SCHEME OF EXAMINATION

and SYLLABI

for

B.E. (Information Technology)

 $3^{rd} - 8^{th}$ semester

for

Academic Session

2018-19

VISION:

To produce information engineers who work passionately, creatively and effectively for the betterment of technology and society at large.

MISSION:

- The mission of I.T. department is to provide advance knowledge and educate students in technology and related areas in order to enable them to create and consume information products for dynamic information society.
- The aim is to create a culture that fosters excellence and combines rigorous academic study and the excitement of discovery with the support and intellectual stimulation of a diverse campus community.
- The endeavor is to have up-to-date curricula and pedagogy in the information technology discipline so that students have a solid foundation in the core concepts and develop problem solving and decision making skills. The aim to prepare them for lifelong learning in the discipline by designing the curriculum which anticipates the skills and knowledge needed in the future.
- The mission is to offer internship opportunities to the students and to foster the personal and professional growth of our students.

PROGRAMME EDUCATIONAL OBJECTIVES:

- Graduates are prepared to work in dynamic industry and possess knowledge of IT engineering concepts, practices and tools to support design and development of IT enabled products.
- Graduates are prepared to pursue research and higher education in their area of interest.
- Graduates are prepared to possess professional and managerial skills like team work, ethics and competence in written & oral communication.

PROGRAMME OUTCOMES:

Students in the Information Technology program are expected to know and be able to do the following at the time of their graduation:

- **a.** An ability to apply knowledge of mathematics, computing, science and engineering.
- **b.** An ability to conduct experiments to analyze and solve engineering problems.
- **c.** An ability to design hardware and software system, component or process to meet desired needs, within realistic constraints.
- **d.** An ability to identify, formulate and develop solution for complex engineering problems by using the engineering techniques, skills and modern engineering tools.
- e. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- f. An ability to apply ethical principles and commit to professional skills and responsibility.
- **g.** An ability to work with multidisciplinary teams to design, develop and maintain the project by developing professional interaction with each other.
- **h.** An ability to recognize the need for and ability to engage in continuing professional development.
- **i.** Project management techniques and teamwork necessary for successful information engineering technologies, system designs and implementations, and the effective use of communication skills to prepare technical reports, and presentations.

EXAMINATION NOTE:

The Semester question paper of a subject will be of 50 marks having 7 questions of equal marks. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

2.0 Credit System	2.0 Credit System
2.1 All B.E / integrated B.E-M.B.A programmes are organized around semester-based credit system of study. The credit system is based on continuous evaluation of a student's performance/progress and includes flexibility to allow a student to progress at an optimum pace suited to his/her ability or convenience, subject to fulfilling minimum requirements for continuation.	2.1 All B.E / integrated B.E-M.B.A programmes are organized around semester- based credit system of study. The credit system is based on continuous evaluation of a student's performance/progress and includes flexibility to allow a student to progress at an optimum pace suited to his/her ability or convenience, subject to fulfilling minimum requirements for continuation.
2.2 Performance/progress of a student is measured by the number of credits that he/she has earned (completed satisfactorily). Based on the course credits and grades obtained by the student, grade point average is calculated. A minimum grade point average is required to be maintained for satisfactory progress and continuation in the programme. Also a minimum number of earned credits and a minimum grade point average should be acquired in order to qualify for the degree.	2.2 Performance/progress of a student is measured by the number of credits that he/she has earned (completed satisfactorily). Based on the course credits and grades obtained by the student, grade point average is calculated, subject to his qualification of minimum grade in each subject.
 2.3 Course Credit Assignment: Each course has a certain number of credits assigned to it depending on the associated number of lecture, tutorials and laboratory contact hours in a week. A few courses are without credit and are referred to as non-credit (NC) courses. Lectures and Tutorials: One lecture hour or one tutorial hour per week per semester is assigned one credit. Practical / Laboratory Work: One laboratory hour per week per semester is assigned half credit. The credits are rounded off to the nearest whole number. For each lecture or tutorial the self study component is 1 hour/week. 	 2.3Course Credit Assignment: Each course has a certain number of credits assigned to it depending on the associated number of lecture, tutorials and laboratory contact hours in a week. A few courses are without credit and are referred to as noncredit (NC) courses. Lectures and Tutorials: One lecture hour or one tutorial hour per week per semester is assigned one credit. Practical / Laboratory Work: One laboratory hour per week per semester is assigned half credit. The credits are rounded off to the nearest whole number. For each lecture or tutorial the self study component is 1 hour/week
2.4 Earning Credits : At the end of every course, a letter grade is	2.4 Earning Credits : At the end of every course, a letter grade is

awarded in each course for which a student had registered. On obtaining a pass grade (at least 'D' grade), the student accumulates the course credits as earned credits. Performance of a student is measured by the number of credits that he/she has earned and by the weighted grade point average. A student has the option of auditing some courses. Grades obtained in these audit courses are not counted towards the calculation of grade point average. However, a pass grade ('D'grade) is essential for earning credits from an audit course.

3.0 Grading System

3.1 Relative standing of the student in the class shall be clearly indicated by his/her grades. The process of awarding grades shall be based upon fitting performance of the class to a defined statistical model.

3.2 The grades and their respective description , along with grade points are listed in the table given below in Table-1

	Table-1	l
Grade	Grade	Description
	Point	
A+	10	Outstanding
Α	9	Excellent
B +	8	Very Good
В	7	Good
C+	6	Average
С	5	Below average
D	4	Marginal
Е	2	Poor
F	0	Very Poor
Ι	-	Incomplete
NP	-	Audit Pass
NF	-	Audit Fail
W	-	Withdrawal
X	-	Unsatisfactory
S	-	Satisfactory
		Completion
Ζ	-	Course
		continuation

awarded in each course for which a student had registered. On obtaining a pass grade (at least 'D' grade), the student accumulates the course credits as earned credits. Performance of a student is measured by the number of credits that he/she has earned and by the weighted grade point average. Grades obtained in audit courses are not counted towards the calculation of grade point average. However, a pass grade ('D' grade) is essential for earning credits from an audit course.

3.0 Grading System

3.1 The grades and their respective description , along with grade points are listed in the table given below in Table-1

Grade	Grade	Description
	Point	
A+	10	Outstanding
A	9	Excellent
B +	8	Very Good
B	7	Good
C+	6	Average
С	5	Below average
D	4	Marginal
F	0	Very Poor
Ι	-	Incomplete
NP	-	Audit Pass
NF	-	Audit Fail
W	-	Withdrawal
X	-	Unsatisfactory
S	-	Satisfactory
		Completion

4.0 Evaluation System

4.0 Evaluation System

82	< A <	90		4.	≥60 &< 70	В	7	
91	< A+ <	100		3.	≥70 &< 80	B +	8	
in %				2.	≥ 80 &< 90	Α	9	
e marks		in %		1.	≥90	A+	10	
4.2.1 For grades shall the absolute Tab Absolut	less than 15 stu be awarded of marks as show le-2 Grade	udents in a c n the basis o n in Table-2 Absolute	course, the of cutoff in the c	Table-2 Sr. No.	Marks	Grade	Grade Po	
4.2 Statistical Method for the Award of Grades: For the award of grades in a course, all component wise evaluation shall be done in terms of marks. The components include: Midterm-1 and Midterm-2 examinations, Assignments/projects/class presentations/Attendance, and End semester examination as per regulation 4.1. After converting the marks obtained in percentage, the grades will be assigned as per the guidelines given below :			4.2 Method For the av component terms of m Midterm-1 Assignmen presentatio examinatio converting the grades guidelines	ward of grades in wise evaluation s marks. The comp- and Midterm-2 ts/projects/class ns/Attendance, and n as per regulat the marks obtained will be assigne given below :	a course, all hall be done in onents include: examinations, End semester ion 4.1. After in percentage, ed as per the			
Examination to the subject Total score by a studer referred as r Following the assigning normalization standardize	n) with 50 % c ct. on a scale of nt in a subject raw score in tha he concept of r the letter on method the raw score. al Method for t	of total mark 100 i.e. in % shall be hat subject. elative gradi grades, shall be he Award of	6 obtained 6 obtained ence forth ang, before scientific used to 6 Grades:	Examination assigned to appear in secure at semester ex If a candida total End so be awarded	Examination) with 50 % of total marks assigned to the subject. It is compulsory to appear in End Semester Examination and secure at least 20% marks of total End semester exam marks. If a candidate secures less than 20% marks of total End semester exam marks, he/she will be awarded F grade.			
Assignment tests/MCQ quizzes/proj with 20 % o	s/Class proj jects/presentation of total marks as	jects/ sho ons/group d ssigned to the	rt class based liscussions e subject.	Assignmen tests/MCQ quizzes/pro discussions marks assig	ts/Class projects/ pjects/presentations / Attendance with gned to the subject.	/ short class based /group 20 % of total		
There shall student dur purpose, to shall be dist Two Mid s Minor-2) the subject.	be continuo ring the seme tal marks assi ributed as : semester Exam with 30 % of t	us evaluation ester. For igned to each nination (Mi otal marks a	on of the evaluation ch subject nor-1 and assigned to	There shal student du purpose, to shall be dis Two Mid and Minor assigned to these two sessional.	l be continuous ev ring the semester. tal marks assigned tributed as : semester Examin (-2) with 30 % the subject. Best I will be considered	valuation of the For evaluation to each subject ation (Minor-1 of total marks Marks of one of d for award of		
4.1 Continu	ous Assessmen	t :		4.1 Continu	ous Assessment :			

