PHYSICS

1.	The electric current in a circuit is given by of θ ?	$I = I_0 \sin (\omega t + \theta)$. What is the dimension	
	a) second	b) 1/second	
	c) meter / second	d) dimensionless	
2. The velocity varies with time according to the relation, $v = 3t + 4$. The distably the body in $t = 2$ s will be			
	a) 10 m	b) 12 m	
	c) 14 m	d) 16 m	
 When a projectile is at the highest point on its trajectory, the potential and k energies are respectively 			
	a) maximum and minimumc) zero and maximum	b) minimum and zero d) maximum and zero	
4.	4. A block of mass 2 kg starts moving when the angle of inclination of the inclined plane 60°. If the coefficient of kinetic friction is 0.6, the frictional force is		
	a) 2 N	b) 1 N	
	c) 4 N	d) 0.5 N	
5. Two forces $F_1 = (7i + 2j)$ N and $F_2 = (-5i + 3j)$ N act on a particle. The third for should act on the particle to make it move with constant velocity is			
	a) (2i + 5j) N	b) (-2i – 5j) N	
	c) (-2i + 5j) N	d) (2i – 5j) N	
6.	 Two satellites of masses 3M and M orbit the earth in circular orbits of radii r and respectively. The ratio of their speeds is 		
	a) 1:1	b) $\sqrt{3}$: 1	
	c) 3:1	d) 9:1	
7. In an adiabatic process, the pressure of a gas is proportional to the cube of its temperature. The value of Υ (which equals C_p/C_v) is			
	a) 5/4	b) 4/3	
	c) 5/3	d) 3/2	
	pace for rough work	, ·	

8.	A mass is moving towards the origin along the x-axis with constant velocity. Its angular momentum with respect to the origin			
	a) remains constant	b) is zero		
	c) increases	d) decreases		
9.	9. The rate of cooling of a liquid is 4° C/s, when its temperature is 80° C and is 2° C/s whits temperature is 50° C. The temperature of the surrounding is a) 30° C b) 20° C			
	c) 10° C	d) 25° C		
10	A Charged sphere of radius 1m carries a ch point P, which is at a distance d = 3m from t a distance d = 0.3m from the centre of the sp a) 1 N/C and 100 N/C c) zero and 1 N/C	he centre of the sphere and at a point Q, at		
11	An electric dipole lying along X-axis with mo of magnitude 10j N/C. The torque experience a) 2 Nm	d is b) 10 Nm		
	c) 50 Nm	d) 25 Nm		
12	12. A parallel plate capacitor with air gap of 5 mm is 2 MFD. If a metallic plate of thickness 3 mm is inserted in between the plates, the new capacitance is			
	a) 5 MFD	b) 1 MFD		
	c) 2 MFD	d) 2.5 MFD		
13	13. A galvanometer of resistance 50 ohm gives a full scale deflection when 3 mA current passes through it. The series resistance that is to be connected to convert it into a voltmeter of range $0-3\ V$ is			
	a) 500 Ω	b) 950 Ω		
	c) 1000 Ω	d) 750 Ω		
14	14. Two resistances 6Ω and 3Ω are connected in parallel and this combination is connected in series with a 4Ω resistance. This combination is powered by a voltage source of 12 V and zero internal resistance. The ratio of power dissipated between 6Ω resistance and 4Ω resistance is			
	a) 1:4	b) 4:1		
_	c) 1:8	d) 3:2		
9	Space for rough work			

