICROORGANISMS: Agglutination and Precipitation reactions, Immunofluorescence, ELISA, RIA. Diagnosis of Infectious Diseases. Methods of Sterilization and disinfection: Physical Methods - Dry heat, Moist heat, Filtration, Radiation, Chemical Methods – Alcohol, Aldehyde, Dyes, Halogens, Phenols, Ethylene oxide.

# TEXT BOOKS:

- 1. Robbins & Cotran, "Pathologic Basis of Disease" 9th Edition, Saunders Co. 2014.
- 2. Anatha Narayanan R & Jayaram Panicker C.K, "Text Book of Microbiology", 10th Edition, Orient Longman, 2017.

# **REFERENCES**:

- 1. Prescott, Harley, Klein, "Microbiology" 7th Edition, Mc Graw Hill, 2008.
- 2. Janis Kuby, "Immunology", 5thEdition, W.H. Freeman and Company, New York, 2003.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.K.Natarajan	Associate Professor	BME	natarajank@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in
3	Mrs. G. Arthi	Assistant Professor	BTE	arthig@vmkvec.edu.in

17BMEC01	MEDICAL OPTICS	Category	L	Т	Р	Credit
TIDNIECOI	MEDICAL OF TICS	EC-PS	3	0	0	3

#### PREAMBLE

Medical optics is a branch of science uses light as an electromagnetic wave, similar to X-rays, microwaves, and radio waves, which is used as an investigational technique for medical applications. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, and optical coherence tomography.

# PREREQUISITE: 17BMCC08 - DIAGNOSTIC AND THERAPEUTIC EQUIPMENT - I

#### **COURSE OBJECTIVES**

0001								
1	1 To learn about properties of light and its application							
2	2 To study various instruments in photonics							
3	3 To understand the applications of LASER							
4	To understand optical Holography							
5	5 To study Optical tomography							
COU	RSE OUTCOMES							
On the	e successful completion of the course, students will be able to							
CO1.	Gain adequate knowledge inproperties of light	Understand						
CO2.	CO2. Getting idea about various instruments used in photonics Understand							
CO3.	CO3. Apply LASER in medical field for diagnosis and therapeutic Apply							
CO4.	CO4. Construct hologram Knowledge							

CO5. Image optical tomogram.

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		L										S	S	
CO2	S		L										М	М	
CO3	S		L										М	L	
CO4	S		L										М	S	
CO5	S		М		М	L							М	М	
~ ~				-											

Create

S- Strong; M-Medium; L-Low

# **SYLLABUS**

# **OPTICAL PROPERTIES OF THE TISSUES**

Refraction, Scattering, absorption, light transport inside the tissue, tissue properties, Light interaction with

tissues, optothermal interaction, fluorescence, speckles.

# INSTRUMENTATION IN PHOTONICS

Instrumentation for absorption, scattering and emission measurements, excitation light sources – high pressure arc lamp, solid state LEDs, LASERs, optical filters, polarisers, solid state detectors, time resolved and phase resolved detectors.

# **APPLICATIONS OF LASERS**

Laser in tissue welding, lasers in dermatology, lasers in ophthalmology, otolaryngology, urology.

# **OPTICAL HOLOGRAPHY**

Wavefronts, Interference patterns, principle of hologram, optical hologram, applications.

# **OPTICAL TOMOGRAPHY**

Optical coherence tomography, Elastography, Doppler optical coherence tomography, Application towards clinical imaging.

# **TEXT BOOK**

1. Leon Goldman, M.D., & R. James Rockwell, Jr., "Lasers in Medicine", Gordon and Breach, Science Publishers Inc., New York, 1971.

# REFERENCE

1. Mark E. Brezinski., "Optical Coherence Tomography: Principles and Applications", Academic Press, 2006.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.R.Pathamuth	Assistant Professor (Gr- II)	BME	pathamuthu@avit.ac.in
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i n

1 <b>7</b> DN					DIOT			V			Categor	y L	Т	P C	Credit
1/BN	<b>IEC02</b>				BIOI	TELEN	IE I K	Ŷ			EC-PS	3 3	0	0	3
	<b>PREAMBLE</b> To study the overall concept of a Biotelemetry system and the concept of signal transmission.														
PRER	PREREQUISITE: Nil														
COUI	COURSE OBJECTIVES														
1	To study the basic concepts and the principles used in a Telemetry system.														
2	To study the building blocks used to make a electrical telemetry system.														
3	To stu	udy the	e basic	compo	nents o	of trans	mittin	g and r	eceivin	ig techni	ques.				
4	To kn	low ab	out hov	w optic	al fibe	rs are u	ised in	signal	transm	ission.					
5	To un	dersta	nd the	real tin	ne appl	ication	in bio	teleme	try.						
COU	RSE O	UTCO	MES												
	e succes		*												
CO1.	Discuss	s about	the ba	sic inf	ormatio	on abou	ıt Tele	metry s	system	•			Unc	lerstand	
CO2.	Describ	be the l	knowle	dge ab	out des	sign of	Electr	ical Te	lemetry	y System	ns.		Unc	lerstand	
CO3.	Demon	strate	he diff	erent t	ypes of	f modu	lation	techniq	ues.				App	oly	
CO4.	Explair	about	the in	pleme	ntation	of opt	ical fit	ers in t	telemet	ry syste	m.		Unc	lerstand	
CO5.	Validat	e the h	ealthca	are syst	tem usi	ng Tel	emetry	v syster	n.				Eva	luate	
MAP	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		S	М	S	S	Μ	S				М	S		М
CO2	S M L S M M I										L	Μ	S	М	
CO3	S L M L S L N										Μ	Μ	М	М	
CO4	M L M L S L S L S											S			
CO5	М				М	L	S	S				L	L		М
S-Stro	ong; M-	Mediu	ım; L-I	Low											
SYLL	SYLLABUS														

# INTRODUCTION

Fundamental concepts – Significance, Principle, functional blocks of Telemetry and Telecontrol system-Methods of telemetry – Electrical, Pneumatic, Hydraulic and Optical Telemetry – State of the art-Telemetry standards.

# ELECTRICAL TELEMETRY

Electrical Telemetry – Current Systems – Voltage Systems – Synchro Systems – Frequency systems – Position and Pulse systems – Example of a landline telemetry system.

# **RADIO TELEMETRY SYSTEM**

Block diagram of a Radio Telemetry system – Transmitting and receiving techniques – AM, FM, PM, Multiplexing and demultiplexing – Transmitting and receiving techniques – Digital coding methods – Advantages of PCM, PWM, PM, FSK – Delta modulation – coding and decoding equipment – Example of a radiotelemetry system.

# **OPTICAL TELEMETRY SYSTEM**

Optical fibers for signal transmission – Sources for fiber optic transmission – Optical detectors – trends in fiber– optic device development – Example of an optical telemetry System.

# **APPLICATION OF BIOTELEMETRY**

Use of computers in distance mode of healthcare delivery, Web technology, Satellite communication systems; hypertext, voice & image transfer protocols, Medical image scanning, Data compression and Transfer, Capturing of medical signals, Analog to digital conversion, Video conferencing, Remote sensing, Rural primary setups, Referral and Super specialty centers, Societal medico legal aspects, Networking (local, national & global).

# **TEXT BOOKS**

- 1. D.Patranabis, "Telemetry principles", Tata Mcgraw Hill Publishers.
- 2. Marilyn J. Field, "Telemedicine: A Guide to Assessing Telecommunications for Health Care", National Academic Press, 1996.

# REFERENCE

1. Charles J. Amlaner, David W. Macdonald, "A Handbook on Biotelemetry and Radio Tracking", Pergamon Press; 1st Edition (January 1, 1980).

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs. R.Indumathi	Assistant Professor (Gr- II)	BME	indhumr@avit.ac.in									
2	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in									

1701	<b>1EC04</b>	М	EMG A			MED			ICATIO	ONG	Categor	ry L	Т	P (	Credit
17DN	ILC04	IVII			<b>5 DI</b> U		ICAL		ICAIN		EC-PS	5 3	0	0	3
To er	<b>PREAMBLE</b> To enable the students to acquire knowledge about the principles and applications of MEMS & Nanotechnology in Biomedical Industry.													MS &	
PRER	PREREQUISITE – NIL														
COU	OURSE OBJECTIVES														
1	To understand the working principle of MEMS & Microsystems.														
2	To understand the working of MOEMS Technology.														
3	To giv	ve an i	nsight	to the 1	nicrofl	uidic s	ystems	5.							
4	To giv	ve an i	nsight	to the l	Bio-MI	EMS &	t its ap	plicatio	on in he	althcare	e.				
5	To stu	ıdy ab	out the	biome	dical N	lanoted	chnolog	gy & it	s applic	ation in	n researc	h domai	n.		
COUI	RSE OI	UTCO	MES												
On the	e succes	sful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to						
CO1.	. Introd	uces th	ne conc	epts of	fmicro	fluidic	system	ns.					1	Underst	and
CO2	. Introd	uce ab	out the	Basics	s of wo	orking	of MO	EMS 7	Fechnol	ogy.			1	Underst	and
CO3	. Explai	in the	workin	g princ	iple of	MEM	S & M	icrosys	stems.				l	Underst	and
CO4.	. Analy	ze the	nanom	aterial	in vari	ous bio	omedic	al appl	ications	S.			1	Analyze	
CO5.	. Evalua	ate abo	out the	biome	dical N	anotec	hnolog	gy & its	applica	ation in	research	n domai	n. l	Evaluate	2
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROGR	RAMM	E SPEC	CIFIC O	UTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М		S	М	М					М			
CO2	O2 S M L S M M S											-			
CO3	D3 S M M S S M M												L		
CO4	М		М	L	L	S	S	S				М	L		L
CO5	S		М		М	S	S	S				М	М	L	
S- Stro	S- Strong; M-Medium; L-Low														

# SYLLABUS

# MEMS & MICROSYSTEM

MEMS and Microsystems-Introduction-Typical MEMS and Microsystem Products-Application of Microsystem in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation – MEMS with Microactuation – Micro-accelerators.

# MICRO-OPTO ELECTROMECHANICAL SYSTEMS (MOEMS)

Fundamental principle of MOEMS Technology, Advantages - Light Modulators, Beam splitter – Micro-lens, Micro-mirrors - Digital Micro-mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning

# MICROFLUIDIC SYSTEMS

Microfluidics - Introduction and Fluid Properties, Applications of MFS-Fluid Actuation Methods - Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electro osmosis Flow,

ElectrothermalFlow, Thermocapillary Effect – Microfluidic Channel – Microdispenser – Microneedle - Microfilter

# BIOMEMS

Introduction to BioMEMS, BioMEMS for Clinical Monitoring, Lab on a chip, DNA Sensors, E-Nose, E-Tongue, Microsystem approaches to PCR, MEMS based Implantable Drug Delivery System, Emerging, BioMEMS Technology.

# **BIOMEDICAL NANOTECHNOLOGY**

Introduction to nanoscale phenomena, Nanoparticles - Nanomaterial characterization – XRD,SAXS,TEM,SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MRImaging, Nano-devices in biomedical applications.

# **TEXT BOOKS:**

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley & Sons, 2nd Edition, 2008.
- 2. Nitaigour Premch and Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint 2008.
- 3. Wanjun Wang & Steven A. Soper, "BioMEMS Technologies and applications", CRC Press, First Edition 2007.

# **REFERENCES:**

- 1. Steven S. Saliterman, **"Fundamentals of BioMEMS & Medical Microdevices"**, International Society for Optical Engineering, 1st Edition 2006.
- 2. Gerald A Urban, "**BioMEMS**", Springer, 1st Edition 2006.
- 3. Abraham P. Lee and James L. Lee, **"BioMEMS and Biomedical Nanotechnology"**, Volume-I, Springer, 1st Edition, 2006.

COUL	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R.Pathamuth	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

170	VE00		г		NOE	MEDI		<b>NEWIC</b>	TC		Categor	y L	Т	Р	Credit
1/61	ME09	EC-PC 3 0 0 3													
This c framev	<b>PREAMBLE</b> This course will offer students exposure to the core concepts of the global medical device regulatory framework and provide a foundation for the practical application. It includes all elements of the device product lifecycle from idea to initial market entry, sustaining activities and post-market activities.														
PRER	REREQUISITE – NIL														
COU	URSE OBJECTIVES														
1	To ur	To understand the post-marketing requirements associated with medical devices.													
2	To ur	ndersta	nd the	necess	ary ste	ps to ta	ke an i	dea to	a proto	otype.					
3	To fo	llow a	determ	inistic	engine	eering of	design	proces	s to cre	ate new	products	s.			
4	To ap	ply en	gineeri	ng the	ory to p	oractice	e.								
5	To pe	erform	risk as	sessme	nt and	counte	rmeas	ure dev	elopm	ent.					
	RSE O														
	succes														
	Under				-			-	• •		ufacturii	ng and		lerstan	d
	assem	bly teo	chnique	es.	•	-						-	App	oly	
	Mana	gemen	t Syste	m.							to the		Ana	ılyze	
CO9.		fy the device		al Dev	ice Re	gulator	ry Frar	neworl	t for a	ny giver	n country	/ based	Ana	lyze	
CO10	.Create	e poten	tial reg	gulator	y pathv	vay.							Cre	ate	
											E SPEC				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
CO1	S	S	S	S		S			М			L			
CO2	S	S	Μ	Μ		S			Μ				S		
CO3	S	S M M S M M M L S													
CO4	S	6 M L S M L M M M													
CO5	М	L	L	Μ		М			L	L		L	L	Μ	
S-Stro	ong; M	-Mediu	ım; L-I	LOW											
	SYLLABUS INTRODUCTION TO MEDICAL DEVICES AND MEDICAL DEVICE REGULATIONS														

Medical Device Classification, Bioethics and Privacy, Biocompatibility and Sterilization Techniques, Design

of Clinical Trials, Design Control & Regulatory Requirements.

# INTRODUCTION TO SPECIFIC MEDICAL TECHNOLOGIES

Biopotential measurement (EMG, EOG, ECG, EEG), Medical Diagnostics (In-vitro diagnostics), Medical Diagnostics (Imaging), Minimally Invasive Devices, Surgical Tools and Implants.

# MEDICAL DEVICES STANDARD AND INTELLECTUAL PROPERTY

Standard-ISO, IES, Intellectual Property - Patents, Copy rights, Trademarks, Trade secrets.

# HARDWARE AND SOFTWARE DESIGN

Hardware design, Hardware risk analysis, Design and project merits, Design for six sigma, software design, software coding, software risk analysis, software metrics.

# DESIGN TRANSFER AND MANUFACTURING

Transfer to manufacturing, hardware manufacturing, software manufacturing, configuration management, documents and deliverables.

#### **TEXT BOOKS:**

- 1. Richard Fries, "Reliable Design of Medical Devices", CRC Press, 2nd Edition, 2006.
- 2. Paul H. King, Richard C. Fries, Arthur T. Johnson, "Design of Biomedical Devices and Systems", Third Edition, ISBN 9781466569133.