73	< B+ <	81
64	< B <	72
55	< C+ <	63
46	< C <	54
40	< D <	45
35	< E <	39
	F <	35

5.	≥50 &< 60	C+	6
6.	≥45 & < 50	С	5
7.	≥40 &< 45	D	4
8.	<40	F	0

4.2.2 For more than 30 students in a course, the statistical method shall be used for the award of grades. After expressing the score obtained by the students in a course in percentage (X), the class mean (\overline{XX}) and class standard deviation (S) of the marks shall be calculated and grades shall be awarded to a student as shown in Table-3

If X is the raw score in %; $\overline{X}\overline{X}$ is class mean in % and S is class standard deviation in % (based on raw score), N is the number of students in a course, then for the course :

$$\bar{X} = \frac{Sum \ of \ all \ scores}{Number \ of \ Scores} = \frac{\sum_{i=1}^{N} X_{i}}{N}$$
$$S = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

	Table-3	
Lower	Grade	Upper
Range of	Assigned	Range of
Marks(%)	_	Marks (%)
$\overline{X} + 2S$	≤≤ _{A+}	
\bar{X} + 1.5 <i>S</i>	≤≤ A <	$\overline{X} + 2S$
\overline{X} + 1S	≤≤ _{B+ <}	$\bar{X} + 1.5S$
$\bar{X} + 0.5S$	≤≤ B <	$\overline{X} + 1S$
\overline{X}	≤ C+ <	\overline{X} + 0.5 <i>S</i>
$\overline{X} - 0.5S$	≤ C <	x
$\overline{X} - 1S$	≤ D <	$\overline{X} - 0.5S$
$\overline{X} - 1.5S$	≤ _E <	$\overline{X} - 1S$
	< F <	$\bar{X} - 1.5S$
4.2.3 In case, lies between	class student stre 5 and 30, any	ngth in a course of the above

4.2.2 NOT REQUIRED

methods (given in 4.2.1 and 4.2.2) may be used	
for the award of grades.	
4.3 Finalization of Grades	
Finalization of the grades shall be done by the Board of Control of the department/ institute or appropriate body/committee approved by the university for the purpose.	4.2.3 NOT REQUIRED
In order to maintain a normal distribution in grades, following recommendations of UGC shall be kept in view and considered as broad guidelines by the Board of Control of the department/ institute or appropriate body/committee approved by the university for	4.3 NOT REQUIRED
the purpose.	
Grade % of Population Remarks	
A 7 Includes	
A+ and A	
B 24 Includes	
B 24 Includes	
C 38 Includes	
C+ and C	
D 24	
T	
F 7	
* Note: In case Board of Control of the department/ institute or appropriate body/committee approved by the university for the purpose, is convinced on broad variations in grade distribution in a class for a particular subject, B.O.C may make some minor variations	
s while maintaining the grade distribution as	
recommended by the UGC	
recommended by the OOC.	
5.0 Evaluation of Performance	
5.1 The performance of a student shall be evaluated in terms of two indices, viz. Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA). SGPA is the grade point average for the semester, and CGPA is the cumulative grade point average for all the completed semesters at	5.0 Evaluation of Performance
any point in time.	5.1 The performance of a student shall be
The earned credits (E.C) are defined as the sum	evaluated in terms of two indices viz
of course credits for course in which A+ to D	Semester Grade Point Average (SGPA) and

grade has been obtained. For U.G students (B.E), credits from courses in which NP or S grade has been obtained are also added. Points earned in a semester = $\Sigma(Course Credits \ x \ Grade \ Points) for \ courses$ to D grade has been obtained The SGPA is calculated on the basis of grades obtained in all courses, except audit courses and courses in which S/Z grade is awarded, registered for the particular semester. $\Sigma(Course \ Credits \ x \ Grade \ Points)$	Cumulative Grade Point Average (CGPA). SGPA is the grade point average for the semester, and CGPA is the cumulative grade point average for all the completed semesters int anyipbint in time. The earned credits (E.C) are defined as the sum of course credits for course in which A+ to D grade has been obtained. For U.G students (B.E), credits from courses in which NP or S grade has been obtained are also added.	
$SGPA = \frac{\sum (Course Credits) = except andit and S / Z grade Courses}{Semester}$ $SGPA = \frac{Points Secured in the Semester}{Credits Registered the Semester, excluding audit and S / Z grade courses}$	Points earned in a semester = $\sum(Course Credits \ x \ Grade \ Points) for \ courses to D grade has been obtained The SGPA is calculated on the basis of grades obtained in all courses, except audit courses and courses in which S/Z grade is awarded, registered for the particular semester.$	rses in whic
The CGPA is calculated on the basis of all pass grades, except audit courses and courses in which S/Z grade is awarded, obtained in all completed semesters.	$\sum_{Screenter} \left(Course Credits \times Grade Point s \right)_{for all courses except anditions S/2 grade Courses}$ $SGPA = \underbrace{\sum_{Screenter} \sum_{Screenter} \sum_{C \in Course Credits} \sum_{except anditional S/2 grade Courses}} SGPA$ $= \frac{Points Secured in the Semester}{Credits Registered the Semester, excluding audit and S/2 grade courses}$ $The CGPA is calculated as given below :$ $\sum_{screenter} \sum_{screenter} \sum_{screenter$	
grades, except audit courses and courses in which S/Z grade is awarded, obtained in all completed semesters.	$\sum_{Sequester} \left(Course Credits \right) = except outlit and S / Z grade Courses$ SGPA $= \frac{Points Secured in the Semester}{Credits Registered the Semester, excluding audit and S/Z grade courses}$ The CGPA is calculated as given below : $\sum_{All Bonnear} \left(Course Credits \times Grade Points \right) = for all courses with pair grade except and to and S / Z grade Courses$ $CGPA = \sum_{All Bonnear} \sum_{All Bonnear} \left(Course Credits earned \right) = except and to and S / Z grade Courses$	

SCHEME OF EXAMINATION AND SYLLABI FOR B.E. (Information Technology)

<u>3rd – 8th semester for A.S. 2018-19</u>

Teaching Scheme for B.E. Second Year

		Scheme of Teaching			Scheme of Examination		
Subject	Subject Nome				Theory		Dractical
Code	Subject Mame	I_T_D	Contact	Credits	Internal	Univ.	rractical *
			hrs/week	Cicults	Ass.	Exam	
MATHS	Linear Algebra and	4-1-0	5	4	50	50	-
303	Probability Theory						
IT301	Social and	3-0-0	3	3	50	50	-
	Professional Aspects						
	of Information						
	Technology						
IT302	Data Structures	4-0-3	7	4+1	50	50	50
IT303	Digital Electronics	3-1-3	7	4+1	50	50	50
IT304	Computer	3-1-0	4	4	50	50	-
	Architecture &						
	Organization						

*- Note: Marks refer to mid semester evaluation and end semester evaluation

Total Marks: 600

Total Credits: 21

		Schome of Teaching			Scheme of Examination		
Subject	Subject Name	Scheme of Teaching		Theory		Dreatical	
Code	Subject Name	L-T-P	Contact brs/week Credits		Internal	Univ.	*
1100 401		2.0.0	пгѕ./week	2	ASS.	Exam	
HSS-401	Elective- I (from	3-0-0	3	3	50	50	-
	Humanities and						
	Social Sciences)						
MATHS	Discrete Structures	4-1-0	5	4	50	50	
403							
IT401	Microprocessor &	3-1-3	7	4+1	50	50	50
	Assembly						
	Language						
	Programming						
IT402	Computer	3-1-0	4	4	50	50	-
	Networks						
IT403	Operating System	3-1-3	7	4+1	50	50	50
IT404	Web and Open	0-0-3	3	1	-	-	50
	Source						
	Technologies						
IT405	Educational Tour	-	-	-	-	-	-

*- Note: Marks refer to mid semester evaluation and end semester evaluation.

