
EC474 EC475 EC476 EC280 EC281 EC380	Principles of Modern Sonar Systems Advanced Electromagnetics Milimeter Wave Communication Mini Project in Electrical Circuits and Systems Mini Project in Digital System Design Mini Project in Communication	(3-1-0) 4 (3-1-0) 4 (3-1-0) 4 (0-0-3) 2 (0-0-3) 2	Minor Co EC391 EC392 EC393 EC394 EC395	Analog Electronic Circuits Digital Electronics Signals and Systems Communication Systems Data Communication and Networks	(3-0-0) 3 (3-0-0) 3 (3-0-0) 3 (3-0-0) 3 (3-0-0) 3
EC381	Systems and Networks Mini Project in Microprocessor and Embedded System	(0-0-3) 2	EC498	Major Project	6
EC382 EC383 EC384 EC385	Mini Project in Analog System Design Mini Project in VLSI Design Mini Project in RF Design Mini Project in Digital Signal Processing	(0-0-3) 2 (0-0-3) 2 (0-0-3) 2 (0-0-3) 2	Mandator CV110 SM111 EC390 EC490	ry Learning Courses (MLC) Environmental Studies Professional Ethics & Human Values Seminar Practical Training	(1-0-0) 1 (1-0-0) 1 (0-0-2) 1 (0-0-3) 2

Suggested Plan of Study:

Semester →	I	II	III	IV	V	VI	VII	VIII
1	EC101	EC102	EC200	EC206	EC300	SM302	Elective	Elective
2			EC201	EC207	EC301	Elective	Elective	Elective
3			EC202	EC208	SM300	Elective	Elective	Elective
4			EC203	EC209	Elective	Elective	EC498*	EC498*
5			EC204	EC210	EC302	EC304	EC490	
6			EC205	EC211	EC303	Elective Mini Project	Elective Mini Project	
7				Elective Mini Project	EC390			
8					Elective Mini Project			

^{*} EC498 Major Project is of one semester duration, to be credited in either $7^{\rm th}$ or $8^{\rm th}$ semester.

Degree Requirements:

Category of Courses	Minimum Credits to be Earned
Foundation Courses:	38
Basic Science Courses(BSC)	16
Engineering Science Courses (ESC)	13
Humanities and Social Science Courses (HSC)	9
Program Core Courses:	62
Elective Courses:	20
Elective courses / Mini Projects* /MOOC/GIAN/Industry Courses**	39
Major Project (MP):	
(One semester duration, to be credited in either 7th or 8th semester)	6
Mandatory Learning Courses (MLC):	
	5
Total Credits	150

^{*} At most 6 credits can be earned from Mini Projects

Students seeking Honors degree shall credit PG courses offered by the Department of Electronics and Communication Engineering. The list of courses available for crediting in a given semester shall be decided by the DUGC. In addition, such students shall do their Major Project in the department. Minimum requirement for Honor Degree is 20 Credits.

^{**} At most 5 credits can be earned from MOOC/GIAN/Industry Courses

Department of Electrical and Electronics Engineering (EE) Bachelor of Technology in Electrical and Electronics Engineering

Foundation	on Courses (FC)		EE347	Design & Development Task in Control Systems Design &Development Task in Power Electronics &	(0-0-3)2
Basic Scie	ence Core (BSC)		EE348	Drives	(0-0-3)2
MA110	Engineering Mathematics – I	(3-0-0)3	EE359	Energy Auditing	(3-1-0)4
PH110	Physics	(3-1-0)4	EE360	Microprocessors	(3-1-0)4
PH111	Physics Laboratory	(0-0-2)1	EE361	Power System Communications	(3-1-0)4
MA111	Engineering Mathematics - II	(3-0-0)3	EE362	Operation and control of Power Systems	(3-1-0)4
					. ,
CY110	Chemistry	(3-0-0)3	EE363	Advanced Digital Signal Processing	(3-1-0)4
CY111	Chemistry Laboratory	(0-0-3)2	EE366	Special Machines and Drives	(3-1-0)4
Engineeri	ng Science Core (ESC)		EE369	Embedded System Design	(3-1-0)4
ME110	Elements of Mechanical Engineering	(2-0-0)2	EE371	Power Electronics Applications to Power Systems	(3-1-0)4
CS110	Computer Programming	(3-1-0)4	EE373	Electric Power Stations	(3-1-0)4
CS111	Computer Programming Laboratory	(0-0-2)1	EE374	Electric Energy Systems	(3-1-0)4
AM110	Engineering Mechanics	(3-0-0)3	EE376	Advanced Control Systems	(3-1-0)4
AWITTO	Engineering Wechanics	(3-0-0)3	EE370		(3-1-0)4
) (F) () (F ' ' G '	(1.0.2)2	PPAGG	Modeling and Simulation Techniques for Dynamic	(2.1.0).4
ME111	Engineering Graphics	(1-0-3)3	EE377	Systems	(3-1-0)4
	es and Social Science Core (HSC)		EE378	Shell Scripting with Bash	(3-1-0)4
SM110	Professional Communication	(3-0-0)3	EE379	Incremental Motion Control	(3-1-0)4
SM300	Engineering Economics	(3-0-0)3	EE382	Virtual Instrumentation Laboratory	(0-0-3)2
SM302	Principles of Management	(3-0-0)3	EE384	Energy Auditing Laboratory	(0-0-3)2
	1 6	` /		6, 6 ,	` /
Programi	ne Core (PC)		EE385	Microprocessors Laboratory	(0-0-3)2
EE101	Analysis of Electric Circuits	(3-1-0)4	EE386	Digital Signal Processing Laboratory	(0-0-3)2
EE207	Electromagnetic Theory	(3-1-0)4	EE387	Advanced Digital Signal Processing Laboratory	(0-0-3)2
EE213			EE389		. ,
EE213	Electrical Machines-I	(3-1-3)6	EE369	Embedded System Design Laboratory	(0-0-3)2
	Electrical Measurements and Measuring				
EE224	Instruments	(3-1-3)6	EE392	Power System Operation Laboratory	(0-0-3 2
EE226	Analog Electronic Circuits	(3-1-3)6	EE393	Dynamic System Simulation Laboratory	(0-0-3)2
EE143	Mathematics for Electrical Engineers	(3-1-0)	EE397	Design &development task in Signal processing	(0-0-3)2
EE256	Signals and Systems	(3-1-3)6	EE398	Design &development task in Power Systems	(0-0-3)2
EE258	Electrical Machines-II	(3-1-3)6	EE402	HVDC Transmission	(3-1-0)4
EE265	Power System Engineering-I	(3-1-0)4	EE404	Soft Computing and applications	(3-1-0)4
EE276	Digital Electronic Circuits	(3-1-3)6	EE406	Electromagnetic Compatibility	(3-1-0)4
	e				` /
EE308	Power Electronics	(3-1-0)4	EE408	Solid-State Drives	(3-1-0)4
EE326	Linear Control Theory	(3-1-0)4	EE410	Power System Protection	(3-1-0)4
EE350	Power System Engineering-II	(3-1-0)4	EE411	Operation Of Power Systems Under Deregulation	(3-1-0)4
Programi	ne Specific Electives (PSE)		EE412	Random Signal Processing	(3-1-0)4
	Polyphase Systems and Component –				(3-1-0)4
EE229	Transformations	(3-1-0)4	EE414	Non-Conventional Energy Systems	
EE253	Commutator Machines	(3-1-0)4	EE418	Advanced Power Electronics	(3-1-0)4
BB233	Introduction to Algorithms and Data	(5 1 0) 1	LLIIO	ravancea rower Electronics	(5 1 0) 1
DD255	-	(2.1.0)4	EE420	Davier System Dymanics	(2.1.0)4
EE255	Structures	(3-1-0)4	EE420	Power System Dynamics	(3-1-0)4
	Digital Computer Organization and				(3-1-0)4
EE260	Architecture	(3-1-0)4	EE422	Principles of Switchgear and Protection	
EE281	Commutator Machines Laboratory	(0-0-3)2	EE423	Switchgear and Protection Laboratory	(0-0-3)2
	Electrical Machine Winding				(3-1-0)4
EE295	Calculations-I	(0-2-3)4	EE427	Computer Networks	` ′
22270	Electrical Machine Winding	(0 2 5).	22.27	Computer 1 term of the	(3-1-0)4
EE296		(0-2-3)4	EE428	The ARM Core: Architecture and Programming	(3-1-0)4
EE290	Calculations-II	(0-2-3)4	EE420	The ARM Core. Architecture and Frogramming	
	Elements of Analog and Digital	(0.4.0).4	PP 400	D. D	(0.4.0).4
EE298	Communication	(3-1-0)4	EE430	Robot Dynamics and Control	(3-1-0)4
	Distribution Systems Planning and				
EE303	Control	(3-1-0)4	EE432	Machine Learning	(3-1-2)5
EE311	Digital System Design	(3-1-0)4	EE439	Advanced Power Electronics Laboratory	(0-0-3)2
	- , ,			Mathematical Morphology & applications to signal	(3-1-0)4
EE312	Power System Harmonics	(3-1-0)4	EE443	processing	(5 1 0) 1
	•			1 0	(0, 0, 2)2
EE313	Digital Signal Processing	(3-1-0)4	EE445	Power System Simulation Laboratory-I	(0-0-3)2
EE319	Neural Networks and Applications	(3-1-0)4	EE454	Flexible AC Transmission Systems	(3-1-0)4
EE320	Electrical Safety, Operations, Regulations	(3-0-0)3	EE456	High-Voltage Engineering	(3-1-0)4
EE321	Linear and Nonlinear Systems	(3-1-0)4	EE458	Photovoltaics and Applications	(3-1-0)4
	Electronic Measurements and				(3-1-0)4
EE324	Instrumentation	(3-1-0)4	EE464	Power Generation and Economics	
EE328	Network Synthesis	(3-1-0)4	EE466	Utilization of Electrical Energy	(3-1-0)4
	Traveling Waves on Transmission	ζ/·			(3-0-0)3
EE330		(3.1.0)/4	EE167	Industrial Flactrical Systems	(3-0-0)3
EE329	Systems Distribution Systems Laboratory	(3-1-0)4	EE467	Industrial Electrical Systems	(2.1.0)4
EE331	Distribution Systems Laboratory	(0-0-3)2	EE468	Advanced Electric Drives	(3-1-0)4
EE334	Power Electronics Laboratory	(0-0-3)2	EE469	Renewable Energy Systems	(3-0-0)3
EE335	Digital System Design Laboratory	(0-0-3)2	EE470	Computational Technique for large system analysis	(3-1-0)4
EE337	Power System Harmonics Laboratory	(0-0-3)2			
EE342	Electronic Measurement Laboratory	(0-0-3)2			
	Statistical Foundation for Electrical	. /			
EE343	Engineers	(3-1-0)4			
LLJTJ	Zinguiorio .	(3 1 0) 1			