#### **REFERENCES:**

- 1. John G. Webster (ed), "Medical Instrumentation: Application and Design", 2007.
- 2. Peter J. Ogrodnik, "Medical Device Design: Innovation from Concept to Market", Academic Press Inc; 1st Edition (2012), ISBN-10: 0123919428

COUF	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i n									
2	Mr. R.Pathamuth	Assistant Professor (Gr-II)	BME	pathamuthu@avit.ac.in									
3	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in									

17DN/	IEC13	D	DINCI	DIEC	ое ті	CCLIE	ENCI	NEERI		Categ	gory	L	Т	Р	Credit
<b>1 / D</b> IV.	IECIS	r	KINCI	PLE5	OF 11	550E	ENGI	NEEKI	ING	EC-	PS	3	0	0	3
PREA	MBLE	2													
engine transfc overvi	ering i ormativ	nethoo e impl the cur	ls and ication	life s s for f tate int	cience utureb issue e	s.The iomedi nginee	fast-m cal ap ring, f	oving f	ields ns and	oftissue l the fu	engine ture hea	ering alth car	r function are cons re. This c aspects, a	idered t course g	o have ives an
PRER	QUISI	TE: N	IL												
COUF	RSE OI	BJECT	ΓIVES												
1	To u	nderst	and ab	out the	differe	ent type	es of ti	ssues.							
2	To i	llustrat	te the a	spects	of cell	culture	<b>)</b> .								
3	To i	llustrat	te the n	nolecul	ar aspe	ects in t	tissue e	engineer	ring.						
4	To outline thebiomaterials for tissue engineering.														
5	То а	nalyse	the ca	se stud	y and r	egulate	ory issu	ues in tis	ssue ei	ngineeri	ng				
COUR	RSE OU	UTCO	MES												
			-					s will be	e able t	to					
	Descri				-								Understa		
					• 1	-		cell cul	ture.				Understa		
	Analy			-				-				,	Analyze		
CO9.				dge to skin a	0	U	tissue	es for 1	replaci	ing bor	ie, carti	lage,	Apply		
CO10		_					t case s	study in	tissue	engine	ering.		Apply		
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND PI	ROGI	RAMM	E SPEC	CIFIC	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	L													L	L
CO2	L													L	L
CO3	S	S				Μ			М			Μ		М	М
CO4	S	M	M			M			M			M	S	M	M
CO5	S	M		S		Μ			М			Μ		М	М
	ong; M-	Mediu	ım; L-I	LOW											
SYLL	ABUS														

**INTRODUCTION** Basic definition, Structural and organization of tissues: Epithelial, connective; vascularity and angiogenesis, basic

wound healing, cell migration, current scope of development and use in therapeutic and in-vitro testing.

# CELL CULTURE

Different cell types, progenitor cells and cell differentiations, different kind of matrix, cell-cell interaction. Aspects of cell Culture: cell expansion, cell transfer, cell storage and cell characterization, Bioreactors.

# MOLECULAR BIOLOGY ASPECTS

Cell signaling molecules, growth factors, hormone and growth factor signaling, growth factor delivery in tissue engineering, cell attachment: differential cell adhesion, receptor-ligand binding, and Cell surface markers.

# SCAFFOLD AND TRANSPLANT

Engineering biomaterials for tissue engineering, Degradable materials (collagen, silk and polylactic acid), porosity, mechanical strength, 3-D architecture and cell incorporation. Engineering tissues for replacing bone, cartilage, tendons, ligaments, skin and liver. Basic transplant immunology stems cells: introduction, hepatopoiesis.

# CASE STUDY AND REGULATORY ISSUES

Case study of multiple approaches: cell transplantation for liver, musculoskeletal, cardiovascular, neural, visceral tissue engineering. Ethical, FDA and regulatory issues of tissue engineering.

# **TEXT BOOK:**

3. Robat Lanza and Robert Langer, "Principles of Tissue Engineering", Elsevier, 2007.

# **REFERENCES:**

- 3. Bernhard O. Palsson, Sangeeta N. Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 4. Ed. Joseph D. Bronzino, "The Biomedical Engineering Hand Book", Second Edition, CRC Press LLC, 2000.

S. No.	Name of the Faculty	Designation	Departme nt	Mail ID
1	Mr.K.Natarajan	Associate Professor	BME	natarajank@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in

17BM	EC22		MEI	DICAI	ETH	ICS AI	ND ST	ANDA	RDS		Categor	y L	Т	P C	Credit
											EC-PS	3	0	0	3
PREA		_						.1			1 .1 •				
	To enable the students to acquire knowledge about the medical standards, ethics medicine and drugs acts, Drugs and cosmetics standards and various Medical Acts.													gs acts,	
	PREREQUISITE:NIL														
COUR	OURSE OBJECTIVES														
1	1 To Enable the students to understand the medical ethics.														
2	To Analyze medical standards.														
3	To stu	udy the	Media	cine an	d Drug	Acts.									
4	To lea	arn abc	out drug	gs and	cosmet	tics sta	ndards	•							
5	To lea	arn abc	out vari	ous me	edical I	Laws.									
COUR	RSE O	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents	will be	able to	)					
CO1. 7	Го get l	Educat	ed on t	he stud	lents to	under	stand t	he med	lical et	hics.			Uno	lerstand	
CO2. 7	Γο Intro	oduce a	about t	he Bas	ics of l	Medica	al Stan	dards.					Uno	lerstand	
CO3.T	'o intro	duce t	he con	cepts o	f Medi	cine ar	nd drug	g relate	d acts.				Uno	lerstand	
CO4. 7	Γo get f	familia	rize ab	out dru	igs and	cosme	etics sta	andard	8.				Ana	ılyze	
CO5. 7	Γο Eva	luate a	bout th	ne vario	ous me	dical L	aws.						Eva	luate	
MAPF	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М		S	М	М					М		L	L
CO2	S		М	L	S	М	М					S		L	
CO3	3 S M M S S M												L	L	
CO4	М		М	М	L	S	S	S				S	L	М	М
CO5	S		М		М	S	S	S				Μ	М	L	
S- Stro	S- Strong; M-Medium; L-Low														

# SYLLABUS

#### Medicine and Medical Ethics

Infections diseases, Diseases of CVS, Respiratory system, Kidney & Urinary tract, Liver and biliary tract disease, Endocrinology and metabolism. medical ethics, Code of conduct, Basic principles of medical ethics, Autonomy and informed consent, Organ transplantation, Medico legal aspects of medical.

#### MEDICAL STANDARDS

Evolution of Medical Standards – IEEE 11073 - HL7 – DICOM – IRMA - LOINC – HIPPA – Electronics Patient Records –Healthcare Standard Organizations – JCAHO (Join Commission on Accreditation of Healthcare Organization) - JCIA (Joint Commission International Accreditation) - Evidence Based Medicine - Bioethics.

#### MEDICINE AND DRUGS ACTS

Narcotics and Psychotropic substances Act, Drugs and Magic remedies (Objectionable advertisement) Act 1954, Poisons act 1919 – Patent Act – Intellectual Property Rights.

#### DRUGS AND COSMETICS STANDARDS

Medicinal and Toilet preparations (Excise duties) Act and rules, Drugs Price control order, Shops & Establishments Act, Sales promotion employees (conditions of service) Act.

#### **MEDICAL ACT**

Medical Termination of Pregnancy Act, Prevention of cruelty to Animals act, Insecticides Act. Consumer protection Act 1986 - The Factories Act 1948 and the Amendment (salient features).

#### **TEXT BOOKS**

- 1. R.D.Lele, "**Computers in Medicine Progress in Medical Informatics**", Tata McGraw Hill Publishing computers Ltd, 2005, New Delhi.
- 2. Mohan Bansal, "Medical informatics", Tata McGraw Hill Publishing computers Ltd, 2003 New Delhi.
- 3. N. K. Jain, "Forensic Pharmacy", 6th Edition CBS Publishers. Delhi
- 4. 4K. Ram Kumar,"Forensic Pharmacy and Pharmaceutical Business Management", 1st Edition, 2006

#### REFERENCES

- 1. G. Vidyasagar & T. V. Narayana, "Forensic Pharmacy", Kalyani Publishers, New Delhi.
- 2. Vijay Malik,"Drugs and Cosmetics Act, 1940", Eastern Book Company, Lucknow.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.M.Muthukannan	Assistant Professor (Gr-II)	BME	muthukannan@avit.ac.in
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i

17 <b>P</b> N	BMSE23 MEDICAL WASTE MANAGEMENT											egory	L	Т	Р	Credit
1/DIV	1012.	,		DICF	XL VV	ASI				11	EC	-SE	3	0	0	3
PREA															<u> </u>	
To lear	n mor	e abo	ut ma	nagin	g meo	dical v	vaste,	Healt	th Care	e and it	s neces	ssary.				
PRER	-															
COUR																
				-			0 0		cal was							
2 1		ling th			•	0						producinity of con	0			
3 1	To cre	eate av cessit	ies an									bodies a e, treatmo				
												Most sc ste Manag			anner at a	l
5 '	To un	dersta	ind mo	odern	techn	ologie	es for	mana	ging n	nedical	waste.					
COUR	SE O	UTC	OME	S												
On t	he suc	cessf	ul con	npleti	on of	the co	ourse,	stude	nts wil	l be ab	le					
	Sumn civiliz			•		aste n	nanag	ement	incluc	ling im	pacts f	rom early	y hun	^{na} U	nderstan	d
CO2:	Descr	ibe th	ne maj	or cat	egori	es of v	waste							U	nderstan	d
CO3:	Chara	acteriz	ze the	comp	onent	s and	chem	ical a	nd phy	sical p	roperti	es of med	lical	A	nalyse	
	Sumn treatm		-				rdous	waste	e genei	ration,	transpo	ortation,		U	nderstan	d
	Descr		aste c	ollect	ion, r	ecycli	ing, ai	nd ma	terials	recove	ery tech	niques fo	or	U	nderstan	d
MAPP	PING	WITI	H PR	OGR	AMM	IE OU	UTCO	OMES	S AND	PRO	GRAM	IME SPI	ECIF	IC (	OUTCON	AES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	L	М		S				S	L		М	]	Ĺ		
CO2	S	L	М		S	М			S	L		М		Ĺ	S	
002	S	L	М		S	М			S	L		М		-	S	
CO3				1		1		S	S	L		М			S	

# SYLLABUS INTRODUCTION

General Introduction, Definition of Biomedical Waste, General and Hazardous health care waste – Colour Coding and types of containers for disposal of medical waste, Segregation, Collection & Disposal.

# **BIOMEDICAL WASTES**

Infectious waste, Genotoxic waste, Waste Sharps – Categories, Categorization and composition of Biomedical waste. Liquid Biomedical Waste - Radioactive wastes, Metals, Chemicals & drugs.

# **BLOOD PRODUCTS**

Human Blood and Blood Products, pathological wastes, Contaminated sharps, Contaminated animal carcasses, body parts, and bedding Basic information about infection, Infectious agents on organizations spread of infection, Basic information about Hospital acquired infection.

# STERILISATION

Disinfections unit container for Autoclaving, Sharp waste containers for storage & transportation, autoclaving, Incineration, Plasma Pyrolysis / Gasification systems, Composting.

# MODERN TECHNOLOGY FOR MEDICAL WASTES

Modern Technology for handling Biomedical Wastes – Monitoring & Controlling of Cross Infections, Protective Devices – Bioethics and Handling of Waste Management.

# **TEXT BOOK:**

1. V. J. Landrum, "Medical Waste Management and disposal", Elsevier, 1991.

# **REFERENCES:**

- 1. Malhotra A., "Hospital Management: An Evaluation", Global India Publications, 2009.
- 2. S L Goel, "Hospital Management", Deep and Deep Publications, 2010.
- J Glyn Hendry & Gary W Heinke, "Environmental Science and Engineering", Prentice Hall India, 2004.
- 4. Shyam Divan, "Environmental law and policy in India", Oxford India Press, 2004.

5. Charles A Wentz, "Hazardous Waste Management", McGraw Hill Inc, Newyork, 1995.

S.No.	Name of the Faculty	Designation	Departmen t	Mail ID
1	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Mr. K. Natarajan	Associate Professor	BME	natarajank@vmkvec.edu.in
3	Mrs. R.Indumathi	Assistant Professor (Gr- II)	BME	indhumr@avit.ac.in

# 17BMSE24

# MEDICAL TECHNOLOGY AND ENTREPRENEURSHIP

Category	L	Т	Р	Credit
EC-SE	3	0	0	3

#### PREAMBLE

The purpose of learning this course on medical technology and entrepreneurship for biomedical engineering students is to acquire knowledge and understand the advanced in medical equipments in therapeutic, diagnostic and entrepreneurship.

# **PREREQUISITE – NIL**

#### **COURSE OBJECTIVES**

0002															
1	To in	To impart the knowledge about the Home Medicare in various clinical application.													
2	To m	ake the	stude	nts und	erstanc	d the ad	ctive co	ontrol t	rials in	the eval	luation of	of new t	reatme	nts.	
3	To in	npart th	e knov	vledge	about	Legal i	issues a	and He	alth po	licies rel	lated to	Bioscie	nces.		
4	To st	udy the	e minin	nally in	vasive	device	e and te	echniqu	ue used	l in medi	ical dev	ices.			
5	U	et know ncare s	0	about t	he adv	ances i	in healt	thcare t	technol	ogies an	d wirele	ess techi	nology	related	to
COU	RSE O	SE OUTCOMES													
On the	e succes	successful completion of the course, students will be able to													
<b>CO1</b>	1.														
<b>CO1</b> 2	2.	Desc	ribe th	e syste	m desc	ription	of diff	ferent d	liagnos	tic equip	pments.		Und	erstand	
CO1	3.	Outli	ne the	ethical	and re	gulato	ry guid	lance.					App	ly	
CO14	<b>4.</b> ealthca		0	healthc	are tec	hnolog	gies and	d wirel	ess tec	hnology	related	to	Ana	lyze	
CO1	<b>15.</b> Summarize the organization and the need for home medicare system. Evaluate														
MAPI	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI	c	c	c	м				S	м				c		

COS	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POIO	POIT	PO12	PS01	PSO2	PSO3
CO1	S	S	S	М				S	М				S		
CO2	S	S	М	М				S	М				М		
CO3	S	М	М	L				S	М				М		
CO4	S	М	М	L				S	М				L		
CO5	S	М	L	L				S	L				L		
C Church		Madin													

S- Strong; M-Medium; L-Low

# SYLLABUS

# SYSTEM DESCRIPTION OF THERAPEUTIC EQUIPMENT

Pacemaker, External cardiovector defibrillator, Implantable cardiovector defibrillator, Deep brain stimulation,

Functional electrical stimulator (FES), Hemodialysis delivery system, Mechanical ventilator.

# SYSTEM DESCRIPTION OF DIAGNOSTIC EQUIPMENT

Patient monitoring system, ECG, EEG, Blood pressure monitor, Digital stethoscope, Thermometer, System description and diagram of pulse oximeter, optical fiber optics for circulatory and respiratory system measurement.

# ETHICAL AND REGULATORY GUIDANCE

Immobilization, The Nurenberg code, Declaration of Helsinki: Ethical principles of medical research involving human subjects, The Belmont report: Ethical principles and guidelines for the protection of human subjects, The common rule, Code of federal regulations

# WIRELESS TECHNOLOGY

Wireless communication basics – Types of wireless network, Body area network – Emergency rescue – Remote recovery – General health assessments Technology in medical information processing – Future trends in healthcare technology.

