NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN	Course Title: Computer Applications						
2.	Contact Hours:	L: 3	T :1	P :0				
3.	Examination Durati	on (Hrs.):	Theory 3		Practical: 0			
4.	Relative Weight:	CWS 25	PRS 0	MTE	25 ETH	E 50	PRE	0
5.	Credits: 4	6. Semest	ter: Autumn	7. Su	bject Area: PCC			

- 8. Pre-requisites: Nil
- 9. Objective: To give an over view of basic knowledge in computers and programming.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to computers and system software concept. Binary	4
	representation of data.	
2.	Programming fundamentals of C++, control structures, operators,	12
	arrays and strings.	
3.	Object Oriented Programming: classes, function, overloading,	6
	inheritance, containership.	
4.	Function/ operator overloading and concepts of generic	7
	programming	
5.	Development of large application with streams and files.	7
6.	Elementary word processing, spreadsheets and database concepts.	6
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Robert, L., "Object -Oriented Programming in C++", Sams	2002
2.	Douglas, C., Schmidt, Stephen, D. and Huston, "C++ Programming", Cook Book.	2008
3.	Balaguruswamy, "Object -Oriented Programming in C++" Tata McGraw-Hill	2008
4.	Rajaraman, V., "Fundamentals of Computers", PHI Learning	2003

NAME OF DEPTT. /CENTRE : Department of Biotechnology

- 1.Subject Code: BTN-512Course Title: Biochemistry
- 2. Contact Hours: L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs.): Theory 3 Practical: 0
- 4. Relative Weight: CWS 25 PRS 0 MTE 25 ETE 50 PRE 0
- 5. Credits: 4 6. Semester: Autumn 7. Subject Area: PCC
- 8. Pre-requisites: Nil
- 9. Objective: To impart knowledge of basic biochemistry for understanding many important problems of biology.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Molecular design of Life; Proteins-classification, levels of structure,	9
	function, specificity and dynamics; Overview of techniques of	
	protein purification and characterization; Physiological and	
	structural proteins- ribosomes, hemoglobin, myoglobin, collagen.	
2.	Enzyme classification, kinetics and catalysis; Enzyme inhibition:	9
	Enzyme mechanisms and regulation.	
3.	Nucleic acids-DNA,RNA, nomenclature, properties, DNA	10
	sequencing and chemical synthesis; Carbohydrates-Classification,	
	structure, function; Lipids-Classification, structure, function;	
	Biomembranes and glycoproteins.	
4.	Metabolism, basic concepts and design; Carbohydtae metabolism-	8
	Glycolysis, citric acid cycle, oxidative phosphorylation; Lipid,	
	amino acid and nucleotide metabolism; Coordinated control and	
	regulation of metabolism.	
5.	Introduction to bioinformatics; Photosynthesis; Biochemistry and	6
	physiology of sense organs, and muscle contraction	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Stryer, L., "Biochemistry" 4 th edition, W. H. Freeman.	2002
2.	Horton, H.R., Moran, L.A., Ochs R.A., Rawn, J. D. and Scrimgeor, R.S., "Principles of Biochemistry" 3 rd edition Prentice Hall,.	2001
3.	Voet, D. and Voet, J. G., "Biochemistry" 3 rd edition, John Wiley and Sons.	2004
4.	Nelson, D.L. and Cox, M.M., "Lehninger Principles of Biochemistry", 5 th edition, W.H. Freeman.	2009
5.	Wilson, K. and Walker, J., "Principles and Techniques of Practical Biochemistry" 5 th edition, Cambridge University Press.	2000

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-513	Course Title: B	iotechnology Laboratory-I
2.	Contact Hours: L: 0	T : 0	P : 8
3.	Examination Duration (Hrs.):	Theory -	Practical: -
4.	Relative Weight: CWS P	PRS 100 MTE	ETE PRE
5.	Credits: 4	6. Semester: Autum	n 7. Subject Area: PCC

- 8. Pre-requisites: Nil
- 9. Objective: To impart basic practical training in the field of biochemistry and molecular biology.
- 10. Details of Course:

S. No.	List List of Experiments:					
1.	To determine the absorption maxima of two dyes using spectrophotometer.					
	Demonstration of the Beer's law.					
2.	To prepare the standard curve for protein estimation and to determine protein					
	concentration by Biuret assay and Bradford method.					
3.	Determination of Ascorbic acid concentration in citrus using 2, 6 dichlorophenol					
	Indophenol.					
4.	To detect Cholesterol in a given unknown sample by TLC.					
5.	Ion-Exchange chromatography, gel filtration chromatography, affinity					
	chromatography.					
6.	Study of Enzyme kinetics.					
7.	SDS-PAGE for protein separation.					
8.	To understand the basic concept of cloning and perform few steps using GFP cloning.					
9.	Electrophoretic separation of DNA in agarose gel.					
10.	Isolation of RNA from animal tissues.					
11.	The estimation of DNA by diphenyl amine.					
12.	The estimation of RNA by means of orcinol reaction.					
13.	Basic concept of southern blotting					

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Joshi R A., and Saraswat M., "A text book of Practical	2002
	Biochemistry".	
2	Wilson, K. and Walker, J., "Principles and Techniques of	2000
2.	Practical Biochemistry" 5 th edition, Cambridge University Press.	
2	Holtzhawer, Mertin, "Basic Method for the Biochemical Lab"	2006
5.	(Springer lab manual).	
4	Singh S.P., "Practical Manual of Biochemistry" 6 edition, CBS	2009
4.	Publisher & Distributer.	
5	Plummer, D. T., "An Introduction to Practical Biochemistry".	2006
5.	3 rd Edition, Tata McGraw- Hill.	
6	Sambrook, J., Russel, D., "Molecular Cloninga Lab Manual" Vol.	2001
0.	3, 3 rd Edition, Cold spring harber lab press.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN-514				(Course	Title:	Applie	ed Mie	crobiolo	gу
2. Contact Hours:	L: 3	T: 1		P: 0						
3. Examination Duration	(Hrs.):	Theory	3	•	Pra	ictica	1	-		
4. Relative Weight: C	CWS	25	PRS	-	MTE	25	ETE	50	PRE	-
5. Credits:46. Semester: Autumn7. Subject Area: PCC										
8. Pre-requisite: Nil										

- 9. Objective: To impart the knowledge of the mechanistic features of the cells and microbes to use them as a tool for various applications related to human health and environment.
- 10. Details of Course:

S. No.	• Contents					
		Hours				
1	Discovery of microorganisms, morphological and structural	5				
1.	organization of microbes,					
2	Ultrastructure of Archea, Eubacteria, Unicellular eukaryotes(Yeast) and	5				
۷.	Viruses (Bacterial, animal and tumour viruses),					
2	Microbial growth and nutrition, media formulation, sterilization, effect	6				
3.	of physiological parameters.					
	Growth kinetics: Batch, fed batch, continuous kinetics, screening of	6				
4.	new metabolites; strain development-mutation and selection of					
	mutants.					
	Microbial interactions and infection, host-pathogen interactions,	8				
5	microbes infecting humans, veterinary animals and plants,					
5.	pathogenicity islands and their role in bacterial virulence, quorum					
	sensing					
	Preservation of food, fermentation, food additives and supplements,	6				
6.	nutritional requirements and growth curve, aerobic and anaerobic					
	bioenergetics.					
	Production of primary and secondary metabolites, metabolite genes and	6				
7.	functions, representative examples of ethanol, organic acids and					
	antibiotics					
	Total	42				

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Darnell, J., Lodish, H. and Baltimore, D., "Molecular Cell Biology",	1999
	W.H.Freeman & Co.	
2.	Madigan, M.T. and Martinko, J.M., "Biology of Microorganisms",	2006
	Person, Prentice Hall	
3.	Watson, J.D., "Molecular Biology of The Cell", Taylor & Francis	2002
4.	Talaron, K., Talaron, A., Pelczar, C. and Reid, A., "Foundations In	1993
	Microbiology", W.C.Brown Publishers	
5.	Pelczar, M.J., Chan, E.C.S. and Krein, N.R., "Microbiology", Tata	1997
	McGraw Publication	
6.	Prescott, L.M., Harley, J.P. and Klein, D.A., "Microbiology", W. C.	1996
	Brown Publications	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-515	Course Title: Geneti	cs and Molecular Biology
2.	Contact Hours: L: 3	T : 1 P : 0)
3.	Examination Duration (Hrs.):	Theory 3	Practical:
4.	Relative Weight: CWS 25	PRS MTE 25 I	ETE 50 PRE
5.	Credits: 4	6. Semester: Autumn	7. Subject Area: PCC

- 8. Pre-requisites: Nil
- 9. Objective: To expose students to the fundamentals of living processes by integrating cell with molecular biology.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Mendelian principles: Dominance, allele, complementation tests, gene	6
	interactions, pleiotropy, genomic imprinting, penetrance and expressivity,	
	phenocopy, linkage and crossing over, Extra-chromosomal inheritance.	
2.	Gene mapping methods: Linkage maps, tetrad analysis, mapping genes by	6
	interrupted mating, fine structure analysis of genes. Recombination. Mutation:	
	Types, causes and detection, germinal verses somatic mutants, insertional	
	mutagenesis.	
3.	Structural and numerical alterations of chromosomes: Deletion, duplication,	4
	inversion, translocation, ploidy and their genetic implications. Human genetics:	
	Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders.	
4.	Developmental Genetics: Genes in early development, maternal effect genes,	3
	Pattern formation genes, Homeotic genes. Quantitative genetics: Polygenic	
	inheritance, heritability and its measurements, QTL mapping.	
5.	Chromosome organization, chromatin structure, complexity of eukaryotic	2
	chromosome, cot curve.	
6.	DNA replication in prokaryote and eukaryotes, enzymes and accessory proteins,	5
	telomere replication.	
7.	Transcription process in prokaryote and eukaryotie, Types of RNAs,	10
	transcriptional factors, regulation of transcription; RNA processing and RNPs-	
	spliceosome, splicing of mRNA, tRNA and rRNA,; Nuclear export and stability	
	of mRNA., regulation of gene regulation	
8.	Translation Process- genetic code, translation mechanism of prokaryote ands	6
	eukaryotes, translational control, post translation modification.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
	Alberts, B, Johnson, A., Laws, J., Raff, M., Robert, K. and	2002
1.	Walter, P., "Molecular Biology of the cell" 4 th edition,	
	Garaland Publishing.	
	Watson, J.D., Baker, T. A., Bell, S. P., Gann, A., Levine, N.	2004
2.	and Lovisk, R., "Molecular Biology of the gene "5 th Edition,	
	Pearson Education.	
3.	Lewis, B., "Gene VI" 8 th edition. John Wiley and sons	2006
4	Gardner, Simmons and Snustad; Principles of Genetics, 8 th	2012
4.	Edition. John Wiley & Sons	
5	Griffith, Wessler, Lewontin and Carroll; Introduction to	2007
5.	Genetic analysis; 9 th Edition. Freeman, W. H. & Company	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