AEE15vA 4

15. Two charged particles of charge ratio 1:4 moving with same velocity enter a region of uniform magnetic field of strength B and get deflected and move along curves with equal radius R. The ratio of their masses is		
a) 4:1	b) 2:1	
c) 1:4	d) 1:2	
16. When a charged particle moves in a region field B = 5j T, the trajectory of the particle i a) circle		
c) straight line	d) helix	
17. Two co-axial coils A and B of radius R ₁ and R ₂ carry equal amount of current but flowing in opposite direction. The net magnetic field produced at the centre of these coils is zero. The ratio of the current flowing in the coil A to current in coil B is a) R ₁ : R ₂ b) R ₂ : R ₁		
c) $(R_2 / R_1)^2$	d) $(R_1 / R_2)^2$	
 18. Which among the following is a desirable fercore of a transformer? a) high hysteresis loss and low retentivity b) low hysteresis loss and high retentivity c) high coercive field and high retentivity d) low hysteresis loss and low retentivity 	eature of a ferromagnet that can be used as	
19. The phase difference between the current through the resistance and voltage across resistance in a series LCR circuit is		
a) 180° c) 90°	b) 0° d) 45°	
20. An object of size 10 cm is kept at a distance of 10 cm from a convex lens. If the focal length of the lens is 5 cm, the size of the image is a) 10 cm b) 20 cm c) 5 cm d) 15 cm		
21. A biconvex lens of focal length 10 cm is	·	
Space for rough work		

Space for rough work

AEE15vA 5

22	. A diffraction grating with 10 ⁶ lines / m is monochromatic source. The angle of first ord source is	-
	a) 1000 nm c) 400 nm	b) 500 nm d) 600 nm
23. A glass plate of thickness 1.5 μ m and refractive index 1.5 is introduced be the slits and screen in a Young's double slit experiment. If the waveled monochromatic source used is λ = 0.75 μ m, the phase difference interfering waves at the centre of the screen is equal to		
	a) 6π	b) 3π
	c) π	d) 2π
24	. What is the velocity of light in a medium with	refractive index 1.5?
	a) 2 x 10 ⁸ m/s	b) 3 x 10 ⁸ m/s
	c) $1.5 \times 10^8 \text{m/s}$	d) $2.5 \times 10^8 \text{m/s}$
25	. Which among the following electromagnetic re	adiations is the most energetic?
	a) Infra red light	b) Visible light
	c) Ultraviolet light	d) microwaves
26. Which of the following particles has the shortest de-Broglie wavelength, if all move with same speed?		
	a) beta particle	b) alpha particle
	c) proton	d) neutron
27	. The mass of a photon of wavelength $^\lambda$ is give	n by
	a) h ^λ /c	b) ¾/hc
	c) h/ ½c	d) hc/ λ
28	rmi (1 fermi = 1×10^{-15} m). The radius of a	
	a) 1 fermi	b) 2 fermi
	c) 3 fermi	d) 4 fermi
29	. Photons of energy 6 eV fall on the surface stopping potential of the metal surface is	of a metal with work function 4 eV. The
	a) 2 V	b) 10 V
	c) 3 V	d) 1 V
30	. Addition of a minute quantity of phosphorus t	o a silicon crystal makes it
	a) an n-type semiconductor	b) a bad conductor
	c) a good conductor	d) a p-type semiconductor

CHEMISTRY

31. The actual atomic weight of an element is rep a) number c) "amu"	bresented in b) "u" d) "mu"
32. The weight of nascent oxygen in milligra permanganate (Molecular weight 158) in acid a) 16 c) 0.16	_ ·
33. The value of Plank's constant in units of Js is a) 6.626×10^{-34} c) 6.626×10^{-27}	b) 6.626 x 10 ⁻²³ d) 1.38 x 10 ⁻²³
34. The mass of proton having a wavelength of 4 a) 4.78×10^{-33} kg c) 7.17×10^{-33} kg	.2A° is b) 4.78 x 10 ⁻³³ g d) 2.39 x 10 ⁻³³ g
35. The measurement of a thermodynamic proper a) zeroth law of thermodynamics c) second law of thermodynamics	rty known as temperature is based on b) first law of thermodynamics d) kirchoffs equation
36. The bond dissociation enthalpies of $H_2(g)$, kJ/mol respectively. The enthalpy of formatio a) 121 c) -121	
37. Defective coating of zinc over mild steel leadsa) enhanced corrosion of mild steelb) increase of corrosion potentialc) corrosion of zinc coatingd) hydrogen evolution over mild steel	s to
38. What will happen to the rate constant of a r 10° C?	reaction when the temperature is raised by
a) Increase by 10 times c) Is doubled	b) Is halved d) Not affected