# ADVANCEMENT IN MEDICAL TECHNOLOGIES

Advances and trends in health care technologies – Driver impacting the growth of medical Technologies – Impact of Moore's law of medical imaging – E-health and personal healthcare – Defining the future of health Technology – Inventing the future – tools for self health – Future of nano fabrication molecular scale devices – Future of telemedicine – Future of medical computing.

# **TEXT BOOKS:**

- 1. Ezekiel J, Emanuel, Robert A Crouch, John D Arras, Jonathan D Moreno, Christine Grady, "Ethical and Regulatory Aspects of Clinical Research", Johns Hopkins University Press, First Edition, 2003.
- 2. Kenneth J. Turner, "Advances in Home Care Technologies: Results of the match Project", Springer, 2011.

# **REFERENCES:**

- 1. Anthony Y. K, Chan, "Biomedical Device Technology: Principles and Design", Charles Thomas, 2008.
- 2. Theodore R, Kucklick, **"The Medical Device Ramp-D Handbook"**, Taylor & Francis Group LLC, 3rd Edition 2013.

	I	1	1	1
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.S.Vaishnodevi	Assistant	BME	vaishnodevi@vmkvec.edu.i
1	IVITS.S. V alsillouevi	Professor	DIVIE	n
2	Mr.R.Sureshkumar	Associate	BME	sureshkumar@avit.ac.in
2	WIT.R.Sufestikullia	Professor	DME	suresiikumai@avit.ac.m
3	Mr. S.Kannan	Assistant	BME	kannan@vmkvec.edu.in
5	Ivii. S.Kaimali	Professor	DIVIL	Kaiman @ viik vec.edu.iii

17BMS	E78		NA		CUN		'V IN	MEDI	CINE		Catego	ry L	Т	P C	Credit
1701015	L20		INAL			OLUG	FI 11N.	MEDI	CINE		EC-SE	E 3	0	0	3
<b>PREAM</b> To study		Nano	o mater	rials, fu	ındame	entals o	of nanc	techno	ology &	k applic	ations of	f Nanote	echnol	ogy.	
PREREC	PREREQUISITE – NIL														
COURS	COURSE OBJECTIVES														
1 T	1 To know about the concept of Nanotechnology.														
2 T															
3 T	o stuc	ły abo	out mat	terials	and pro	operties	s used	for ME	EMS &	NEMS.					
4 T	To kno	w abo	out the	medic	al use o	of nanc	materi	ials.							
5 T	o stuc	ły abo	out the	medica	al appli	ication	s.								
COURS	E OU'	TCO	MES												
On the su															
<b>CO16.</b> D							roperti	es of n	naterial	s.				lerstand	
<b>CO17.</b> E	-		-	-										lerstand	
CO18. A for			knowle ations	-	t nanot	echnol	logy to	1 identi	ty how	v they c	an be ex	xploited	App	oly	
<b>CO19.</b> 0	outline	the a	pplicat	tions of	f nanor	nediciı	ne.						App	oly	
<b>CO20.</b> A	nalyze	e the	biomol	ecular	compo	onents	like na	notube	s with	nanote	chnolog	у	Ana	lyze	
MAPPIN	NG W	ITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	OUTC	OMES	
COS P	O1 I	202	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S		S		М	L	S	S				S	М	L
CO2	S	S		S		М	L	S	S				S	М	L
CO3	O3 S M S M L S S M L L														
CO4	204 S M S L L S S M L L														
CO5	S	М		S		L	L	S	S				М	L	L
S- Strong; M-Medium; L-Low															

# SYLLABUS

# **INTRODUCTION**

Introduction to Nanotechnology: Nanomaterials, Fullerenes and carbon forms. Nanoparticles and Colloids, structure and bonding in nanoparticles, Nanomaterials fabrication by Bottom-up and Top down approaches, Classification of nanodevices based on the characteristics, Quantum dots and their properties.

#### FUNDAMENTALS OF NANOSCIENCE

Size dependence of properties – Particle size determination – Bulk to nanotransition – Semiconducting nanoparticles – Carbon nanostructures – Mechanical properties (hardness, ductility, elasticity) – Optical properties of nanotubes – Electrical properties of nanotubes.

#### MEMS & NEMS

Definition of MEMS, materials for MEMS (Silicon, Polymers and metals) and their properties, Deposition processes, Photolithography, and etching processes, Limitations of MEMS, NEMS, difference between MEMS and NEMS, properties of NMES, fabrication processes, applications.

#### NANOMEDICINE

Nanomedicine: Medical use of Nanomaterials, Drug delivery systems. Cancer treatment, Surgery. Drug tracking systems. Targeted drug delivery systems. Applications of Nanomaterials in Medical imaging. Neuro-electronic interfaces.

#### **BIO MOLECULAR NANOTECHNOLOGY**

Nanorobots and their application, nanosensors based on biomolecules such as DNA and proteins, nanoparticles for gene delivery systems, Computational genes, Biosensors for Glucose and measurement, Optical biosensors and their application ,Preparation of Nanosystems: Introduction to nanolithography – Carbon nanotubes: preparation – Synthesis and preparation of nanomaterials (crystalline and thinfilm) - Physical and chemical methods - Control and stability (size, shape, composition).

#### **TEXT BOOKS:**

- 1. Lynn E. Foster, Foreword by George Allen, Foreword by Joe Lieberman, "Nanotechnology'.
- 2. Di Ventra, Massimiliano; Evoy, Stephane; Heflin, James R., "Introduction to Nanoscale Science and Technology", Springer publications, 2004.

#### **REFERENCES:**

- 1. Chattopadhyay, "Introduction to Nanoscience and Nanotechnology", PHI, 2009.
- 2. B.k. Parthasarathy, "Nanoscience and Nanotechnology", Gyan Books, 2007.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in
3	Mr. S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

			MU	NICIP	AL SC	<b>)LID</b> A	AND V	VASTI	E	Categ	gory	L	Т	Р	Credi
17CV	EC35				IANA					EC		3	0	0	3
PREA	MBL	Ξ													
	Strue	cture is	s an arr	angem	ent and	d orgar	nizatior	n of int	errelate	ed eleme	ents in a	a materi	al objec	t or syste	em,
													ch as bu	ildings a	and
			ral obj	ects su	ch as b	iologic	al orga	inisms,	minera	als and c	chemica	ıls.			
PRER	EQUI	SITE													
COUL	NIL SE O		<b>FIVES</b>	1											
						0.1									
1				-					-	l method					
2			is expe	ected to	o know	about	the var	rious et	ffects a	nd dispo	osal opt	ions for	the mun	icipal sc	olid
	waste														
3	The collection and supply of water														
$\frac{4}{1}$	The offsite processing involved in site RSE OUTCOMES														
					6 41				1.1.	4 -					
			ut the t					s will t	be able	to				Analyza	
			on site	• •										Analyse Apply	
			ut the c					vaste						Apply	
		-	proces					uste						Apply	
			ut the s				8							Apply	
						-	<b>MES</b>	AND I	PROG	RAMM	E SPE	CIFIC	OUTCO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	<b>PO1</b>	PSO	PSO	
COs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	PSO
C <b>O</b> 1.	S	Μ	L	-	-	-	-	-	-	L	-	-	-	-	Μ
CO2.	S	Μ	L	S	S	S	-	-	-	-	-	-	L	-	-
CO3.	S	Μ	Μ	S	-	-	L	Μ	Μ	-	-	-	-	S	Μ
CO4.	S	Μ	Μ	Μ	-	-	-	-	-	L	Μ	-	-	-	-
CO5.	S	Μ	Μ	-	-	-	-	- 1	-	-	-	L	S	-	- 1
S- Stro	ong; M	-Mediu	ım; L-I	LOW											I
	ABUS														
SOUR	<b>CES</b> A	AND T	YPES	OF M	IUNIC	IPAL	SOLI	D WA	STES:	Sources	and ty	pes of s	olid was	stes - Qu	antity
actors	affect	ing gei	neration	n of so	lid was	stes; ch	aracter	istics -	- metho	ods of sa	mpling	and ch	aracteriz	ation; Ef	ffects of
mprop	per dis	posal	of soli	d wast	es – p	oublic	health	effect	s. Prin	ciple of	solid	waste r	nanagem	nent – s	ocial a
- eonor	nic asr	Actes E	ublic a	waren	eee Ro	le of N	IGOev	Legisle	ation						

economic aspects; Public awareness; Role of NGOs; Legislation.

**ON-SITE STORAGE & PROCESSING:** On-site storage methods – materials used for containers – on-site segregation of solid wastes – public health & economic aspects of storage – options under Indian conditions – Critical Evaluation of Options.

**COLLECTION AND TRANSFER:** Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, operation & maintenance; options under Indian conditions.

**OFF-SITE PROCESSING:** Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis - options under Indian conditions.

**DISPOSAL:** Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills – Leachate collection & treatment.

# **TEXT BOOKS:**

- 1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-HillPublishers, 2002.
- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.

# **REFERENCES:**

R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes – problems and Solutions", Lewis Publishers, 1997.
 Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

COURS	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com

17000014							т	Categ	gory	L	Т	Р	Credit
17CVEC14	А	IK PO	LLUTIO	VIN IVIA	NAGE	LIVIEIN	1	EC		3	0	0	3
PREAMBLE	£												
The course	e work of	ffers the	basic ki	nowled	ge on v	various	source	s of air j	pollutan	ts and	their pos	sible effe	ects on
local, regiona													
Also, it deals													
trends to fulfi	l the lega	al aspec	ts of air	pollutic	on to ha	ave a si	ustaina	ble envi	ronment	t for fu	ture gene	ration. In	1
addition.	SITE												
PREREQUI		wironn	ental en	nineerii	ות								
COURSE O				Sincern	ig								
	noise pol		nd the m	ethods	of con	trollin	g the sa	ime.					
	ident is e								l mecha	nism.			
	art know												
4 The co	ntrol tech	niques	of air po	llutants	s and n	oise po	ollution						
	urces, ch		stics and	effects	of air								
COURSE O													
On the succ													
CO1. Identit	•	arces of	air pollu	tion, ir	npacts	of air j	polluta	nts and t	heir		Apply		
measurement		· C'	<u> </u>	1	. 10		11	· · 1'	· ·	1	11.2		
Co2. identities to predict the				eorolog	gical fa	ictors 1	n pollu	tants dis	spersion	and	Understa	and	
Co3. Sugges	-			neasur	es for a	ir noll	ution				Apply		
Co4. Sugges								ng tips fo	or the				
effective air p					<b>r</b>		r	-8 -r			Apply		
CO5. The co					vledge	on var	ious so	urces of	air		Apply		
pollutants and											Apply		
MAPPING V	WITH P	ROGR	AMME	OUTC	OMES	S AND	PRO	GRAMN	AE SPE	CIFIC	COUTC	OMES	
CO PO1 I	PO2 PO	D3 PC	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
$\begin{array}{c c} CO \\ 1 \end{array}$ S	MI	L		L		L					_	-	-
$\begin{array}{c c} \hline CO \\ 2 \\ \hline \end{array}$	MI	L	L	M		L		L	L		-	-	-
CO				3.5		<b>.</b>			1				
3 8	M I		L	M		L		L			-	-	-
CO 4 S	M N	1 S	L			L		L		L	-	-	-
$\begin{array}{c c} CO\\ 5 \end{array}$ S	M N	1 S				Μ		Μ	L		-	-	-
S- Strong; M	-Medium	; L-Lov	v										
SYLLABUS													
SOURCES A	AND EF	FECT	S OF A	IR PO	LLUT	ANTS	: Cla	ssificatio	on of a	ir pollu	itants – I	Particula	tes and

gaseous pollutants – Sources of air pollution – Source inventory – Effects of air pollution on human beings, materials, vegetation, animals – global warming-ozone layer depletion, Sampling and Analysis – Basic Principles of Sampling – Source and ambient sampling – Analysis of pollutants – Principles.

**DISPERSION OF POLLUTANTS :** Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate - Atmospheric stability and turbulence – Plume rise – Dispersion of pollutants – Dispersion models – Applications.

**AIR POLLUTION CONTROL :** Concepts of control – Principles and design of control measures – Particulates control by gravitational, centrifugal, filtration, scrubbing, electrostatic precipitation – Selection criteria for equipment - gaseous pollutant control by adsorption, absorption, condensation, combustion – Pollution control for specific major industries.

**AIR QUALITY MANAGEMENT** : Air quality standards – Air quality monitoring – Preventive measures -Air pollution control efforts – Zoning – Town planning regulation of new industries – Legislation and enforcement – Environmental Impact Assessment and Air quality

**NOISE POLLUTION:** Sources of noise pollution – Effects – Assessment - Standards – Control methods - Prevention

# **TEXT BOOKS:**

1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.

2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996

# **REFERENCE BOOKS:**

1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997

2. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing

Company, New Delhi, 1991.

<b>COURSE DESIGNERS</b>	
-------------------------	--

00014				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	M.Senthilkumar	Asst. Professor	CIVIL	senthilkumar@vmkvec.edu.in
2	B.Subha	Asst. Professor	CIVIL	subhajaya85@gmail.com

										Categ	gory	L	Т	Р	Credit
17CV	/EC06				HYDR	KOLO(	GY			EC	2	3	0	0	3
PREA	MBLE	,													
	It is the	e scien	ce that	deals	with th	e water	rs of th	e earth	, their o	occurrer	nce, circ	ulation,	distribu	tion and	their
reactio	on with o	enviro	nment	includ	ing the	ir relat	ion to l	living t	hings.						
PRER	EQUIS	SITE													
		NIL													
COU	RSE OF														
1	The m	lechan	ics of 1	ainfall	, its sp	atial ar	nd temp	ooral m	leasure	ment an	d their a	applicat	ions will	be unde	rstood.
2										of raint	fall usin	g Hydr	ograph.		
3	Analy	sis of	Simple	e statis	tical ar	nd appl	ication	of pro	bability	у					
4										ground	water h	ydrolog	gy.		
5	Distri	bution	of rain	ıfall an	d run c	off shal	l also t	be unde	erstood						
COUF	RSE OU	JTCO	MES												
On the	he succe	essful	comple	etion of	f the co	ourse, s	tudent	s will t	be able	to					
CO1. I	Explain	the in	nportan	ce of H	Iydrolo	ogical o	cycle a	nd the	measur	ement a	nd anal	ysis	I	nderstan	d
of rain	fall data	a											0	nucistan	u
CO2. 0	Comput	e the c	quantity	y of rui	10ff ge	nerated	d from	a catch	ment					Apply	
CO3.D	Develop	hydro	graphs	to mea	asure tl	ne strea	am flov	N						Apply	
CO4. I	Estimate	e flood	ls and j	propos	e suital	ole con	trol me	easures						Apply	
CO5. \$	Suggest	metho	ods of a	conserv	ving su	rface a	nd gro	undwa	ter stor	age				Apply	
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC (	DUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	-	-	-	L	S	L	-	-	-	М	L	L	-
CO2	S	M	L	L	_	_	S	_	_	_	_	M	L	L	_
CO3	S	М	L	L	-	-	Μ	-	-	-	-	L	L	L	-
CO4	S	М	-	L	-	-	S	-	-	-	-	L	L	L	-
CO5	L	-	L	-	-	L	М	L	L	L	-	L	L	L	-
	ong; M-	Mediu		LOW											
	ABUS		,												
		ΓΙΟΝ	: Hydi	rologic	cycle	– Ty	pes of	precip	itation	– Forn	ns of p	recipita	tion – I	Measurer	nent of
														of point	
										precipita				1	
												vaporati	on proc	ess – Re	eservoir
														ration in	
Effecti	ive raint	fall.					-	-							
HYDF	ROGRA	PHS	Facto	rs affe	cting H	Iydrog	raph –	Basefl	ow sep	aration	– Unit ł	nydrogr	aph – D	erivation	of unit
													nit Hydı		
							-	•					– Gum	bel's m	ethod –
	routing						-	•					– Gun		Guil

Flood routing – Reservoir flood routing – Muskingum's Channel Routing – Flood control

**GROUND WATER HYDROLOGY:** Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer – Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.