			Compatibility	
			EE802 Energy Management	(3-0-0) 3
EE471 Davi	St Sil.ti I .ht II	(0, 0, 2)2	EE803 Microcontroller Based System Design	(3-0-0) 3
	ver System Simulation Laboratory-II	(0-0-3)2	EE804 Electric Power Quality	(3-0-0) 3
	llation and Testing Engineering	(3-1-0) 4	Discrete Fourier Transforms and Digital	(5 0 0) 5
	imisation Techniques	(3-1-0) 4	EE805 Filter Design	(4-0-0) 4
EE470	Introduction to the Intel IA-32	(3-1-0) 4	Sensor Technology and Instrumentation	(100)1
Aic	hitecture	, ,	EE806 Design	(3-0-0) 3
	ranced Electric Drives Laboratory	(0-0-3) 2	EE807 Optimization Techniques	(4-0-0) 4
	tion and Testing Engineering	(0-0-3) 2	EE808 Finite Element Methods and Applications	(3-0-0) 3
	oratory	` '	EE809 DC-AC System Interaction	(3-1-0) 4
•	tem Analysis in Discrete Time	(3-1-0)4	EE810 Power System Transients and	(5 1 0) 1
EE501 Analy	sis of Nonlinear Circuits	(3-1-0)4	Overvoltages	(3-0-0) 3
			EE811 Distribution System Automation	(3-0-0) 3
			EE812 Energy Management Lab	(0-0-3) 2
Project (MP)		EE813 Electric Power Quality Lab	(0-0-3) 2
EE449	Major Project-I	(0-1-3) 3	EE814 Discrete Fourier Transforms and Digital	(0-0-3) 2
EE499	Major Project-II	(0-1-3) 3	Filter Design Lab	(0-0-3) 2
LLT	Wajor Project-II	(0-1-3) 3	EE815 Power Electronics Design Lab	(0-0-3)2
Mandato	ory Learning Courses (MLC)		EE816 Distribution Automation Lab	(0-0-3) 2
CV110	Environmental Studies	(1-0-0) 1	Power System Operation under	(0 0 3) 2
SM111	Professional Ethics and Human	(1-0-0) 1	EE817 Deregulations	(4-0-0) 4
SWITT	Values	(1-0-0) 1	EE818 Advanced Semiconductor Devices	(3-0-0) 3
EE448	Seminar	(0-0-2) 1	EE820 Analysis Of Faulted Power Systems	(4-0-0)4
		` /	EE850 FACTS and Custom Power Devices	(3-0-0) 3
EE498	Practical Training	(0-0-3) 2	EE851 High-Voltage Testing and Measurements	(3-0-0) 3
			EE852 PV Power Systems	(3-0-0) 3
			EE853 Renewable Energy Systems	(3-0-0) 3
Doguiros	nents for a Minor Degree in F&F (2	() aradita)	EE854 Distributed Generation	(3-0-0) 3
Kequirei	nents for a Minor Degree in E&E (2	o creuits)	EE855 Communication Networks for Power	(3-0-0) 3
EE230	Electric Circuits	(3-1-0) 4	Systems Systems	(3-0-0) 3
EE230 EE261	Basic Electric Machines	(3-1-0) 4	•	g (4-0-0) 4
EE310	Electric Power System	(3-1-0) 4	EE856 Application of Digital Signal Processing Techniques to Power Systems	; (4-0-0) 4
EE310	Electrical and Electronics Measuring	(3-1-0) 4	EE857 Design of Embedded Controllers	(3-0-0) 3
EE370	Instruments and Techniques	(3-1-0)4	EE858 Electric Drives	(3-0-0) 3
EE 415	_	(2.1.0).4	Computational Methods for Large Power	(3 0 0) 3
EE415	Power Electronics in Power Control	(3-1-0) 4	EE859 Systems	(4-0-0) 4
			EE860 Industrial Applications of HV and Fields	(3-0-0) 3
Honors Degr	ee in E&E		LabVIEW TM -based Data Acquisition and	
Students seek	ing Honors degree shall credit five	PG courses	EE861 Instrumentation Lab	(0-0-3) 2
	e Department of Electrical and Electr		EE862 Computer Control of Energy Systems La	(0-0-3) 2
•	ed by DUGC from the following li		EE863 Power System Signal Processing Lab	(0-0-3) 2
	or Honors degree is 20 credits		EE864 Embedded Controllers Design Lab	(0-0-3) 2
Cour	ses for Honors Degree		EE865 High-Voltage Testing Lab	(0-0-3) 2
	puter-Aided Protection of Power Sys	(4-0-0)4	Gaseous Insulation & Gas Insulated	(0 0 3) 2
	Electronics: Modeling and Design	(4-0-0) 4	EE866 System	(3-0-0)3
EE702 Power	System Modeling and Analysis	(4-0-0) 4	EE867 Power System Simulation Laboratory	(0-0-3) 2
	System Modeling and Analysis		Switched Electric Networks - A Power	(0 0 3) 2
Lab	, e ,	(0-0-3) 2	EE868 Electronics Perspective	(4-0-0) 4
	uter Control of Energy Systems	(4-0-0) 4	EE869 Tensors	(4-0-0) 4
EE751 Cont		(4-0-0) 4	EE870 Tensor Analysis of Networks	(4-0-0) 4
	y-Neural Control	(4-0-0) 4	EE871 Machine Learning	(3-1-2) 5
	Testing and Design for	(4-0-0) 4	2	
	5	/	EE872 Smart Grid Control and Operation	(4-0-0) 4