39	.The equivalent conductances at infinite dilut hydroxide and sodium chloride are 120, ammonium hydroxide in mhocm ² eq ⁻¹ is	
	a) 270 c) 30	b) 210 d) 510
40	.100 cm ³ of an aqueous solution of protein pressure of the solution at 300K is 2.57 x 10 ⁻⁷ a) 60039 c) 62039	
41	. A compound formed by elements P and Q cr of P are at corners and atoms of Q are at the is	•
	a) AB ₃ c) A ₃ B	b) AB d) A ₂ B
42	. Syn gas is a mixture ofa) carbon dioxide and hydrogenc) methane and hydrogen	b) carbon monoxide and hydrogend) methane and carbon monoxide
43	. Which one of the following alkali metal hydrica) Lithium hydridec) Potassium hydride	les is thermally stable? b) Sodium hydride d) Rubidium hydride
44	. The correct order of acidic character of the fo a) $SO_2 > CO_2 > CO > N_2O_5$ c) $N_2O_5 > SO_2 > CO > CO_2$	llowing is b) $SO_2 > N_2O_5 > CO > CO_2$ d) $N_2O_5 > SO_2 > CO_2 > CO$
45	Bell metal is an alloy ofa) copper and tinc) copper and nickel	b) silver and copperd) copper, zinc and tin
46	. Ammonium dichromate is used in fireworks. is	The green coloured powder blown in the air
	a) CrO ₃ c) Cr	b) Cr ₂ O ₃ d) CrO (O ₂)
47	. Which one of the following complexing agenwater?	ts is used for the estimation of hardness of
	a) Cyanide c) EDTA	b) Pyrophosphated) Ethylene diamine

a	a) 6 σ and 1 π	b) 5 σ and 2 π		
C	c) 6 σ and 2 π	d) 5 σ and 1 π		
49. F	49. Retardation factor is calculated as			
a	 a) ratio between 'distance travelled by the substance from the base line and moved by the solvent from the base line' 			
b	b) ratio between 'distance travelled by the solvent from the base line and distance moved by the substance from the base line'			
c	 sum of 'distance travelled by the substance from the base line and distance by the solvent from the base line' 			
c	 d) difference of 'distance travelled by the submoved by the solvent from the base line' 	ostance from the base line and distance		
50. I	50. In which one of the following, Mn exhibits its highest oxidation state?			
a	a) MnO ₂	b) MnO ₄ ² -		
c	MnO_4^-	d) MnO		
$51. S_N 1$ reaction is favored by				
a	a) non polar solvents			
	b) more number of alkyl group on the carbon atom attached to the halogen atomc) small groups on the carbon attached to the halogen atom			
c	d) no groups on the carbon attached to the h	nalogen atom		
52. F	Phenol is less acidic than			
a	a) ethanol	b) o-nitrophenol		
C	c) o-methylphenol	d) o-methoxyphenol		
53.0	Chloro ethane reacts with compound Z to form	n diethyl ether. Identify Z?		
a	a) NaOH	b) H ₂ SO ₄		
C	c) C ₂ H ₅ ONa	d) $Na_2S_2O_3$		
	Which of the following reagents may be used acid?	to distinguish between phenol and benzoic		
a	a) Tollens' reagent	b) Molisch reagent		
	c) Neutral FeCl ₃	d) Aqueous NaOH		
Spo	ace for rough work			