# **TEXT BOOKS:**

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw-Hill Publishing Co., Ltd., 2000
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000

#### **REFERENCES:**

- 1. Chow, V.T. and Maidment, "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. Singh, V.P., "Hydrology", McGraw-Hill Inc., Ltd.,
- 3. Raghunath,H.M,Ground Water,New Age International(P) Limited,Publishers.
- 4. Raghunath, H.M, Hydrology: Principles, Analysis & Design, New Age International (P) Limited, Publishers.

CO	URS	SE DESIGNERS			
S.N	No.	Name of the Faculty	Designation	Department	Mail ID
1	1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

	Т	Р	Credit
3	0	0	3
ut the n	measures	, its effe	ct against
s with t	the meth	ods of m	itigating
ent			
rine			
ers,	1	Understa	nd
ster		TT 1 4	1
		Understa	ind
asures		A	
		Apply	
		Apply	
	1	Understa	nd
CIFIC	COUTC	OMES	
PO12	2 PSO1	PSO2	PSO3
-	L	-	-
-	L	-	-
-	М	L	-
-			-
-		-	-
	-	- M	- M L

# SYLLABUS

**INTRODUCTION:** Concept of disaster; Different approaches; Concept of Risk; Levels of disasters; Disaster phenomena and events (Global, national and regional); Natural and man-made hazards **RISK ASSESSMENT AND VULNERABILITY ANALYSIS:** Response time, frequency and forewarning levels of different hazards; Characteristics and damage potential of natural hazards; hazard assessment ;Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

**DISASTER MANAGEMENT MECHANISM:** Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery ; Development, Prevention, Mitigation and Preparedness; Planning for relief

**DISASTER RESPONSE:** Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and Stress Management; Rumour and Panic Management ;Minimum Standards of Relief; Managing Relief; Funding.

**DISASTER MANAGEMENT IN INDIA:** Strategies for disaster management planning; Steps for formulating a disaster risk reduction plan; Disaster management Act and Policy in India; Organisational structure for disaster management in India; Preparation of state and district disaster management plans.

# **TEXT BOOKS:**

- 1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- 2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- 3. Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

# **REFERENCES:**

- 1. Abarquez I. & Murshed Z. Community Based Disaster Risk Management: Field Practitioner's Handbook, ADPC, Bangkok, 2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.
- 4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.
- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

	REMOTE SENSING TECHNIQUES AND	Category	L	Т	Р	Credit							
17CVEC08	APPLICATIONS	EC	3	0	0	3							
PREAMBLE				•		•							
Remote sensing is the science and art of obtaining information about an object, area or phenomenon, by the													
use of either re-	cording or real time sensing devices that are not in pl	nysical conta	ct with the	he object	. The Glo	bal							
Positioning Sys	stem (GPS) is a satellite-based navigation system ma	de up of a ne	etwork of	24 satell	lites place	ed into							
orbit by the U.S.	S. Department of Defense. These GPS satellites circle	e the earth tw	vice a dag	y in a ver	y precise	orbit							
and transmit signal information to earth. Remote sensing and GPS data are further used in numerous applications,													
including GIS data collection, surveying, and mapping.													
PREREQUIS	PREREQUISITE												
	NIL												

# **COURSE OBJECTIVES**

1 Students will learn about the land use mapping techniques, site suitability techniques

2 Students will learn about the use of zone mapping for water bodies

3 Students will learn about the use of mapping techniques for Agriculture and Earth sciences

4 Students will also learn about the recent techniques used for GPS system

#### **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

$\mathbf{I}$	
CO1. Recollect the fundamentals of physics of Remote sensing and concepts.	Remember
CO2. Outline the various data acquisition systems and collection methods for remote sensing data information and storage	Understand
CO3.Apply knowledge of satellites on various Civil Engineering applications.	Apply
CO4. Utilize the various data input methods for mapping	Apply
CO5. Creation of data models using remote sensing techniques and GPS	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CO4	S	L	-	-	L	-	-	-	L	L	L	-	L	L	-
CO5	S	L	-	-	L	-	-	-	L	L	L	-	L	L	-
S- Stro	ng M	Mediu	ım• I _I	OW											

S- Strong; M-Medium; L-Low

# SYLLABUS

**INTRODUCTION:** Definition – Physics of remote sensing – electromagnetic radiation (EMR) – remote sensing windows – interaction of EMR with atmosphere, earth surface, soils, water and vegetation – platform and sensors – image interpretations.

**LAND USE STUDIES:** Definition of land use – land use / land cover classification – schemes and levels of classification systems with RS data – land use mapping – change detection – urban land use planning, site suitability analysis, transportation planning.

**WATER RESOURCES:** Areal assessment of surface water bodies – Capacity survey of water bodies – mapping of snow-covered areas – flood risk zone mapping – identification of groundwater potential zones, recharge areas – droughts, definition, drought assessment and management.

**AGRICULTURE, SOIL AND FORESTRY:** Crop inventory mapping – production estimation – command area monitoring – soil mapping – crop stress detection - estimation of soil erosion – forest types and density mapping – forest fire risk zone mapping.

**EARTH SCIENCE:** Lithology – lithological mapping – structural mapping – Geomorphology – nature and type of landforms – identification – use of remote sensing data for landslides – targeting mineral resources – Engineering geology and Environmental geology.

# **TEXT BOOKS:**

- 1. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman., Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi, 2004
- 2. Lo. C.P.and A.K.W.Yeung, Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi, 2002

# **REFERENCES:**

- 1. Chandra, A.M, Geo Informatics, New Age International (P) Limited, Publishers.
- 2. Fazal, Shahab, GIS Basics, New Age International (P) Limited, Publishers.
- 3. Space Applications Centre. Manual for Forest mapping and Damage detection using satellite data, Report No.IRS-UP/SAC/FMDD/TN/16/90,1990, pp-253.
- 4. Sabins, F.F.Jr. Remote sensing principles and interpretation, W.H.Freeman & Co., 1978.
- 5. Manual of Remote Sensing Vol. II. American Society of Photogrammetry

<b>COURS</b>	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.Fizoor Rahman	Asst. Professor	CIVIL	fizoorr@gmail.com
2	J.Karthick Rajan	Asst. Professor	CIVIL	Karthickrajan078@gmail.com

			Category	L	Т	P	Credit			
17EEE	C18	<b>RENEWABLE ENERGY TECHNOLOGY</b>	EC-PS	3	0	0	3			
To i	<b>PREAMBLE</b> To introduce the fundamentals of PV & WIND technologies and Converters used in renewable energy technologies and its lead to understand a modern control techniques to monitor wind turbine systems.									
PRERE	QUISI	re-nil								
COURS	E OBJ	ECTIVES								
1	To lea	arn about PV technology principles.								
2	To lea	arn economical and environmental merits of solar energy for	variety ap	plica	tions.					
3	To lea	arn modern wind turbine control & monitoring.								
4	To learn various power converters in the field of renewable energy technologies.									
5	To study and analyse different types of Power converters for Renewable energy conversion									
COURS	E OUT	COMES								
On the su	uccessfu	al completion of the course, students will be able to								
CO1	Understand the PV technologies Understand									
CO2	Applications of PV technology. Apply									
CO3	Design the solar power plant. Apply									
CO4	Under	rstand modern wind turbines and its control.			Unde	erstan	d			
CO5	Analyze various power converters to select for particular application. Analyze									

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ	S				М			L		М	S	М	S
CO2	Μ	L	L				Μ			М		М	S	L	М
CO3	S	S	S	S	Μ				L				S	М	S
CO4	L	L	L		S		М		L				L	L	S
CO5	S	S	S	Μ	Μ									М	
CO6													S	Μ	S

S- Strong; M-Medium; L-Low

# SYLLABUS

# SOLAR THERMAL TECHNOLOGIES

Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker : domestic, community - Solar pond - Solar drying.

Principle of working, types, design and operation of - Solar heating and cooling systems - Thermal Energy storage systems – Solar Desalination – Solar cooker : domestic, community – Solar pond – Solar drying.

# SPV SYSTEM DESIGN AND APPLICATIONS

Solar cell array system analysis and performance prediction- Shadow analysis: reliability - solar cellarray design concepts - PV system design - design process and optimization - detailed array design - storage autonomy - voltage regulation - maximum tracking - centralized and decentralized SPVsystems - stand alone - hybrid and grid connected system - System installation - operation andmaintenances - field experience - PV market analysis and economics of SPV systems.

# DIRECT ROTOR COUPLED GENERATOR ( MULTIPOLE ) [VARIABLE SPEED VARIABLE FREQ.]

Excited Rotor Synch. Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up / Boost Converter ( DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltage and Current), Transformer, Safety Chain Circuits

# MODERN WIND TURBINE CONTROL & MONITORING SYSTEM

Details of Pitch System & Control Algorithms, Protections used & Safety Consideration in Wind turbines, Wind Turbine Monitoring with Error codes, SCADA & Databases: Remote Monitoring and Generation Reports, Operation & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FACTS control & LVRT & New trends for new Grid Codes.

# **POWER CONVERTERS**

Solar: Block diagram of solar photo voltaic system: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection Of inverter, battery sizing, array sizing. Wind: three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

# **TEXT BOOK**

1.Goswami, D.Y., Kreider, J. F. and & Francis., Principles of Solar Engineering, Taylor and Francis,2000 2.Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, 1996

#### REFERENCES

1. Sukhatme S P, J K Nayak, Solar Energy – Principle of Thermal Storage and collection, Tata McGraw Hill, 2008.

2. Solar Energy International, Photovoltaic – Design and Installation Manual – New Society Publishers, 2006

3.Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1983

4. John D Sorensen and Jens N Sorensen, Wind Energy Systems, Woodhead Publishing Ltd, 2011

5. Rashid .M. H "power electronics Hand book", Academic press, 2001.

L					
	S.No.	Name of the Faculty	Designation	Department	e-Mail ID
	1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in
	2 R. SATHISH		Assistant Professor	EEE	sathish@vmkvec.edu.in

	MATHEMATICAL MODELLING AND	Category	L	Т	Р	Credit
17EEEC20	SIMULATION	EC-PS	3	0	0	3

#### PREAMBLE

To introduce the students to study the fundamentals of computing and modeling software environments for electrical engineering. This Course contains Programming in numerical computing and modeling software environments for electrical engineering. No prior programming experience or knowledge of SCILAB is assumed, and the course is structured to allow thorough assimilation of ideas through hands-on examples and exercises.

PRERE	QUISITE NIL							
COURS	E OBJECTIVES							
1	To study basic concepts of scientific programming using SCILAB.							
2	To learn about the Basics of Program of SCILAB and related Mathemat	tical Applications.						
3	Analyze the concepts of Program of SCILAB.							
4	To understand the different tools in SCILAB and ODE, DAE							
5	To apply a software program to Electrical circuits and solve the simulation based solutions.							
COURS	E OUTCOMES							
On the s	accessful completion of the course, students will be able to							
CO1	Understand the main features of the SCILAB program development environment to enable their usage in the higher learning.	Understand						
CO2	Understand the need for simulation/implementation for the verification of mathematical functions.	Understand and Analyze						
CO3	Implement simple mathematical functions/equations in numerical computing environment such as SCILAB.Create							
CO4	Interpret and visualize simple mathematical functions and operations thereon using plots/display. Analyze and Apply							
CO5	Analyze the program for correctness and determine/estimate/predict the output and verify it under simulation environment using SCILAB toolsAnalyze and Create							
MAPPI	NG WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC	CIFIC OUTCOMES						

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М			L	L					L	S	М	S
CO2	S	М										М	S	L	S
CO3	S	М											S	М	S
CO4	S	М				М							S	М	S
CO5	S		L			L							S	М	

S- Strong; M-Medium; L-Low

# SYLLABUS

# **INTRODUCTION**

Introduction to SCILAB – Constants – Data types – SCILAB Syntax – Data type related functions – Over loading.

# **GRAPHICAL ANALYSIS USING SCILAB**

The media – global plot parameters – 2D and 3D plotting – examples – printing graphics and exporting to Latex.

# SCILAB PROGRAMMING

Linear algebra – Polynomial and rational function manipulation – Sparse matrices – random numbers – cumulative distribution functions and their inverse – building interface programs – inter SCI – dynamic linking – static linking.

# **SCILAB TOOLS**

Systems and control toolbox – improper systems – system operation – control tools classical control – state space control – model reduction – identification – linear matrix inequalities – integrating ODEs – integrating DAEs.

# APPLICATIONS

Resistive circuits – inductive and capacitive circuits – transients – steady state analysis – logics circuits – electronic devices - DC machines

# TEXT BOOK

1. Claude Gomez Engineering and Scientific Computing with SCILAB, Birkhauser publications

# REFERENCES

- 1. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications A. Vande Wouwer, P. Saucez, C. V. Fernández 2014ISBN: 978-3319067896
- 2. SCILAB(a Free Software to Matlab), Er. HemaRamachandran and Dr. Achutsankar Nair, S. Chand

# Publishers, ISBN-10: 8121939704,2011

# 3. <u>http://in.mathworks.com/</u>

4.https://www.scilab.org/resources/documentation/tutorials

# 5. http://www.scilab.org/

00010				
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in

17EEEC21NON CONVENTIONAL ENERGY SOURCESEC-PS3003			Category	L	Т	Р	Credit
	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EC-PS	3	0	0	3

#### PREAMBLE

Non Conventional resources include solar energy, wind, falling water, the heat of the earth (geothermal), plant materials (biomass), waves, ocean currents, temperature differences in the oceans and the energy of the tides. Non Conventional energy technologies produce power, heat or mechanical energy by converting those resources either to electricity or to motive power. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on grid applications. Such commercial technologies include hydroelectric power, solar energy, fuels derived from biomass, wind energy and geothermal energy. Wave, ocean current, ocean thermal and other technologies that are in the research or early commercial stage, as well as non-electric Non Conventional energy technologies, such as solar water heaters and geothermal heat pumps, are also based on Non Conventional resources, but outside the scope of this Manual.