- Subject Code: BTN-516 Course Title: Cell and Developmental Biology 1. 2. Contact Hours: L: 3 **T**: 1 **P**: 0 Examination Duration (Hrs.): Theory 3 3. Practical: --Relative Weight: CWS 25 PRS --MTE 25 4. **ETE 50** PRE --7. Subject Area: PCC 5. Credits: 4 6. Semester: Autumn
- 8. Pre-requisites: Nil
- 9. Objective: To expose students to the fundamentals of living processes by integrating functions of cells and the patterns of cellular processes during development of plants and animals.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Structure and function of cells; plasma membrane; molecular organization of cytoskeleton; endoplasmic reticulum- structure, role in glycosylation, lipid biosynthesis, intracellular transport and secretion; Golgi apparatus- organization & role in cell secretion; lysosomes, peroxisomes, glyoxisomes; nucleus-organization of DNA into chromosomes.	7
2.	Chromosome structure and functions; chromosome organization; chromatin structure, complexity of eukaryotic chromosome, cot curve.	7
3.	Cellular fates; signal transduction; malignant growth; cell differentiation; programmed cell death; aging and senescence.	7
4.	Basic concepts of development; potency; commitment; specification; induction; competence; determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells.	7
5.	Production of gametes, cell surface molecules in sperm-egg recognition in animals; embryo sac development and double fertilization in plants; zygote formation; cleavage; blastula formation; embryonic fields; gastrulation and formation of germ layers in animals; embryogenesis; establishment of symmetry in plants; seed formation and germination.	7
6.	Cell aggregation and pattern formation in <i>Drosophila</i> ; amphibia and chick; organogenesis – vulva formation in <i>Caenorhabditis elegans</i> ; eye lens induction; limb development and regeneration in vertebrates; organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy	7
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
	Alberts, B, Johnson, A., Laws, J., Raff, M., Robert, K. and	2007
1.	Walter, P., "Molecular Biology of the cell" 5 th edition,	
	Garaland Publishing.	
	Watson, J.D., Baker, T. A., Bell, S. P., Gann, A., Levine, N.	2004
2.	and Lovisk, R., "Molecular Biology of the gene "5 th Edition,	
	Pearson Education.	
2	Gilbert, S. F., "Developmental Biology" 10 th Edition, Sinauer	2013
5.	Associates, Inc. USA	
1	Wolpert, L., Tickle C., "Principles of Development" 4 th	2010
4.	Edition, Oxford University Press, UK	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-5	21		Course	Title: Mol	ecular	Biophysics
2.	Contact Hours:	L: 3	T : 1		P : 0		
3.	Examination Duration	n (Hrs.):	Theo	r y 3		Pract	ical:
4.	Relative Weight: CW	S 25	PRS	MTE	25 ETI	E 50	PRE
5.	Credits: 4	6. Sei	mester: Spri	ng	7. 5	Subject	Area: PCC

- 8. Pre-requisites: Nil
- 9. Objective: To impart knowledge on conformational analysis of biopolymers based on concepts of thermodynamics.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Properties of amino acids, polarity, discrimination function; Primary	10
	structure- cross links, sequence comparison, mutant proteins;	
	Secondary structure,- α helix, β sheet, β turns, poly pro helices;	
	Prediction method, tertiary structure, packing density.	
2.	Conformational analysis, $\Phi \Psi$ angles, Ramachandran plot; Energy	10
	terms - vand der waal's, repulsive (non bonded), dipolar (bonded),	
	torsional; Results of energy calculations, experimentally observed	
	values of $\Phi \Psi$ angles; Hydrogen bonding, hydrophobic interactions,	
	ionic interactions, disulphide bonds.	
3.	Structure and physical properties of biomolecules-glycosidic bond	14
	rotation, backbone torsional angles and steric hindrance, sugar ring	
	conformations, C3' endo, C2'endo and their energies;	
	Polymorphism in DNA – A, B, Z family of structures, super helical	
	forms; Base pairing - Hoogstein, Waston-Crick, energetics,	
	electronic complementarity; Base stacking - Structure of t-RNA	
	molecule, model of tertiary interactions; Nucleic acid dynamics -	
	protein-nucleic acid interactions, energetic basis of protein structure,	
	stability, dynamics and function, protein-protein and protein-ligand	
	interactions	
4.	Conformational analysis of carbohydrates, polysaccharides,	6
	peptidoglycan in bacteria & animal cell, glycosylation patterns,	
	glycan analysis, energetics of protein-glycan interactions	
5.	Micelle stability in membrane; Membrane equilibrium – osmotic	2
	pressure, Donnan effect. pH across membrane and membrane	
	potential.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Sinden, R.R., "DNA structure and function", Academic Press	1994
2	Blackburn, G.M. and Giat, M.J., "Nucleic acids in chemistry	2005
Ζ.	and biology", IRL press.	
2	Cantor, C.R. and Schimmel P.R., "Biophysical chemistry Part-	1986
3.	I and Part-III", WH Freeman.	
4.	Govil, G. and Hosur, R.V., "Conformation of biological	1982
	molecules NMR, Vol. 20", Springer Verlag.	
5.	Hoppe, W., Lohmann, W., Merklad, H. and Ziegler, H.	1981
	"Biophysics", Springer Verlag.	
6	Schulz, G.E.and Schirmer, R.H., "Principles of protein	1989
0.	structure", Springer Verlag.	
7	Creighton, T.E., "Protein structure: a practical approach" 2 nd	1997
1.	edition, Oxford University Press	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

 Subject Code: BTN-522
 Course Title: Immunology and Immunotechnology

2.	Contact Hours:	L: 3	T : 1		P:	0		
3.	Examination Duration	on (Hrs.):	Theo	ory 3			Pra	ctical:
4.	Relative Weight: CV	VS 25	PRS	MTE	25	ETE	50	PRE
5.	Credits: 4	6. Se	mester: Spr	ing	7	. Subje	ct Are	ea: PCC

8. Pre-requisites: Nil

9. Objective: To impart knowledge of basic concepts of immunology and its applications in diagnostics.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	General principles of immune system, cells and tissues of the	3
	immune system, blast formation, differentiation into effector and	
	memory cells, phagocytes and lymphoid tissues.	
2.	Molecular structure of antibodies, antibody diversity; types and	8
	functions of antibodies, antigen antibody interaction, B-cell	
	maturation, rearrangement of immunoglobulin genes, expression of	
	different classes of immunoglobulins, class switching.	
3.	Discovery and structure of MHC, genomic organization and	8
	regulation of MHC expression, antigen processing and presentation	
	to T cells, MHC restricted CD4 and CD8 T cells physiological	
	significance, receptors and co-receptors involved in T cell.	
4.	Cytokines-characteristics, receptors, cytokine related diseases and	7
	therapies; immunological tolerance and auto immunity, organ	
	specific and systemic auto immune diseases	
5.	Transplantation- immunologic basis of graft rejection, clinical	7
	manifestations, immunosuppressive therapy; Cancer and immune	
	system-oncogenes and cancer induction, tumor antiges, tumor	
	evasion of immune system, cancer immunotherapy	
6.	Production and purification of antibodies, hybridomas, isolation and	9
	fractionation of lymphocytes, precipitation techniques,	
	immunoelectrophoresis, radiommunoassays, enzyme linked assays,	
	immunocytochemistry, immunohistochemistry and	
	immunodiagnostics.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Hildeman, W.H., "Essentials of immunology", Elsevier	2002
1.	Scientific.	
2	Abbas, A.K., Litchman, A.H. and Pobes, J,S,, WB "Cellular	2000
۷.	and Molecular Immunology", Saunders Co.	
2	Sites, D.P., Stobo, J.D. and Wells, J.U., "Basic and clinical	1982
5.	immunology", Prentice Hall.	
4.	Kindt, T.J., Goldsby, R.A., and Osborne, B.A., "Kuby	2007
	Immunology", W.H. Freeman.	
5.	Roitt, I.M, Brostoff, J. and Male, D.K., "Immunology"	1996
	Gower Medical Publishing.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-523	Course	e Title: Biotechn	ology Laboratory - II
2.	Contact Hours: L: 0	T : 0	P : 8	
3.	Examination Duration (Hrs.):	Theory	Pract	ical:
4.	Relative Weight: CWS PRS	100 MTE	ETE	PRE
5.	Credits: 4 6. Semeste	er: Spring	7. Subject Area	a: PCC

- 8. Pre-requisites: Nil
- 9. Objective: The student is expected to develop skills and experience essential for understanding the integrated complexity of the structure and function of living cells and molecules.
- 10. Details of Course:

S. No.	List of Experiments
1.	Preparation and sterilization of culture media.
2.	Isolation of bacteria from different sources (soil, water, air).
3.	Characterization of the isolated bacteria obtained from different source samples.
4.	Identification of isolated bacterial calories using microscopic & staining techniques.
5.	To plot a growth curve of isolated bacterial strain.
6.	To carry out bacterial transformation conjugation and transduction using gene transfer
	methods.
7.	To prepare a survival curve for the given bacterial culture using germicidal UV radiation
	as a mutagen.
8.	To carry out Ame's test for detection of a possible chemical carcinogen.

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	William, M., O'Leary, "Practical handbook of microbiology", CRC	1989
1.	Press.	
2	Albert, B., John H. H., "Practical bacteriology, microbiology and	1913
۷.	serum therapy (medical and veterinary)", Green.	
2	Roy, D. and Cullimore, "Practical manual of groundwater	2008
5.	microbiology:, CRC Press.	
4	Goldman E., Lorrence, H. "Greenpractical handbook of	2008
4.	microbiology", CRC Press.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-524 Cou			Technical Cor	nmunication
2.	Contact Hours: L:	0 T: 2	P : 0		
3.	Examination Duration (H	Irs.): Theory	/	Practical:	
4.	Relative Weight: CWS	100 PRS -	MTE ET	ГЕ PRE	
5.	Credits: 2	6. Semester: Spring	g 7. Sı	ubject Area: PC	С

- 8. Pre-requisites: Nil
- 9. Objective: To develop skills related to delivering writing and discussion of the technical information.

10. Details of Course:

- a. Choosing of a topic from the advancements in biotechnology.
- b. Presentation of the topic following by discussion /question answer session.
- c. Preparing a write up for the selected topic.
- 11. Suggested Books:

Recent research papers/reviews from the journals related to the selected topic.