48. How many σ and π bonds are present in nitromethane

AEE15vA 9

55. In the following sequence of reactions, the alkene affords the compound 'B'.

$$CH_3CH=CHCH_3$$
 $\xrightarrow{O_3}$ A $\xrightarrow{H_2O}$ Zn

The compound B is

a) CH₃CHO

b) CH₃COCH₃

c) CH₃CH₂CHO

d) CH₃CH₂COCH₃

56. How many chiral carbons are there in β -D-(+)-glucose?

a) five

b) six

c) three

d) four

57. Why are certain rubbers called as 'vulcanized rubber'?

- a) They are formed under volcanic eruption
- b) They are prepared by adding 5% of sulphur as cross-linking agent
- c) They do not use any co-monomer
- d) By the addition of excessive co-monomer

58. One of the common components of photochemical smog is

a) formaldehyde

b) acetaldehyde

c) methane

d) CO₂

59. Sodium dodecylbenzenesulphonate refers to

a) anionic detergent

b) soap

c) cationic detergent

d) nonionic detergent

60. Which one of the following acts as antihistamine?

a) Equanil

b) Morphine

c) Serotonine

d) Bromophenylamine

MATHEMATICS

61. If a, b, c are AM, GM and HM respectively of two equal numbers, then

a)
$$2b = a + c$$

b)
$$b = 2ac / (a+c)$$

c)
$$b^2 = ac$$

d)
$$ab^2 = c$$

62. The harmonic mean of the roots of the equation is

$$(7 + \sqrt{3}) x^2 - (6 + \sqrt{7}) x + (12 + 2\sqrt{7}) = 0$$

63. The general solution of x satisfying the system of equations $5^{(Sinx+Siny)} = 1$; $25^{(Sin2x+Sin2y)} = 5$ is

a) n
$$\pi \pm \pi/6$$

b)
$$2n\pi + \pi/6$$

c)
$$n\pi - (\pi/6)$$

d)
$$n\pi + \pi/6$$

64. The angles of a triangle are in A.P and the least angle is 40°. The greatest angle in radians is

a)
$$\pi/2$$

b)
$$4\pi/9$$

c)
$$\pi/4$$

d)
$$3\pi/2$$

65. If $\sin\theta=1/\sqrt{5}$ and $\tan\theta=1/2$, then $\cos\theta$ is equal to

c)
$$1/\sqrt{5}$$

d)
$$1/(2\sqrt{5})$$

66. The value of $\sum_{x \to 0}^{Lim} (1 + x^3 + Sinx)^{4/t_{anx}}$ is equal to

a) 1

b) e⁴

c) e

d) $e^{1/4}$

67. Rolle's Theorem for $f(x) = x(x-3)e^{(-x/2)}$ is applicable in the interval

a) (0, 3)

b) (0, -3)

c) (-3, 0)

d) (3, 0)

68. Equation of the normal to the curve $y=(1+x)^y + Sin^{-1}(Sin^2 x)$ at x=0 is

a) y = x

b) y - x = 1

c) y + x = 1

d) y - 1 = 2x

69. If A and B are two matrices such that AB = A and BA = B, then $A^2 - B^2 =$

a) 2 AB

b) A - B

c) A + B

d) 2 BA

70. The system of linear equations $x + 3y + (\lambda + 2)z = 0$, 2x + 4y + 8z = 0, 3x + 5y + 10z = 0 has non-trivial solution, when λ is

a) -2

b) 2

c) 4

d) -4

71. If the roots of the equation $ax^2 + bx + c = 0$ are in the ratio 2: 3, then

a) $6b^2 = 25$ ac

b) $6b^2 = 25(a+c)$

c) $13b^2 = 6$ ac

d) $13b^2 + 6$ ac = 0

- 72. If \vec{a} and \vec{b} are adjacent sides of a parallelogram with $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, the adjacent sides of parallelogram are
 - a) perpendicular

b) inclined at an angle of $\pi/3$

c) parallel

- d) inclined at an angle of $\pi/4$
- 73. The scalar $\vec{b} \cdot \{\vec{c} + \vec{a}\} \times (\vec{a} + \vec{b} + \vec{c})\}$ is equal to

a)
$$[\vec{a}, \vec{b}, \vec{c}]$$

c)
$$[\vec{a}, \vec{b}, \vec{c}] + [\vec{b}, \vec{c}, \vec{a}]$$

d)
$$[\vec{a}, \vec{b}, \vec{c}] + [\vec{b}, \vec{c}, \vec{a}] + [\vec{c}, \vec{a}, \vec{b}]$$