# PREREQUISITE-NIL

#### **COURSE OBJECTIVES**

To learn about PV technology principles.							
To learn economical and environmental merits of solar energy for variet	y applications.						
To learn modern wind turbine control & monitoring.							
To learn various power converters in the field of renewable energy techn	nologies.						
To study and analyse different types of Power converters for Renewable energy conversion							
E OUTCOMES							
accessful completion of the course, students will be able to							
Understand to Renewable Energy Sources, Principles of Solar Radiation, Different Methods of Solar Energy Storage and its Applications, Concepts of Solar Ponds, Solar Distillation and Photo Voltaic Energy Conversion	Understand and Analyse						
Learn the Flat Plate and Concentrating Collectors, Classification of Concentrating Collectors	Analyse						
Learn the Wind Energy, Horizontal and Vertical Access Wind Mills, Bio Conversion	Analyse						
	To learn economical and environmental merits of solar energy for variet To learn modern wind turbine control & monitoring. To learn various power converters in the field of renewable energy techn To study and analyse different types of Power converters for Renewabl E OUTCOMES accessful completion of the course, students will be able to Understand to Renewable Energy Sources, Principles of Solar Radiation, Different Methods of Solar Energy Storage and its Applications, Concepts of Solar Ponds, Solar Distillation and Photo Voltaic Energy Conversion Learn the Flat Plate and Concentrating Collectors, Classification of Concentrating Collectors						

CO4	Types of Bio-Gas Digesters and Utilization for Cooking Geothermal Energy Resources	Understand and Apply
CO5	Types of Wells and Methods of Harnessing the Energy, Ocean Energy and Setting of OTEC Plants	Understand
CO6	Tidal and Wave Energy and Mini Hydel Power Plant, Need and Principles of Direct Energy Conversion, Concepts of Thermo-Electric Generators and MHD Generators	Analyse

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S				М			L		М	S	М	S
CO2	М	L	L				М			М			S	L	М
CO3	S	М	S	S	М									М	S
CO4	L	L	L		S		М						L	L	S
CO5	S	S	S	М	М									М	
CO6												М	S	М	
S- Strong	S- Strong: M-Medium: L-Low														

S- Strong; M-Medium; L-Low

### SYLLABUS

# **INTRODUCTION**

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

# SOLAR ENERGY CONCEPT

Solar Energy-Energy available form Sun, Solar radiation data, Solar energy conversion into heat, Flat plate and Concentrating collectors, Mathematical analysis of Flat plate collectors and collector efficiency, Principle of Natural and Forced convection, Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite.

# WIND ENERGY CONCEPT

Wind energy conversion, General formula -Lift and Drag- Basis of wind energy conversion – Effect of density, frequency variances, angle of attack, and wind speed. Windmill rotors Horizontal axis and vertical axis rotors. Determination of torque coefficient, Induction type generators- working principle.

# **GEOTHERMAL AND BIOMASS ENERGY**

Nature of Geothermal sources, Definition and classification of resources, Utilization for electric generation and direct heating, Well Head power generating units, Basic features Atmospheric exhaust and condensing, exhaust

types of conventional steam turbines. Pyrolysis of Biomass to produce solid, liquid and gaseous fuels, Biomass gasification, Constructional details of gasifier, usage of biogas for chulhas, various types of chulhas for rural energy needs.

# TODAL AND WAVE ENERGY

Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants, Operational of small cycle experimental facility, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC. Status of multiple product OTEC systems.

# TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

### REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources. Rai.

COURS	COURSE DESIGNERS											
S.No.	S.No. Name of the Faculty Designation Department e-Mail I											
1	P. LOGANATHAN	Assistant Professor	EEE	loganathan@vmkvec.edu.in								
2	R. SATHISH	Assistant Professor	EEE	sathish@vmkvec.edu.in								

17 A TE		n		TOD			EOU			Catego	ry	L	Т	Р	С
17ATE	LUð		IKAU	IUKA	AND F	AKW	EQUI	IPMEN'	E	EC(PS)	)	3	0	0	3
Prear															
			s the s	tudy of	f funda	menta	ls and	design o	f trac	ctors an	d farn	n equip	ments		
Prerec	-	te													
Nil Course Objectives															
1 To study the components and safety rules of tractors															
2 To learn the engine cycles and performance of tractors															
3     To study the various engine components															
4 To study the engine cooling, lubrication and fuel supply system															
5 To study the various farm equipments															
Course Outcomes:															
Af	ter Su	iccessfi	ıl comp	oletion	of this c	ourse,	the stu	dents will	l be a	ble to:				T	
CO1.	Uı	ndersta	nd the	safety	rules o	f tract	ors and	d their co	ompo	onents				Unde	rstand
CO2.	Uı	ndersta	nd the	operat	ion of e	engine	cycles	s and per	form	ance of	f tracto	ors		Unde	rstand
CO3.	Kı	now the	e vario	us engi	ne con	npone	nts of t	ractors						Unde	rstand
CO4.	Uı	ndersta	nd the	engine	coolin	g, lub	ricatio	n and fue	el sup	pply sys	stems	of tract	ors	Unde	rstand
CO5.	Kı	now the	e vario	us Farı	n equi	oments	8							Unde	rstand
Mappi	ng v	vith P	rogran	nme (	Dutco	mes a	and P	rogram	me	Specif	ic Ou	tcome	S		
COs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12	PSO1	PSO2	PSO3
CO1	S								_				L		
	S								-				L		
	s				L		L		-				L		
CO4	S		L						-				L		
CO5	S	М	L	L	М	М	М		-				L		
	Stror	ig: M-N	ledium	: L-Lov	v	1	1	1 1		1	1	1	1	1	1

Syllabus

#### GENERAL DESIGN OF TRACTORS

Classification of tractors –Main components of tractor – safety rules, Control of the Tractor and Fundamentals of Engine Operation

#### CONTROL DESIGN OF THE TRACTOR AND FUNDAMENTALS

Tractor controls and the starting of the tractor engines – basic notions and definition – Engine cycles – operation of multi cylinder engines - General engine design – Basic engine performance characteristics.

### ENGINE FRAME WORK AND VALVE MECHANISM OF TRACTORS

Cylinder and pistons –Connecting rods and crankshafts – Engine balancing – Construction and operations of the valve mechanism – Valve mechanism troubles

### COOLING SYSTEM, LUBRICATION SYSTEM AND FUEL SYSTEMS OF TRACTOR

Cooling system – Classification – Liquid cooling systems – Components, Lubricating system servicing and troubles – Air cleaner and turbo charger – Fuel tanks and filters – Fuel pumps

#### FARM EQUIPMENTS

Working attachment of tractors –Farm equipments – Classification – Auxiliary equipment – Trailers and body tipping mechanism.

# TEXT BOOK:

1. Rodichev and G.Rodicheva, Tractor and Automobiles, MIR Publishers, 1987

#### **REFERENCES:**

1. Kolchin A., an dV.Demidov, Design of Automotive Engines for Tractor.

#### **Course Designers:**

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	N. Shivakumar	Asst. Prof. Gr - II	Mechanical, AVIT	shivakumar@avit.ac.in
4				

											r		r	- <u> </u>	
1747	TEC18	8		ALT	ERNA'	TIVE	FUELS	5		Categ	ory	L	Т	Р	С
1/111	LUN	9								EC(P	'S)	3	0	0	3
Pream															
To study	/ and u	unders	tand th	ne Con	positi	on and	d Devel	lopmer	nt in Al	lternate	e Fuels	5			
Prereq		;													
Ni Course		octivo													
	-		he imp	ortono	a of P	ioahar	niatmy								
			1				for Cel	lulocor							
										ollowa	d for	hightha	nol proc	luction	
-					1					onowe	u 101	bioetiia		luction	
<ul> <li>4 Understand the various Composition of Bio Diesel</li> <li>5 Understand the various Development in Alternate Fuels</li> </ul>															
Course Outcomes:															
After Successful completion of this course, the students will be able to:															
CO1.			-				or rene				ation.			Unde	rstand
CO2.	Und	erstan	d the p	roduct	ion pro	ocess f	for lipid	d based	l biofu	els.				Unde	rstand
CO3.	Und	erstan	d the p	roduct	ion pro	ocess (	of bion	nethane	e and b	iohvdr	ogen			Unde	rstand
CO4.			-		-		ation bi				- 8				rstand
CO5.			d the b			0									rstand
000.				-		0		e and	Proc	iramn	no Sn	ocific (	Jutcon		istund
Mapping with Programme Outcomes and Programme Specific Outcomes           Cos         P01         P02         P03         P04         P05         P06         P07         P08         P09         P01         P01         P012         PS01         PS01										PSO2	PSO3				
CO1	L	M	M			S	M			0	1		L		
CO1		M	L	S		M				М			L		
CO2		M	M		S							M	L		
CO4	Μ	L		M	M	Μ	М					141	L		
CO4	S		 S	S	141					 M		М	L		
		 M M	edium.				Μ			Μ		IVI	L		

S- Strong; M-Medium; L-Low

#### Syllabus

#### INTRODUCTION

Chemistry, Biochemistry, and Microbiology of Lignocellulosic Biomass, Biomass as an Energy Source: Traditional and Modern Views, Structural and Industrial Chemistry of Lignocellulosic Biomass, Lignocellulose as a chemical resource, Physical and chemical pretreatment of lignocellulosic biomass, Biological pretreatments, Acid hydrolysis to saccharify pretreated lignocellulosic biomass,

#### BIOCHEMISTRY

Cellulases: Biochemistry, Molecular Biology, and Biotechnology, Enzymology of cellulose degradation by cellulases, Cellulases in lignocellulosic feedstock processing, Molecular biology and biotechnology of cellulase production, Hemicellulases: New Horizons in Energy Biotechnology, A multiplicity of hemicellulases, Hemicellulases in the processing of lignocellulosic biomass, Lignin-Degrading Enzymes as Aids in Saccharification, Commercial Choices of Lignocellulosic Feedstocks for Bioethanol Production, Biotechnology and Platform Technologies for Lignocellulosic Ethanols

#### **BIOCHEMICAL ENGINEERING**

Biochemical Engineering and Bioprocess Management for Fuel Ethanol, Biomass Substrate Provision and Pretreatment, Wheat straw — new approaches to complete saccharification, Switchgrass, Corn stover,

Softwoods, Sugarcane bagasse, Other large-scale agricultural and forestry, biomass feedstocks, Fermentation Media and the "Very High Gravity" Concept, Fermentation media for bioethanol production, Highly concentrated media developed for alcohol fermentations,

# **COMPOSITION OF BIO DIESEL**

Vegetable oils and chemically processed biofuels, Biodiesel composition and production processes, Biodiesel economics, Energetics of biodiesel production and effects on greenhouse gas emissions, Issues of ecotoxicity and sustainability with expanding biodiesel production, Fischer-Tropsch Diesel: Chemical Biomass-to-Liquid Fuel Transformations

# DEVELOPMENT OF ALTERNATE FUELS

Radical Options for the Development of Biofuels, Biodiesel from Microalgae and Microbes, Biohydrogen, The hydrogen economy and fuel cell technologies, Bioproduction of gases, Production of H2 by photosynthetic organisms, Emergence of the hydrogen economy, Microbial Fuel Cells: Eliminating the Middlemen of Energy Carriers Biofuels as Products of Integrated Bioprocesses

#### TEXT BOOK:

- 1. David M. Mousdale, Biofuel-Biotechnology, Chemistry, and sustainable Development, 1st Ed., CRC Press Taylor & Francis Group, 2008
- 2. Joseph M Norbeck, Hydrogen fuel for surface transportation, Society of Automotive Engineers, 1996. **REFERENCES:**

- 1. Ayhan Demirbas, Green Energy and Technology, Biofuels, Securing the Planet's Future Energy Needs, 1st edition, Springer, 2009.
- 2. James D. Halderman, James Linder. Automotive Fuel and Emission Control system, Prentice Hall, 2005.

#### Course Designers.

Cour	se Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Associate Professor	Mechanical, AVIT	saravanakumar@avit.ac.in
4				

1 <b>7</b> M	ECC16				STRIA MATI			Cate	egory	L		Т	Р	Cr	edit
1/101	LCCIU	,	A		VIA I I	UN		C	C	3		0	0		3
concep	oduce	differe				motivatio tegies be							rization	with bas	sic
	e Obje														
1	To und	erstand	d the fa	actory	autom	nation and	d in	tegrati	on						
2	To lear	n abou	t hydr	aulics	/pneun	natics cir	rcuit	S							
3 '	To und	erstand	the v	arious	desig	n of pneu	umat	tic and	lelecti	ro-pneu	matic c	rcuits			
4	To lear	n abou	t PLC	and it	s appli	ications									
5	To und	erstand	the a	utoma	tion in	transfer	ma	chines	& ass	embly.					
Cours	a Outa		On th			Loomplo	tion	of th		an atur	Jonta		abla ta		
						l comple				se, stu	ients w				
CO1.					-	f industri ed for im				udrouli	and		Rememb Understa		
CO2.	pneu	matic	systen	ns.			•			yurauno				illa	
CO3.						tro-pneu	imat	ic circ	uits				Apply		
CO4.					••	ications	6		1.	0	11		Understa		
CO5.		erstance mation		asics c	of auto	matic tra	anste	er mac	nines	& asser	nbly		Understa	ind	
Mapp	ing wit	h Prog	gramn	ne Ou	tcome	es and Pi	rogr	amm	e Spec	cific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5		PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSC 3
CO1	М	-	5	-	5	0	,	0	/	0	1	L	L		5
CO2	М											L	L		
CO3	М	М	S	S	М							L	L		
CO4	М		М	S	М							L	L		
CO5	М		М	S	М							L	L		
S- Str	ong; M	.Medi	ium• T	Low	<u> </u> ,	<u> </u>				<u> </u>	<u> </u>	1		1	1
			, 1												

#### INTRODUCTION TO FACTORY AUTOMATION AND INTEGRATION

Basic concepts and scope of industrial automation, socio-economic considerations, modern developments in automation in manufacturing and its effect on global competitiveness.-Need and implications of automation in manufacturing- Different types of production systems and automation-Hard/fixed automation

#### INTRODUCTION TO HYRDAULICS/PNEUMATICS

Basic elements of hydraulics/pneumatics, electro-pneumatic controls and devices, electro-pneumatic systems, fluid power control elements and standard graphical symbols for them, construction and performance of fluid power generators, hydraulic and pneumatic actuators, their design and control devices-Sequence operation of hydraulic /pneumatic actuators-Applications in manufacturing- Hydraulic & pneumatic valves for pressure, flow & direction control, servo valves and simple servo systems with mechanical feedback, solenoid-Different sensors for hydraulic, pneumatic & electro-pneumatic systems.

#### DESIGN OF PNEUMATIC AND ELECTRO-PNEUMATIC LOGIC CIRCUITS

Logic circuits to be designed for a given time displacement diagram or sequence of operation-Pneumatic safety and control circuits and their applications to clamping, traversing and releasing operations.

#### PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC for design demonstration, programming and interface the hardware with software for modern manufacturing applications.

#### AUTOMATIC TRANSFER MACHINES & ASSEMBLY AUTOMATION

Classifications, analysis of automated transfer lines, without and with buffer storage, group technology and flexible manufacturing system- Types of assembly systems, assembly line balancing, performance and economics of assembly system.

