MODEL QUESTION PAPER

MATHEMATICS – Paper II B (Coordinate Geometry and Calculus)

Max Marks: 75

Section - A

- I. Very Short Answer Questions 10x2=20 Marks Attempt all Questions. Each Question carries 2 marks.
- 1. If $x^2 + y^2 4x + 6y + c = 0$ represents a circle with radius '6', find the value of 'c'.
- 2. Find the equation of the directix of the parabola $2x^2 + 7y = 0$.

3. Find the length of the latus rectum of the ellipse
$$\xrightarrow{}$$
 $+$ $=$ 1

- 4. Find the eccentricity of the hyperbola $x^2 4y^2 = 4$
- 5. Find the distance between the two points in a plane whose polar coordinates are $(2, \pi/6)$ $(3, \pi/4)$

6. If
$$y = \frac{1}{2x + 5}$$

Time: 3 Hours

7. Find
$$\int \sqrt{1 + \sin 2x} \, dx$$

8. Find
$$\int \frac{e^{\sin - 1} x}{\sqrt{1 - x^2}} dx$$

9. Obtain
$$\int_{1}^{4} x \sqrt{x^2 - 1} \, dx$$

10. State the Simpson's rule for Numerical Integration of a function f(x) over the interval [a,b] by dividing [a,b] into n sub-intervals.

Section - B

II. Short Answer Questions

$$5 \times 4 = 20 \text{ Marks}$$

Attempt any five questions. Each question carries 4 marks

11. If the line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2}$

$$c^2 = a^2 m^2 + b^2$$
; $(a > b)$

- 12. Find the equations of the tangents shown drawn from (-2,1) to the hyperbola $2x^2 3y^2 = 6$.
- 13. Transform the polar equation $r \cos^2 \theta = a$ (a>0), origin as pole and the 2 +ve axis as initial line, into Cartesian form.
- 14. If $y = \frac{\log x}{x}$ then show that

$$y_n = \frac{(-1)^n \angle n}{x^{n+1}} \left[\log x - 1 - \frac{1}{2} - \frac{1}{3} \dots \frac{1}{n} \right]$$

15. Evaluate
$$\int \frac{x^6 - 1}{1 + x^2} dx$$

16. Solve
$$(x^2 + y^2) dx = 2 xy dy$$

17. Solve
$$\frac{dy}{dx} = \frac{2x+y+3}{2y+x+1}$$

Section - C

 $5 \times 7 = 35 \text{ Marks}$

II. Long Answer Questions

Attempt any five questions. Each question carries 7 marks

- 18. Find the equation of the pair of tangents drawn from (3,2) to the circle $x^2 + y^2 6x + 4y 2 = 0$
- 19. Find the equation of the circle passing through the points of intersection of the circles $x^2 + y^2 8x 6y + 21 = 0$, $x^2 + y^2 2x 15 = 0$ and the point (1,2).
- 20. Find the equation of the circle passing through the origin and coaxial with the circles $x^2 + y^2 6x + 4y 8 = 0$ and $x^2 + y^2 2x + y + 4 = 0$.
- 21. Find the pole of the line x + y + 2 = 0 with respect to the parabola $y^2 + 4x 2y 3 = 0$.

22. Evaluate
$$\int \frac{3 \sin x + \cos x + 7}{\sin x + \cos x + 1} dx$$

23. Evaluate
$$\int \frac{x^{1/4}}{x^{1/2} + 1} dx$$

24. Find the area enclosed by the curves y = 3x and $y = 6x - x^2$.

. .

QUESTION PAPER PATTERN

Subject : **Mathematics** Paper : Paper –II B

Class : II Year Intermediate

(Coordinate Geometry, Calculus)

Time : 3 Hours

Max. Marks : 75

1. Weightage of Ojbectives :

Objectives	Knowledge	Understanding	Application	Total
Actual Marks	41	28	28	97

2. Weightage to form of Questions:

Form of questions	VSA	SA	LA	Total
	Sec A	Sec B	Sec C	
No. of questions	10 of 10	5 of 7	5 of 7	20 of 24
Marks allotted	10 x 2=20	5 x 4=20	5 x 7=35	75 / 97
	10 x 2=20	$7 \times 4 = 28$	7 x 7=49	

3. Weightage to content units / sub-units :	Marks
Coordinate Geometry	
1. Circles	16
2. System of Circles	07
3. Parabola	09
4. Ellipse	06
5. Hyperbola	06
6. Polar Coordiantes	06
<u>Calculus</u>	
7. Successive differentiation	06
8. Integration	15
9. Definite Integration	09
10. Numerical Integration	09
11. Differential equations	08
	Γotal 97