Total Marks: 650

Total Credits: 22

Elective-I (from Humanities and Social Sciences)

- HSS-401a Economics
- HSS-401bIntroduction to Psychology
- HSS-401c Sociology
- HSS-401d Russian Language

Teaching Scheme for B.E. Third Year

		Sahama of Taaahing			Scheme of Examination		
Subject	Subject Norme	Scheme of Teaching			Theory		Practical
Code	Subject Mame	ІТР	Contact	Contact Credita I		Univ.	*
		L-1-F	hrs./week	Creans	Ass.	Exam	
ITE571	Database	4-0-3	7	4+1	50	50	50
	Management Systems						
ITE572	Computer Graphics	4-0-3	7	4+1	50	50	50
ITE573	Multimedia System	4-0-0	4	4	50	50	-
ITE574	Theory of	3-1-0	4	4	50	50	-
	Computation						
ITE575	Internet and Web	4-0-3	7	4+1	50	50	50
	Technology						
ITE576	Industrial	0-0-0	0	1	-	-	50
	Training(after 4 th						
	semester)						

Third Year - Fifth Semester

*- Note: Marks refer to mid semester evaluation and end semester evaluation

Total Marks: 700

Total Credits: 24

Third Year - Sixth Semester

		Scheme of Teaching		Scheme of Examination			
Subject	Subject Nome	Scheme of Teaching		ing	Th		
Code	Subject Maine	L-T-P	Contact hrs./week	Credits	Internal Ass.	Univ. Exam	Practical*
ITE671	Wireless Communication	3-1-3	7	4+1	50	50	50
ITE672	Network Security & Cryptography	3-1-0	4	4	50	50	-
ITE673	Software Engineering	4-0-0	4	4	50	50	-
ITE674	Design and Analysis of Algorithms	4-0-3	7	4+1	50	50	50
ITE 675- ITE 682	Elective -I	4-0-0	4	4	50	50	_

*- Note: Marks refer to mid semester evaluation and end semester evaluation

Total Marks: 600

Total Credits: 22

	Elective -I				
	(Choose any one from the following :)			
Sr	Subject	Subject Code			
No.					
1	Business Intelligence	ITE675			
2	System Software	ITE676			
3	Neural Network and Fuzzy Logic	ITE677			
4	System Analysis and Design	ITE678			
5	Distributed Operating System	ITE679			
6	Network Management and Administration	ITE680			
7	Cyber Crime and Digital Forensic	ITE681			
8	Data Mining and Analytics	ITE682			

Teaching Scheme for B.E. Fourth Year

	Subject Nome	Sahama of Tasahing			Scheme of Examination		
Subject	Subject Ivalle	Sche	ente of Teach	ing	The	ory	Practical
Code		L-T-P	Contact hrs./week	Credits	Internal Ass.	Univ. Exam	*
ITE741	Digital Signal Processing	4-0-3	7	4+1	50	50	50
ITE746	Compiler Design	4-0-0	4	4	50	50	-
ITE754	Agile Software Development	4-0-3	7	4+1	50	50	50
ITE744 ITE745 ITE748	Elective-II	4-0-0	4	4	50	50	-
ITE795	Project-I	0-0-4	4	2	-	-	100
ITE796	Industrial Training (after 6 th Semester)	0-0-0	0	1	-	-	50

Fourth Year - Seventh Semester

*- Note: Marks refer to mid semester evaluation and end semester evaluation.

Total Marks: 650

Total Credits: 21

	Elective Course-II				
	(Choose any one from the following :)			
Sr	Subject	Subject Code			
No.					
1	Cloud Computing	ITE744			
2	Artificial Intelligence	ITE745			
3	Principle of Telecommunication	ITE748			

		Schome of Teaching		Scheme of Examination			
Subject	Subject Name	Scheme of Teaching			Theory		Practical
Code	Subject Ivalle	L-T-P	Contact	Credita	Internal	Univ.	*
			hrs./week	Creans	Ass.	Exam	
ITE841	Digital Image	3-1-3	7	4+1	50	50	50
	Processing						
ITE842	Embedded System	3-1-3	7	4+1	50	50	50
	Design						
ITE843	Java Technologies	4-0-3	4	4+1	50	50	50
ITE845	Elective-III	3-1-0	4	4	50	50	-
ITE847							
ITE848							
ITE897	Seminar	0-0-2	2	1	-	-	50
ITE898	Project II	0-0-4	4	2	-	-	100
Total Marks:700 Total Credits: 22							
OR OPTION – 2							
Sub	Sub Name	Dura	tion (Credits	Int. Ass.	Marks	* Grand
Code							Total
ITE899	Industrial Training	6 mo	nths	22	300	400	700

Fourth Year - Eighth Semester

*- Note: Marks refer to mid semester evaluation and end semester evaluation.

	Elective Course-III (Choose any one from the following :))
Sr No.	Subject	Subject Code
1.	Soft Computing	ITE845
2.	Natural Language Processing	ITE847
3.	Theory of Computation	ITE 848

Student can exercise **option 1 or option 2** according to the following:

A student may opt for one semester training in lieu of subjects of 8th Semester. The marks for six months training will be equal to the total marks of 8th Semester study. A student can opt for six month semester training under following conditions:-

a. The student having any pending reappears in any subject (theory as well as practical) will not be allowed to go for training.

- b. The students scoring less than 6.5 CGPA upto 6th semester will not be allowed to go for training. However, if a student has been placed through campus placement, he/she may be allowed to go for training at that respective company subject to the condition that his/her CGPA is above 6.0.
- c. The students will only be allowed to pursue training in a company in which he/she is placed or company is offering stipend/MNC/Govt. Organization including R&D institutions/PSUs (Not Pvt. Ltd.)
- d. For pursuing this training, student needs the prior approval from the Coordinator/Chairperson of the respective branch/department.

SYLLABUS FOR B.E. (I.T.) THIRD SEMESTER

COURSE INFORMATION SHEET

Course Code	MATHS-303
Course Title	Linear Algebra and Probability Theory
Type of Course	Core
LTP	410
Credits	04
Total Lectures	45
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Nil
Course Objectives	1.To introduce the concept of Linear
	equations and vector spaces.
	2. To introduces the use of Eigen vectors and
	Linear transformations.
	3. To introduce random variables and
	probability theory.
	4. To introduce the use of 2-d random
	variables.
Course Outcomes	Students will be able to
	1. Understand the use of linear algebra
	and linear transformations.
	II Design solutions using matrices and
	n. Design solutions using matrices and
	ergen vectors
	III. Apply probability theory in different engineering problems.
	IV. Understand the use of random variables in different applications.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Systems of Linear equations:

Introduction, Linear equations, solutions, Linear equations in two unknowns, Systems of linear equations, equivalent systems, Elementary operations, Systems in Triangular and