# **Text Books**

Text D	OOKS										
1	Esposito, A., Fluid	Power with Ap	pplications, Prentice 1	Hal of India, New Delhi .,							
2	Majumdar, S. R., Pneumatic Systems, Tata McGraw Hill, New Delhi										
Refere	ence Books										
1	Auslander, D. M. and Kempf, C. J., Mechatronics: Mechanical System Interfacing, Prentice Hall Inc., New Jersey .										
2	Deppert, W. and St	oll, K., Pneuma	atic Control, Vogel V	verlag, Wurzburg, Germany,							
3	Herbert, E.M., Hydraulic Control System, John Wiley & Sons, New York										
Course	se Designers										
S.No	Faculty Name     Designation     Department/Name of the College     Email id										
1	M.SARAVANAN ASST. PROF MECH./ AVIT saravanan@avit.ac.in										

<b>17ECEC06</b>	MEMS & SENSORS	Category	L	Т	Р	Credit
		EC	3	0	0	3

#### PREAMBLE

S- Strong; M-Medium; L-Low

In recent years, MEMS have revolutionized the semiconductor industry, with sensors being a particularly buoyant sector. Smart MEMS and Sensor Systems presents readers with the means to understand, evaluate, appreciate and participate in the development of the field, from a unique systems perspective. The combination of MEMS and integrated intelligence has been put forward as a disruptive technology. The full potential of this technology is only evident when it is used to construct very large pervasive sensing systems.

#### **PREREQUISITE - NIL**

#### **COURSE OBJECTIVES**

COURSE OBJECTIVES										
Understand the fundamental concept of MEMS and their relevance to current industry/scientific needs										
2 Gain the physical knowledge underlying the operation principles and design of mi	Gain the physical knowledge underlying the operation principles and design of microsystems;									
3 Build an understanding of microscale physics for use in designing MEMS applicat	Build an understanding of microscale physics for use in designing MEMS applications									
4 Understand the basic principles of MEMS sensors and actuators (mechanical, elec piezoelectric, thermal, microfluidic)	Understand the basic principles of MEMS sensors and actuators (mechanical, electrical, piezoresistive,									
	Design the process flow of a basic MEMS device, such as an inertia sensor (accelerometer), given a fabrication									
process description.										
COURSE OUTCOMES										
On the successful completion of the course, students will be able to										
CO1. Knowledge on the basics of MEMS and mechanics for MEMS Design		Understand								
CO2. Ability to apply the basic knowledge of MEMS in different fields		Apply								
CO3. Apply the MEMS for different applications.		Apply								
CO4. Use concepts in common methods for converting a physical parameter into an elect	trical		Apply							
quantity										
CO5. Locate different type of sensors used in real life applications and paraphrase their in	mportanc	ce	Create							
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC	OUTCO	OMES	5							
COS PO1 PO2 PO3 PO4 PO5 PO06 PO07 PO08 PO09 PO10 PO11 F	PO12 F	PSO1	PSO2	PSO3						
CO1 S L L - L	М	L	_	-						
CO2 S S M M M	М	М	-	-						
CO3 S S M M L M	М	М	-	-						
CO4 S S S - L S	М	L	М	-						
CO5         S         M         S         S         S         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	М	М	М	-						

**OVERVIEW AND INTRODUCTION** Introduction to Design of MEMS, Overview of Micro electromechanical Systems, Materials for MEMS: Silicon, silicon compounds, polymers, metals ,Micro fabrication, Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, **S**election of packaging materials

**MECHANICS FOR MEMS DESIGN** Elasticity, Stress, strain and material properties, Bending of thin plates, Spring configurations, torsional deflection, Mechanical vibration, Resonance, Thermo mechanics – actuators, force and response time, Fracture and thin film mechanics.

**MEMS APPLICATION** Case studies – Capacitive accelerometer, Peizo electric pressure sensor, Microfluidics application, Modeling of MEMS systems, CAD for MEMS.

**INTRODUCTION AND DISPLACEMENT MEASUREMENT** Sensors - Basic requirements of a sensors-Classification of sensors- Static and Dynamic characteristics of sensors- Displacement Sensors- Linear and Rotary displacement sensors-Potentiometer, Capacitive and Inductive type displacement sensor- position sensors- Optical encoder, Photoelectric sensor, Hall Effect Sensor.

**MICRO SENSORS AND ACTUATORS** Micro Sensors: Principles and examples, Force and pressure micro sensors, position and speed micro sensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flow micro sensors. Micro Actuators: Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles. Text Books

1.N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.

2. Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.

3.Sensor & transducers, D.Patranabis, 2nd edition, PHI

Reference Books

1. 1 Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.

2. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000.

3.. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu, "MEMS", Pearson education, 2007..

4. Instrument transducers, H.K.P. Neubert, Oxford University press.

#### **COURSE DESIGNERS**

000									
1	Mrs.A.Malarvizhi	malar.ece06@gmail.com							
2									
3									

Category	L	Т	Р	Credit
EC	3	0	0	3

#### Preamble

To introduce the students the concepts behind machine vision and object recognition techniques. **Prerequisite** 

NIL

#### **Course Objectives**

1	To understand the fundamental of digital image processing
2	To understand the concepts of edge detection, segmentation and texture analysis
3	To understand the concepts of image analysis
4	To understand the concepts of 3D vision and motion
5	To get introduced to the concepts behind pattern recognition schemes

#### Course Outcomes On successful completion of the course, the students will be able to

CO 1	Understand the basic operation of imaging techniques in the computers	Remember and Understand						
CO 2	0 2 Analyze the basic processing techniques of image processing							
CO 3	3 Study and analyze the pattern of computer understandings of structures.							
CO 4	Understand and study the 3D create new standards for securing the							
CO 5	Evaluate the various real time computer vision systems.	Evaluate						

#### Mapping with Programme Outcomes and Programme Specific Outcomes

	F O		- 0 -	1	1		r	- 8 -		-					
CoS	P01	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	S	М	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	L	S	-	-	-	-	-	-	-	-	L	I	-	-
CO3	S	S	М	-	L	-	-	-	-	-	-	L	I	-	-
C04	S	М	М	-	S	-	-	-	-	-	-	S	-	-	-
C05	S	М	L	-	М	-	-	-	-	-	-	S	-	-	-

S – Strong; M – Medium; L – Low

#### Syllabus

#### UNIT – I - LOW LEVEL VISION – INTRODUCTION TO IMAGE PROCESSING 9

Fundamental steps in digital image processing – Components of an image processing system –Image sampling and quantization – Basic relationships between pixels – Basic

intensity transformation functions – Fundamentals of spatial filtering – Basics of filtering in frequency domain – Filtering in spatial and freuency domains.

#### UNIT – II: LOW LEVEL VISION - EDGE DETECTION, SEGMENTATION & TEXTURE 9

Thresholding Techniques, Edge Detection, Corner and Interest Point Detection, Mathematical Morphology, Texture.

# UNIT – III: INTERMEDIATE LEVEL VISION

9

Binary Shape Analysis, Boundary Pattern Analysis, Line Detection, Circle and Ellipse Detection, the Hough Transform and Its Nature, Pattern Matching Techniques.

# **UNIT - IV: 3D VISION AND MOTION**

9

The Three-Dimensional World, Tackling the Perspective n-point Problem, Invariants and Perspective, Image Transformations and Camera Calibration, Motion.

# **UNIT - V: REAL TIME PATTERN RECOGNITION SYSTEMS**

9

Automated Visual Inspection, Inspection of Cereal Grains, Surveillance, In-Vehicle Vision Systems, Statistical Pattern Recognition.

Image Acquisition, Real-Time Hardware and Systems Design Considerations.

#### **Text Books**

- 1. "Digital Image Processing", Rafael C Gonzalez & Richard E Woods, Pearson Education International, Third Edition, 2008, ISBN 0-13-168728-x, 978-0-13-168728-8.
- 2. "Computer and Machine Vision: Theory, Algorithms, Practicalities", E R Davies, Fourth Edition, 2012, Academic Press, Elsevier.

### **Reference Books**

- 1. Digital Image Processing, Bernd Jahne, Springer -Verlag, Fifth Edition, 2002, ISBN 3-540 - 67754 - 2.
- 2. The Essential Guide to Image Processing", Al Bowik,2009, Elsevier Inc, ISBN 978-0-12-374457-9.
- 3. Machine Vision Algorithms and Applications, C Steger, M Ulrich, & C Wiedemann, First Edition, Wiley VCH, 2006, ISBN 3527407340.

#### **Course Designers:**

S.No	Name of the Faculty	Mail ID				
1	P. Subramanian	subramanian@avit.ac.in				

17MESE03	HYDROGEN AND FUEL CELL	Category	L	Т	Р	Credit
17111281203	TECHNOLOGY	EC(SE)	3	0	0	3

#### PREAMBLE

To enlighten on various technological advancements, benefits and prospects of utilizing hydrogen/fuel cell for meeting the future energy requirements.

#### PREREQUISITE

NIL

#### **COURSE OBJECTIVES**

1	To detail on the hydrogen production methodologies, possible applications and various storage options.

- 2 To discuss on the working of a typical fuel cell, its types and to elaborate on its thermodynamics and kinetics.
- 3 To analyze the cost effectiveness and eco-friendliness of Fuel Cells.
- 4 To make students understand the different fuel cells and their applications.
- 5 To enable students to understand the economics of fuel cells.

### COURSE OUTCOMES

On the successful completion of the course, students will be able to

Understand
Understand
Understand
Understand

Understand

CO5.Understand the economics of fuel cells.

#### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
CO1	М	S	S	S	S	S	S						L		
CO2	S	S	S	М	М	М	L						L		
CO3	М	L			М	М	S						L		
CO4	S	М	М		М	М	М						L		
CO5	CO5 M L L L L L L L														
S- Str	S- Strong; M-Medium; L-Low														

**HYDROGEN – BASICS AND PRODUCTION TECHNIQUES:** Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen – steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

**HYDROGEN STORAGE AND APPLICATIONS:**Hydrogen storage options – compressed gas – liquid hydrogen – Hydride – chemical Storage – comparisons. Safety and management of hydrogen. Applications of Hydrogen.

**FUEL CELLS:**History – principle - working - thermodynamics and kinetics of fuel cell process – performance evaluation of fuel cell – comparison on battery Vs fuel cell.

**FUEL CELL – TYPES:**Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

**APPLICATION OF FUEL CELL AND ECONOMICS:**Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space. Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

#### TEXT BOOKS:

- 1. Viswanathan, B and M Aulice Scibioh, Fuel Cells Principles and Applications, Universities Press (2006)
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma (2005
- 3. Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK (2005)

#### **REFERENCES:**

- 1. Kordesch, K and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany (1996)
- 2. Hart, A.B and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London (1989)
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA (2002).

#### **COURSE DESIGNERS**

S.No ·	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
1	SHIVAKUMAR N	IVAKUMAR N Asst. Prof II		shiva.thermal@gmail.com		

^{1.} 

17M	ESE0	5			E EN VERS	ERGY SION	<i>l</i>	Cat	egor y	L		Т	Р	Cro	edit
			TI	ECHN	OLC	<b>)</b> GIES	5	EC	(SE)	3		0	0		3
how cher and	s subje / to co	onvert and b impa	ener io che ct due	gy fro mical	om th l conv	at wa version	ste. 1 tech	Detail mique	ed stu s. Als	udy ex	tends	to the	, waste o e methoo dy of en	d of th	ermo
Cours	se Obj	ective	e												
1 ′	To und	lerstar	nd the	waste	e and	waste	proce	esses.							
	To und														
3 ′	Го арр	ly ho	w to c	onver	t wast	te to er	nergy	from	thern	no cher	nical c	onvei	sion.		
4	Го арр	ly ho	w to c	onver	t wast	te to er	nergy	from	bio c	hemica	l conv	ersio	1.		
5	To ana	lysis t	the en	vironi	menta	l impa	ct du	e to w	aste v	with ca	se stud	y.			
Cours	se Out	come	s: On	the s	ucces	sful co	omple	etion	of the	cours	e, stud	lents	will be a	ble to	
CO1.	Exp	lained	types	of wa	aste ai	nd sou	rce o	f wast	e				understa	and	
CO2.	Und	erstan	d vari	ous w	vaste t	reatme	ent ar	nd disj	posal				understa	und	
CO3.		•	vario emica		-		conve	ert was	ste to	energy	by		apply		
CO4.			ious n convei			conver	t was	ste to e	energy	y from	bio		apply		
CO5.		lysis t study		vironr	nental	l and h	ealth	impa	cts du	e to wa	aste wi	th	analysis		
Марр				nme	Outco	omes a	nd P	rogra	mme	Specif	ic Out	tcom	es		
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO1	PSO 1	PSO 2	PSO 3
CO1	M	L					,		/		11		L		5
CO2	S	М	L										L		
CO3	S	М	L										L		
CO4	S	S	М	L									L		
CO5	S	S	S	М									L		
a a.	ong; N				1	1 1		1		1		1	1	1	

## INTRODUCTION TO WASTE & WASTE PROCESSING

Definitions, sources, types and composition of various types of wastes; Characterisation of Municipal SolidWaste (MSW), Industrial waste and Biomedical Waste (BMW), waste collection and transportation; waste processing-size reduction, separation; waste management hierarchy, waste minimization and recycling of MSW; Life Cycle Analysis (LCA), Material Recovery Facilities (MRF), recycling processes of solid waste.

#### WASTE TREATMENT AND DISPOSAL

Aerobic composting, incineration, different type of incineration; medical and pharmaceutical waste incinerations- land fill classification, types, methods and sitting consideration, layout and preliminary design of landfills: composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.

#### ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION

Sources of energy generation, incineration, pyrolysis, gasification of waste using gasifiers, briquetting, utilization and advantages of briquetting,-environmental and health impacts of incineration; strategies for reducing environmental impacts.

# ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION

Anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, industrial waste, agro residues, anaerobic digestion- biogas production, land fill gas generation and utilization, present status of technologies for conversion of waste into energy, design of waste to energy plants for cities, small townships and villages.

#### ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES

Environmental and healthimpacts of waste to energy conversion, case studies of commercial waste to energy plants, waste to energy-potentials and constraints in India, eco-technological alternatives for waste to energy conversions - Rules related to the handling, treatment and disposal of MSW and BMW in India.

#### **Text Books**

1	Parker, Colin, & Roberts, "Energy from Waste An Evaluation of Conversion
1	Technologies", Elsevier Applied Science, London, 1985.
2	Shah, Kanti L., "Basics of Solid & Hazardous Waste Management Technology", Prentice
4	Hall, 2000.

#### **Reference Books**

1	Robert Green, From Waste to Energy, Cherry Lake Publication, 2009.
2	Velma I Grover and Vaneeta Grover, "Recovering Energy from Waste Various Aspects", Science Pub Inc, 2002.