Suggested Plan of Study

Semester →	I	II	III	IV	V	VI	VII	VIII
1	MA110	MA111	EE213	EE226	SM300	SM302	Elective	Elective
2	CY110	PH110	EE207	EE258	EE326	Elective	Elective	Elective
3	CY111	PH111	EE276	EE265	EE350	Elective	Elective	Elective
4	AM110	ME110	EE256	EE224	Elective	Elective	Elective	Elective
5	CS110	ME111	EE308	Elective	Elective	Elective	EE498	EE499
6	CS111	EE143	Elective	Elective	Elective	Elective	EE449	EE448
7	EE101	SM110			_			
8	CV110	SM111						

Category of Courses	Minimum Credits to be Earned
Foundation Courses (FC)	38
Basic Science Core (BSC)	16
Engineering Science Core (ESC)	13
Humanities and Social Science Core (HSC	09
Programme Core (PC)	64
Electives	37
Project (MP): Major Project	06
Mandatory Learning Courses (MLC)	05
Total	150

Department of Information Technology (IT) **Bachelor of Technology in Information Technology**

Dacher	or or recumology in finormation	1 eciliolo	gy		
Basic Sc	cience Core (BSC)		Program	me Specific Electives (PSE)	
MA110	Engineering Mathematics – I	(3-0-0)3	IT360	Information Systems	(3-0-2)4
PH110	Physics	(3-1-0) 4	IT361	Paradigms of Programming	(3-0-2) 4
PH111	Physics Laboratory	(0-0-2) 1	IT362	Computer Graphics	(3-0-2) 4
	Engineering Mathematics – II	(3-0-0) 3	IT363	Microprocessors and Interfacing	(3-0-2) 4
CY110	Chemistry	(3-0-0) 3	IT364	Performance Modeling	(3-0-2) 4
CY111	Chemistry Laboratory	(0-0-3) 2	IT365	Advanced Computer Networks	(3-0-2) 4
CIIII	Chemistry Euroratory	(0 0 3) 2	IT366	Object Oriented Analysis and Design	(3-0-2) 4
Enginee	ering Science Core (ESC)		IT400	Perceptual Audio Processing	(3-0-2) 4
	Elements of Mechanical Engineering	(2-0-0) 2	IT400 IT401	Perceptual Video Processing	(3-0-2) 4 $(3-0-2)$ 4
ME111		(2-0-0) 2 $(1-0-3)$ 3	IT401 IT402	Soft Computing	(3-0-2) 4
	Engineering Mechanics		IT402 IT403		
		(3-0-0) 3		Genetic Algorithms	(3-0-2) 4
CS110	Computer Programming	(3-1-0) 4	IT404	Artificial Neural Networks	(3-0-2) 4
CS111	Computer Programming Lab	(0-0-2) 1	IT405	Fuzzy System Models	(3-0-0) 3
			IT406	Distributed Computing Systems	(3-0-2) 4
	IG 11G1 G (TIGG)		IT407	Technologies for Internet of Things	(3-0-2) 4
	ities and Social Science Core (HSC)		IT408	Mobile Computing	(3-0-0) 3
	Professional Communication	(3-0-0) 3	IT409	Embedded Systems	(3-0-0) 3
SM300	Engineering Economics	(3-0-0) 3	IT410	Bioinformatics	(3-0-0) 3
SM302	Principles of Management	(3-0-0) 3	IT411	Knowledge Management	(3-0-0) 3
			IT412	Time Series Analysis	(3-0-0) 3
Progran	nme Core (PC)		IT413	System Integration	(3-0-0) 3
IT110	Digital System Design	(3-0-2)4	IT414	Data Warehousing and Data Mining	(3-0-2)4
IT150	Object Oriented Programming	(3-0-2)4	IT415	Middleware Technologies	(3-0-2)4
IT200	Computer Communication and Networking	(4-0-0)4	IT416	Computer Vision	(3-0-2)4
IT201	Computer Organization and Architecture	(3-0-0)3	IT417	Pattern Recognition	(3-0-2)4
IT202	Data Structures and Algorithms-I	(3-0-0)3	IT418	Cloud Computing	(3-0-2)4
IT203	Discrete Mathematics	(3-0-0) 3	IT419	Wireless Sensor Networks	(3-0-2)4
IT204	Signals and Systems	(3-0-2) 4		Mobile Adhoc Networks	(3-0-2) 4
IT205	Computer Networking Lab	(0-0-3) 2		Semantic Web Technologies	(3-0-2) 4
IT206	Data Structures and Algorithms-I Lab	(0-0-3) 2		Virtual Reality	(3-0-2) 4
IT250	Automata and Compiler Design	(3-0-2) 4		Rich Internet Applications	(3-0-2) 4
IT251	Data Structures and Algorithms-II	(3-0-2) 4		Web Services	(3-0-0) 3
IT252	Database Systems	(3-0-2) 4		Software Architecture	(3-0-0) 3
IT253	Operating Systems	(3-0-2) 4		Advanced Computer Architecture	(3-0-0) 3
IT254	Web Technologies and Applications	(3 - 0 - 2) 4		Transaction Processing	(3-0-0) 3
IT300	Design and Analysis of Algorithms	(3-0-2) 4		Software Quality Assurance	(3-0-0) 3
IT300	Parallel Computing	(3-0-2) 4		Information Technology for Healthcare	(3-0-0) 3
IT301 IT302		(3-0-2) 4			
	Probability and Statistics			Enterprise Resource Planning and Systems	(3-0-0) 3
IT303	Software Engineering	(3-0-2) 4		Natural Language Processing	(3-0-2) 4
IT350	Data Analytics	(3-0-2) 4		Information Retrieval	(3-0-2) 4
IT351	Human Computer Interaction	(3-0-2) 4		Simulation and Modelling	(3-0-2) 4
IT352	Information Assurance and Security	(3-0-2) 4		E-Commerce	(3-0-0) 3
			IT461	Advanced Database Systems	(3-0-2) 4
			IT462	Number Theory and Cryptography	(3-0-2) 4
	Project (MP)		IT463	Linux Kernel Internals	(3-0-2)4
IT449	Major Project-I	(0-0-3) 2			
IT499	Major Project-II	(0-0-6)4	B.Tech (I	Minor) in Information Technology for Othe	r Branches
			IT210	Data Structures and Algorithms	(3-0-2)4
Mandat	ory Learning Courses (MLC)		IT252	Database Systems	(3-0-2) 4
CV110	Environmental Studies	(1-0-0) 1	IT254	Web Technologies and Applications	(3-0-2) 4
SM111	Professional Ethics and Human Values	(1-0-0) 1		Parallel Computing	(3-0-2) 4
IT290	Seminar	. ,	IT350	Data Analytics	(3-0-2) 4
IT440	Practical Training	2	11550	2 am 1 mary 1100	(3 3 2) 4
11440	racucal frammig	2	For B Too	h (Honors) in Information Technology	