Hours

(05)

echelon form, Reduction Algorithm, Matrices, Row equivalence and elementary row	
operations, Systems of Linear equations and matrices, Homogeneous systems of Linear	
equations. (Scope as in Chapter 1, Sections 1.1-1.10 of Reference 1).	
Vector Spaces:	(05)
Introduction, Vector spaces, examples of vector spaces, subspaces, Linear combinations, Linear spans, Linear dependence and Independence, Basis and Dimension, Linear equationsand vector spaces. (Scope as in Chapter 5, Sections 5.1-5.8 of Reference 1).	
Eigen values and Eigenvectors, Diagonalization:	(04)
Introduction, Polynomials in matrices, Characteristic polynomial, Cayley-Hamilton theorem, Eigen-values and Eigen-vectors, computing Eigen-values and Eigen-vectors, Diagonalizing matrices. (Scope as in Chapter 8, Sections 8.1-8.5 of Reference 1).	
Linear Transformations:	(05)
Introduction, Mappings, Linear mappings, Kernel and image of a linear mapping, Rank- Nullity theorem (without proof), singular and non-singular linear mappings, isomorphisms.(Scope as in Chapter 9, Sections 9.1-9.5 of Reference 1).	
Matrices and Linear transformations:	(05)
Introduction, Matrix representation of a linear operator, Change of basis and Linear operators. (Scope as in Chapter 10, Sections 10.1-10.3 of Reference 1).	
SECTION-B	
Probability	(07)
Sample Space and Events, the Axioms of probability, some elementary theorems, Conditional probability, Baye's Theorem, Random Variables-Discrete and Continuous,	
Independent random variables, Expectation, Variance and Covariance, Means and variances of linear combinations of random variables, Chebyshev's inequality	
Probability Distributions	(07)
Joint Probability distributions, Marginal and Conditional distributions, Binomial, Poisson,	

Uniform and Normal distributions, Normal and Poisson approximations to Binomial, Moments, Moment generating function.

Two Dimensional Random Variables

Joint distributions – Marginal and conditional distributions – Covariance – Correlation andRegression – function of a random variable-Transformation of random variables -Central limit theorem.

(07)

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Shaum's Outline of Theory and	Seymour Lipschutz	McGraw-Hill
	Problems of		
	Linear Algebra		
2	Linear Algebra	VivekSahai, VikasBist	Narosa
			Publishing
			House
3	Introductory Probability and Statistical	P.L.Meyer	Addison-
	Applications		WesleyPublishi
			ng Company
4	Schaum's Outline Series of Theory And	Murray R. Spiegel	McGraw-Hill
	Problems Of Probability And Statistics		

5	Introduction to Probability and	J. S. Milton and J.C.	McGraw Hill
	Statistics	Arnold	
6	Probability and Statistics for Engineers	R.A. Johnson and C.B.	Pearson
		Gupta	Education
7	Fundamentals of Mathematical	S. C. Gupta and V.K.	Sultan Chand
	Statistics	Kapoor	and
			Sons

PO CO	a	b	c	d	e	f	g	h	i
CO1	2	2					1		
CO2	2	2		1			1		
CO3	2	2		1			1		
CO4	1	2		1			1		

Course Code	ITE301
Course Title	Social and Professional Aspects of Information Technology
Type of Course	Core
LT P	300
Credits	03
Total Lectures	45
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	 To familiarize students with social and professional aspects of Information Technology. To provide a basic knowledge on business processes and organization. To develop technical communication skills. Explore the security and legal issues in computing. To develop the understanding of social, professional, ethical issues and responsibility. To aware students with Privacy and Civil Liberties Acts
Course Outcomes	 The students should be able to: Describe the social, ethical &professional aspects of Information Technology. II. Have skills relating to technical writing & effective oral presentation. III. Get knowledge on intellectual Property Rights. IV. Have an update of various Acts relating to Privacy & Civil Liberties.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

Section –A	Hours
Organizational Context:	4
Business processes, Workflow, IT environment, Organizational culture, Organizational structure, professionalism	
Teamwork Concepts and Issues:	3
Colaboration, group dynamics, leadership styles, personality types, collaboration tools	
Professional Communications:	6
Skill of effective oral presentation, efficient technical writing, system documentation, technical requirements	
Security and Legal issues in computing:	9
Data security, system security and network security, GhostNet, cloud computing and security, cyber terrorism, hacktivism, information warfare, Compliance, Hackers/crackers, computer crime, viruses, system use policies and monitoring, risk and liabilities of computer-based systems	

Section –B

Social context of computing:	5
Social informatics, social impact of IT on society, online communities and social	
implications, globalization issues, economic issues in computing, digital divide	
Intellectual Property:	4
Foundations of Intellectual Property, ownership of information, plagiarism, software	
piracy, fair use, Digital Millennium Copyright Act (DMCA), copyrights, patents,	
trademarks and trade secrets, NonDisclosure Agreements (NDAs), International	
differences	
Professional and Ethical Issues and Responsibility:	5
Relationships with Professional Societies, codes of professional conduct, ethics and	
history of ethics, whistle-blowing, workplace issues (harassment, discrimination), identify	
theft, ethical hacking	
Privacy and Civil Liberties	9
Health Insurance Portability and Accountability Act (HIPPA), Family Educational Rights	
and Privacy Act (FERPA), European Union (E. U.) Data Protection, Gramm-Leach-Bliley	
Act	

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	1. Robert McGinn	The Ethically Responsible Engineer: Concepts and Cases for Students and Professionals	John Wiley and Sons Year 2015
2	2. Michael A. Hitt, C. Chet Miller, Adrienne Colella	Organizational Behavior: A Strategic Approach	John Wiley & Sons.
3	Reeves, S., Lewin, S., Espin, S. and Zwarenstein, M., WileyBlackwell,	Interprofessional Teamwork: Key Concepts and Issues, in Interprofessional Teamwork for Health and Social Care.	Oxford, UK.
4	ArunaKoneru,	Professional Communication	Tata McGraw- Hill Education
5.	Penny Duquenoy, Simon Jones, Barry G. Blundell.	Ethical, Legal and Professional Issues in Computing	Cengage Learning EMEA.
6.	Chuck Huff	Social Issues in Computing	Tata McGraw- Hill.
7.	MargrethBarret	Intellectual Property	Aspen Publishers, The Emanuel Law Outline Series.
8.	Robert McGinn	The Ethically Responsible Engineer: Concepts and Cases for Students and Professionals	John Wiley and Sons. Year 2015
9.	Helen Fenwick.	Civil Liberties and Human Rights	Cavendish Publishing. Third Edition

PO CO	a	b	с	d	e	f	g	h	i
C01					2	2			
CO2							2		
CO3								2	
CO4					2				

Course Code	ITE302
Course Title	Data Structures (Theory)
Type of Course	Core
	403
Credits	4
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Object Oriented Programming using C++
Course Objectives	 To provide a knowledge regarding an efficient storage of data for an easy access, how to represent the inherent relationship of the data in the real world for efficient processing of data and management. To teach students various data structures and to explain the algorithms for performing various operations on these data structures. To introduce the fundamentals of Data Structures, abstract concepts and how these concepts are useful in problem solving.
Course Outcomes	 After completion of this course, the students are able to: I. Understand and compute the time and space complexity of algorithms. II. Learn and implement different abstract data types.
	 III. Implement and analyze different searching and sorting algorithms. IV. Apply data structures concepts to solve real life problems.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

Introduction:	(0
Introduction to data structures; Introduction to Algorithms Complexity	
Arrays, Stacks & Queues:	((
Concepts; Basic operations & their algorithms: Transverse, Insert, Delete, Sorting of data in these data structures; Prefix, Infix, Postfix Notations;	
Lists:	
Concepts of Link List and their representation; Two way lists; Circular link list; Basic operations & their algorithms: Transverse, Insert, Delete, Searching and Sorting of data in List; Storage Allocation & Garbage Collection; Linked stack and queues;	(1
Generalized List; sparse matrix representation using generalized list structure;	
GE CELON D	

SECTION-A

SECTION-B

Trees:

Binary Trees and their representation using arrays and linked lists; Trees and their applications; Binary tree transversal; Inserting, deleting and searching in binary trees; Heap & Heap Sort; General Trees; Thread binary tree; Height balance Tree (AVL); B-Tree.

Graphs and their applications:

Graphs; Linked Representation of Graphs; Graph Traversal and spanning forests; Depth first search; Breadth first search.

