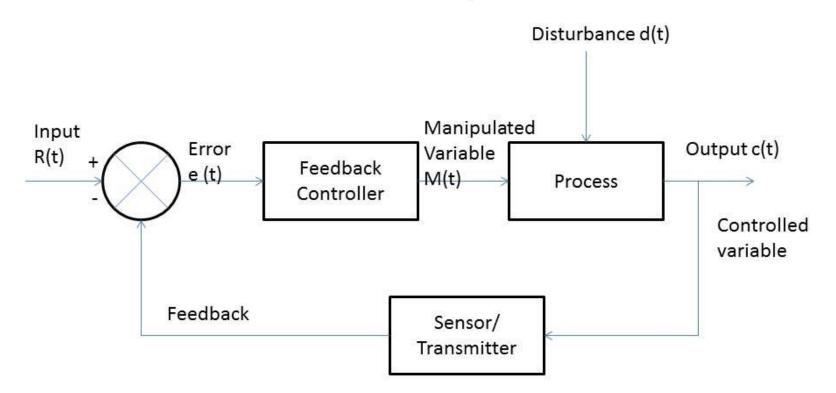
MODULE 3

Feed-back loop

Feedback Control System

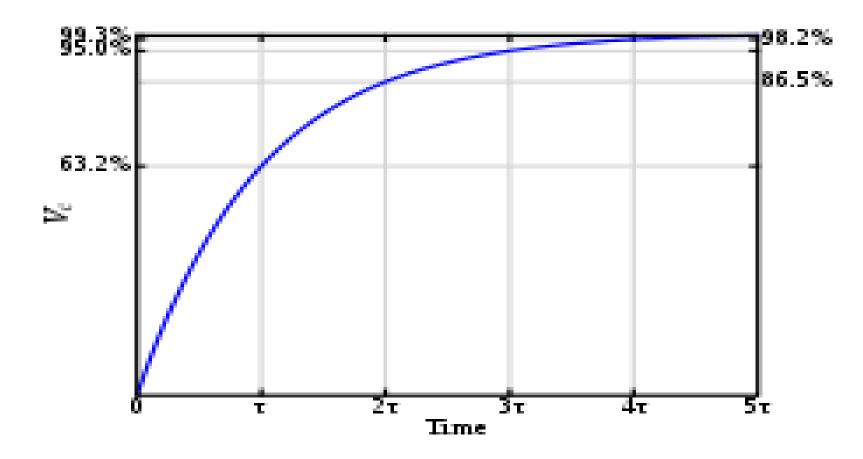


Transfer function

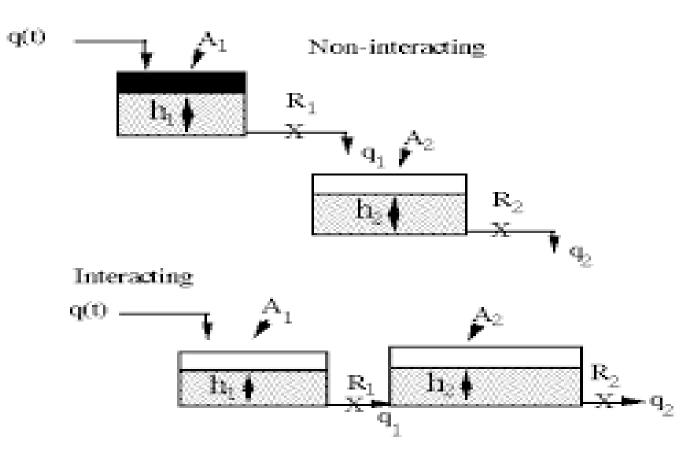
- Introduction and derivation of 1st and 2nd order transfer function
- Laplace transformation for different for forcing function step, ramp etc
- Zero & poles of transfer function
- Stability analysis from pole values

• Dynamics of 1st order lag system for unit step change

$$G(s) = \frac{\overline{y(s)}}{\overline{f(s)}} = \frac{K_p}{\tau_p s + 1}$$
$$y(t) = K_p (1 - e^{-t/\tau_p})$$



- Dynamics of 2nd order system
- Interacting and non interacting tanks in series

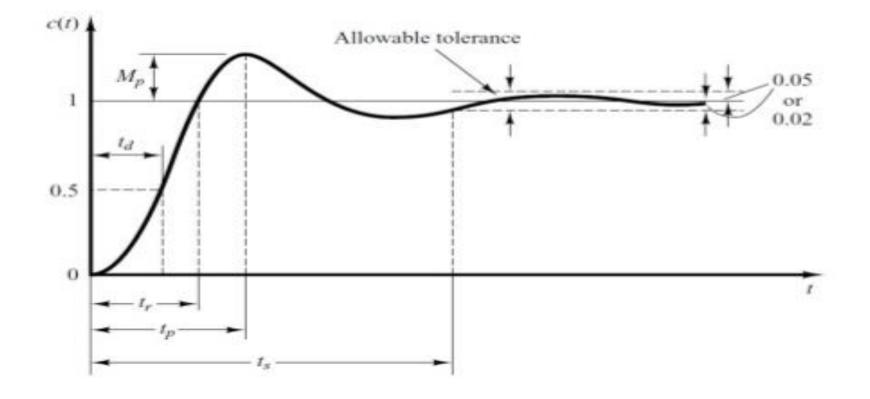


- Dynamics of 2nd order system
- $\zeta < 1$ under damp system
- $\zeta = 1$ critically damp system
- ζ >1 over damp system