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-6	511	Course Titl	e: Biop	hysica	l Tech	nique	S
2.	Contact Hours:	L: 3	T : 1		P : 0			
3.	Examination Duration	1 (Hrs.):	Theory	y 3]	Practi	cal:
4.	Relative Weight: CW	'S 25	PRS	MTE	25	ETE	50	PRE
5.	Credits: 4	6. Ser	mester: Autur	mn	-	7. Subje	ect Ar	ea: PCC

- 8. Pre-requisites: Nil
- 9. Objective: To impart knowledge of advanced analytical techniques in modern biology.
- 10. Details of Course:

S. No.	Contents	Content Hours
1.	Spectroscopic Techniques- UV-Visible, fluorescence, circular	7
	dichroism, nuclear magnetic resonance, isothermal titration	
	calorimetry, atomic spectroscopy.	
2.	Chromatographic methods- General principles, ion exchange, gel	6
	filtration, Affinity, HPLC and gas chromatography techniques.	
3.	Electrophoresis- General principles, horizontal & vertical gel	6
	electrophoresis, isoelectric focusing, 2D, pulse-field and immuno,	
	electrophoresis.	
4.	Centrifugation techniques- Basic principles, different types of	6
	centrifuges, analytical and preparative ultracentrifugation methods,	
5.	Microscopy- Dark-field, phase contrast, fluorescence, confocal,	6
	polarization, scanning and transmission electron microscopy.	
6.	Radioisotope techniques- Basic concepts, GM and scintillation	5
	counter, autoradiography, RIA, applications in biological science	
7.	Advanced techniques- Basics concepts and applications of mass	6
	spectrometry, X-ray crystallography and surface plasmon resonance.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Pungor, E., "A Practical Guid to Instrumental Analysis", CRC	1995
1.	Press.	
	Rickwood, D. and Hames, B.D., "HPLC, Gel Elctrophoresis,	1994
2.	Oligonucleotide Synthesis, Soild Phase Peptide Synthesis, The	
	Practical Approach Series", IRL Press.	
	Glasel, J.A. and Deutscher, M.P., "Introduction to Biophysical	1995
3.	Method for Protein and Nucleic Acid Research", Academic	
	press.	
4	Campbell, I.D., and Dwek, R.A., "Biological spectroscopy",	1984
4.	Benjamin Cummins.	
5.	Wilson, K. and Walker, J., "Principles and Techniques of	2000
	Practical Biochemistry" 5 th edition, Cambridge University	
	Press.	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-612	612Course Title: Genetic Engineering		
2.	Contact Hours: L: 3	T : 1 P : 0		
3.	Examination Duration (Hrs.):	Theory 3	Practical:	
4.	Relative Weight: CWS 25	PRS MTE 25	ETE 50 PRE	
5.	Credits: 4	6. Semester: Autun	nn 7. Subject Area: PCC	
8.	Pre-requisite: Nil			

- 10. Objective: To impart knowledge of various genetic engineering techniques and their applications.
- 11. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction and historical background	2
2.	Restriction enzymes; Other enzymes used in DNA manipulation; Cohesive and blunt end ligation, Linkers, Adaptors, Homopolymeric tailing; Preparation of DNA and RNA probes; Hybridization techniques: Southern, Northern and colony hybridization; Fluorescence <i>in situ</i> hybridization; Chromatin Immunoprecipitation; DNA protein interaction-Electromobility shift assay; DNaseI footprinting; Methyl interference assay	8
3.	Plasmid and bacteriophage vectors: pUC19 and bluescript vectors, lambda vectors, M13mp vectors, insertion and replacement vectors, phagemids; Cosmids; Artificial chromosome vectors: Animal virus-derived vectors: SV40, vaccinia/baculo and retroviral vectors; Expression vectors; Protein purification: His-tag, GST-tag, MBP-tag, etc.; Intein-based vectors; Inclusion bodies: Methodologies to reduce formation of inclusion bodies; Baculovirus and Pichia vector systems; Plant-based vectors: Ti and Ri vectors; Yeast vectors; Shuttle vectors	8
4.	Introduction of foreign DNA into host cells; Construction of libraries; Isolation of mRNA and total RNA; cDNA and genomic libraries; cDNA and genomic cloning; Expression cloning; Jumping and hopping libraries; Southwestern and Far-western cloning; Protein-protein interactive cloning; Yeast two hybrid system; Phage display; Principles in maximizing gene expression	8
5.	Polymerase chain reaction (PCR); Primer design; Thermostable DNA polymerases; Types of PCR: Multiplex, nested, reverse transcriptase, real time, touchdown, hot start, colony PCR, etc.; Cloning of PCR products; T- vectors; Proof reading enzymes; Applications of PCR	8
6.	Sequencing methods; Enzymatic DNA sequencing; Chemical sequencing of DNA; Automated DNA sequencing; RNA sequencing: Chemical synthesis of oligonucleotides; Introduction of DNA into mammalian cells; Transfection techniques; Gene silencing techniques; Introduction of siRNA; siRNA technology; MicroRNA; Construction of siRNA vectors; Principle and applications of gene silencing; Gene knockouts; Gene therapy; Gene targeting; Transgenics; Possible risks and safety aspects of genetic engineering.	8
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
	Sambrook, J., Fritsch, E.F., and Maniatis, T., "Molecular	2001
1.	cloning: A laboratory Manual", Cold Spring Harbor	
	Laboratory.	
n	Brown, T.A., "Gene Cloning and DNA Analysis", Blackwell	2001
۷.	Science.	
2	Winnacker, E.L., "From Genes to Clones: An Introduction to	1989
3.	Gene Technology", VCH.	
4.	Old, R.W. and Primrose S.B., "Principles of Gene	1999
	Manipulation", Blackwell Scientific Publication.	
5	Gupta, P.K., "Biotechnology and Genomics", Rastogi	2004
5	Publications.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-614		Course	Title: B	iotechnolo	gy Laboratory - III
2.	Contact Hours: L:	0	T :0	P : 8		
3.	Examination Duration (H	rs.):	Theory		ł	Practical:
4.	Relative Weight: CWS -	- PRS	100 M	TE	ETE	PRE
5.	Credits: 4 6	. Semeste	er: Autum	n	7. S	ubject Area: PCC

8. Pre-requisite : Nil

- 9. Objective: This is an advance level practical course, which gives a hand- on experience using some of the most sophisticated equipment that students of biotechnology would use in their career.
- 10. Details of Course:

S. No.	List of Experiments
1.	To study the expression of cloned gene in E. coli using IPTG inducible promoter and
	analyze on SDS-PAGE
2.	To perform sandwitch Dot-ELISA for antigen detection.
3.	To perform western blot assay in order to make student understand various steps of
	western blotting technique.
4.	To perform IEF separation of protein on IPG strips and analysis using PD Quest software.
5.	To perform the southern blotting and hybridization experiment in order to make student
	understand various steps of southern blotting technique.
6.	DNA fingerprinting experiments and its analysis.
7.	Preparation of competent cells and determination of transformation efficiency using
	plasmid DNA (PUC19)
8.	Crystallization of Proteins by hanging and sitting drop method
9.	X-ray diffraction studies of macromolecules
10.	Structure determination of macromolecules using molecular replacement method
11.	Structure refinement of macromolecules using crystallography
12.	Ultraviolet spectra of oligo/ poly nucleotides and amino acids/ oligopeptide using
	Bechman DU6 and Elico spectrophotometer- dependence of absorbance on concentration.
13.	Florescence spectra of aromatic amino acid/ Trip- Tyr containing oligopeptides using
	Kontron SFM 25 Spectrofluorimeter- dependence of fluorescent intensity on concentration
	& inner filter effect.
14.	Characteristics of alpha helix, beta sheet and oligonucleotide (DNA/RNA- ApU/d-CpG
	minihelix)
15.	Separation of some aliphatic/ Aromatic compound/ biomolecules and purification of oligo-
	nucleotide/ oligo-peptides by reverse phase chromatography (C8/C18 column) by isocratic
	and gradient method using shimadzu LC 4A and 7A HPLC system.
16.	Assignment of different amino acid residues in an oligopeptide from ID-NMR

S. No.	Author(s)/Title/Publisher	Year of Publication/Reprint
1	Sambrook, J., Russel, D., "Molecular Cloninga Lab Manual"	2001
1.	Vol. I, II and III, 3 rd Edition, Cold spring harber lab press.	
r	Walker, J.M. and Rapley, R. "Molecular Biology and Bio	2002
۷.	Technology" 4 th Edition, Panima Publishing Corporation.	
3.	Messerschmidt, A. "X-ray Crystallography of	2007
	Biomacromolecules: A Practical Guide". Wiley-VCH Verlag.	
4.	Roberts, G.C.K., "NMR of Macromolecules : A Practical	2002
	Approach". Oxford University Press.	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-621	Course Title:	Cell and Ti	ssue Culture Technology
2.	Contact Hours: L: 3	T : 0	P : 0	
3.	Examination Duration (Hrs.):	Theory 3		Practical: 0
4.	Relative Weight: CWS 25 PRS	5 0 MTE	25 ETE	50 PRE 0
5.	Credits: 3 6. Semeste	er: Autumn/Spr	ring	7. Subject Area: PEC

8. Pre-requisites: Nil

- 9. Objective: To give an overview of plant and animal tissue culture techniques and potential applications.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to basic principles of animal cell culture, laboratory	6
	requirements for setting up cell/tissue culture facility, sterility of	
	cell culture facility.	
2.	Techniques of cell culture – batch, batch fed and continuous	8
	cultures, design of media, cytotoxicity and viability assays, cell	
	separation techniques, flow cytometry and fluorescence associated	
	cell sorting, role of enzymes / isozymes in culture.	
3.	Characterization of cell lines, cryo-preservation and cell banking,	6
	primary, secondary cultures and scale up operations.	
4.	In situ hybridization, hybridoma technology, industrial products of	5
	animal cell culture.	
5.	Elements of plant tissue culture, micropropagation of disease free	7
	plants, protoplast isolation, culture and fusion, genetic	
	transformation, transgenic plants.	
6.	Somoclonal variation and its applications, anther and microspore	5
	cultures, chromosome elimination in wild crosses, diploid plants.	
7.	Tissue cultute techniques for plant inprovement, cryopreservation	5
	of germplasm, in vitro production of secondary metabolites and	
	biotransformation.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Freshney, R.I., "Animal Cell Culture – A Practical Approach",	2000
1.	4th Edn, Wiley-Liss.	
2	Mukhopadhyay, A., "Animal Cell Technology", 1st Edn, I.K.	2009
۷.	International Publishing House.	
3.	Gupta, P. K., "Plant Biotechnology", Rastogi Publication.	2004
4	Chawla, H. S., "Introduction to Plant Biotechnology" 2nd Edn,	2002
4.	Science Publishers Inc.	
5.	Razdan, M.K., "Introduction to Plant Tissue Culture", 2nd	2003
	End, Science Publishers Inc.	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-622	Course Title:	Enzymology	and En	zyme technology
2.	Contact Hours: L: 3	T : 0	P : 0		
3.	Examination Duration (Hrs.):	Theory 3		Practica	ıl:
4.	Relative Weight: CWS 25 PR	S MTE	25 ETE	50	PRE
5.	Credits: 3 6. Semester	er: Autumn/Spi	ring	7. Subjec	et Area: PEC

