Register Number:
Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015

(COMPUTER SCIENCE)
(FIRST YEAR)
(PART-III)
130/140: SCIENTIFIC COM PUTING
(Common with B.Sc I.T and B.C.A)

Answer any FIVE questions

1. a) Solve for a positive root of $x-\cos x=0$ by regular falsi method.
b) Using Gauss -Seidal method, solve the following system. Start with $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$

$$
\begin{gather*}
x+3 y+52 z=173.61 \\
x-27 y+2 z=71.31 \\
41 x-2 y+3 z=65.46 \tag{10}
\end{gather*}
$$

2. a) Apply Gauss-Jordan method, to solve the system.

$$
\begin{gather*}
8 x-3 y+2 z=20 \\
4 x+11 y-z=33 \\
6 x+3 y+12 z=35 \tag{10}
\end{gather*}
$$

b) Find the least positive root of the equation $\tan x=x$ to an accuracy of 0.0001 by Newton-Raphson method.
3. a) Compute $f^{\prime \prime}(0)$ and $f^{\prime \prime}(4)$ from the data.

x	0	1	2	3	4
y	1	2.718	7.381	20.086	54.598

b) Find the value of y at $x=21$ from the following data.

x	20	23	26	29
y	0.3420	0.3907	0.4384	0.4848

4. a) Find the First, Second and Third derivatives of $f(x)$ at $x=1.5$ if,

x	1.5	2.0	2.5	3.0	3.5	4.0
$\mathrm{~F}(\mathrm{x})$	3.375	7.000	13.625	24.000	38.875	59.000

b) Evaluate

$$
\begin{equation*}
\int_{0}^{5} \frac{d x}{4 x+5} \tag{10}
\end{equation*}
$$

by Simpson's one-third rule and hence find the value of $\log _{\mathrm{e}} 5(\mathrm{n}=10)$
5. a) Using Taylor's series method find y at $\mathrm{x}=1.1$ and 1.2 by solving,

$$
\begin{equation*}
\frac{d y}{d x}=x^{2}+y^{2} \text { given } y(1)=2.3 \tag{10}
\end{equation*}
$$

b) Find an approximate solution of the initial value problem,

$$
\begin{equation*}
y^{\prime}=1+y^{2}, y(0)=0 \tag{10}
\end{equation*}
$$

by Picard's method
6. a) Using Euler's method.

$$
\begin{equation*}
\text { Solve } \frac{d y}{d x}=1+x y \text { with } y(0)=2 \tag{10}
\end{equation*}
$$

Find $y(0.1), y(0.2)$ and $y(0.3)$
b) Compute $y(0.1)$ and $y(0.2)$ by Runge - Kutta $4^{\text {th }}$ order for the differential equation.

$$
\begin{equation*}
\frac{d y}{d x}=x y+y^{2}, y(0)=1 \tag{10}
\end{equation*}
$$

7. a) Classify the equations.
i) $U_{x x}+2 u_{x y}+u_{y y}=0$
ii) $x^{2} f_{x x}+\left(1-\mathrm{y}^{2}\right) \mathrm{f}_{\mathrm{yy}}=0$
b) Solve,

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0 \tag{10}
\end{equation*}
$$

Given $u(0, t)=0, u(4, t)=0$

$$
\mathrm{U}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x})
$$

Assume $\mathrm{h}=1$
Find the values of u up to $t=5$
8. a) Solve the Laplace equation at the interior points of the square region given below:

b) Compare Trapezoidal rule and Simpson's $1 / 3$ rule for evaluating numerical integration.