For B.Tech (Honors) in Information Technology:
Students seeking Honors degree shall credit five courses of M.Tech
(IT) including Procgram Core/Electives, offered by the Department
of Information Technology and as decided by DUGC with 20

For other details, please see M.Tech (IT) Curriculum.

Suggested Plan of Study

							VII	
Semester →	I	II	III	IV	V	VI		VIII
1	MA110	MA111	IT200	IT250	IT300	IT350	IT440	IT499
2	CY110	PH110	IT201	IT251	IT301	IT351	IT449	Elective-5
3	CY111	PH111	IT202	IT252	IT302	IT352	Elective-2	Elective-6
4	AM110	ME110	IT203	IT253	IT303	SM302	Elective-3	Elective-7
5	CS110	ME111	IT204	IT254	SM300	Elective-1	Elective-4	
6	CS111	SM110	IT205	IT290				
7	CV110	SM111	IT206					
8	IT110	IT150						

Category of Courses	Minimum Credits to be Earned
Basic Science Core (BSC)	16
Engineering Science Core (ESC)	13
Humanities and Social Sciences Core (HSC)	09
Programme Core (PC)	77
Electives (ELE): Programme Specific Electives (PSE)	24
Major Project (MP)	06
Mandatory Learning Courses (MLC)	05
Total	150

Department of Chemical Engineering Bachelor of Technology in Chemical Engineering

Basic So	cience Core (BSC)		CH 400	Pollution Control and Safety in Process Industries	(3-0-0)3
MA110 PH110	Engineering Mathematics I Physics	(3-0-0)3 (3-1-0)4	CH 401	Chemical Reaction Engg. & Process	(0-0-3)2
PH111	Physics Laboratory	(0-0-2)1		Control Lab	
	Engineering Mathematics II	(3-0-0)3	Major	Project (MP)	
CY110		(3-0-0)3			
CY111	•	(0-0-3)2	CH 449	Major Project I	(0-0-3) 2
CY205	Organic Chemistry	(3-0-0)3	CH 499	Major Project II	(0-0-6)4
CY255	Technical Analysis Laboratory	(0-0-4)2		3 3	
CY300	Instrumental Methods of Analysis	(3-0-0)3	Manda	tory Learning Courses (MLC)	
Enginee	ering Science Core (ESC)		17141144	tory Dearning Courses (NIDC)	
EE110	Elements of Electrical Engineering	(2-0-0)2	SM 111	Professional Ethics and Human values	(1-0-0)1
EC100	Elements of Electronics & Communica		CV110		(1-0-0)1 $(1-0-0)1$
	Engineering	(2-0-0)2	CH 440		01
ME110	Elements of Mechanical Engineering	(2-0-0)2		_	
	Computer Programming	(3-1-0)4	CH448	Seminar	02
	Computer Programming Lab	(0-0-2)1			
	Engineering Mechanics	(3-0-0)3			
	Engineering Graphics	(1-0-3)3	Elective	es (Ele)	
		(/-			
	ities and Social Sciences Core (HSC)			Process Instrumentation	(3-0-0)3
	Professional Communication	(3-0-0)3		Energy Technology	(3-0-0)3
SM 300	Engineering Economics	(3-0-0)3		Petroleum Refining Processes	(3-0-0)3
SM 302	Principles of Management	(3-0-0)3		Biochemical Engineering	(3-0-0)3
	1 0	,		Introduction to Molecular Simulations	(2-0-2)3
Progran	nme Core (PC)		CH455	Energy Conservation & Management in (3-0-0)3
CH 150	Process Calculations	(2-2-0)4		Process Industries	
CH 200	Momentum Transfer	(3-1-0)4		Fuel Cell Engineering	(3-0-0)3
CH 201	Particulate Technology	(2-1-0)3	CH457	Chemical Project Engineering	(3-0-0)3
CH 202	Chemical Engg. Thermodynamics	(3-1-0)4	CH458	Biology for Chemical Engineers	(3-0-0)3
CH 203	Transport Phenomena	(2-2-0)4			
MA 207	Numerical Methods	(3-0-0)3			
MA 211	Laplace and Z Transforms	(1-0-0)1	Minor I	Degree Courses	
	Computer Simulation Lab	(0-0-3)2	WIIIOI I	Degree Courses	
CH 250	Heat Transfer	(3-1-0)4	CI1150	December Colombian	(2.2.0)4
CH 251	Mass Transfer-I	(3-1-0)4		Process Calculations	(2-2-0)4
CH 252	Chemical Reaction Engg.–I	(2-1-0)3		Chemical Engineering Thermodynamics	
CH 253	Momentum Transfer Lab	(0-0-3)2		Transport Phenomena	(2-2-0)4
CH 254	Particulate Technology Lab	(0-0-3)2		Chemical Reaction Engineering I	(2-1-0)3
CH 300	Chemical Reaction Engineering – II	(2-1-0)3	CH302	Process Dynamics and Control	(3-1-0)4
CH 301	Mass Transfer – II	(3-1-0)4		Minimum Credits to be earned	19
	Process Dynamics & Control	(3-1-0)4			
CH 303	Heat Transfer Operations Lab	(0-0-3)2	Course	s for Honours Degree in Chemical	
CH 350	Chemical Process Industries	(3-0-0)3	Engine		
CH 351	Process Design of Chemical Equipment		_	_	(2.1.0) 4
CH352	•	(0-0-3)2	CH 701	•	(3-1-0) 4
CH 353	Design and Simulation Lab	(0-0-2)1	CH 702	Process System Analysis and Control	(3-1-0) 4
			CH 705	Process Modelling and Simulation	(3-0-2)4
			CH 706	_	(3-1-0) 4
				Thermodynamics	
			CH 707	Chemical Reactor Design	(3-1-0) 4
			CH764	Bioreactor Engineering	(3-1-0) 4
				Minimum Credits to be earned	20
					20