- 8. Pre-requisites: Nil
- 9. Objective: To impart knowledge of fundamental principles of enzyme catalysis and applications of enzyme technology.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction and classification; Structure of enzymes- active site	8
	structure determination, identification of binding and catalytic sites,	
	trapping of enzyme substrate complex.	
2.	Extraction, purification, assay and analysis of enzymes	3
3.	Catalysis and kinetics, factors affecting rates of reaction; Kinetics of single substrate enzyme catalysed reactions. Michaelis- Menton	12
	equation, Briggs- Haldane modification, Lineweaver- Burk plot,	
	Kinetics of multisubstrate enzyme catalysed reactions, ping-pong,	
	random order and compulsory order mechanisms; Enzyme inhibition	
	- competitive, uncompetitive and non competitive inhibition,	
1	Investigation of reaction mechanisms, steady and non steady state	7
7.	methods: Monomeric enzymes, serine proteases oligomeric	/
	enzymes lactate dehydrogenase and lactose synthase. Mechanism of	
	enzyme catalysis: metals and coenzymes.	
5.	Binding of ligands to proteins, cooperativity, allosteric enzymes and	5
	metabolic regulation, sub-cellular compartmentalization.	
6.	Clinical aspects of enzymes, plasma enzymes, inborn errors of	7
	metabolism, enzymes as reagents, large scale production and	
	purification of enzymes; Immobilized enzymes- preparation and	
	application; Application of enzymes and enzymes technology.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Chaplin, M.F. and Bucke, C., "Enzyme technology," Cambridge University Press.	1992
2.	Palmer, T., "Understanding Enzymes", Prentice Hall.	1985
3.	Boyer, P.D., "The Enzymes V", , Academic Press	1992
4.	Buchholz, K., Kasche, V. and Bornscheuer, U. T., "Biocatalysts and Enzyme Technology", Wiley-VCH.	2005
5.	Shanmugam, S., "Enzyme Technology", I. K. International.	2009

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-623	Course Title: Biopr	ocess Engineering and Technology
2.	Contact Hours: L: 3	T : 0 P : 0)
3.	Examination Duration (Hrs.):	Theory 3	Practical:
4.	Relative Weight: CWS 25 PH	RS MTE 25	ETE 50 PRE
5.	Credits: 3 6. Semes	ter: Autumn/Spring	7. Subject Area: PEC

8. Pre-requisites: Nil

- 9. Objective: This course is designed for familiarising students with basic idea of Microbial kinetics enzyme kinetics, immobilization kinetics, Bioreactor operation, downstream processing
- 10. Details of Course:

S.No.	Contents	Contact hours
1	Basic principle of Biochemical engineering: Isolation, screening	4
	and maintenance of industrially important microbes; Microbial	
	growth and death kinetics (an example from each group, particularly	
	with reference to industrially useful microorganisms); Strain	
	improvement for increased yield and other desirable characteristics.	
2	Concept of basic mode of fermentation processes: Bioreactor	8
	designs; Types of fermentation and fermenters; Concepts of basic modes of fermentation Batch fed batch ad continuous;	
	Conventional fermentation y/s biotransformation: Solid substrate	
	surface and submerged fermentation: Fermentation economics:	
	Fermentation media: Fermenter design- mechanically agitated:	
	Pneumatic and hydrodynamic fermenters: Large scale animal and	
	plant cell cultivation and air sterilization. Upstream processing	
	Media formulation Sterilization Aeration and agitation in	
	bioprocess: Measurement and control of bioprocess parameters:	
	scale up and scale down process.	
3	Downstream processing: Bioseparation – filtration, centrifugation,	8
	sedimentation, flocculation; Cell disruption; Liquid-liquid	
	extraction; Purification by chromatographic techniques; Reverse	
	osmosis and ultra filtration; Drying; Crystallization; Storage and	
	packaging; Treatment of effluent and its disposal.	
4	Applications of enzymes in food processing: Mechanism of	6
	enzyme function and reaction in process techniques; Enzymic	
	bioconversion e.g. starch and sugar conversion processes; High-	
	Fructose Corn Syrup; Interesterified fat; Hydrolyzed protein etc. and	
	their downstream processing; banking by amylases, deoxygenation	
	and desugaring by glucoses oxidase, beer mashing and chill	
	proofing; cheese making by proteases and various other enzyme	
	catalytic actions in food processing.	

5	Application of Microbes in food process operations and production: Fermented foods and beverage; Food ingredients and additives prepared by fermentation and their purification; fermentation as a method of preparing and preserving foods; Microbes and their use in pickling, producing colours and flavour, alcoholic beverages and other products; Process wastes-whey, molasses, starch substrates and other food wastes for bioconversion to useful products; Bacteriocins from lactic acid bacteria – Production and application in food preservation.	8
6.	Enzyme kinetics; Two-substrate kinetics and pre-steady state kinetics; Allosteric enzyme; Enzyme mechanism; Enzyme inhibitors and active site determination Production, recovery and scaling up of enzymes and their role in food and other industries; Immobilization of enzymes and their industrial applications.	8
		42

S.No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1	Stanbury, P.F., Hall, S. and Whitaker A., "Principles of Fermentation	2009
	Technology" Second Edition Macmillian	
2	Doran, P.M., "Bioprocess engineering Principles" 2 nd Edition	2012
	Academic press	
3	Shuler, M.L., and Kargi, F. Bioprocess engineering: Basic concepts	2001
	2 nd Edition, Prentice Hall	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-624	Course Title: Molecular Carcinogenesis & Therapy
2.	Contact Hours: L: 3	T : 0 P : 0
3.	Examination Duration (Hrs.):	Theory 3 Practical:
4.	Relative Weight: CWS 25 PRS	MTE 25 ETE 50 PRE
5.	Credits: 3 6. Semester	:: Autumn/Spring 7. Subject Area: PEC

- 8. Pre-requisite : Nil
- 9. Objective: To impart knowledge of various factors that induces carcinogenesis and strategies for combating cancer.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to carcinogenesis, origin of cell line, normal and	8
	transformed cell lines, growth requirements, cell cycle, mutation in	
	proliferating cells.	
2.	Growth factors, regulation of cell proliferation PDGF, IGF & EGF	6
	receptor interaction, secondary message, erythropoietin, TCGF	
3.	Characteristic feature of cancer cells, loss of normal cellular	8
	affinities, cytoskeletal changes, differential expression of genes,	
	factor affecting carcinogenesis, chemical carcinogens, tumor	
	promoters, viruses, DNA & RNA tumor viruses	
4.	Role of large T antigen, oncogen carrying retro viruses, molecular	8
	features of oncogenes, human cancer genes: H-ras, K-ras and N-ras	
	genes, chromosomal abnormalities in human tumors: abl and myc	
	protooncogene, retinoblastoma gene 1	
5.	Human cancer viruses- EB virus, Hepatitis B virus, HTLV, Papiloma	4
	virus, Cervical carcinoma	
6.	Primary screening of anti tumor compounds, chemo therapy of	8
	Hodgkin's disease, lymphosarcoma & bronchiogenic carcinoma,	
	cancer gene therapy and vaccines, future prospects.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1	Ross, D.W., "Introduction to Oncogenes and Molecular Cancer	1998
1.	Medicine" Springer-Verlag.	
2	Franks, L. M. Teich, N.M., "Introduction to Cellular and Molecular	1997
2.	Biology of Cancer", Oxford University Press.	
3.	Larionow, L. "Cancer Chemotherapy", Pergamon Press.	2003
4.	Rosenberg, S.A., "Principles and Practice of the Biologic Therapy	2000
	of Cnacer" Lippincott Williams & Williams	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-625	e Development & Production	
2.	Contact Hours: L: 3	T : 0 P : 0	
3.	Examination Duration (Hrs.)	Theory 3	Practical:
4.	Relative Weight: CWS 25	PRS MTE 25 ETE 50	PRE
5.	Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC

- 8. Pre-requisite : Nil
- 9. Objective: To provides an in depth view of the various factors and designs used for vaccine production.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction, immune mechanism and effector system antigens,	4
	cell surface antigens	
2.	Rationale for vaccine production, vaccine design in relation with	8
	immune response, conventional vaccines, modern vaccine	
	technologies, whole organism and sub unit vaccines, recombinant	
	vaccines, Vaccinia virus as vector for recombinant live vaccines	
3.	Hepatitis B Virus-structure, antigenic determinants, pathogenesis,	8
	recombinant vaccines, vaccine production; Influenza virus-structural	
	leatures, antigenic drift and antigenic shift, swine flu, bird flu,	
	Palio virus protomer of virus cancid polio virus life evele	8
7.	nathogenesis development of inactivated and oral polio vaccines:	0
	Hernes simplex virus Human Immunodeficiency virus-HIV	
	genome antigenic diversity and modes of infection designing of	
	AIDS vaccine	
5.	Bacterial virulence as strategy for developing vaccines, bacterial	8
	toxins, non toxic immunogenic analogs of toxins, factors affecting	
	vaccine production, pertussis toxin, approaches for the development	
	of pertussis vaccine. Design of vaccines cholera and streptococcal	
	infection, intracellular bacterial and protozoan parasites and	
	prospects of vaccines	
6.	Design of peptide vaccines, nucleic acid vaccines, monoclonal	3
	antibodies as biotherapeutic agents, combination vaccines,	
7	Immunological aujuvants	2
1.	systems, regulatory and clinical aspects	3
	systems, regulatory and eninear aspects	42
1	I Utal	74

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Bittle, J.L. and Murphy, E.A., "Vaccine Biotechnology",	2002
1.	Academic Press.	
2.	Cryps, S.J., "Immunotherapy and Vaccine", VCH Publ.	2003
2	Walsh, G, "Biopharmaceuticals : Biochemistry and	2003
5.	Biotechnology", John Wiley and Sons	
4	Manuel, J.T.C., Griffiths, B. and José, L.P. M., "Animal Cell	1996
4.	Technology: From Vaccines to Genetic Medicine", Springer.	
5	"Vaccines: Preventing Disease and Protecting Health", World	2004
З.	Health Organization.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.Subject Code: BTN-626 Cour				ourse Ti	tle: E	nviron	menta	l Biotec	hnolog	y	
2. Contact Hours:	L: 3		Т	C: 0			P: ()			
3. Examination Dura	ation (Hrs.):	Theory		3	Pra	actica	l	0			
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0	
5. Credits:	3	6. Seme	ster: Au	ıtum	n/Sprin	g	7. Si	ubject	Area: P	EC	

- 8. Pre-requisite: Nil
- 9. Objective of Course: The course will look at the biotechnological applications in waste treatment and biodegradation of various xenobiotic compounds using microorganisms.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction, parameters of pollution monitoring	2
2.	Waterborne infectious agents, detection and control of pathogenic	6
	microbes in water	
3.	Wastewater treatment methods – Preliminary treatment,	8
	clarification, coagulation; aerated laggons; oxidation ponds;	
	trickling filters; rotating biological contractors; wastewater	
	treatment efficiency assessment	
4.	Metagenomics and culture based approaches for bioremediation;	8
	Phyoremediation; waste treatment of dairy, distillery and	
	pharmaceutical industries	
5.	Biomass as a source of energy; biocomposting; vermiculture;	6
	organic farming; bio-mineralization, biofuel.	
6.	Biodegradation of lignocelluloses, PAH, agricultural chemicals, oil	6
	pollution; biosurfactants; microbial leaching,	
7.	Municipal techniques for prevention and biomedical solid wastes	6
	and their treatment, innovative techniques for prevention and	
	control of pollution	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Hurst, C.J., Crawford, R.L., Knudsen, G.R., MacInerney, M.J., Stetzenbach, L.D., "Manual of Environmental Microbiology", ASM press, Washington, DC, Second edition.	2002
2.	Metcalf & Eddy, INC, "Wastewater Engineering- Treatment, Disposal and Reuse, 3 rd Edition, Tata MacGraw-Hill publishing company Limited, New Delhi.	1995
3.	Pickup R.W and Saunders J.R., "Molecular approaches to environmental microbiology", Ellis Horwood Limited, First Edition, UK.	1996
4.	Scragg, A," Environmental Biotechnology", First Edition, Pearson Education Limited, UK.	1999
5.	Evans, G.M., Furlong, J C.," Environmental Biotechnology- Theory and application", John Wiley & Sons, Ltd, USA.	2003

