Roll	No		
			a

B.E (Full Time) DEGREE ARREAR EXAMINATIONS, April – May 2011 INDUSTRIAL ENGINEERING

FIFTH SEMESTER (Regulation 2008)

IE 9303 STATISTICAL QUALITY CONTROL

Time: 3 Hours

Max.Marks: 100

Answer all questions
Use of statistical tables permitted

PART - A (10 x 2 = 20 marks

- 1. What is the meaning of quality?
- 2. Differentiate between quality and reliability.
- 3. What is process variation?
- 4. How variable control charts are interpreated?
- 5. What is a multi-vari chart?
- 6. When individual measurements control charts are used?
- 7. What is AOQL?
- 8. How a double sampling plan is operated?
- 9. Define linear measurement. Give two or three examples of linear measuring instruments.
- 10. State the major advantages of NDT.

$$PART - B (5 \times 16 = 80 \text{ marks})$$

- 11. Samples of size n= 6 items are taken from a manufacturing process at regular intervals. After 50 samples, $\sum \overline{X} = 1000$ and $\sum S = 75$. The quality characteristic is normally distributed.
 - a) Compute control limits for X and S charts.
 - b) If all sample means fall between the control limits, compute the natural tolerance limits.
 - c) If the specification limits are 19 ± 4.0 , determine whether the process meets the specification.
 - d) If the item exceeds the USL, it can be reworked and if it falls below LSL, it must be scrapped, what percent of scrap and rework is produced?
 - e) If the process were centered at μ = 19.0, what would be the effect on percent scrap and rework.

12. a) The net weight (in kgs) of a dry bleach product is to be monitored by X and R charts using a sample size of n = 5. Data on 15 samples are as follows.

Sample	X ₁	X ₂	X ₃	X ₄	X ₅
No.					
1.	15.8	16.3	16.2	16.1	16.6
2.	16.3	15.9	15.9	16.2	16.4
3.	16.1	16.2	16.5	16.4	16.3
4.	16.3	16.2	15.9	16.4	16.2
5.	16.1	16.1	16.4	16.5	16.0
6.	16.1	15.8	16.7	16.6	16.4
7.	16.1	16.3	16.5	16.1	16.5
8.	16.2	16.1	16.2	16.1	16.3
9.	16.3	16.2	16.4	16.3	16.5
10.	16.6	16.3	16.4	16.1	16.5
11.	16.2	16.4	15.9	16.3	16.4
12.	15.9	16.6	16.7	16.2	16.5
13	16.4	16.1	16.6	16.4	16.1
14.	16.5	16.3	16.2	16.3	16.4
15.	16.4	16.1	16.3	16.2	16.2

- i) Set up \overline{X} and R charts and comment on the process.
- ii) If the specification is 16.2 \pm 0.5, evaluate the process capability by computing the capability indexes.
- iii) What fraction of product is likely to be below the lower specification limit of 15.7 kgs.

(OR)

- b i) Explain economics of quality of design and quality of conformance.
 - ii) Explain the quality costs in detail.
- 13 a i) What is a demerits per unit control chart? Explain its construction and use.
 - ii) A C-chart is used to monitor the surface defects on sheets of photographic film. The chart presently is set up based on C of 2.6.
 - > Find the 3-sigma control limits.

- \triangleright What is the probability of a point falling outside these control limits when operating at a μ of 2.6.
- > If the process average shifts to 4.8, what is the probability of not detecting the shift on the first sample?

(OR)

b) Summarized below is daily analysis of CO₂ in a chemical manufacturing process. Compute 3-day moving averages and moving ranges and establish control charts for monitoring the process and comment on the process.

Date	% of CO ₂	Date	% of CO₂
June 1	0.53	11	0.57
2	0.62	12	0.56
3	0.63	13	0.55
4	0.54	14	0.65
5	0.50	15	0.59
6	0.50	16	0.60
7	0.51	17	0.69
8	0.53	18	0.65
9	0.56	19	0.65
10	0.64	20	0.67

- 14 a i) What is double sampling plan? Explain the OC curve of double sampling plan.
 - ii) For the double sampling plan, $n_1 = 50$, $c_1 = 1$, $n_2 = 100$ and $c_2 = 3$, determine the average sample number.

(OR)

- b. Design a single sampling plan if α = 0.05, AQL = 0.01, β = 0.10 and LTPD = 0.10
- 15 a) What is a sine bar? Explain how it is used for angle measurement. State the limitations and sources of errors in sine bars.

(OR)

- b) Explain the principles and application of te following methods of inspection.
 - i) Manetic particle test
 - ii) Dye-penetrant test
 - iii0 Últrasonic test