74. The equation of the line passing through the point of intersection of the lines and which

$$\frac{x-1}{1} = \frac{y-1}{0} = \frac{z-2}{1}$$
 and $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ is

perpendicular

the the

plane

5x-y+9z=10 is

a)
$$\frac{x}{5} = \frac{y-1}{1} = \frac{z-1}{9}$$

b)
$$\frac{x}{5} = \frac{y+1}{-1} = \frac{z-1}{9}$$

c)
$$\frac{x}{5} = \frac{y+1}{-1} = \frac{z+1}{9}$$

d)
$$\frac{x}{5} = \frac{y-1}{-1} = \frac{z-1}{9}$$

75. The equation of the plane through the intersection of the planes 2x - y + z = 6 and x + y + 2z = 7 and passing through the point (1, 1, 1) is

a)
$$2x - 7y - 5z + 10 = 0$$

b)
$$2x - 7y + 5z + 10 = 0$$

c)
$$2x - 7y - 5z - 10 = 0$$

d)
$$2x + 7y - 5z - 10 = 0$$

76. The equation of the line passing through the point (1, 1, 0) and parallel to the plane 3x + 2y + z = 5 is

a)
$$\frac{x-1}{-3} = \frac{y-1}{-2} = \frac{z}{1}$$

b)
$$\frac{x+1}{3} = \frac{y+1}{2} = \frac{z}{1}$$

c)
$$\frac{x-1}{3} = \frac{y-1}{2} = \frac{z}{1}$$

d)
$$\frac{x-3}{1} = \frac{y-2}{1} = \frac{z-1}{0}$$

77. The angle between the complex numbers 2 + 2i and -7 is

a)
$$\pi/2$$

b)
$$\pi/4$$

c)
$$3\pi/2$$

d)
$$3\pi/4$$

78. What is the value of $4+5\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{365}$?

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{\sqrt{3}}{2}i$$

d)
$$\sqrt{3}i$$

79. The ratio between the number of ways we can arrange n persons in a ci	ircular	manner	to
the number of ways we can arrange them in a line is			

80. A team of 8 students goes on an excursion, in two cars, of which one can seat 5 and the other only 4. In how many ways can they travel?

81. The number of common tangents to the circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 2y = 0$ is

82. Centre of the circle passing through (4, 5), (3, 4), (5, 2) is

83. If e_1 and e_2 are the eccentricities of a hyperbola and its conjugate then $e_1^2+e_2^2$ will be

b)
$$e_1^2 e_2^2$$

d)
$$\frac{1}{e_1^2} + \frac{1}{e_2^2}$$

84. The equation $4x^2 + 7y^2 + 32x - 56y + 148 = 0$ represents

- a) an ellipse with center (4, -4)
- b) an ellipse with center (-4, 4)
- c) an ellipse with center (2, -2)
- d) an ellipse with center (-2, 2)