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-627	Course Title: Molecular diagnostic	e and Therapeutic Biotechnology
2.	Contact Hours: L: 3	T : 0 P : 0	
3.	Examination Duration (Hrs.):	Theory 3 P	ractical:
4.	Relative Weight: CWS 25	PRS MTE 25 ETE 50	PRE
5.	Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC

- 8. Pre-requisite : Nil
- 9. Objective: To provide knowledge and concepts of modern diagnostics & therapeutics biotechnology.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Immunological diagnostic procedures: enzyme linked	7
	immunosorbant assay, radioimmunoassay, dot and slot blot assay,	
	detection of cytoskeleton proteins, immunochemistry of blood and	
	bone marrow, immunosenor technology.	
2.	Monoclonal antibodies as therapeutic agent: Prevention of rejection	5
	of transplant orgons, treatment of bacterial infection and leukemia,	
	HLA typing, transplantation.	
3.	Genetically engineered immunotherapeutic agents: Fusion protein,	7
	production of antibodies in E. coli, purification and application,	
	chemically linked monocional antibodies, human monocional	
	antibodies, nybrid numan-mouse monocional antibodies, catalytic	
4	DNA discussion and the discussion of a second	(
4.	DNA diagnostic system. Hypridization probes, diagnosis of malaria	0
	and other diseases, non isotopic hybridization procedure, detection of mPNA by in situ hybridization, bonton labeling of nucleic acid	
	or mixing by in situ hydridization, hapten tedening of huciele actu	
5	Molecular basis of multidrug resistance (MDR): In cancer	Δ
5.	leishamania candida and other diseases a comparative view	Т
6	Molecular diagnosis of genetic diseases: PCR application in genetic	6
0.	and diseases diagnosis PCR/OLA procedure mulation at different	0
	site within one gene DNA fingerprinting (new genetic tests)	
	application.	
7.	Ribozymes: Synthesis <i>in vitro</i> application <i>in vivo</i> , clinical potentials	3
	of ribozymes.	
8.	Genetherapy: Positional cloning, getting closer to diseases causing	4
	genes, genes based medicines, genetic immunization, human	
	somatic cell gene therapy, ex-vivo and in-vivo gene therapy,	
	antisense therapy, germline gene therapy, future and fears, HIV	
	therapy.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Buckingham, L. and Maribeth, L.F., "Molecualr Diagnostics:	2007
1.	Fundamentals, Methods and Clinical Application", F.A. Davis.	
2	David, B., Edward, A. and Carl. B., "Fundamentals of	2007
۷.	Molecular Diagnostics", W.B. Saunders.	
2	Gardy, W.W., Nakumura, R.M. and Kieche, F.L., "Molecular	2009
5.	Diagnostic: Techniques and Application", Academic Press.	
4	Mausaaum, D., Prasad, G.B.KS., and Bisen, P.S., "Molecular	2010
4.	Diagnostics: Prospect and Possibilities", Springer	
5	Blum, H.E., LU, C.H., "Molecuar Diagnostics and Gene	2009
5.	Therphy" Springer.	
	Maulik, S. and Patel, P., "Molecular Biotechnology:	1996
6.	Therapeutic and Stratgies", Humana Press.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-628	Cour	rse Title: Ger	ne Regulation
2.	Contact Hours: L:3	T :0	P : 0	
3.	Examination Duration (Hrs.):	Theory 3		Practical:
4.	Relative Weight: CWS 25 PRS	MTE	25 ETE	50 PRE
5.	Credits: 3 6. Semeste	er: Autumn/Spi	ring	7. Subject Area: PEC

- 8. Pre-requisites: Nil
- 9. Objective: To provide information about the various mechanisms of gene regulation in bacteriphages, bacteria and eukaryotes.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Transcriptional regulation in bacteria; Translational and post-	8
	translational regulation in bacteria	
2.	Gene regulation in bacteriophage lambda life cycle	3
3.	Tissue specific expression of proteins and messenger RNAs; Gene	7
	regulation by DNA loss, amplification and rearrangement	
4.	Gene regulation at transcription in eukaryotes; Post- transcriptional	8
	regulation in eukaryotes	
5.	Transcriptional control –chromatin structure, DNA sequence	9
	elements, transcriptional factors.	
6.	Gene regulation and cancer	3
7.	Applications and future prospects of gene regulation studies	4
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Latchman, D. S., "Gene Regulation: An Eukaryotic	2003
1.	Perspective", 2 nd , Ed., Chapman and Hall.	
2	Booker, R. J., "Genetics: Analysis and principles", Addison	1996
Ζ.	Wesley Longman.	
3.	Lewis B., "Genes VI", Oxford University Press.	2010
1	Jun, M.A., "Gene Expression and Regulation", Springer	2005
4.	Verlag.	
5	Jeffery, W., "Post Transcriptional Gene Regulation", Humana	2008
5.	Press.	

NAME OF DEPT./CENTRE: Department of Biotechnology

1.	Subject Code: BTN-629		Cour	se Title:	Geno	mics a	and Proteomics
2.	Contact Hours: L:3		T :0	P : 0			
3.	Examination Duration (Hrs.):	Theory 3			Pract	ical:
4.	Relative Weight: CWS 25	PRS	MTE	25	ETE	50	PRE
5.	Credits: 3 6.	Semester	: Autumn/S _l	pring		7. Su	bject Area: PEC

- 8. Pre-requisites: Nil
- 9. Objective: To impart in-depth knowledge regarding use of various molecular biology and bioinformatics tools to study the complete genome and proteome of an organism.
- 10. Details of Course:

S. No.	Content	Contact Hours
1.	Genome evolution and organization in prokaryotes and	3
	eukaryotes.	
2.	Genome sequencing, basics, strategies and methodology,	7
	databases and sequence comparisons.	
3.	Comparative genomics, functional genomics, expression sequence	7
	tags (ESTs), serial analysis of gene expression (SAGE) and	
	targeting induced local lesions in genome (TILLING).	
4.	Microarrays technology- Principles and applications,	3
	transcriptome analysis and SNPs determination.	
5.	Allele mining and single nucteotide polymorphisms (SNPs).	3
6.	Proteomics- Introduction, proteomics and proteome, protein	9
	databases; Tools of proteomics- Analytical protein and peptide	
	separations, high throughput proteome analysis with 2D-IEF,	
	protein digestion techniques, mass spectrometry.	
7.	Peptide sequencing analysis by tandem mass spectrometry data,	6
	mass-finger printing, protein–protein interactions.	
8.	Application of genomics and proteomics- mining genome	4
	proteomes, protein expression profiles, mapping protein	
	modifications, new directions.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Campbell, A. M. and Heyer, L. J., "Discovering Genomics, Proteomics and Bioinformatics", Benjamin Cummings Publication.	2003
2.	Pevsner, J., "Bioinformatics and Functional Genomics", John Wiley & Sons.	2003
3.	Botwell, D. and Sambrook, J., "DNA Microarrays: Molecular Cloning Manual", Cold Spring Harbor Lab. Press.	2002
4.	Hunt, S. P. and Liversey, F. J., "Functional Genomics: A Practical Approach", Oxford University Press.	2001
5.	Pennington, S. and Dunn, P. J., "Proteomics: From Protein Sequence to Function", Springer Verlag.	2001

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-630	Course T	itle: Bioinformatics
2.	Contact Hours: L: 3	T : 0 P :	: 0
3.	Examination Duration (Hrs.):	Theory 3	Practical:
4.	Relative Weight: CWS 25	PRS MTE 25	5 ETE 50 PRE
5.	Credits: 3 6. Semeste	er: Autumn/Spring	7. Subject Area: PEC
8.	Pre-requisites: Nil		

- 9. Objective: To expose students to the rapidly growing field of Bioinformatics
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to Bioinformatics, NCBI, Protein Data Bank and data	6
	retrieval.	
2.	European Bioinformatics Institute database search; Understanding	7
	EXPASY server; European Molecular Biology server.	
3.	Introduction to Sequence comparison, global and multiple sequence	9
	alignment, Multiple sequence alignment using FASTA, Sequence	
	alignment using CLUSTALW, BLAST and advance BLAST.	
4.	Introduction to 3-dimensional protein structure, superposition of	10
	molecules, RMS deviation, classification family of proteins and	
	fold, SCOP, MSD.	
5.	Introduction of Homology modeling, homology modeling using	10
	various tools	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Higgins, D. and Taylor, W., "Bioinformatics – Sequence,	2003
1.	Structure and Databanks", Oxford University Press.	
2	Lacroix, Z. and Critchlow, T., "Bioinformatics – Managing	2003
۷.	Scientific Data", Morgan Kaufmann Publishers.	
2	Bourne, E.,P. and Weissig H., "Structural Bioinformatics"	2003
5.	John Wiley and Sons.	
1	Campbell, A.M., and Heyer, I.J., "Discovering Genomics,	2003
4.	Proteomics and Bioinformatics" Benjamin Cummings.	
5	Mount D.W., "Bioinformatics – Sequence and Genome	2001
З.	Analysis" Cold Spring Harbor Lab. Press.	
6	Pevsner, J., "Bioinformatics and Functional Geonomics" John	2003
0.	Wiley & Sons.	