Suggested Plan of Study:

Slot/Semester	I	II	III	IV	V	VI	VII	VIII
1	MA110	MA111	CH200	CH250	CH300	CH350	CH400	CH499
2	PH110	CY110	CH201	CH251	CH301	CH351	CH401	Elective
3	PH111	CY111	CH202	CH252	CH302	SM302	CH440	Elective
4	EE110	AM110	CH203	CY205	SM300	CY300	CH448	Elective
5	EC100	CS110	MA207	CH253	CH303	CH352	СН449	Elective
6	ME110	CS111	MA211	CH254	CY255	CH353	Elective	
7	ME111	CH150	CH204			Elective	Elective	
8	SM100	CV110						
9	SM111							

Category of Courses	Minimum Credits to be earned
Foundation Courses	
Basic Science Core (BSC)	24
Engineering Science Core (ESC)	17
Humanities and Social Sciences Core (HSC)	09
Programme Core (PC)	68
Elective Courses (Ele)	21
Mandatory Learning Courses (MLC)	05
Major Project (MP)	06
Total	150

Department of Mechanical Engineering

Bachelor of Technology in Mechanical Engineering

Bacı	neior of Technology in Mec	nanicai i			
Foundat	ion Courses:		ME353	Automation Systems	(3-0-0)3
Basic Sc	ience Core (BSC)		ME354	Operations Research	(3-0-0)3
MA110	Engineering Mathematics - I	(3-0-0)3	ME451	Mechanical Lab - II	(0-0-3)2
MA111	Engineering Mathematics - II	(3-0-0)3	ME452	Machine Shop - II	(0-0-3)2
CY110	Chemistry	(3-0-0)3			
CY111	Chemistry Laboratory	(0-0-3)2	Electives		
PH110	Physics	(3-1-0)4	ME311	Finite Element Method	(3-0-0)3
PH111	Physics Laboratory	(0-0-2)1	ME312	Theory of Elasticity	(3-0-0)3
MA207	Numerical Methods	(3-0-0)3	ME313	Mechatronic Systems	(3-0-0)3
MA208	Probability Theory and Applications	(3-0-0)3	ME314	Product Design and Development	(3-0-0)3
			ME315	Theory of Metal Forming	(3-0-0)3
Engineer	ring Science Core Courses (ESC)		ME316	Welding Technology	(3-0-0)3
AM110	Engineering Mechanics	(3-0-0)3	ME317	Basics of Computational Fluid Dynamics	(3-0-0)3
CS110	Computer Programming	(3-1-0)4	ME318	Principles of Turbomachinery	(3-0-0)3
CS111	Computer Programming Laboratory	(0-0-2)1	ME411	Theory of Fatigue and Analysis	(3-0-0)3
EE110	Elements of Electrical Engineering	(2-0-0)2	ME412	Experimental Stress Analysis	(3-0-0)3
EC100	Elements of Electronics and Communications	(2-0-0)2	ME413	Synthesis of Mechanisms	(3-0-0)3
	Engineering			·	
ME111	Engineering Graphics	(1-0-3)3	ME414	Microsystem Technology	(3-0-0)3
AM217	Mechanics of Solids Lab	(0-0-2)1	ME415	Hydraulics and Pneumatic Control	(3-0-0)3
AM317	Fluid Mechanics and Machinery Lab	(0-0-2)1	ME416	Robotics	(3-0-0)3
			ME417	Non-Destructive Evaluation	(3-0-0)3
	Humanities and Social Science Core (HSC)		ME418	Production and Operations Management	(3-0-0)3
SM110	Professional Communication	(3-0-0)3	ME419	Processing of Composites	(3-0-0)3
SM300	Engineering Economics	(3-0-0)3	ME420	IC Engines	(3-0-0)3
SM302	Principles of Management	(3-0-0)3	ME421	Refrigeration and Air Conditioning	(3-0-0)3
			ME422	Mechanics of Compressible Flow	(3-0-0)3
Programme Core (PC)			ME423	Multi Body Dynamics	(3-0-0)3
ME112	Materials Science and Engineering	(3-0-0)3	ME424	Vehicle Dynamics	(3-0-0)3
ME113	Mechanics of Deformable Bodies	(3-0-0)3	ME425	Contemporary Concepts in Product Design	(3-0-0)3
ME201	Basic Engineering Thermodynamics	(3-1-0)4	ME426	Automotive Electronics	(3-0-0)3
ME202	Fluid Mechanics and Machinery	(3-1-0)4	ME427	Introduction to Additive Manufacturing	(3-0-0)3
ME203	Mechanics of Machinery	(3-1-0)4	ME428	Non-Traditional Machining Processes	(3-0-0)3
ME204	Basic Manufacturing Processes	(3-1-0)4	ME429	Energy Auditing and Management	(3-0-0)3
ME205	Workshop Practice	(0-0-3)2	ME430	Gas Turbines and Jet Propulsion	(3-0-0)3
ME251	Applied Thermodynamics	(3-0-0)3			
ME252	Analysis and Design of Machine Components	(3-1-0)4	Project (N	MP)	
ME253	Computer Aided Engineering	(3-0-0)3	ME498	Major Project - 1	(0-0-4)2
ME254	Manufacturing Technology	(3-0-0)3	ME499	Major Project - 2	(0-0-6)3
ME255	Engineering Drawing	(1-0-3)3			
ME301	Metrology and Instrumentation	(4-0-0)4	Mandator	ry Learning Courses (MLC)	
ME302	Heat Transfer	(3-0-0)3	SM111	Professional Ethics & Human Values	(1-0-0)1
ME303	Design of Mechanical Drives	(3-0-0)3	CV110	Environmental Studies	(1-0-0)1
ME304	Automobile Engineering	(3-0-0)3	ME440	Practical Training / Internship	(0-0-3)2
ME305	Control Engineering	(3-0-0)3	ME490	Seminar	(0-0-2)1
ME306	Metrology and CAD Lab	(0-0-3)2			
ME307	Machine Shop - 1	(0-0-3)2	Minor Co	ourses	
ME308	Mechanical Lab - 1	(0-0-3)2	ME501	Manufacturing Engineering	(3-1-0) 4
ME351	Energy Engineering	(3-0-0)3	ME502	Thermal Engineering	(3-1-0) 4
ME352	Machine Dynamics and Vibrations	(3-1-0)4	ME503	Mechanical Design	(3-1-0) 4
-	•	/	ME504	Production Management	(3-1-0) 4
			ME505	Industrial Automation	(3-1-0) 4
					, .