Sorting & Searching:

Insertion sort; Selection sort; Merging; Merge sort; Radix sort; Sequential & Binary Search; Indexed Search; Hashing schemes; Binary search Tree.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Data Structure Using C and C++	A. Tanenbaum, Y.	Prentice Hall
		Langsam, M. J. Augenstein	of India
2	Theory and problems of Data Structures	Seymour Lipschutz	McGraw Hill
3	Data Structures & Program Design	Robert L. Kruse	Prentice Hall
			of India

PO CO	a	b	С	d	Ε	f	g	h	i
CO1	1	1	1	1					
CO2	1	2	1	1					
CO3	1	2	1	1					
CO4	2	2	1	1					

Hours

)

(08)

(08)

(10)

ructures (Practical)
Driented Programming using C++
impart knowledge about developing rsive as well as non-recursive rithms and to gain the knowledge of erent data structures. The able to Choose the appropriate data cture and algorithm design method a specified application and to develop s to design and analyze simple linear non linear data structures, strengthen the ability to identify and y the suitable data structure for the en real world problem and to gain wledge in practical applications of

SYLLABUS

List of Programs:

- **1. Implementation of Array Operation:** Traversal, Insertion & Deletion at and from a given location; Sparse Matrices; Multiplication, addition.
- **2. Stacks**: Implementation of Push, Pop; Conversion of Infix expression to Postfix, Evaluation of Postfix Expressions.
- 3. Queues: Adding, Deleting Elements; Circular Queue: Adding and Deleting elements.
- **4. Implementation of Linked Lists**: Inserting, deleting, inverting a linked list. Implementation of stacks and queues using linked lists; Polynomial addition, Polynomial multiplication.
- **5. Trees**: Implementation of Binary & Binary Search Trees, Recursive and Non-Recursive traversal of Tress.
- 6. Graphs: BFS & DFS
- 7. Implementation of sorting and searching algorithms.
- 8. Hash Tables Implementation: Searching, inserting and deleting, searching & sorting techniques.

Course Code	ITE303
Course Title	Digital Electronics (Theory)
Type of Course	Core
LT P	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basics of Electronics Communication
Course Objectives	The objective of this course is that students
	are able to understand, analyze and design
	combinational and sequential circuits by
	applying the concepts of digital electronics.
Course Outcomes	After completion of this course, the students
	are able to:
	I. Apply the concepts of digital
	electronics like Boolean algebra, Logic
	gates, K-Maps, Flip flops,
	Multiplexers; and be able to convert
	among various Number systems.
	II. Analyze and design Combinational and
	Sequential circuits.
	III. Understand the concepts of Data
	converters; Memories and their types.
	IV. Learn the characteristics of Digital
	Logic Families and be able to design
	various gates using them.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A Hours

Introduction(10)Representation of Logic, Logic Variables, Boolean Algebra, Boolean Expressions and
minimization of Boolean expression using K-Map, Review of Logic Gates & Flip-
flops, design & Implementation of Adder, Subtractor, Multiplexer, DeMultiplexer,
Encoder, Decoder, ROM, Digital Comparators, Code Converters(07)Number Systems and Codes
Decimal, Binary, Hexadecimal, Octal's complement, 2's complement, addition and
subtraction, weighted binary codes, Error detecting codes, Error correcting codes,
Alphanumeric codes.(07)

Counters & Shift Registers

(07)

Ripple Counters, Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without lockout conditions, design of shift registers with shift-left, shift-right & parallel load facilities, Universal shift Registers.

SECTION-B

Data Converters	(07)
Sample & Hold switch, D/A converters: weighted type, R-2R Ladder type; A/D	
Converters: Counter-Ramp type, Dual Slope Type, Successive approximation type,	
flash type; Specifications of ADC & DAC	
Digital Logic families	(06)
Characteristics of digital circuits: fan in, fan-out, power dissipation, propagation delay,	
noise margin; Transistor-transistor Logic(TTL), TTL NAND Gate with active pull up,	
its input and output Characteristics, MOS and CMOS. Comparison of Characteristics	
of TTL, ECL, MOS & CMOS logic circuits	
Semiconductor Memories & Programmable Logic	(04)
ROM, PROM, EPROM, EEPROM; RAM: Static RAM, Memory Organization,	
Reading, & Writing Operation in RAM, PLA, PAL & FPGA.	
Synchronous sequential logic	(04)
Sequential circuits, State Reduction and Assignment, Design Procedure.	

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Digital Electronics – An introduction	William H. Gothmann	Prentice Hall of
	to theory and practice, 2 nd Edition		India
2.	Modern Digital Electronics	R.P.Jain	Tata McGraw-
			Hill
3.	Digital Integrated Electronics	Herbert Taub& Donald	Tata McGraw-
		Schilling	Hill
4.	Integrated Electronics	Millman&Halkias	Tata McGraw-
			Hill
5.	Digital System Principles &	R J Tocci	Prentice Hall of
	Applications		India
6.	Digital Logic Design	Morris Mano	Pearson
			Education

РО СО	a	b	С	d	e	f	g	h	i
CO1	2	1	1	1					
CO2	1	2	2						
CO3	1		1						
CO4		1	1						

Course Code	ITE303
Course Title	Digital Electronics (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Basics of Electronics Communication
Course Objectives	The aim of this course is to provide an understanding of the fundamentals of digital logic design to the students through practical training. The student is given hands-on- experience on the usage of ICs and design of circuits using gates, flip-flops, multiplexers so as to enhance the theoretical study of the subject.

SYLLABUS

List of Experiments:

- To verify truth tables of various gates: AND, OR, NOR, NAND, NOT and XORusing their respective ICs.
- To design and implement various gates using NAND as Universal Gate
- To design and implement various gates using NOR as Universal Gate
- To design and test the truth table of Half adder and Full adder.
- To design and test the truth table of Half Subtractor and Full Subtractor
- To design and test circuit which converts binary number to its gray code (and vice versa).
- To Verify the truth tables of various flip flops: RS, D, JK and T Flip Flops
- Design & implement circuits using Multiplexers.
- To verify the truth table of Multiplexers/ Demultiplexers using ICs.
- To Design & implementation of Asynchronous counter.
- To Design & implementation of synchronous counter.
- To Design and implement shift register.
- To design and implement circuit for given state diagram using various flip flops

Course Code	ITE304
Course Title	Computer Architecture & Organization
	(Theory)
Type of Course	Core
LTP	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology,
	Basics of Electronics Communication
Course Objectives	 To understand instruction execution through instruction cycles, basic concept and implementation of interrupts, I/O control and data transfers, functioning of ALU and control unit. To understand instruction set design, pipelining, RISC architecture and superscalar architecture as well as different mechanisms used for read/ write operations in the memory design.
Course Outcomes	 After completion of this course, the students are able to: Understand the basics of major components of a computer including CPU, memory, I/O, and parallel processing. Analyze the concepts of I/O organization, CPU instruction set and addressing modes. III. Understand the concepts of computer arithmetic & control design. IV. Analyze the design concepts of control unit, accumulator logic etc.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Destan Methedelean
Design Methodology
System design, Design levels- Gate level, Register level, Processor level.
Basic Computer Organization & Design
Instruction codes, common bus system, computer instruction, Design of basic
computer, Design of accumulator logic.
Control Design
Basic concepts, Hardwired control, Micro programmed control, Design of control unit.
Central Processing Unit
Introduction, General reg. Organization, Inst. Formats Addressing modes, Data transfer
& manipulation, RISC & CISC Characteristics.

SECTION-B

Input-Output Organization	(06)
I/O interface, Modes of transfer, Priority interrupts, DMA, I/O processor.	
Memory Organization	(06)
Memory hierarchy, Main memory, Auxiliary memory, Associative memory. Cache	
memory, virtual memory, Memory management H/W.	
Parallel Processing	(05)
Introduction, Multiprocessors, Interconnection structure.	

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Computer Architecture & Organization	J.P Hayes	Tata McGraw
			Hill
2	Computer System Architecture	Morris Mano	PHI
3	Advanced Computer Architecture	Kai Hwang	Tata McGraw
			Hill
4	Computer Organization and Architecture	William Stallings	PHI

PO CO	a	b	c	d	e	f	g	h	i
CO1	2		1		1				1
CO2	2	1	1	1					
CO3	2	1			1				
CO4	2	1			1				

Hours

SYLLABUS FOR B.E. (I.T.) FOURTH SEMESTER

COURSE INFORMATION SHEET

Course Code	HSS-401a			
Course Title	Economics (Theory)			
Type of Course	Elective			
	300			
Credits	03			
Total Lectures	45			
Course Assessment Methods:				
End Semester Assessment (University Exam.)	50			
Continuous Assessment (Sessional)	50			
Course Prerequisites	Nil			
Course Objectives	1. To make students understand how			
	society manages its scarce resources for			
	achieving maximum satisfaction			
	2 To make students learn about economic			
	2. To make students learn about economic			
	aspects related to a consumer, mm,			
	market and economy.			
Course Outcomes	After completion of this course, the students			
	are able to:			
	I. Apply engineering knowledge to			
	maximize profit, satisfaction and			
	welfare.			
	II. Identify the forces that affect the			
	economy.			
	III. Learn entrepreneurial skills and			
	analyze the concepts of demand and			
	Supply.			
	IV. Develop analytical skills in students to			
	understand different markets.			