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-631	Course Title: Transgenic Animal Technol	Course Title: Transgenic Animal Technology				
2.	Contact Hours: L: 3	T : 0 P : 0					
3.	Examination Duration (Hrs.):	Theory 3 Practical: 0					
4.	Relative Weight: CWS 25	PRS 0 MTE 25 ETE 50 PRE 0					
5.	Credits: 3	6. Semester: Autumn/Spring 7. Subject	Area: PEC				

- 8. Pre-requisite : Nil
- 9. Objective: To impart knowledge on the technologies involved in generating transgenic animals.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to transgenic animals, reproductive biology of rodents	6
	laboratory set up for generating transgenic animals, instrumental set	
	up, various rodent models, breeding procedures, animal house	
	facilities.	
2.	Basics of transgenic animal production by microinjection method,	7
	procedure of super ovulation of animals, egg collection, production	
	of pseudo pregnant female animals, procedure of castration, various	
	methods of microinjections.	
3.	Applications of knockout animals, principles of making knockout	8
	animals, concept of stem cells, culture of stem cells, various	
	methods of gene transfer, blastocyst injection, concept of chimeric	
	animals, making of knockout gene constructs.	
4.	Viral mediated gene delivery methods, viral vectors, generation of	6
	packaging cell lines, testing viral titers.	
5.	Analysis of integration patterns of transgenes, calculation of copy	5
	numbers, concept of founder animals, test cross of transgenic	
	animals.	
6.	Conditional transgenic animal production technology, applications	5
	in biomedical research, marker genes.	
7.	Basic principles for the production of transgenic fish, poultry breeds,	5
	cloning of animals, applications of transgenic animals.	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Pinkert, C.A., "Transgenic Animal Technology- A Laboratory	2002
1.	Handbook", 2nd Edn, Academic Press.	
	Nagy, A., Gertsenstein, M., Vintersten, K. and Behringer, R.,	2003
2.	"Manipulating Mouse Embryo- A Laboratory Manual", 3rd	
	Edn, Cold Spring Harbor Laboratory Press.	
	Jackson, I.J. and Abbott, C.M., "Mouse Genetics and	2001
3.	Transgenics- A Practical Approach" 1st Edn, Oxford	
	University Press.	
4	Tymms, M.J. and Kola I., "Gene Knockout Protocols	2001
4.	(Methods in Molecular Biology)", Vol. 158, Humana Press.	
5	Hadley, M.E. and Levine, J.E., "Endocrinology", 6th Edn,	2007
5.	Pearson Education Inc.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN-632			(Course Title: Structure Biology						
2. Contact Hours:	L: 3]	Г: О			P: ()		
3. Examination Durat	ion (Hrs.):	Theory		3	Pra	nctica	1	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 3	i	6. Seme	ster: Au	utum	n/Sprin	g	7. S	ubject	Area: P	EC

- 8. Pre-requisite: Nil
- 9. Objective:. To impart deep knowledge of biomolecular structural interactions for elucidating structure-function paradigm and structure based drug design.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Overview of structural biology; Primary, secondary, tertiary and	6
	quaternary structure of protein; Motifs and domains of protein	
	structures; Structure of RNA and DNA; Conformational analysis	
2.	Enzymes structure-function relationship and the basis of structure-	3
	based drug design	
3.	Folding and flexibility; helix-coil transition, equilibrium & kinetics	7
	studies, duplex to single strand transition, A to B to Z transition,	
	stacking and unstacking equilibrium	
5.	Symmetry, space group crystal lattices, The Laue equations.	12
	Braggs Law. Fourier syntheses, electron density as a Fourier series.	
	structure determination of macromolecules by crystallography	
	technique	
6.	Nuclear Magnetic Resonance, chemical shift, relaxation dynamics,	12
	protein structure determination using multidimensional NMR,	
	molecular mechanisms, thermodynamic concepts and	
	conformational exchange of biomolecules	
7.	Structures of large molecular machines and virus assembly	2
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Cantor, C. R. and Schimmel, W.H., "Biophysical Chemistry	1981
2.	McPherson, A. "Introduction to Macromolecular Crystallography", 2 nd edition, Wiley-Blackwell.	2009
3.	Drenth, J., "Principles of Protein X-Ray Crystallography", 3 rd edition, Springer.	2007
4	Keeler J. "Understanding NMR Spectroscopy" 2 nd edition, Academic Press	2010
5	Wüthrich K "NMR of Proteins and Nucleic Acids" 2 nd edition, (Baker Lecture Series)/ John-Wiley.	1986

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN-633				Course Title: Bio- Crystallography						
2. Contact Hours:	L: 3]	Г: О			P: ()		
3. Examination Duration	on (Hrs.):	Theory		3	Pra	nctica	1	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 3	6	. Semester	r: Autu	mn/	Spring		7. S	ubject	Area: P	EC
8. Pre-requisite: Nil										

- 9. Objective: To give an overview of X-ray crystallography and its application for determining the structure-function relationship of bio-molecules.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Overview of crystallography, X-ray production	2
2.	Crystallization methods and crystal preparation	3
3.	Crystal symmetry, Laue groups, Bravais lattices	5
4.	Diffraction theory, crystal mounting,	4
	data collection/instrumentation	
6.	Data processing: HKL2000 XDS and MOSFLM	4
	software packages	
7.	Space group determination and Wilson plots	3
8.	Phase problem, Patterson maps and structure determination	3
	methods	
9.	Multiple/single isomorphous replacement (MIR/SIR)	3
10.	Multiple/single wavelength anomalous	3
	diffraction (MAD/SAD)	
11.	Molecular replacement (MR)	3
12.	Model refinement: CNS, CCP4 and	3
	SHELX software packages	
13.	Model building, map interpretation and interpreting models	3
14.	Application of X-ray crystallography: Structure and function	3
	analysis	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Drenth, J, "Principles of Protein X-ray Crystallography", 2 nd edition, Springer.	2000
2.	Hahn, T. " International Tables for Crystallography, Volume A: Space-group symmetry", 5 th edition, Springer.	2005
3.	McPherson, A. "Introduction to Macromolecular Crystallography", 2 nd edition, Wiley-Blackwell.	1999
4.	Rhodes G. "Crystallography made crystal clear", 2 nd edition, Academic Press, Inc. USA.	2000
5.	Rossmann, M.G., "International Tables for Crystallography, Volume Crystallography of biological macromolecules", 1 st edition, Springer.	2001

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN-634		C	Course	Title:	Viruses	s and	Huma	n Dise	eases	
2. Contact Hours:	L: 3		r	Г: О			P: ()		
3. Examination Duration	n (Hrs.):	Theory		3	Pra	nctica	l	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 3		6. Semes	ster: A	utum	n /Sprir	ıg	7. S	ubject	Area: P	EC

- 8. Pre-requisite: Nil
- 9. Objective: The course emphasizes on the fundamentals of virology and on understanding the mechanisms by which viruses cause infection and human diseases.
- 10. Details of course:

S. No.	Contents	Contact
1	Inter desetion to simple and simplify the sime should be the stime the	Hours
1.	Introduction to viruses and virus infection, virus classification, the	3
	replication cycle of viruses, virus nosts and effect of infection on	
	the nost cell, viral epidemiology	
2.	Structure of viruses: Enveloped and Non-enveloped viruses,	3
	helical and icosahedral symmetry, virus structure determination	
3.	Viral multiplication and translation strategies: Transcription,	3
	assembly, maturation and release of virions.	
4.	Plus-strand RNA virus: Virus entry, replication, assembly,	6
	maturation and pathogenesis, origin and evolution, Polio virus,	
	Chikungunya virus, Dengue virus, JEV, HCV, SARS coronavirus	
5.	Minus-strand RNA virus: Introduction, virus entry and replication,	6
	assembly, virus pathogenesis, Mealses virus, Mumps virus,	
	Rabies virus, Influenza viruses, Ebola virus etc	
6.	Double stranded RNA virus, reteroviruses and DNA viruses: Virus	8
	life cycle, replication and transcription, Rotavirus, HIV and	
	AIDS, HTLV, Small pox virus, Monkey pox virus etc	
7.	Virus-host interaction: Immune response to viral infection, Innate	5
	and acquired immunity, B-cells, T-cells, virus induced	
	immunopathology and immunosuppression	
8	Viral pathogenesis: Viral strategy to inhibit eukaryotic translation	5
0.	cytopathic effect plaque assay tropism virulence viral	C C
	replication vs viral disease. Virus vector system and gene therapy	
9	Diagnosis treatment and vaccination different types of vaccines	3
	antiviral drug targets and antiviral drug discovery immuno-	5
	therapeutics resistance to antivirals	
	Total	42

S No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Strauss, E. G. and Strauss, J. H., "Viruses and Human Disease",	2007
	Academic Press	
2.	Flint, S.J., Enquest, L.W., Krug, R. M., Racaniello, V. R., and	2000
	Skalka, A. M., "Principles of Virology: Molecular Biology,	
	Pathogenesis and Control", ASM Press.	
3.	Bernard N. Fields and David Mahan Knipe, "Fundamental	2001
	Virology", Raven Press	
4.	John Carter and Venetia A. Saunders, "Virology: Principles and	2013
	Applications, 2 nd edition, John Wiley & Sons Inc.	
5.	Antiviral Drug Discovery for Emerging Diseases and	2005
	Bioterrorism Threats. Paul F. Torrence (Editor), John Wiley &	
	Sons, Inc.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN- 635	Course Title: Chemical Genetics and Drug Discovery				
2. Contact Hours: L: 3	T: 0	P: 0			
3. Examination Duration (Hrs.):	Theory 3	Practical 0			
4. Relative Weight: CWS	25 PRS 0 MTE 25	ETE 50 pre 0			
5. Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC			
8. Pre-requisite: BT-512					

- 9. Objective: To impart advanced knowledge to Msc final year or fresh Ph.D students in the upcoming area of chemical genetics and drug discovery
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to Classical genetics, Forward genetics, Reverse genetics, Phenotypes, Target identification, biochemical methods.	4
2.	Introduction to Chemical genetics, Forward chemical genetics, Reverse chemical genetics, Comparison and contrast between forward chemical genetics and reverse chemical genetics, small molecules as probes of physiological functions	8
3.	Forward chemical genetics (obtain library, screen, identify target) Chemical libraries: target-oriented synthesis vs diversity oriented synthesis. High throughput screening, high content screening for drug like molecules.Phenotype based screens. Target identification: biochemical approaches; 3-hybrid screens. Chemical approaches (labelling of small molecules, pull-down and cross-linking)	12
4.	Reverse chemical genetics: Relationship to "classical" drug discovery. Lead discovery; fragment based approaches. Diversity oriented synthesis. High throughput screening, high content screening for drug like molecules.	9
5.	Drugs, Antibiotics, Anticancer drugs, mode of action, Discovery of drugs from natural products, drug action and resistance.	9
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Marechal, E., Roy, S., Lafanechere, L., " Chemogenomics and	2011
	Chemical Genetics", Springer-Verlag Berlin and Heidelberg GmbH	
	& Co. KG., ISBN: 9783642196140	
2.	Hisashi, K., "Reverse chemical genetics – methods and protocols",	2009
	Springer protocols, Humana Press., ISBN 978-1-60761-231-5	
3.	Kubinyi, et al., ed., "Chemogenomics in drug discovery: A medicinal	2004
	chemistry perspective". John Wiley and sons,	
4.	Walsh, C., "Antibiotics. Actions, Origins, Resistance". ASM press	2004

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1. Subject Code: BTN-636	Course Title: IPR, Good Lab	Course Title: IPR, Good Lab Practices and Bioethics				
2. Contact Hours: L	: 3 T: 0	P: 0				
3. Examination Duration (Hrs	.): Theory 3	Practical 0				
4. Relative Weight: CWS	25 PRS 0 MTE 25	5 ETE 50 PRE 0				
5. Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC				
8. Pre-requisite: BT 524						