85. The equation for the circle obtained by shifting the circle $x^2 + y^2 = 49$ to 3 units down and 2 units left is:

a)
$$(x+3)^2 + (y+2)^2 = 49$$

b)
$$(x-3)^2 + (y-2)^2 = 49$$

c)
$$(x-2)^2 + (y-3)^2 = 49$$

d)
$$(x+2)^2 + (y+3)^2 = 49$$

86. The variance of a data set is k, then the variance of the data set obtained by shifting the original data to 3 units is

b)
$$k + 3$$

87. Suppose that P(A/B) = 0.7, P(A) = 0.5 and P(B) = 0.2 then P(B/A) is,

- 88. A medical test is capable of identifying someone with the illness as positive is 99% and someone without illness as negative 95%. If the illness is present in the general population with probability 0.0001, the probability for anyone to have illness when the medical test results positive is
 - a) 0.00009

b) 0.002

c) 0.0001

- d) 0.9980
- 89. The probability that the roots of the equation $x^2 + 2nx + \left(4n + \frac{5}{n}\right) = 0 \text{ are not real}$ numbers where n \in N such that n \leq 5 is
 - a) 2/5

b) 4/5

c) 1/5

- d) 3/5
- 90. If A is area lying between the curve $y = \cos x$ and x-axis between x = 0 and $x = \pi/2$, then the area of the region between the curve $y = \cos^2 x/2$ and the x-axis in the same interval is given by
 - a) $(\pi + A)/2$

b) $(\pi/4) + A$

c) $(\pi/2)+A$

d) $(\pi/4)+(A/2)$

91.
$$\int_{-1}^{1} \frac{x}{|x|} dx$$
 is equal to

a) 2

b) -2

c) 1

d) 0

92. If the area bounded by the curve y = f(x), x-axis and the ordinates x = 1 and x = b is $(b - 1) \sin(3b + 4)$, then f(x) is

a)
$$[(x-1) \cos (3x+4)]$$

b) $[\sin(3x+4) + 3(x-1)\cos(3x+4)]$

c)
$$\sin (3x+4)$$

d) None

93. The coefficient of x^{10} in the expansion of $(1 - x^3)^4 (1 + x)^5$ is

b) 20

d) 6

94. Which one of the following is TRUE for any x

a)
$$\frac{1}{x+5} < \frac{1}{x+2} < \frac{1}{x+3}$$

b)
$$\frac{1}{x+2} < \frac{1}{x+3} < \frac{1}{x+5}$$

c)
$$\frac{1}{x+5} < \frac{1}{x+3} < \frac{1}{x+2}$$

d)
$$\frac{1}{x+3} < \frac{1}{x+2} < \frac{1}{x+5}$$

95. The order and degree of the differential equation $y - x \frac{dy}{dx} = \frac{a \frac{dy}{dx}}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}$ is

b) 1, 4

c) 1,
$$5\sqrt{2}$$

d) 1, 3

96. The general solution of the differential equation $(1 + e^{(x/y)}) dx + e^{(x/y)} (1-(x/y)) dy = 0$ is

a)
$$y + xe^{(x/y)} = C$$

b)
$$x + ye^{(x/y)} = C$$

c)
$$x + C = ye^{(x/y)}$$

d)
$$y + ye^{(x/y)} = C$$

97. The triangle with vertices A = (2, 7), B = (4, y) and C = (-2, 6) is right angled at B if the value of y is

98. The point equidistant from the three lines x + y = 1, y = 1 and x = 1 is

a)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

b)
$$\left(+\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$$

c)
$$\left(+\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{2}}\right)$$

d)
$$\left(+\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{5}}\right)$$

99. The equation of the line mid parallel to the two lines 5x - 2y - 9 = 0 and 5x - 2y + 7 = 0 is

a)
$$x + 5y - 8 = 0$$

b)
$$5x - y - 1 = 0$$

c)
$$2 \times -5y - 6 = 0$$

d)
$$5x - 2y - 1 = 0$$

100. The straight line 3x + 4y + 4 = 0 is moved parallelly so that its distance from the point (3, -2) is increased by 4 units. Then its equation in the new position is

a)
$$3x + 4y - 30 = 0$$

b)
$$3x + 4y - 24 = 0$$

c)
$$3x + 4y - 21 = 0$$

d)
$$3x + 4y + 24 = 0$$