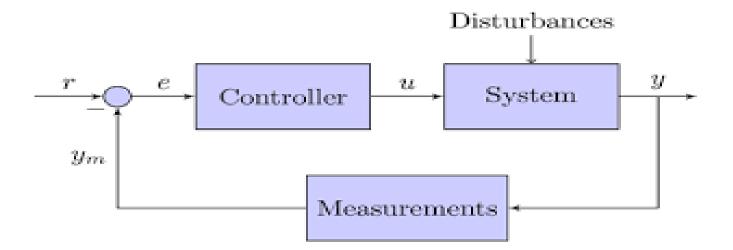
$$G(s) = \frac{\overline{y}(s)}{\overline{f}(s)} = \frac{K_p}{\tau^2 s^2 + 2\tau \zeta s + 1}$$

$$\zeta = damping _coefficient$$

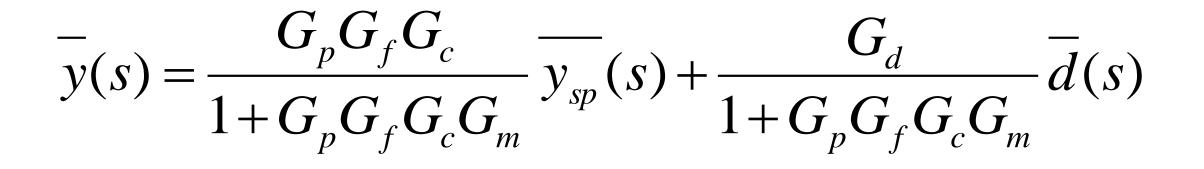
• Characteristics of an under damped system



Block diagram for feedback control system



- Introduction servo problem and regulator problem
- offset , overall gain
- Effect of feedback control action on 1st order lag and pure capacitive systems
- Effect of setpoint change and controller action on output.



Stability analysis

- Introduction to Routh-Hurwitz stability
- Introduction to time integral performance criteria
- Simple performance criteria
- Cohen Coon model
- Frequency response analysis and Bode stability criterion.

Routh-Hurwitz Stability Criterion

The characteristic equation of the nth order continuous system can be write as:

$$a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 = 0$$

The stability criterion is applied using a Routh table which is defined as;

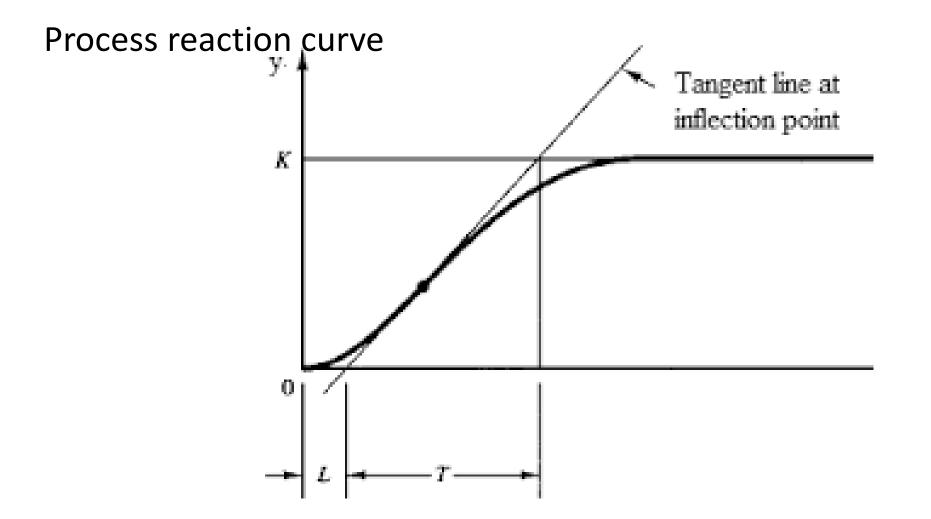
Where a_n, a_{n-1}, ..., a₀ re coefficients of the characteristic equation.

Routh-Hurwitz Criterion

Routh-Hurwitz stability criteria

- If any of the elements of 1st column is negative, at least one root to be right of imaginary axis and the system is unstable.
- The number of sign changes in the elements of the first column is equal to the number of roots to the right of the imaginary axis.

Cohen coon model



Cohen coon model

• Design of P, PI and PID controller

	Kc	$ au_I$	τ_D
P	$\frac{1}{K}\frac{\tau}{t_d}\left(1+\frac{t_d}{3\tau}\right)$	3 — 3	
PI	$\frac{1}{K}\frac{\tau}{t_d}\left(0.9 + \frac{t_d}{12\tau}\right)$	$t_d \frac{30 + 3 t_d / \tau}{9 + 20 t_d / \tau}$	
PID	$\frac{1}{K}\frac{\tau}{t_d}\left(\frac{4}{3} + \frac{t_d}{4\tau}\right)$	$t_d \frac{32 + 6 t_d / \tau}{13 + 8 t_d / \tau}$	$\frac{t_d}{11 + 2 t_d / \tau}$

Bode diagram