#### **Course Designers**

S.No	Faculty Name	Designatio n	Department/Name of the College	Email id
1	R.CHANDRASEKA	Assistant	MECH /	chandrasekar@vmkvec.edu.i
1	R	Professor	VMKVEC	<u>n</u>

171	ЛЕSE	04	DIOI	NIED		ECHN	iolo(	<b>W</b>	Ca	tegory	L	Т	Р	Cı	redit
1/1	VIESE	VO	BIUF	LINEK	GII	LCHN	OLUG	JΪ	EC	C(SE)	3	0	0		3
	ssemi		ne techn sil fuels	•	es for	utiliziı	ng bio-e	energ	y and :	its man	ifold be	enefits co	mpared	to	
Prer	equisi	te - N	IL												
Cour	se Ob	ojectiv	e												
1	To p	rovide	the stu	idents	the so	urces	of biom	ass.							
2	To n	nake u	ndersta	nd the	stude	nts on	differe	nt pro	cesses	s of bio	methan	ation.			
3	To st	udy th	e com	bustion	n of bi	o fuels	8,								
4	To st	udy th	e gasif	ication	n meth	ods of	bioma	ss.							
5	To p	rovide	the stu	idents	on liq	uefied	biofuel	ls.							
Cour	rse Ou	tcom	es: On	the su	ccessf	ful cor	npletio	n of t	the co	urse, st	tudents	s will be a	able to		
CO1.		-	the kn assessi		ge of t	the ba	sic con	cepts	of Bio	omass j	prepara	tion and	Under	rstand	
CO2.	То	obtaiı	n the m	ethods	s of bio	ogas p	roductio	on an	d biog	as plan	ts.		Under	rstand	
CO3.	То	apply	the co	ncepts	of cor	nbusti	on proc	cesses	s and f	uel han	dling s	ystems.	Apply	1	
CO4.	То	apply	the tec	hniqu	es for	prepar	ation of	f biog	gases a	nd coa	ls.		Apply	1	
CO5.	То	apply	the tec	chniqu	es for	prepar	ation of	f bioc	liesels	from v	egetabl	es.	Apply	7	
Map	ping v		0				nd Prog	-	-		Outcon	nes			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	М	L	L		-					L	-	-
CO2	S	М	S	М	М	М							L	-	-
CO3	S	М	М	L	М	L							L	-	-
CO4	S	М	S	М	S	S							L	-	-
CO5	S	М	S	М	S	S							L	-	-
S- St	rong;	 M-M	edium	 ; L-Lo	w										
-	6,														

#### SYLLABUS : INTRODUCTION

Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversion mechanisms – fuel assessment studies – densification technologies – Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry

#### BIOMETHANATION

Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yield – possible feed stocks. Biogas plants – types – design – constructional details and comparison – biogas appliances – burner, luminaries and power generation – effect on engine performance

#### COMBUSTION

Perfect, complete and incomplete combustion - stoichiometric air requirement for biofuels - equivalence ratio - fixed Bed and fluid Bed combustion - fuel and ash handling systems - steam cost comparison with conventional fuels

#### GASIFICATION, PYROLYSIS AND CORBONISATION

Chemistry of gasification - types - comparison - application - performance evaluation - economics - dual fuelling in IC engines - 100 % Gas Engines - engine characteristics on gas mode - gas cooling and cleaning systems - Pyrolysis - Classification - process governing parameters - Typical yield rates. Carbonization Techniques - merits of carbonized fuels

#### LIQUID BIOFUELS

History of usage of Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae - Process and chemistry - Biodiesel health effects / emissions / performance. Production of alcoholic fuels (methanol and ethanol) from biomass – engine modifications

#### TEXT BOOKS

- 1. Tom B Reed, Biomass Gasification Principles and Technology, Noyce Data Corporation, 1981
- 2. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester, 1984.
- 3. Khandelwal KC, Mahdi SS, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986

#### **Reference Books**

- 1. Mahaeswari, R.C. Bio Energy for Rural Energisation, Concepts Publication, 1997
- 2. Best Practises Manual for Biomass Briquetting, I R E D A, 1997.
- 3. Eriksson S. and M. Prior, The briquetting of Agricultural wastes for fuel, FAO Energy and Environment paper, 1990
- 4. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S

Course	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.MAHESH	ASSISTANT PROFESSOR (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in

# CATEGORY 'D' – PROJECT (9 CREDITS) AND INTERNSHIP + INDUSTRY ELECTIVES COURSES (9 CREDITS) TOTAL – 18 CREDITS

			-						
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E
1	17BTPI01	PROJECT	вте	Ы	0	0	18	9	NIL

# CATEGORY 'D' -

# INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (9)

SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISIT E
1	17BTPI02	MINI PROJECT	BTE	PI	0	0	6	3	NIL

171	BTPI	0.2	т	NDUG	TDIA	I EN	73/3/	OLOGY	7	Cat	egory	L	Т		Р	Credit
1/1	STPI	05	1	NDUS	IKIA	LEN		ULUGI			PI	3	0		0	3
PREA	MBL	Æ	1										1			
The c	ourse	helps	the s	tudents	s to 1	ender	imm	ense kno	owled	dge al	oout en	izymes,	thei	ir 1	kineti	cs, and
applica	ation	of enz	ymes a	along t	he tec	hnique	es in	Industrie	s. It	also d	leals ab	out the	use	of	ferm	entation
techno	logy i	n prod	uction	of the	variou	ıs biol	ogical	l compou	nds a	and the	eir uses.					
PRER	EQU	ISITE	- NIL													
COU	RSE (	)BJEC	TIVE	S												
1	То	state th	ne basi	c know	ledge	on en	zyme	and class	ifica	tion of	f enzym	nes				
2	То	discus	s abou	t the er	izyme	kineti	cs and	ł Immobi	lizat	ions						
3		perfor			-											
4		-		e basi	cs enz	vmes	used i	n food in	dust	ries						
5		-				•					ises of a	enzvme	s in v	vari		
5	To outline the students to basic knowledge concerning the uses of enzymes in various industries															
COUR			OMES	5												
					of the	cours	e, lea	rner will	be at	ole to						
CO1. I			-											Re	emen	ıber
			•			•		nobilizati	on n	nethod	s			Uı	nders	tand
																tunia -
Industr		ate the	variou	is uses	or enz	lymes		ochemical	i and	i pharn	naceutio	Jai		A	pply	
CO4. I		nstrate	the us	es of e	nzvme	e in foo	od ind	ustrv						Aı	oply	
					-			ous indus	tria						nalys	2
								ES AND				SDECI	FIC			
	PO	1					r		D							
COS	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	0	PO10	PO11	PO12	PSO		PSO2	PSO3
CO1	M	- T	- T	- M	M	-	L	-	-	-	L	L	- т		-	-
CO2 CO3	M	L	L M	M L	S	- S	- L	-	-	-	M S		L		-	-
CO4	L	M	L	L	-	S	M	-	-	-	M	S	L		_	-
CO5	L	L	M	L	-	-	-	-	-	-	S	-	-		-	-
S- Stro	ng; N	I-Medi	ium; L		1		1	1 1	I			1	1			I
	<u> </u>															

# SYLLABUS ENZYMES

Classification - IUB system- Characteristics of enzymes, enzyme substrate complex. Concept of active center, binding sites, stereospecificity and ES complex formation. Effect of temperature, pH and substrate concentration on reaction rate. Transition state theory. Enzyme activity.

# ENZYME KINETICS & IMMOBILIZED ENZYMES

Enzyme Kinetics-Michaelis - Menten Equation - form and derivation, steady state enzyme kinetics.

Significance of Vmax and Km. Enzyme inhibition - types of inhibitors - competitive, noncompetitive and uncompetitive, their mode of action and experimental determination. Methods of immobilization techniques - Immobilized multi enzyme systems. Industrial application, analytical application, clinical application of enzymes.

### **BIOCHEMICAL AND PHARMACEUTICAL APPLICATIONS**

Role of soluble and immobilized enzymes in the synthesis and production of amino acids and chiral compounds; use of enzymes as detergents. Pharmaceuticals: Role of soluble and immobilized enzymes in production of antibiotics, steroids, and other important intermediates of biotechnological industry; role of soluble and immobilized enzymes in diagnosis and treatment of diseases; enzyme therapy.

#### APPLICATIONS IN FOOD INDUSTRY

Soluble and immobilized enzymes - food production and processing, amylases, pectinases, proteases, lipases, glucoisomerases.

#### ANALYTICAL APPLICATIONS

Theory and applications of various enzyme electrodes e.g. enzyme sensors, enzyme membranes, biochips/bio-semiconductors.

#### **TEXT BOOKS:**

- 1. Fundamentals of Enzymology: The cell and Molecular Biology of Catalytic Proteins by N.C. Price and L. Stevens, Oxford University, 2000.
- 2. Enzymology Lab Fax by P.C. Engel, Academic Press, 2003.
- 3. Enzyme Structure and Function by A, Fersht, W.H. Freeman and Co., NY, 1999.
- 4. Enzymes, Biomass, Food and Feed (Biotechnology 2E, Vol. 9) by Rehm, Reed, and A. Phuler, Wiley-VCH, Berlin, 2001.

#### **REFERENCE BOOKS:**

- 1. Enzyme Kinetics: Principles and Methods by H. Bisswanger and L. Bubenheim, 3rd edition, Wiley, USA, 2017.
- 2. Industrial Enzymology: The Application of Enzymes in Industry by T. Godfrey and S. May, McMillan publishers, 2001.
- 3. Enzyme Technology by M.F. Chaplin and C. Bucke, Cmabrigde University Press, NY, 1990.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A. Nirmala	Assistant professor (Gr-II)	Biotechnology	nimmi_arua@yahoo.com
2	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in

17BTPI04	BIOPHARMACEUTICALS	Category	L	Т	Р	Credit
17011104	DIOI HARMACEUTICALS	PI	3	0	0	3

#### PREAMBLE

Biopharmaceutical Technology is the study that how the pharmaceutical expression of certain drugs can impact their pharmacokinetic and pharmacodynamics behavior. It is branch of pharmaceutical science and technology, that utilizes the concept of both biotechnology and pharmaceutical science to design, develop and manufacture pharmaceutical drugs to satisfy the constant growing demand of medicines and save the mankind from the deadly clutches of known and unknown diseases. This course is designed to prepare professionals for employment in pharmaceutical manufacturing and related industries.

**PREREQUISITE** – NIL

COU	RSE O	BJECT	<b>FIVE</b>	S											
1	To s	state th	e basi	cs of	drug o	levelo	opmer	nt and	regula	tory as	pects				
2	Тос	describ	e the	physic	cal an	d chei	mical	prope	erty of	drug ar	nd thei	r metał	oolism		
3	To (	Outline	the b	ulk di	ug m	anufa	cturin	g and	their 1	egulate	ory asp	oects			
4	То	levelop	the p	orodu	ct forr	n in n	nanufa	acturi	ng ind	ustry					
5	To a	assess t	he the	erapet	itics li	ike vi	tamin	s, Ant	ibiotic	s and H	Iormo	nes.			
COU	RSE O	UTCO	MES												
After t	the succ	cessful	comp	letion	of th	e cou	rse, le	arner	will be	e able t	0				
CO1:	Recall t	he bas	ic info	ormati	on ab	out d	rug in	dustry	and d	lrug de	velopn	nents.		Rememb	er
CO2: 1	Describ	e the p	hysic	al and	chen	nical p	proper	ty , p	harma	cokinet	ics and	ł		Understa	nd
CO3:	Analyz	e the di	ifferen	nt pro	cess in	nvolv	ed in I	bulk d	lrug m	anufact	turing			Analyze	
CO4:	Assess	the pro	duct of	develo	ped f	rom r	nanuf	acturi	ng ind	ustry				Evaluate	
	Validat otics ar		-		devel	oped	from J	pharm	a indu	stry lik	e vita	mins,		Evaluate	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	-	L	-	-	-	-	-	-	L	-	-
CO2	L	L	-	-	L	-	-	-	-	-	-	-	-	_	-
CO3	М	L	L	L	L	L	-	-	-	-	-	-	-	-	-
CO4	S	М	-	-	М	L	L	L	-	-	-	S	М	-	-
CO5	S	-	-	L	М	L	-	S	-	-	-	S	М	-	-

S- Strong; M-Medium; L-Low

#### SYLLABUS INTRODUCTION

Development of Drug and Pharmaceutical industry, Types of therapeutic agents and their uses, Economics and regulatory aspects

### DRUG METABOLISM AND PHARMACOKINETICS

Physico-chemical principles of Drug metabolism, Radioactivity, Pharmacokinetics – different mechanisms of Drug action

### UNIT PROCESSES AND THEIR APPLICATIONS

Bulk drug manufactures, Types of reactions in Bulk drug manufacture and Processes, Special requirements for Bulk Drug Manufacture and its regulatory aspects

#### PRODUCT FORMS AND DEVELOPMENT

Tablets – Compression, Granulation, Presses, Coating, Dosage forms, Topical applications, Preservation of Drugs, Analytical methods and test for various drugs and pharmaceuticals, Packing and Labeling, Quality management, GMP.

### BIOPHARMACEUTICALS

Therapeutics - Vitamins, Laxatives, Analgesics, Contraceptives, Antibiotics, Hormones

### **TEXT BOOKS:**

- 1. 1. Gareth Thomas, 2000. Medicinal Chemistry. An introduction. John Wiley
- 2. Katzung, B.G., 1995. Basic and Clinical Pharmacology. Prentice Hall of Intl..

#### **REFERENCES:**

- 3. Leon Lachman, 1986. Theory and Practice of Industrial Pharmacy. 3rd Edn., *Lea and Febger*.
- 4. Remington, 1991. Pharmaceutical Science. Mark Publishing and Co.
- 5. Walsh, G., 2003. Biopharmaceuticals : Biochemistry and Biotechnology, 2nd Edn., *John Wiley & Sons Ltd.*
- 6. Michael E. Aulton, Aulton's Pharmaceutics : The Design and Manufacture of Medicines, 2007, *Elsevier Limited*, Oxford
- 7. Lieberman, H. A., Lachman, L. and Schwartz, J. B., 1990. Pharmaceutical Dosage Forms : Tablets. Vol. 3, 2nd Edn., *Marcel Dekker Inc.*,.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A. Nirmala	Assistant Professor (G-II)	Biotechnology	nimmi_aruan@yahoo.com
2	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in

#### **COURSE DESIGNERS**

17BTPI05	INDUSTRIAL BIOSAFETY	Category	L	Т	Р	Credit
17811103	INDUSTRIAL DIOSAFETT	PI	3	0	0	3

#### PREAMBLE

Industrial biosafety deals with the microbial hazards caused to an individual and to the society. In the subject the learners could grasp the knowledge on biosafety levels and the roles of various regulatory committees in avoiding the risk. Biosafety often use pioneering techniques along with other applied fields of research like biotechnology, genetic engineering, biochemistry to study microbes and their complex mechanisms. Knowledge of these principles will enable practice well in handling pathogenic microorganisms carefully in the laboratory.