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Introduction to Economics

Nature of Economics, Economic Thoughts, Economic Activities, Relationship of Economics with other Social Sciences and Engineering

Theory of Consumer Behaviour

Demand: Types, Law of Demand, Determinants of Demand and Change in Demand Elasticity of Demand: Nature, Degrees, Types Measurement and Factors Affecting Elasticity of Demand and its Application

Laws of Consumption: Concept and Applicability of Law of Diminishing Marginal Utility and Law of Equi-Marginal Utility

Hours

(06)

(12)

Theory of Production and Cost

Cost: Types of Costs, Production: Law of Variable Proportion, Returns to Factor and Returns to Scale, Economies and Diseconomies of Scale

SECTION-B

Theory of Market (08) Nature and Relevance of Perfect Competition, Monopoly and Monopolistic Competition **Basic Concepts of Macro Economics** National Income: Concept and Measurement, Determination of Equilibrium of Income Inflation: Concept, Causes and Effect of Inflation, Measures to Control Inflation **Project Presentations**

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Modern Economics	H. L. Ahuja	S. Chand & Co. Ltd
2.	Economics For Engineers	M.L. Gupta. & S.P. Gupta	ESS PEE
			Publications
3.	Business Economics	H.L. Ahuja	S. Chand & Co. Ltd
4.	Macro Economic Theory	M.L. Jhingan	Konark Publisher
			Pvt. Ltd
5.	Principles of Microeconomics	J. Stiglitz& Carl E Walsh	W.W. Norton &
			Company
6.	Principles of Economics	Mankiw N Gregory	Cengage Learning
7.	Course in Micro Economics Theory	A. Kreps	Prentice Hall
8.	Economics	Samuelson A. Paul	Tata McGraw Hill
		&Nordhaus D William	
9	Microeconomics	H. Gravelle& R. Reiss	Pearson Education
10	Macro Economics: Theory and	H. L. Ahuja	S. Chand & Co.
	Practice		Ltd.
11	Economics for engineers	T.R Jain, M.L Grover &	V.K Publications
		V.K Ohei	

PO CO	a	b	с	d	e	f	g	h	i
CO1	2		2	1	1			2	
CO2					1	1		1	
CO3					1			1	
CO4					1		1	1	

(09)

(04)

(06)

Course Code	HSS-401b		
Course Title	Introduction to Psychology (Theory)		
Type of Course	Elective		
	300		
Credits	03		
Total Lectures	45		
Course Assessment Methods:			
End Semester Assessment (University Exam.)	50		
Continuous Assessment (Sessional)	50		
Course Prerequisites	Nil		
Course Objectives	1. To provide knowledge and		
	understanding about important concepts		
	in Psychology.		
	2 To make students learn the application of		
	2. To make students found the application of		
Course Outcomes	After completion of this course, the students		
Course Outcomes	After completion of this course, the students		
	I Learn the courses and dynamics of		
	1. Learn the causes and dynamics of		
	II Apply psychological principles to		
	anhance their personal and		
	professional life		
	III Develon leadership and managerial		
	qualities into the students		
	IV Understand the importance of work		
	life balance and workplace		
	spirituality.		

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
-----------	-------

Understanding Human Behaviour: Definition, methods, branches and application of	(05)
psychology for engineers	
Measuring Human abilities: Intelligence, theories and assessment	(06)
The individual working life: Personality, approaches and trait theories	(06)
Psychological problems of everyday life: Stress and coping	(06)

SECTION-B

Work and mental health, workplace spirituality Motivation : the concept and theoretical framework, motivating people at work	(05) (05)
Group dynamics, Intergroup relations, conflict and negotiation	(07)
Leadership and Management	(05)

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	G.E. Psychology 2007 Edition	Ciccarelli, S.K., & Meyer	Pearson
2.	OrganisationalBehaviour 2010 Edition	M. Parikh & R. Gupta	Tata McGraw
			Hill Education
3.	Introduction to Psychology 1986 Edition	C.T. Morgan, R.A. King,	McGraw-Hill
		J.R.Weiss& J. Schopler	
4.	Organizational Behavior 2003 Edition	S.P. Robbins	Prentice Hall
			of India
5.	Organizational Behavior 2010 Edition	F. Luthans	McGraw Hill

PO CO	a	b	c	d	e	f	g	h	i
CO1					1	1		1	
CO2						1		2	
CO3						1		2	1
CO4						1	1		

HSS-401c		
Sociology (Theory)		
Elective		
300		
3		
15		
50		
50		
Vil		
1. To make the students understand the role		
of theory in social sciences.		
2. To explain students how social problems		
interact and react with the larger society.		
3 To make students learn whether the		
problem is evaluated on the macro or		
problem is evaluated on the macro of		
inicro perspective and their cause and		
effect patterns.		
After completion of this course, the students		
re able to:		
I. Identify the function and application		
of sociology theory in social sciences.		
II. Understand how social class affects		
individual life chances.		
III. Learn about social structure and how		
it snapes and influences social		
interactions.		
V Approise about seeds machines and		

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
-----------	-------

Sociology – The Discipline	(03)
Sociology as a Science, Impact of Industrial and French Revolution on the Emergence	
of Sociology, Relevance of Sociology for Engineering	
Basic Concepts	(04)
Society, Association, Institution, Culture Relativism, Social Structure, Social System,	
Socialisation, Competition, Conflict, Accommodation, Social Mobility	
Pioneering Contributions to Sociology	(04)

Seminal Views of Karl Marx, Emile Durkheim, Max Weber, AlwinToeffler
Evolution of Society (05)
Primitive, Agrarian, Industrial and Post-Industrial, Features of Industrial and Post-
Industrial Society, Impact of Automation and Industrialization on Society
Economy and Society (05)
Economic Systems of Simple and Complex Societies, Sociological Dimensions of
Economic Life, Market (free) Economy and Controlled (planned) Economy
SECTION-B
Industrial Sociology (04)
Nature and Scope of Industrial Sociology, Pre-Conditions and Consequences of
Industrialization
Science and Technology (04)
Ethos of Science and Social Responsibility of Science
Social Change (05)
Theories of Change, Factors of Change, Directed Social Change, Social Policy and
Social Development, Social Cost Benefit Analysis, Role of Engineers in Development
Understanding Indian Society (07)
Traditional Hindu Social Organization, Caste System, Agrarian Society in India, Social
Consequences of Land Reforms and Green Revolution, Working of the Democratic
Political System in a Traditional Society, Problem of Education in India, Gender
Discrimination, Economic Reforms: Liberalization, Privatization and Globalization,
Strategies for Development in India
Social Problems (04)
AIDS, Alcoholism, Drug Addiction, Corruption

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER						
No.									
1.	Sociology	RanjayVardhan and s.	New Academic						
		Kapila	Publishing						
2.	Sociology: Themes and Perspective	M. Haralambos	Collins Educational						
			Publications						
3.	Sociology of Indian Society	C.N. Rao Shankar	Sultan Chand and						
			Co.						
4.	Introduction to Sociology	VidyaBhushan and D.R.	KitabMahal						
		Sachdeva	Publications						
5.	Sociological Thought	Francis Abraham and J.H.	Macmillan India						
		Morgan	Ltd.						
6.	Social Problems	EtzioniAmitai	Prentice Hall						
7.	Industrial Sociology	Scheneider	Tata McGraw Hill						
8.	Society in India	David Mandilbaum	Popular						
			Publications						
9.	Sociology	L. Broom , P. Selznick	Harper						
		and D. Dorrock	International						
			Publishing House						
РО	а	b	c	d	e	f	g	h	i
-----	---	---	---	---	---	---	---	---	---
со									
CO1					2	1			
CO2					1			1	
CO3						1			
CO4					2		1	1	

Course Code	HSS-401(d)
Course Title	Russian Language
Type of Course	Elective
LT P	300
Credits	3
Course Assessment Methods	
End Semester Assessment (University	50
Exam.)	
Continuous Assessment (Sessional,	50
Assignments, Quiz)	
Course Prerequisites	Nil
Course Objectives (CO)	
Course Outcome	

SYLLABUS

Note: The Semester question paper of a subject be of 50 Marks having 7 questions of equal marks. First question, covering the whole syllabus and having questions of conceptual nature, be compulsory. Rest of the paper will be divided into two sections having three questions each and the candidate is required to attempt at least two questions from each section.