Honors Degree in Mechanical Engineering: Students seeking Honors degree shall credit five PG courses offered by the Department of Mechanical Engg. and as decided by DUGC. Minimum requirement for Honors degree is 15 credits.

Suggested Plan of Study

Sem →	I	II	III	IV	V	VI	VII	VIII
1	ME112/ ME113	ME113/ ME112	MA207	MA208	ME301	ME351	Elective-2	Elective-5
2			ME201	ME251	ME302	ME352	Elective-3	Elective-6
3			ME202	ME252	ME303	ME353	Elective-4	Elective-7
4			ME203	ME253	ME304	ME354	ME498	ME440
5			ME204	ME254	ME305	SM300		ME451
6			AM217/ME205	ME255	SM302	Elective-1		ME452
7				ME205 / AM217	ME306 / ME307	ME307 / ME306		ME499
8					AM317/ME308	ME308/AM317		ME490

Category of Courses	Minimum Credits to be Earned
Foundation Courses:	48
Programme core:	79
Programme Electives:	21
Project (MP):	05
Mandatory Learning Courses (MLC):	05
Total:	158

.....

Department of Metallurgical and Material Engineering

Bachelor of Technology in Metallurgical and Materials Engineering

	or or recimology in Metanurgical a	iiu materia	ais Eilgii	iceing		
	ence Core (BSC)	(2.0.0)2) (TD0 50		(0, 0, 2) 2	
MA110	Engineering Mathematics – I	(3-0-0)3	MT353	Ceramics and Polymers Lab	(0-0-3)2	
PH110	Physics	(3-1-0)4	MT354	Heat Treatment Lab	(0-0-3)2	
PH111	Physics Laboratory	(0-0-2)1	MT400	Corrosion Engineering	(3-0-1)4	
MA111	Engineering Mathematics – II	(3-0-0)3	MT401	Metal Forming	(2-0-1)3	
CY110	Chemistry	(3-0-0)3				
CY111	Chemistry Laboratory	(0-0-3)2	2 Electives (Ele)			
			MT306	Fatigue, Fracture and Creep	(3-0-0)3	
Engineer	ring Science Core (ESC)		MT307	Fuels and Furnaces	(2-1-0)3	
AM110	Engineering Mechanics	(3-0-0)3	MT355	Powder Metallurgy	(3-0-0)3	
EC100	Elements of Electronics and Communication	(2.0.0)2) fm2.5.6		(2.0.0)2	
	Engg	(2-0-0)2	MT356	Joining of Metals	(3-0-0)3	
EE110	Elements of Electrical Engg.	(2-0-0)2	MT357	Aerospace Materials	(3-0-0)3	
ME110	Elements of Mechanical Engg.	(2-0-0)2	MT402	Foundry Technology	(2-0-1)3	
CS110	Computer Programming	(3-1-0)4	MT403	Phase Transformations	(3-0-0)3	
CS111	Computer Programming Lab	(0-0-2)1	MT404	Extraction of Non-Ferrous Metals	(3-0-0)3	
ME111	Engineering Graphics	(1-0-3)3	MT405	Secondary Refining of Steels	(3-0-0)3	
AM200	Mechanics of Materials	(3-0-0)3	MT406	Process Plant Materials	(3-0-0)3	
ME200	Workshop	(0-0-2)1	MT407	Advanced Engineering Materials	(3-0-0)3	
			MT408	Thin Films, Coatings and Applications	(3-0-0)3	
Humanit	ies and Social Science Core (HSC)		MT409	409 Nuclear Materials		
SM110	Professional Communication	(3-0-0)3	MT410	Fracture of Engineering Materials	(3-0-0)3	
SM302	Principles of Management	(3-0-0)3	MT451	Composite Materials	(3-0-0)3	
			MT452	Advanced Welding Technology	(3-0-0)3	
			MT453	Surface Engineering	(3-0-0)3	
				Modeling & Simulation in Materials		
_	me Core (PC)		MT454	Processes	(3-0-0)3	
MT160	Introduction to Materials Science & Technology	(3-1-0)4	MT455	Science & Technology of Nanomaterials	(3-0-0)3	
MT200	Testing of Materials	(2-0-1)3	MT456	Advanced Microscopic Techniques	(3-0-0)3	
MT201	Metallurgical Thermodynamics & Kinetics	(3-1-0)4	MT457	Smart Materials and Sensors	(3-0-0)3	
MT202	Physical Metallurgy	(3-1-0)4				
MT203	Polymer Science and Technology	(3-0-0)3	Project ((MP)		
MT204	Mineral Processing and Beneficiation	(3-0-1)4	MT442	Major Project – I	(0-0-2)1	
MT251	Transport Phenomena	(3-1-0)4	MT492	Major Project – II	(0-0-6)3	
MT252	Phase Diagrams	(3-1-0)4				
MT253	Principles of Extractive Metallurgy	(3-1-0)4	Mandate	ory Learning Courses (MLC)		
MT254	X-ray Diffraction & Electron Microscopy	(3-1-0)4	CV110	Environmental Studies	(1-0-0)1	
MT255	Instrumental Methods of Analysis	(3-0-1)4	SM111	Professional Ethics & Human Values	(1-0-0)1	
MT256	Measurements and Control	(3-0-0)3	MT440	Practical Training	(0-0-3)2	
MT300	Production of Iron and Ferro Alloys	(3-0-0)3	MT441	Seminar	(0-0-2)1	
MT301	Heat Treatment	(3-1-0)4				
MT302	Machine Design	(3-1-0)4	Courses	for Minor in Metallurgical and Materials Engg	Į.	
MT303	Electronic Properties of Materials	(3-0-0)3	MT202	Physical Metallurgy (3-1-0)4	•	
MT304	Physical Metallurgy Lab	(0-0-3)2	MT203	Polymer Science and Technology (3-0-0)3		
MT304	Extractive Metallurgy Lab	(0-0-3)2	MT252	Phase Diagrams (3-1-0)4		
1011 303	Extractive Metallurgy Lau	(0-0-3)2	MT253	Principles of Extractive		
MT350	Production of Steel	(3-0-0)3	1711233	Metallurgy (3-1-0)4		
		ζ/-	MT351	Ceramics and		
MT351	Ceramics and Refractories	(3-0-0)3		Refractories (3-0-0)3		
MT352	Metallography Lab	(0-0-3)2	Total cr	edits: 15		

Students seeking Honors degree shall credit five PG courses offered by the Department of Metallurgical and Materials Engg. and as decided by DUGC.Minimum requirement for Honors degree is 15 credits.