**PREREQUISITE -** NIL

	1		<b>FIVE</b>												
1		ecogniz							•	els.					
2	To d	To discuss various hazards caused by the GMOs.													
3	To c	To classify the role of regulatory committees in controlling the risk													
4	To o	utline t	he ris	k invo	olved	in usii	ng GN	AOs a	nd LN	1Os.					
5	To d	esign tl	he bio	safety	proc	edure	in lat	and a	researd	ch insti	tutions	on ha	ndling	pathoge	nic
	micr	oorgan	isms.	•	-										
COU	RSE O	UTCO	MES												
After	the succ	cessful	comp	letion	of th	e coui	rse, le	arner	will be	e able t	0				
CO1:	Recall	the var	ious b	iosafe	ty lev	vels.								Remer	nber
CO2:	Explair	the va	rious	biosa	fety g	uideli	nes							Unders	stand
CO3:	Identify	the ro	le of a	regula	tory c	comm	ittees	in cor	ntrollir	ng the r	isk			Unders	stand
CO4:	Analyz	e the ri	sk inv	volved	in us	ing C	GMOs	and I	LMOs	produc	ets			Analys	se
	Differe					<u> </u>				<b>.</b>		stries.		Analys	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	L	-	L	L	L	-
CO2	М	М	-	М	-	-	-	-	-	-	L	L	-	-	L
CO3	S	-	М	L	М	-	-	L	-	-	-	-	-	-	-
CO4	L	L	L	L	L	-	-	М	-	-	-	-	-	М	-
		1	1	1				1	1						1

S- Strong; M-Medium; L-Low

### SYLLABUS

#### PRINCIPLES OF BIOSAFETY

Introduction, Historical Background, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels, Biosafety Levels of Specific Microorganisms, Biosafety guidelines - Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

#### **BIOSAFETY IN BIOTECHNOLOGY INDUSTRIES**

Hazard assessment, Use of genetically modified organisms & their release in environment; special procedures for rDNA based product production (Vaccine and Insulin); Biosafety in laboratory, Laboratory

associated infections and other hazards; Prudent biosafety practices in laboratory

## **BIOSAFETY – REGULATORY FRAMEWORKS**

Biotechnology and bio-safety concerns at the level of individuals, institutions, society, region, country and world. Regulatory framework in India governing GMOs-Recombinant DNA Advisory Committee (RDAC), Institutional Biosafety Committee (IBC), Review Committee on Genetic Manipulation, Genetic Engineering Approval Committee (GEAC), State Biosafety Coordination Committee (SBCC), District Level Committee (DLC). Rules for the manufacture, use/import/export and storage of hazardous microorganisms/genetically engineered organisms or cells.

### RISK ASSESMENT

Definition of GMOs & LMOs, GMO applications in food and agriculture, Risk Analysis, Risk Assessment, Risk management and communication Risk assessment in various industries- pharmaceuticals, food and beverages etc., steps towards minimizing the risk operations in industries.

### SAFETY AND BIOSAFETY - CASE STUDIES

Recommended Biosafety Levels for Infectious Agents and Infected Animals, Rules and regulation for handling of microbes in laboratory purposes, lab construction procedure, decontamination and discarding procedure of laboratory used microorganisms. Case studies -swine flu spreading, Bhopal tragedy etc.,

# **TEXT BOOKS:**

1. R.C. Dubey., 2014. A Text Book of Biotechnology Fifth Revised Edition, S. Chand Publications

2. Anupam Singh, Ashwani Singh, 2012. Intellectual property rights and Bio-Technology (Biosafety and Bioethics), Published by Bio-Green Books, New Delhi.

3. Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.

### **REFERENCES:**

- 1. V Sreekrishna, 2017. Bioethics and Biosafety in Biotechnology by New age International publishers.
- 2. Sateesh, M.K., 2008. Bioethics and Biosafety, IK International Publishers.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Dr. B. Prabasheela	Associate professor	Biotechnology	prabasheela@avit.ac.in
3	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in

1 <b>7</b> D	TPI06		XX.		E MA		TENAT			Catego	ory	L	Т	Р	Credit
1/B	1 1100		vv	A511		INAG	r£1V1f	LINI		PI		3	0	0	3
PREA	MBLE										I			1 1	
	0							-		0				-	o its final
-							-			nt and	dispo	osal of	waste	, toget	her with
monito	ring an	d regu	lation	of the	wast	e man	agem	ent pr	ocess						
PRERI	EQUIS	SITE -	NIL												
COUR	<u> </u>			5											
1	Tost	ate the	hasic	know	ledge	on w	acto m	anade	ment						
2									of wast	e					
3				-	-		• •		Indust						
4															
5	To outline the handling and transport of waste in Industries														
_	5       To develop the modern techniques for waste dispose         OURSE OUTCOMES														
				- 4:	- 6 41		. 1			-1-1					
After th			-						viii be	able to				D	1
CO1. R								ety						Reme	
CO2. D	Discuss	the be	nefits	and li	fe cyc	le of	waste							Under	stand
CO3. I	llustrat	e the v	vaste	minim	nizing	techn	ique i	n Indu	ıstries					Apply	e
CO4. In	nspect	he tra	nsport	of wa	iste in	devel	loping	g coun	tries					Analy	se
CO5. N	leasure	the re	esourc	e effic	eiency	of wa	aste							Evalu	ate
MAPP	ING V	ITH	PROG	GRAN	- AME	OUT	COM	ES A	ND PI	ROGR	AMM	E SPE	CIFIC	OUTO	COMES
		PO2	PO3	PO4	PO5		PO7	PO8							
COS	PO1	PO2	P03	P04	PU3	PO6	PU/	PU8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	L	-	L	-	-	-	-	S	L	-	-
CO2	-	L	L	-	-	L	М	L	-	-	-	М	L	-	-
CO3	-	L	М	М	М	L	М	-	-	-	-	S	S	M	М
CO4	-	L	L	L	М	L	S	-	-	L	-	L	M	M	М
CO5	L         L         L         -         M         L         -         M         S         M         -           rong; M-Medium; L-Low         -         -         M         S         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -														

### GENERATION AND CHARACTERISTICS OF WASTE

Types and characteristics of wastes- Domestic, Industry, Commercial, Agriculture, and Health care centre and e-waste.

# PRINCIPLES OF WASTE MANAGEMENT

Waste hierarchy, Life cycle of Products, Resource efficiency, Polluter Pays principles, Waste to energy, Benefits of waste management.

### WASTE MINIMIZATION AND MONITORING

Waste minimization techniques in the developed and developing countries. Waste minimization techniques adopted in few industries-Sugar, Paper, Textile, Leather, Breweries and Pharmaceuticals.

#### WASTE HANDLING AND TRANSPORT

Methods of waste handling, transport and disposal in various sectors of waste generation- Sugar, Paper, Textile, Leather, Breweries, health care centre and Pharmaceuticals

#### **RESOURCE RECOVERY**

Methods of resource3 recovery-3Rs, Landfills, Biological reprocessing, Energy recovery. Modern techniques of disposal-Incineration, Pyrolysis

#### **TEXT BOOK:**

1. Jacqueline Vaughn, Waste Management: A reference Handbook, Science, 2009

#### **REFERENCE BOOKS:**

- 1. Nicky Scott, Reduce, Reuse, Recycle, McGraw-Hill, 2007.
- 2. George Techobanoglous, Handbook of solid waste management, McGraw-Hill, 2002.

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department	Mail ID										
1	Dr. R. Deepapriya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in										
2	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in										

1 <b>7</b> D	TPI07			PRO	CESS	ECC	ONON	AICS	AND		Cat	egory	L	Т	P	Credit
1/D	1 [ 10/			INDU	<b>STR</b>	IAL N	MAN	AGE	MENT	•	]	PI	3	0	0	3
PREA	MBLE	2											1 1			
																agement,
				ontro	l that	will e	nable	the st	udents	to perfo	orm as	efficien	t ma	nagers		
PRER	EQUIS	SITE	- NIL													
COUR																
1								-		olved in	0	zation n	nana	gemen	t	
2										ng a proc						
3	Too	outline	the a	nalysi	s of pi	roject	based	l on p	rofitab	ility /los	S					
4	Тос	levelo	p the c	concep	ot of a	accou	nting	based	on the	e perforn	nance a	and grov	wth			
5	To develop the concept of accounting based on the performance and growth           To assess the importance of economic balance															
COUR	SE OU	UTCO	MES													
After th	ne succ	essful	comp	letion	of the	e cour	se, le	arner	will be	able to						
CO1: F	Recall t	he bas	ic info	ormati	on ab	out co	ost and	d asse	t of ac	counting	5			Reme	ember	
CO2: D	Describ	e the t	ime v	alue o	f mon	ey an	d proj	ect fe	asibili	ty	-			Unde	rstand	
CO3: A						•	1 0			5				Analy	vze	
CO4: A	•								e of re	turn				Evalu		
										ess plant				Evalu		
005. 1	unduk	e une i	Jenistei	vity u	110 115		01100		o proce	bb plane				Lvuit	iute	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	D1 F	PSO2	PSO3
CO1	М	L	L	L	L	L	_	-	-	-	-	-		-	-	L
CO2	S	М	S	S	М	L	-	-	-	-	-	-		-	-	L
CO3	L	L	М	L	L	L	-	-	-	-	-	-		-	-	-
CO4	S	L	L	L	L	М	-	-	-	-	-	-		-	-	-
CO5	М	L	L	L	L	М	-	-	-	-	-	-	1	-	-	-
S- Stro	Strong; M-Medium; L-Low															

# PRINCIPLES OF MANAGEMENT AND ORGANISATION

Planning, organization, staffing, coordination, directing, controlling, communicating, organization as a process and a structure; types of organizations. Method study; work measurement techniques; basic procedure; motion study; motion economy; principles of time study; elements of production control; forecasting; planning; routing; scheduling; dispatching; costs and costs control, inventory and inventory control.

# INVESTMENT COSTS AND COST ESTIMATION

Time Value of money; capital costs and depreciation, estimation of capital cost, manufacturing costs and working capital, capital budgeting and project feasibility.

#### PROFITABILITY, INVESTMENT ALTERNATIVE AND REPLACEMENT

Estimation of project profitability, sensitivity analysis; investment alternatives; replacement policy; forecasting sales; inflation and its impact.

#### ANNUAL REPORTS AND ANALYSIS OF PERFORMANCE

Principles of accounting; balance sheet; income statement; financial ratios; analysis of performance and growth

#### **ECONOMIC BALANCE**

Economic decisions in Chemical Plant - Economics of size - Essentials of economic balance – Economic balance approach, economic balance for insulation, evaporation, heat transfer

### **TEXT BOOK:**

1. Allen, L.A., "Management and Organization", McGraw Hill.

#### **REFERENCE BOOKS:**

- 1. Peters, M. S. and Timmerhaus, C. D. RE West, "Plant Design and Economics for Chemical Engineers", III Edn, McGraw Hill, 2003.
- 2. Holand, F.A., Watson, F.A. and Wilkinson, J.K., "Introduction to process Economics", 2nd Edn, John Wiley, 1983.
- 3. Narang, G.B.S. and Kumar, V., "Production and Costing", Khanna Publishers, New Delhi.
- 4. Banga T.R., and Sharma S.C., Industrial organisation and engineering economics, Khanna Publishers, New Delhi.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr G Karthigadevi	Assistant Professor	Biotechnology	devigk19@gmail.com									
2	Mr.N.Jawahar	Assistant Professor	Biotechnology	jawahar@vmkvec.edu.in									

17F	BTPI08		FE	RMEN			N ANI OLO		WIN	G	Cate gory	L	Т	Р	Credit
					IL	CHIN	ULU	G I			PI	3	0	0	3
Ferme dioxid		is the givin	g the	beer bo	oth it	s alco	ohol c	ontent	and i	ts carb	onation	n. Since	e ferme		l carbon takes at
PRER	EQUIS	SITE -	NIL												
COU	RSE OF	BJECI	<b>FIVES</b>	5											
1	To st	ate the	basic	knowle	edge	on fe	rment	ation a	nd bre	ewing t	echnol	ogv			
2				the prir								- 01			
3	To c	lassify	the ty	pes of	steril	lizatic	on								
4								ower c	onsur	nption					
5	To outline the design of bioreactor and power consumptionTo develop the modern techniques for product recovery and purification														
COU	RSE OU	1		louein	leem	nque	, 101 p	Toudet	10001	cry un	a pain	cution			
After t	he succ	essful	comp	letion c	of the	cour	se, lea	rner w	ill be	able to					
CO1. I	Recall t	he rang	ge of f	erment	atior	and	micro	bial isc	lation	1				Remen	ıber
CO2. 1	Interpre	t the b	atch a	nd cont	inuo	us cul	ltivati	on						Unders	tand
CO3. 1	llustrat	e the d	lifferen	nt types	s of s	teriliz	ation	and fil	tratio	n proce	SS			Apply	
CO4. (	Calculat	te the l	KLa va	alue an	d to	design	n the b	oioreac	tor for	r powe	r consu	mption	Ļ	Analys	e
CO5. 0	Compar	e the a	moun	t of pro	duct	recov	very a	nd puri	ficati	on proc	cess			Evaluat	te
MAPI	PING V	VITH	PRO	GRAM	ME	OUT	COM	IES AN	ND PI	ROGR	AMM	E SPE	CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	P O 5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L	L	-	-	-	-	-	-	-	-	-
CO2	S	M	S	S	M	L	-	-	L	-	-	-	-	-	-
CO3	L S	L L	M L	L	L L	L	-	L	-	-	-	-	-	-	-
CO4 CO5	M S	L L	L L	L L	L L	M M	-	-	L	-	-	-	-	-	- M
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														

# INTRODUCTION TO FERMENTATION AND BREWING TECHNOLOGY

Introduction, range of fermentation process, microbial isolation and development, media requirements, Media formulation and process development

### MICROBIAL GROWTH KINETICS

Batch cultivation and continuous cultivation. Simple unstructured models for microbial growth, Monod model, growth of filamentous organisms, product formation kinetics – Leudeking-Piret models, substrate and product inhibition on cell growth and product formation. Biomass estimation - Direct and Indirect

#### methods

#### STERILIZATION

Introduction, types of sterilization (Moist and Dry heat), Medium sterilization, Design of batch sterilization processes, Design of continuous sterilization processes, Sterilization of the fermenter, Sterilization of the feeds, Sterilization of liquid wastes, Sterilization by filtration.

#### DESIGN OF BIOREACTOR AND POWER CONSUMPTION

Introduction, Basic functions of a fermenter, Fermenter body construction, Aeration and agitation, Achievement and maintenance of aseptic conditions, Valves and steam traps, Oxygen requirements of industrial fermentations, Oxygen supply, Determination of KLa values, Fluid rheology, Factors affecting KLa values in fermentation vessels, Balance between oxygen supply and demand, Scale-up and scale-down

#### PRODUCT RECOVERY AND PURIFICATION PROCESS

Product recovery, primary purification process, product purification process

### **TEXT BOOK:**

1. Bailey, James E. and David F. Ollis, "Biochemical Engineering Fundamentals", 2nd Edition. McGraw Hill 1986.

#### **REFERENCE BOOKS:**

1. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, Principles of Fermentation Technology, Science & Technology Books, 1995. 3. Jens Nielson, John Villadsen and Gun.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. S. Chozhavendhan	Associate Professor	Biotechnology	chozhavendhan@avit.ac.in									
2	Mr.N.Jawahar	Assistant professor	Biotechnology	jawahar@vmkvec.edu.in									