Section-A

The Russian Alphabet, consonants, vowel, words, stress, sentence patterns.(4)Grammar: Noun, gender, personal pronoun, the conjunction conjugation of verbs, number(5)(singular-plural), possessive pronoun, adverbs, translation (Russian to English & vice-versa)(5)

Hours

Section-B

Irregular plurals, Imperative mood, demonstrative pronoun, declaration of noun (nominative (4) case, prepositioned case, the past tense, reflexive verbs, adjectives. Translation (Russian in to English & Vice-versa.)

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	"Russian"	Wagner (Part-A-Lesson 1 to n10 and Part-B Lesson 11 to 15)	

Course Code	MATHS-403
Course Title	Discrete Structures (Theory)
Type of Course	Core
	410
Credits	04
Total Lectures	45
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Nil
Course Objectives	1. To get familiar and understand the
	fundamental notions in discrete
	mathematics.
	2. To introduce the knowledge of core
	mathematical foundation of computer
	science.
	3. Be exposed to concepts and properties of
	algebraic structures such as semi groups,
	monoids and groups.
	4. Be aware of the counting principles.
	5. To introduce the basic properties of graphs
	and trees and model simple applications.
Course Ontermore	Studente will be able to
Course Outcomes	Students will be able to
	I. Get fammar and understand the
	fundamental notions in discrete
	mathematics.
	II Acquire the knowledge of core
	II. Acquire the knowledge of core
	science.
	III Aware of the counting principles
	hasia properties of graph trees and
	basic properties of graph, trees and
	model simple applications.
	IV Exposed to concepts and properties of
	algebraic structures such as seri-
	argeoraic suuciules such as selli
	groups, monoids and groups.
Credits Total Lectures Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional) Course Prerequisites Course Objectives	04 45 50 50 50 50 Nil 1. To get familiar and understand the fundamental notions in discrete mathematics. 2. To introduce the knowledge of core mathematical foundation of computer science. 3. Be exposed to concepts and properties of algebraic structures such as semi groups, monoids and groups. 4. Be aware of the counting principles. 5. To introduce the basic properties of graphs and trees and model simple applications. Students will be able to I. Get familiar and understand th fundamental notions in discret mathematics. II. Acquire the knowledge of cor mathematical foundation of compute science. III. Aware of the counting principles basic properties of graph, trees an model simple applications. IV. Exposed to concepts and properties of algebraic structures such as sem groups, monoids and groups.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two

SECTION-A

Sets, Relations and Functions: Definition of sets, product sets and partitions, Relations (14) and digraphs, matrix of a relation, paths in relations and digraphs, equivalence relations and partitions, operations on relations, transitive closure and warshall's algorithm. (Scope as in Chapter 4, Sections 4.1 - 4.7 of Reference 2).

Functions, One-to-one and onto functions, Special functions. The pigeon hole principle. Function composition and inverse functions (Scope as in Chapter 5, Sections 5.1 - 5.6 of Reference 1).

Partially ordered sets; Extremal elements of Partially ordered sets, Lattices, Linearly ordered sets. (Scope as in Chapter 6, Sections 6.1 - 6.3 of Reference 1).

Fundamentals of Logic: Basic connectives and truth tables, Logical equivalence, The (08) laws of logic, Logical implication, Rules of Inference, Use of Quantifiers, Definitions and Proofs of Theorems (Scope as in Chapter 2, Sections 2.1 - 2.5 of Reference 1).

SECTION-B

Principles of Counting: Rule of Sum and Product, Permutations, Combinations, (09) Combinations with repetition (Scope as in Chapter 1, Sections 1.1 - 1.4 of Reference 1).

The principle of Inclusion and Exclusion, Generalizations, Derangements (Scope as in Chapter 8, Sections 8.1 - 8.3 of Reference 1).

Generating Functions: Definitions and Examples: Calculation Techniques, Partitions of Integers, The exponential generating function, The summation operator (Scope as in Chapter 9, Sections 9.1 - 9.5 of Reference 1).

Recurrence relations: The first order linear recurrence relation, The second order linear homogeneous recurrence relation with constant coefficients, The non homogeneous recurrence relation, The method of generating functions (Scope as in Chapter 10, Sections 10.1 - 10.4 of Reference 1).

Graph Theory: Definitions and examples, Subgraphs, Complements and Graph (05) Isomorphism, Vertex degree: Euler trails and circuits, Planar Graphs, Hamilton Paths and Cycles, Graph colouring and Chromatic polynomials (Scope as in Chapter 11, Sections 11.1 - 11.6 of Reference 1).

Groups Theory: Definition and elementary properties of groups, subgroups, Homomorphism, Isomorphism and Cyclic groups, Cosets and Lagrange's Theorem (Scope as in Chapter 16, Sections 16.1 – 16.3 of Reference 1).

Introduction to Rings and Fields (definitions, examples and basic properties) (Scope as in Chapter 14, Sections 14.1-14.2 of Reference 1)

Hours

(09)

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Discrete and Combinatorial	Ralph P. Grimaldi	Pearson
	Mathematics		Education, 4 th
			Edition
2	Discrete Mathematical Structures	B. Kolman, R. C. Busby	Pearson
		and S. C. Ross	Education, 5 th
			Edition
3	Elements of Discrete Mathematics	C.L.Liu, D P Mohapatra	Tata McGraw
			Hill
4	Discrete Mathematics for Computer	J. L. Mott, A. Kandel, T.	Prentice-Hall of
	Scientists and Mathematicians	P. Baker.	India, 2 nd
			Edition
5	Discrete Mathematics and	K.H.Rosen	Tata McGraw
	applications		Hill
6	Discrete Mathematics	S. Lipschutz, M. Lipson	Schaum's
			Outlines, Tata
			McGraw-Hill,
			2 nd Edition

PO CO	a	b	С	d	e	f	g	h	i
CO1	1	1		1					
CO2	2	2		2					
CO3	1	1		1					
CO4	1	1							

Course Code	ITE401
Course Title	Microprocessor & Assembly Language
	Programming (Theory)
Type of Course	Core
LTP	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Digital Electronics, Computer Architecture
_	and Organization
Course Objectives	To understand and apply the concepts of
	8085 Microprocessor so as to prepare the
	graduates to write assembly language
	programs for solving various problems.
Course Outcomes	After completion of this course, the
	students are able to:
	I. Understand the architecture of 8085
	and its interfacing with Memory and
	peripheral I/O devices.
	II. Apply the concepts of
	microprocessor to write assembly
	language programs using 8085
	programming instructions.
	III. Analyze the operation and time
	delays caused by loop counters.
	IV. Understand and apply the concept
	of stacks, subroutine, interrupts and
	various Programmable Peripheral
	devices.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A Hours

Microprocessor Architecture and Microcomputer Systems:	(06)
Microprocessor Architecture, The 8085 MPU: Block Diagram, Pin Diagram,	
Address/Data Buses, Concept of de-multiplexing of Buses, Control and status	
signals, Registers, Ports, Flags, Instruction Decoding and Execution, memory	

Interfacing..