Suggested Plan of Study:

Semester	П	III	IV	V	VI	VII	VIII
1	MT160	MT200	MT251	MT300	MT350	MT400	Elective
2		MT201	MT252	MT301	MT351	MT401	Elective
3		MT202	MT253	MT302	MT352	MT440	Elective
4		MT203	MT254	MT303	MT353	MT441	MT492
5		MT204	MT255	MT304	MT354	MT442	
6		AM200	MT256	MT305	Elective	Elective	
7		ME200		SM302	Elective	Elective	
8							
9							
10							

Category of Courses	Minimum credits to be Earned
Foundation Courses (FC)	
[Including Basic Science Core (BSC)- 16, Engineering Science Core (ESC)-21 and	
Humanities and Social Science Core (HSC)- 6]	43
Programme Core (PC)	82
Electives (E)	21
Project (MP)	4
Mandatory Learning Courses (MLC)	5
Total	155

COURSE CONTENTS - UG

Departments

i.	Dept. of Applied Mechanics & Hydraulics	02
ii.	Dept. of Civil Engineering	07
iii.	Dept. of Mining Engineering	17
iv.	Dept. of Computer Science & Engineering	27
v.	Dept. of Electronics & Communication Engineering	41
vi.	Dept. of Electrical & Electronics Engineering	59
vii.	Dept. of Information Technology	76
viii.	Dept. of Chemical Engineering	91
ix.	Dept. of Mechanical Engineering	97
X.	Dept. of Metallurgical & Materials Engineering	110
xi.	Dept. of Chemistry	123
xii.	Dept. of Physics	128
xiii.	Dept. of Mathematical & Computational Sciences	130
xiv.	School of Management	137

Department of Applied Mechanics and Hydraulics

AM110 ENGINEERING MECHANICS

(3-0-0)3

Fundamentals of force system, Concept of Rigid body and deformable bodies, Free body diagrams. Support Reactions-Determinate and Indeterminate structures. Analysis of Trusses, Frames and Machines. Centroid and Moment of Inertia of plane areas. Shear Force and Bending Moment Diagrams. Simple stress and strain, Hooke's Law, Mechanical properties of materials, Elastic Constants.

Merian, J.L, Kraige, L.G. Engineering Mechanics – Statics, 5th Edition, Wiley Publishers, New-Delhi, 2007.

Beer & Johnston, Mechanics for Engineers, 4th Edition, McGraw – Hill, New Delhi, 1987.

Timoshenko, S.P., Young, D.H., Rao, J.V. Engineering Machines, 4th Edition, McGraw-Hill, Singapore, 1956.

Singer, F.L. Strength of Materials, Third Edition, Harper and Row Publishers, New York, 1980.

Hearn, E.J., Mechanics of Materials, Pergaman Press, England, 1972.

Beer and Johnston E. R. Mechanics of Materials, 3rd Edition, Tata McGraw Hill, New Delhi, 2007.

AM200 MECHANICS OF MATERIALS

(3-0-0) 3 PREREQ: AM110

Simple flexure theory, Bending stress and shearing stress distribution across sections. Deflection of beams, Macaulay's method for deflection of statically determinate beams. Compound stresses - analytical method, graphical method - Mohr's circle of stresses. Torsion, Transmission of power through hollow and solid shafts. Beams of uniform strength, springs, Combined bending and torsion, Strain energy, Theories of failure, Columns & struts, Thick and thin pressure vessels.

Singer, F.L. Strength of Materials, 3rd Edition, Harper and Row Publishers, New York, 1980.

Hearn, E.J., Mechanics of Materials, Pergaman Press, England, 1972.

Beer and Johnston E. R. Mechanics of Materials, 3rd Edition, Tata McGraw Hill, New-Delhi, 2007.

AM216 STRENGTH OF MATERIALS LAB

(0-0-3) 2

Tension test on mild steel and cast iron, Compression test on mild steel and cast iron, Torsion test on mild steel rod, Rockwell and Brinell hardness tests, Impact test (Charpy and Izod) on mild steel, Bending test on mild steel rod and wood, Shear test on mild steel plate and rod, tests on leaf and helical spring. Demonstration on fatigue test.

Hearn, E.J., Mechanics of Materials, Pergaman Press, England, 1972.

Beer and Johnston E. R. Mechanics of Materials, 3rd Edition, Tata McGraw Hill, New-Delhi, 2007.

AM217 MECHANICS OF SOLIDS LAB

(0-0-2) 1

Tension tests on mild steel and cast iron, Compression tests on mild steel and cast iron, Shear tests, Bending test on mild steel, Torsion test, Hardness test and Impact test. Demonstration on fatigue test and springs *Hearn, E.J., Mechanics of Materials, Pergaman Press, England, 1972.*

Beer and Johnston E. R. Mechanics of Materials, 3rd Edition, Tata McGraw Hill, New-Delhi, 2007.

AM250 MECHANICS OF FLUIDS

(3-0-0)3

Properties and classification of fluids. Basic equation of fluid statics. Manometers. Buoyant force. Kinematics of fluid flow. Continuity equation. Bernoulli's equation. Momentum equation. Flow measurements: Brief introduction. Dimensional analysis. Model law. Basics of pipe flow. Hagen-Poiseuille equation. Darcy-Weisbach equation. Moody's diagram. Uniform flow in open channels.

Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book House, Delhi, 2010.

Streeter. V.L and Wylie. E.B., Fluid Mechanics, McGraw Hill Book Company, New York, 1997.

Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York 1959.

AM300 WATER RESOURCES ENGINEERING

(3-0-0) 3 PREREQ: AM250

Hydrology: Hydrologic cycle, Water budget, Catchment. Precipitation: types, measurement, intensity, duration, temporal and spatial analysis. Infiltration, soil moisture, evaporation, transpiration, Groundwater. Runoff: components, factors, hydrographs, unit hydrograph, flood estimation. Irrigation: objectives, methods, irrigation water requirements. Components of irrigation system and design principles. Water Power Engineering: Basic principles, types of schemes

Subramanya K, Engineering Hydrology, Tata McGraw Hill, 3rd Edition, 2008.

Garg S. K, Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 2008.

Ven Te Chow, LW Mays and DR Maidment., Applied Hydrology, McGraw Hill, 1988.

AM316 HYDRAULICS LAB

(0-0-3) 2 PREREQ: AM250

Calibration of V notch, Rectangular Notch; Venturimeter, Orifice meter, Water meter. Friction factor of pipes. Impact of jet on vanes. Tests on centrifugal pump, reciprocating pump, Pelton wheel turbine, Francis turbine. Hydraulics jump, Syphons, Demonstration experiments (pressure gauge, Pitot tube, Kaplan turbine)

Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book House, Delhi, 2010

AM317 FLUID MECHANICS AND MACHINERY LAB

(0-0-2) 1 PREREQ: ME202

Calibration of V notch, Venturimeter, Orifice meter, Water meter. Friction factor of pipes. Impact of jet on vanes. Tests on centrifugal pump, reciprocating pump, Pelton wheel turbine. Demonstration experiments (pressure gauge, Pitot tube, Kaplan turbine)

Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book House,

AM371 OPEN CHANNEL FLOW AND SEDIMENT TRANSPORT

(3-0-0) 3 PREREQ: AM250

Steady GVF, SVF, RVF. Unsteady flow: basic equations, velocity of flood wave discharge, flood routing. Bulk properties of sediments, various related theories such as competent velocity concepts, lift concept, critical tractive force concept, Shield's analysis, regimes of flow, bed forms, resistance to flow, bed and suspended load transport, reservoir sedimentation, agredation and degradation of rivers, local scour, sediment samplers.

Subramanya. K, Open channel flow, Tata McGraw Hill,3rd Edition, 2010. Graf,W. H.

Hydraulics of sediment transport, McGraw Hill, 1984.