- 9. Objective: To impart advanced knowledge to Msc final year or fresh Ph.D students in the areas of Intellectual Property Rights, good lab practices, biosafety and bioethics
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	IPR- Introduction, International laws, creation of IP, IP management, Need for IP: National scenario, TRIPS agreements, Knowledge	8
1.	management databases	0
2.	IPR databases- USPTO, WIPO, patent search, How to carry out patent search, novelty search in various databases, Genetically modified organisms-IPR issues patenting of cell lines, microbes, plant varieties. Patent application and filing. Traditional knowledge: concepts of folklore and traditional knowledge, forms of traditional knowledge.Traditional Knowledge Digital Library (TKDL): its purpose, structure and possible risks	14
3.	Good lab practices:- Introduction, maintenance of lab record notebook, biosafety, level of contamination, safety levels, radiation safety, how to handle chemicals, biochemicals, radioisotopes, toxic chemicals safety measures required.	10
4.	Bioethics- Introduction, international standards, ethical issues in patenting, publishing, how to decide authorship in publications, Issues arising out of Neem, Haldi and basmati cases, conditions and procedure for registration, offences, penalties	10
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1.	Dutfield Graham, "Intellectual Property, Biogenetic Resources and	2004
	Traditional Knowledge", Earthscan Publications Ltd, illustrated edition	
2.	Klemm, Cottier T., "Rights to Plant Genetic Resources and Traditional	2006
	Knowledge: Basic Issues and Perspectives", Cabi Publishing, 1 ed.	
3.	"The Geographical Indications of Goods, (Registration and Protection) Act"	1999
4.	Mgbeoji, Ikechi, "Global Biopiracy: Patents, Plants, And Indigenous	2006
	Knowledge", Cornell University Press, 1 ed.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject Code: BTN-637	Course Title: Nar	obiotechnology
2.	Contact Hours: L: 3	T : 0 P : 0	
3.	Examination Duration (Hrs.):	Theory 3 Practi	ical:
4.	Relative Weight: CWS 25	PRS MTE 25 ETE 50	PRE
5.	Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC

- 8. Pre-requisites: Nil
- 9. Objective of Course: This course is intended to impart the knowledge of nanoscale biological molecules, their methods of analysis, integration to macromolecules, and providing an understanding of nanobiotechnological applications in different fields.
- 10. Details of Course :

S. No.	Contents	Contact Hours
1	Overview of Nanobiotechnology -	3
	Historical perspective of Integration of biology, chemistry, and material	
	science. Opportunities and Promises of nanobiotechnology.	
2	Functional Principles of Nanobiotechnology- Structure and functional	4
	properties of Biomaterials, Bimolecular sensing, Molecular recognition and	
	Flexibility of biomaterials.	
3	Protein and DNA based Nanostructures - Protein based nanostructures	8
	building blocks and templates – Proteins as transducers and amplifiers of	
	biomolecular recognition events – Nanobioelectronic devices and polymer	
	nanocontainers – Microbial production of inorganic nanoparticles –	
	Magnetosomes.	
	DNA based nanostructures – Topographic and Electrostatic properties of	
	DNA and proteins – Hybrid conjugates of gold nanoparticles – DNA	
	oligomers	
4	Nanomaterials used in Biotechnology -	6
	Nanoparticles, carbon nanotubes, quantum dots and buckyballs interface	
	with biological macromolecules. Biological perspectives of nanomaterials –	
	impact of nanomaterials in biological processes – tolerance by immune	
	systems and toxicity.	
	<i>Nucleic acid Engineering</i> - Modifications of DNA for nano-technological	
	applications. Nanostruture assembly using DNA.	
5	Nanotechnology in Biomedical and Pharmaceutical Industry -	6
	Nanoparticles in bone substitutes and dentistry – Implants and Prosthesis -	
	Reconstructive Intervention and Surgery	
	- Nanorobotics in Surgery - Photodynamic Therapy - Nanosensors in	
	Diagnosis– Protein Engineering – Drug delivery – Therapeutic applications	

6	Biosensing Applications of nanobiotechnology – <i>Nano-Biosensing</i> - Biosensors and nanobiosensors – basics. Design and types of nano-biosensors. DNA aptamers for nano-biosensing and drug discovery.	7
7	Nanotechnology in Agriculture and Food technology - Insecticides development using nanotechnology and Nanofertilizers. Nanotechnology in food processing, food safety and biosecurity, toxin and contaminant detection, Smart packaging.	8
	Total	42

S. No.	S. No. Author(s)/ Title/ Publisher	
	Challa, S.S.R. Kumar, Josef Hormes, Carola Leuschaer,	2005
1.	Nanofabrication Towards Biomedical Applications,	
	Techniques, Tools, Applications and Impact , Wiley – VCH.	
2	D.S. Goodsell, Bionanotechnology: Lessons from Nature,	2004
Ζ.	Wiley Press	
	C. M. Niemeyer and C. A. Mirkin- (Editor),	2004
3.	Nanobiotechnology: Concepts, Applications and Perspectives	
	Wiley Press	
	Jennifer Kuzma and Peter VerHage, Nanotechnology in	2006
4	agriculture and food production, Woodrow Wilson	
	International Center	
5	Neelina H. Malsch (Ed.), Biomedical Nanotechnology, CRC	2005
5	Press	
6	Mark A. Ratner and Daniel Ratner, Nanotechnology: A Gentle	2003
0	Introduction to the Next Big Idea, Pearson	
7	S. Klussman, The Aptamer Handbook: Functional	2006
/	Oligonucleotides and their Applications, Wiley- VCH Press	

NAME OF DEPTT./CENTRE: Department of Biotechnology

1. Subject Code: BTN- 638	Course Title: Microbial Genetics and applications			
2. Contact Hours: L: 3	T: 0	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical 0		
4. Relative Weight: CWS	25 PRS 0 MTE 25	ETE 50 PRE 0		
5. Credits: 3	6. Semester: Autumn/Spring	7. Subject Area: PEC		

- 8. Pre-requisite: BT-524
- 9. Objective: To impart advanced knowledge to second year Masters and Pre-PhD students about the developments in the microbial molecular biology and genetics from research point of view.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Overview; organization of microbial genomes, transcription and translation, gene regulatory elements in microbial genomes.	4
2.	Non Coding RNA in microbial Genomes; small RNA – discovery, functions, mode of gene regulation, small RNA in prokaryotes.	8
3.	Ribozymes and Riboswitches mediated gene regulation in Microbes, riboswitches as antimicrobial drug targets. Antisense RNA - Utilization of antisense techniques to understand gene functions in <i>E.coli</i> and <i>Staphylococcus</i> sp.	8
4.	Cell to cell communication - Quorum sensing in microbes.	3
5.	Molecular Microbial Diversity –Various molecular methods to study microbial diversity; comparison of culture dependent and culture independent approaches. Isolating Functional genes from uncultivable microbes.	7
6.	Advances in Genetic engineering techniques for analysis of microbial genomes and their applications – Interpreting the genomes, genomic library construction from degraded DNA, PCR cloning, Site directed mutagenesis, mutator strains, error prone PCR for protein engineering.	9
7.	Genetic Basis of Multiple drug resistance in emerging pathogenic bacteria - gene flow in microbial communities.	3
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Darnell, J., Lodish, H. and Baltimore, D., "Molecular Cell Biology",	1999
	W.H.Freeman & Co.	
2.	Maloy, S., Cronan ,J.E. Jr., and Freifelder, D., "Microbial Genetics"	2006
	Jones and Bartlett Publishers.	
3.	Watson, J.D., "Molecular Biology of The Cell", Taylor & Francis	2002
4.	Gestland, R.F., Cezh T.R., Atkins, J.F. "The RNA World – 3 rd	2006
	Edition"- Cold Spring Harbor Press.	
5.	Snyder, L., Champness, W., "Molecular Genetics of bacteria" ASM	2007
	press.	
6.	Prescott, L.M., Harley, J.P. and Klein, D.A., "Microbiology", W. C.	1996
	Brown Publications	

NAME OF DEPT./CENTRE : Department of Biotechnology

1. Subject Code: BT	(Course	Title:	Clinica	l Pro	teomics	8			
2. Contact Hours:	L: 3]	ſ: O			P: ()		
3. Examination Dura	tion (Hrs.):	Theory		3	Pra	nctica	l	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits:	3	6. Seme	ster: Au	ıtum	n/Sprin	g	7. S	ubject	Area: P	ΈC

8. Pre-requisite: NIL

9. Objective: To impart the knowledge of application of proteomics in translational research.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction to Proteomics, Sample collection, Storage and	1
	Handling to Overcome Pre-analytical Problems/Issues	
2.	Protein Isolation for Characterization	6
3.	Application of Technologies such as 2DE, High performance	24
	Liquid Chromatography and Mass Spectrometry	
4.	Use of Proteomic Technologies in Diseases in Humans and	10
	Animals	
5.	Future directions	1
	Total	42

S. No.	Authors/ Name of Books/Publisher	Year of Publication/Reprint
1.	Antonia Vlahou "Clinical Proteomics Methods and Protocol" Wiley-VCH	2008
2.	Jennifer E. Van Eyk and Michael J. Dunn. "Clinical Proteomics: From Diagnosis to Therapy. Wiley-VCH	2007
3.	Hubert Rehm. "Protein Biochemistry and Proteomics" Academic Press	2006

NAME OF DEPTT./CENTRE : Department of Biotechnology

1. Subject Code: BTN-	Course Title: NMR in Biology and Medicine									
2. Contact Hours:	L: 3]	Г: О			P: ()		
3. Examination Duratio	on (Hrs.):	Theory		3	Pra	actica	l	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ETE	50	PRE	0
5. Credits: 3		6. Seme	ster: A	utum	n/ Sprir	ıg	7. S	ubject	Area: P	EC

8. Pre-requisite: Nil

- 9.Objective: To impart the knowledge of nuclear magnetic resonance concepts and its applications in biology and medicine
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Principles of NMR spectroscopy, Understanding NMR	8
	spectrometer, data processing, Fourier transformation, Resolution,	
	sensitivity, NMR Probes, NMR Pulses, Gradients, etc	
2.	Theory of Chemical Shifts, Spin- spin coupling, dipolar coupling,	8
	longitudinal, transverse and cross relaxation parameters, Nuclear	
	Overhauser effect (NOE), principles of polarization transfer,	
	homonuclear and heteronuclear Two-dimensional NMR	
3.	Basic NMR signatures of proteins/peptides, Isotopic labeling	9
	strategies, Theory and applications of solution state NMR Triple	
	resonance (3-Dimensional) experiments for protein backbone, side	
	chain assignment. NMR analysis of protein structural	
	determination, dynamics and stabilities	
4.	Carbohydrates, Nucleic acids and membrane NMR and their	9
	resonance assignment strategies, NMR of protein-	
	DNA/carbohydrate/membrane interactions, Characterizing binding	
	surfaces and affinities	
5.	Solid state NMR: Magic Angle Spinning (MAS), Cross	4
	Polarization (CP), CP-MAS, and biological applications.	
6	Advanced NMR concepts: In-vivo NMR, Magnetic Resonance	4
	Imaging, fMRI/MRS and NMR of metabolites	
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Keeler J. "Understanding NMR Spectroscopy" 2 nd edition,	2010
2.	Wüthrich K "NMR of Proteins and Nucleic Acids" 2 nd edition, (Baker Lecture Series)/ John-Wiley.	1986
3	Cavanagh, J., Fairbrother, W.J., Palmer III, A.J., Skelton, N.J., and Rance M. "Protein NMR Spectroscopy: Principles and Practice" 2 nd edition, Academic Press	2005
4	Chary, K.V.R, and Govil, G., "NMR in Biological system", From Molecules to Man, Springer Netherland	2008
5	Glasel, J. A., and Deutscher, M.B., "Introduction to Biophysical Methods for Protein and Nucleic acid Research", Academic Press	1995
6	Evan, J.N.S., "Biomolecular NMR spectroscopy", Oxford University Press	1995