Garde and Rangaraju, Sediment transport, Wiley Eastern, 2nd Edition, 1985 Chow, V.

T. open channel flow

AM372 CIVIL ENGINEERING SYSTEMS

(3-0-0)3

Introduction to systems approach, simple and complex system, unique features of complex system. Unconstrained optimization, concave & convex functions, constrained optimization - KT conditions, Lagrangian multiplier method. Introduction to LP, Simplex method, Two phase method, Duality in LP, Introduction to DP, Network model, Allocation model. Some typical case studies.

Rao. S.S., Engineering Optimization, Wiley-IEEE, 3rd Edition, 1996.

Taha, H..A, Operation Research, Prentice Hall, 6th Edition, 1997.

Panik M. .J., Classical optimization foundation, North Holland Pub. Co., 1976.

AM380 MINI PROJECT - I

(0-0-3) 2

Experimental work either in the field or in the laboratory or design tasks of relatively smaller magnitude compared to Major Project work and in line with the guidelines formulated by the DUGC (AM).

AM381 MINI PROJECT - II

(0-0-3) 2

Experimental work either in the field or in the laboratory or design tasks of relatively smaller magnitude compared to Major Project work and in line with the guidelines formulated by the DUGC (AM).

AM400 GEOGRAPHIC INFORMATION SYSTEMS

(3-0-0) 3

Components of GIS, functions, Coordinate Systems, Raster and vector-based GIS and data structures, Spatial data sources Geo-relational Vector data model, Object based vector data model, raster data model, data input, geometric Transformation, Spatial data editing, Attribute data input and management, vector data analysis, Raster data analysis., Applications of GIS in several domains

Kang-tsung Chang, Introduction to Geographic Information Systems, 4 th edition Tata McGraw Hill Burrough & McDonnell, Principles of Geographical Information Systems, Oxford University Press

Yang, Snyder & Tobler, Map projection Transformation principles and applications, Taylor and Francis

AM401 SATELLITE DIGITAL IMAGE ANALYSIS

(3-0-0)3

Introduction to Remote sensing and Digital image Processing, Remote sensing data collection Alternatives, Hardware and software issues, Image Quality assessment, Electromagnetic Energy Radiation Principles and radiometric correction, Geometric correction, Image Enhancement, Pattern Recognition, Information extraction from MSS and Hyperspectral data, Change detection studies.

Jensen J.R Remote Sensing of the Environment An Earth Resource Perspective Second Edition , Dorling Kindersley

India Pvt Ltd.

Jensen J.R Introduction to Digital Image Processing: A remote sensing Perspective. Prentice- Hall,2005. Lillesand, T.M., R.W. Kiefer, and J.W. Chipman. Remote Sensing and Image Interpretation. 5th Edition. John Wiley and Sons. 2004.

AM402 INTRODUCTION TO GEOSPATIAL TECHNOLOGIES AND APPLICATIONS (3-0-0)3

Introduction to Geographic Information Systems, spatial data sources and models, spatial data analysis and applications, GPS principles and applications, introduction to satellite remote sensing, sensors and resolution, image processing methods classification, accuracy assessment in GIS and GPS, change detection; applications of GIS, remote sensing and GPS in resources management, environmental monitoring, optimal site selection, rural and urban development.

Chang K., Introduction to Geographic Information Systems, 8th Edition, McGraw-Hill, New York, 2006. Hofman-Wellenhof. B., Wein. Global Positioning System: theory and practice, Springer 2001 Lillesand, T. and Kiefer, R.W., Remote Sensing and Image Interpretation, 5th edn., 2004 Richards, J.A. and Jia, X., Remote Sensing Digital Image Analysis, 4th ed., Springer, 2006.

AM403 GLOBAL POSITIONING SYSTEMS

(3-0-0)3

Introduction to GPS, GPS details, GPS Errors and Biases, Datum, Coordinate Systems and Map Projections, GPS Positioning Modes, Ambiguity-Resolution Techniques, GPS Data and Correction Services, GPS standard Formats, GPS integration, GPS applications, Other Satellite Navigation Systems *Ahmed El- Rabbany " Introduction to GPS" Artech House Rao*,

K.N. R Fundamentals of Satellite Communications PHI, 2004

AM421 DESIGN & DRAWING OF HYDRAULIC STRUCTURES

(1-0-3) 3 PREREO: AM 300

Introduction to Lacey's regime theory, Khosla's theory, Bligh's creep theory, Hydraulic design and drawing of following structures: i. Earthen dam; ii. Gravity dam (OS); iii. Gravity dam (NOS); iv. Surplus weir; v. Canal drop; vi. Canal regulator; vii. Tank sluice with tower head; viii. Direct sluice; ix. Aquaduct.

Punmia, BC and Lal, PBB. Irrigation & Water Power Engineering, Standard Book House, 2nd Edition, 1990. Michel, WH. Manual of Irrigation Engineering, Hubbard Press, 1997.

C.S. Murthy, Water Resources Engineering: Principles and Practices, New Age International, 1997.

AM422 FUNDAMENTALS OF COASTAL ENGINEERING (3

(3-0-0) 3 PREREQ : AM250

Basic Wave Hydrodynamics, Linear Wave Theory, Wave Phenomena, Generation of Wind Waves, Wave Spectrum, Wave Forecasting, Basics of Wave Structure Interaction, Coastal Processes - Littoral Drift, Coastal Erosion and Protection (Hard and Soft Options), Design Principles of Breakwaters.

Shore Protection Manual, U.S.Army Corps of Engineers, Coastal Engineering Research Center, 1984. US Army Corps of Engineers, 'Shore protection manual(SPM)", Vol. 1 &2, Coastal Engg Res. Centre, US Govt. Printing Office, Washington D.C. USA, 1984.

US Army Corps of Engineers, 'Coastal Engg. Manual (CEM)", Parts 1 to 6, Coastal Engg Res.

Centre, Washington D.C. USA., 2006.

Ippen A.T., Estuary & Coastline Hydrodynamics, McGraw Hill, New York, USA, 1996.

AM423 BASICS OF OFFSHORE ENGINEERING

(3-0-0) 3 PREREQ: AM 250

Ocean Waves, Currents, Winds, Ice and Mud loading, Basics of Offshore Structures - Jacket, Tower, Gravity platforms, Hybrid Structures and factors governing their selection, Linear wave theory, Morison equation. Linear dynamic analysis, Pile foundations, Bearings capacity of footings, Corrosion and under water Welding.

US Army Corps of Engineers, 'Shore protection manual(SPM)", Vol. 1& 2, Coastal Engg Res. Centre, US Govt Printing Office, Washington D.C. USA., 1984.

US Army Corps of Engineers, 'Coastal Engg. Manual (CEM)", Parts 1 to 6, Coastal Engg Res. Centre, Washington D.C. USA. 2006

Weigel R.L., Recommended practice for Planning, Designing, & Construction of Fixed Offshore Structures - Oceonographical Engg., Prentice Hall, 1969.

Pilarckzyk K. W. and Zeidler R. B., "Offshore breakwaters and Shoreline Evolution Control", A. A. Balkema Publishers, Rotterdam, The Netherlands, 1996.