NAME OF DEPTT./CENTRE: Department of Biotechnology

1. Subject Code: BT		Cou	urse Title: I	Biopho	otonics				
2. Contact Hours:	L: 3		T:	0		P: 0			
3. Examination Dur	ation (Hrs.):	Theory	3	Pra	ctical		0		
4. Relative Weight:	CWS	25	PRS 0) MTE	25	ETI	50	PRE	0
5. Credits:	3	6. Semes	ster: Autu	mn/Sprinş	5	7. Su	bject	Area: Pl	EC

- 8. Pre-requisite: Nil
- 9. Objective: To impart knowledge about the emerging field of biophotonics and the application of optical based technologies in the field of biosensing, imaging etc.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1	Basics of structure and function of living materials, Process of light interaction with matter, Light – matter interaction, fundamental nature of light.	5
2	Interaction of light with cells and tissues- Components that interact with light, light absorption in cells, light induced cellular processes, Interaction of light with tissues- absorption, scattering, tissue optical properties, light induced processes in tissue, radiative transport theory	7
3	Optical Spectroscopy: Fluorescence spectroscopy, Raman spectroscopy, CARS, fluorescence detection and quantification of nucleic acids, proteins and cells, Optical activity and circular dichroism.	6
4	Types of light sources, basic principles of lasers, Lasers relevant to biophotonics.	5
5	Optical imaging- Background and need for optical imaging, Different optical imaging techniques, Microscopy –Simple, compound, Fluorescence microscopy, confocal microscopy, Optical tomography, fluorescence resonance energy transfer (FRET), fluorescence life time imaging (FLIM).	8
6.	Optical biosensing- principle, fiber optic biosensors, surface plasmon resonance biosensors, Applications of Bioimaging- endogenous and exogenous fluorophores, tissue imaging, in vivo imaging. Optical diagnostic technique, Light for therapy and treatment, optical tweezer, laser scissor.	9
7.	Bio nanophotonics - major areas of nanophotonics.	2
	Total	42

S No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1	Paras N. Prasad, "Introduction to Biophotonics", Wiley & Sons	2003
2	Bahaa Saleh and Malvin Teich, "Fundamentals of Photonics", Wiley & Sons	2007
3.	Joseph R Lakowicz, "Principles of fluorescence spectroscopy", Springer	2006
4.	T. Vo-Dinh ed., "Biomedical Photonics Handbook", CRC Press Optics	2002
5.	E. Hecht, "Optics", Addison-Wesley	2002
6.	Splinter R, and Hooper BA, "An Introduction to Biomedical Optics", CRC Press, Taylor and Francis	2007
7.	Iain D. Campbell, Raymond A. Dwek, "Biological Spectroscopy (Biophysical techniques series)", Benjamin-Cummings Pub Co; 1 edition	1984

NAME OF DEPTT. /CENTRE: Department of Biotechnology

1.	Subject Code: BTN-642	(Course Title:	Plant Syster	n Physiology
2.	Contact Hours: L: 3	T : 0	P : 0		
3.	Examination Duration (Hrs.):	Theory	3	Practic	al: 0
4.	Relative Weight: CWS 25	PRS 0	MTE 25	ETE 50	PRE 0
5.	Credits: 3 6. Sem	ester: Autum	n/Spring	7. Subj	ject Area: PEC

- 8. Pre-requisites: Nil
- 9. Objective: This course will provide a detailed insight into the Plant system physiology to equip students with "state of the art" knowledge in plant system physiology and their modern application in crop improvement.
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Introduction, Plant Metabolism and Nutrient Assimilation: metabolic processes, natural rhythms, Solute transport and photo assimilate translocation, uptake, transport and translocation of water, ions, solutes, transpiration, mechanisms of Phloem loading and unloading. Recent concept of RNA- mediated solute transport in Plants; Nitrate and ammonium assimilation; amino acid biosynthesis.	6
2.	Physiology of Photosynthesis : Light harvesting complexes; mechanisms of electron transport; photo-protective mechanisms; CO2 fixation-C3, C4 and CAM pathways, Photorespiration.	5
3.	Physiology of Respiration : Citric acid cycle; plant mitochondrial electron transport, Mitochondrial genome, ATP synthesis; alternate oxidase (AOX); Seed Lipid metabolism.	5
	Sensory photobiology : Structure, function and mechanisms of action of phytochromes, cryptochromes and phototropins; stomatal movement; photoperiodism, vernalization and biological clocks.	6
4.	Plant Growth regulators : Biosynthesis, storage, breakdown and transport; physiological effects and mechanisms of action.	4
5	Plant Development: Messenger Systems and Cell-Signaling. Morphogenesis and organogenesis in plants. Leaf development and phyllotaxy; transition to flowering, floral meristems and floral development in <i>Arabidopsis</i> and <i>Antirrhinum</i>	4
6	Plant Secondary metabolites : Biosynthesis of terpenes, phenylpropanoids and nitrogenous compounds (Alkaloids) and their ecological roles. Metabolic engineering of plant secondary metabolites in plants. Secondary metabolites as phytomedicines and phytoalexins.	6
7	Stress physiology: Responses of plants to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses. Molecular and environmental stress physiology.	6
	Total	42

S. No.	Author(s)/ Title/ Publisher	Year of Publication/Reprint
1	Lincoln, Taiz., & Eduardo, Zeiger., "Plant Physiology"	2010
1.	5th Edn, Publisher: Sinauer Associates, Inc	
n	Hemantaranjan, A., "Advances in Plant Physiology Vol. 14",	2013
۷.	Scientific Publishers	
2	Jain, V. K., "Fundamental of Plant Physiology" Edn –	2000
5.	illustrated; Publisher: S. Chand limited	
1	Hari Shankar Srivastava " Plant Physiology" Rastogi	2005
4.	Publications.	

NAME OF DEPTT./CENTRE: Department of Biotechnology

1. Subject Code:	BTN-643				Cours	e Titl	e: Mici	robial	Techno	logy
2. Contact Hours:	L: 3		Т	: 0			P: (0		
3. Examination Dur	ation (Hrs.):	Theory	:	3	Pra	actica	l	0		
4. Relative Weight:	CWS	25	PRS	0	MTE	25	ЕТЕ	50	PRE	0
5. Credits:	3	6. Seme	ster: Au	tum	n/Sprin	g	7. S	ubject	Area: P	EC

- 8. Pre-requisite: Nil
- 9. Objective: To impart the knowledge of the mechanistic features of the cells and microbes to use them as a tool for various applications related to human health and environment.
- 10. Details of Course:

S. No.	Contents	Contact Hours					
	Microbial Diversity & Systemics: Domain and kingdom concepts in						
1.	classification of microorganisms; Criteria for classification; role of						
	rDNA sequencing and database projects						
	Microbial Growth & Physiology: structural organization and	8					
2.	multiplication of microorganisms. Physiological adaption and life style						
	of prokaryotes; Extremophiles						
	Large scale cultivation of industrial important microbes; Novel tools	8					
3.	used for strain development/improvements; process optimization of						
	selected products.						
1	Recombinant protein production in microbes; down stream processing;	6					
ч.	industrial microbes as cloning hosts.						
	Production of primary and secondary metabolites, Biofuels;	8					
5.	bioremediation, leaching of ores by microorganisms; biofertilizers,						
	biopesticides, biosensors.						
6	Recovery and purification of fermentation products; Cell	7					
0.	immobilization for product enhancement; Fermentation economics						
	Total	42					

S. No.	Author(s)/ Title/ Publisher	Year of Publication/ Reprint
1.	Glazer, Nikaids, "Microbial Biotechology" 2 nd Ed., Cambridge	2007
	University Press	
2.	Madigan, M.T. and Martinko, J.M., "Biology of Microorganisms",	2006
	Person, Prentice Hall	
3.	Stanbury, P.F., Whitakar, A., Hall, S.J., "Principles of fermentation	1995
	technology", Pergamon Press, Oxford.	

NAME OF DEPTT. /CENTRE : Department of Biotechnology

1.	Subject code : BTN- 644	Co	urse Title: Re	esearch Me	ethods in Bio	nanotechnology
2.	Contact Hours :	L:3		T:0		P:0
3.	Examination Duration (Hour	s):	Theory :	03	Practical :	
4.	Relative Weight : CWS :	25	PRS :	MTE :	25 ETE	÷ 50
5.	Credits : 03 6. Sem	iester :	: Autumn/Sp	ring	7. Subject A	rea : PEC

8. Pre-requisite: Nil

9. Objective: To impart knowledge on various research methods in bionanotechnology.

10. Details of Course:

S.No.	Contents	Contact
-		Hours
1.	Overview of Bionanotechnology:	6
	DNA nanotechnology; RNA nanotechnology; Protein nanotechnology; Lipid	
	nanotechnology; Carbohydrate nanotechnology.	
2.	Calculations in Bionanotechnology:	10
	Scientific notations; Calculating dilutions and concentrations; Quantification	
	and analyses of biomolecules; Biostatistical methodologies.	
3.	Biotechniques:	10
	DNA and RNA purification; Isolation of gene and cloning; PCR- optimization	
	and designing of primers; Electrophoresis; Southern, Northern and Western	
	blotting techniques; Prokaryotic and eukaryotic expression systems.	
4.	Characterization of therapeutic nanoparticles:	10
	Techniques to determine physical and chemical properties; Assays for	
	detection and quantitation; <i>in vitro</i> immunological assays; Pharmacokinetics	
	of therapeutic nanoparticles.	
5.	Methods in Nanotoxicology:	6
	Cell culture techniques; Cytotoxicity and genotoxicity methods; <i>in vitro</i> and <i>in</i>	
	vivo nanotoxicology assays.	
	Total	42

S.No.	Name of Authors /Books / Publishers	Year of
		Publication /
		Reprint
1.	Berg, J.M., Tymoczko, J.L. and Stryer, L., "Biochemistry", 6 th EdW.	2008
	H. Freeman and Company.	
2.	Rosenthal, S.J. and Wright, D.W., "Methods in Molecular Biology-	2005
	NanoBiotechnology Protocols", Humana Press.	
3.	McNeil, S.E., "Characterization of Nanoparticles Intended for Drug	2011
	Delivery", Humana Press.	
4.	Stephenson, F.H., "Calculations for Molecular Biology and	2003
	Biotechnology-A Guide to Mathematics in the Laboratory" Academic	
	Press.	
5.	Gerstein, A.S. "Molecular Biology Problem Solver: A Laboratory	2001
	Guide", Wiley-Liss, Inc.	