Interfacing I/O Devices Basic Interfacing Concepts, Interfacing Output Displays, Interfacing Input Devices, Memory- Mapped I/O	(06)
Programming the 8085: Introduction to 8085 Assembly Language Programming, The 8085 Programming	(07)
Model, Instruction Classification, Instruction Format. Data Transfer (Copy) Operations, Arithmetic Operations, Logic Operations, Branch Operations, Writing Assembly Language Programs.	
Programming Techniques with Additional Instructions:	(06)
Programming Techniques Looping, Counting and Indexing, Additional Data	
Transfer and 16-Bit Arithmetic Instructions, Arithmetic Operations Related to	
Memory, Logic Operations.	
SECTION-B	
Counters and Time Delays:	(06)
Counters and Time Delays, Hexadecimal Counter, Modulo Ten, Counter,	
Generating Pulse Waveforms, Debugging Counter and Time-Delay Programs.	
Stack and Subroutines:	(04)
Stack, Subroutine, Conditional Call and Return Instructions	
Interrupts:	(03)
The 8085 Interrupt, 8085 Vectored interrupts.	
General –Purpose Programmable Peripheral Devices:	(07)
Block Diagram, Working and Control word of: The 8255A Programmable	
Peripheral Interface, The 8259 A Programmable Interrupt Controller,	
Programmable communications interface 8251.	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Microprocessor Architecture,	Ramesh	PHI
	Programming and Applications with the	S.Gaonkar	
	8085		
2	Advanced Microprocessors &	Badri Ram	Tata McGraw Hill
	Interfacing		
3	Microprocessor Principles and	Charles	Tata McGraw Hill
	Applications	M.Gilmore	
4	Microprocessors and Interfacing	Douglas V.	Tata McGraw Hill
	programming and Hardware	Hall	

PO CO	a	b	С	d	e	f	gg	h	i
CO1	2	2	1	1					
CO2	2	2	2	2			1		1
CO3	2		1						
CO4		1	2						

Course Code	ITE401
Course Title	Microprocessor & Assembly Language
	Programming (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Digital Electronics, Computer Architecture
-	and Organization
Course Objectives	To develop, key-in, test and troubleshoot the
	assembly language program and machine
	level program on 8085 kits.

SYLLABUS

- Familiarization of 8085 kits.
- Application of assembly language using 8085 instructions set to develop various programs.

Course Code	ITE402
Course Title	Computer Networks (Theory)
Type of Course	Core
LTP	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology, Basics of Electronics Communication
Course Objectives	 This course is to provide students with an overview of the concepts of data communication and computer networks. The main course objectives are: 1. Familiarize the student with the basic taxonomy, terminology and functioning of computer networks. 2. Building an understanding of various existing protocols for data communication in computer networks.
Course Outcomes	 After completion of this course, the students are able to: Understand basic concepts of computer network including various, reference models and protocols, propagation media Apply the knowledge of different techniques of flow control and error control during data transmission and illustrate various protocols of data link layer and MAC sub-layer. III. Learn the functioning of network and transport layer. IV. Analyze the functioning of application layer protocols.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

Introduction:	(08)
Basic concepts of computer networks,; Network Hardware: LAN, MAN, WAN,	
Wireless networks, Internet; Network Software: Layer, Protocols, interfaces and services; Reference Model: OSI/TCP/IP and their comparison.	
Physical Layer:	(08)
Multiplexing, Line coding techniques, Transmission media: Magnetic, Twisted pair, coaxial cable, fiber optics, wireless transmission (radio, microwave, infrared, light wave). Switching: Circuit Switching & Packet Switching. Cellular radio and communication satellites.	
Data Link Layer:	(09)
Framing, Error control: Error correction & Detection, sliding window protocols (one bit, Go back n, selective repeat), Medium Access Sub layer: Channel Allocation, MAC protocols -ALOHA, CSMA protocols, Collision free protocols, IEEE 802.3, 802.4, 802.5 standards and their comparison.	
SECTION-B	
Network Laver:	(09)

Network Layer:

Design issues, routing algorithms (shortest path, flooding, flow based, distance vector, hierarchical, broadcast, multicast).

Congestion control algorithms (Leaky bucket, Token bucket, Choke, Packet, Load shedding), IPV4, IP addressing, IPV6.

Transport Layer:

Addressing, establishing and releasing connection, flow control & buffering, multiplexing, crash recovery, Internet Transport protocol (TCP and UDP).

Application Layer:

Network Security; Domain Name System; Simple Network Management Protocol; Electronic Mail.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	. Computer Networks, 4 th Edition	Andrew S. Tanenbaum	Prentice Hall
			of India
2	Data and Computer Communications	William Stallings	Prentice Hall
			of India
3	Data Communication and Networking	Behrouz A Forouzan	Tata McGraw
			Hill
4	Design & Analysis of Computer	Vijay Ahuja	McGraw Hill
	Communication Networks		
5	Data Communications and Networks	Douglas E. Coomer	Prentice Hall
			of India

(05)

(06)

PO CO	a	b	С	D	e	f	g	h	i
CO1	2								
CO2	2	1	1						
CO3	2	1	1						
CO4	1	1	1	1					

Course Code	ITE403
Course Title	Operating System (Theory)
Type of Course	Core
	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	 To study and understand main components of operating system, their working, and operations performed by operating system. To provide students knowledge on: resource management provided by operating systems, concepts and theories of operating systems, implementation issues of operating systems. To be able to understand description of multiprocessor and distributed operating system and different operating system and compare their features.
Course Outcomes	After completion of this course, the students are able to:
	 I. Understand the design of operating systems and its services. II. Learn the concepts of process management by understanding scheduling and synchronization III. Illustrate different approaches to memory management and the concept of data input/output, file management and learn how to use the disc space efficiently for data storage IV. Analyze the services provided by distributed operating system and compare various Operating systems like UNIX, WINDOWS, and SOLARIS etc.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Basic Functions and Concepts of Operating Systems:

Concept of an operating systems, batch system, Multi-programmed, Time sharing, Personal Computer System, Parallel system, Real time system, General system Architecture.

Features and Objectives of Operating Systems:

System components, operating system services, System calls, System Programs, System Structure, System design and implementation. Concept of process, process states, process state transition, process control block, operations of processes, concurrent processes, deadlocks, scheduling algorithms, scheduling criteria, Process Synchronization.

Memory Management:

Logical and physical address space, storage allocation and management techniques, swapping, concepts of multi programming, paging, segmentation, virtual storage management strategies, Demand Paging, Page Replacement Algorithms, and Thrashing.

SECTION-B

Information Management:

File concept, Access method, Directory structure, Protection File system structure, Allocation methods, Free space management, Directory implementation, Disk structure,

Disk Scheduling, Disk management, Swap space management.

Distributed-System Structures:

Network operating system, Distributed operating systems, Remote services, Robustness, Design Issues.

Distributed file systems and Distributed Coordination:

Naming and Transparency, Remote file Access, Stateful versus stateless service, File replication, Event ordering, Mutual Exclusion, Atomicity, Concurrency control, Deadlock Handling, Election Algorithms, Reaching Agreement.

Case Studies:

Unix O.S. Architecture, Operating system services, user perspective, representation of files in Unix system processes and their structure, Input-output system, Memory management, Unix shell, history and evolution of Unix system.

Hours

(05)

(11)

(06)

(06)

(06)

(06)

(05)

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Operating Systems, 5 th Edition	Galvin &Silberschatz	Addison
			Wesley
			Publishing Ltd
2	An Introduction to Operating System,	Harvey M. Deitel	NarosaPublishi
	3 rd Edition		ng House
3	Operating Systems: Design and	Andrew S. Tanenbaum	PHI
	implementation, 3 rd Edition		
4	Operating system, 5 th Edition	Millan Milankovic	McGraw Hill

PO CO	а	b	С	d	e	f	g	h	i
CO1			1		1			1	
CO2	1	1	2	2					
CO3	2	1	2	2					
CO4	1	1	1	2	1			1	

Course Code	ITE403
Course Title	Operating System (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamental. Object Oriented
	Programming using C++
Course Objectives	1. To teach students about various
	operating systems including Windows, and UNIX.
	2. To be able to students learn about
	systems configuration and
	administration. Students learn, explore
	and practice technologies related to
	UNIX.

SYLLABUS

List of Practicals:

- 1. Implement various CPU scheduling algorithms.
- 2. Write program to implement banker's algorithm for deadlock prevention.
- 3. Write programs to implement Page replacement algorithms.
- 4. Write an algorithm and program to implement Disc scheduling.
- 5. Installation of the Linux operating system
- 6. Using basic commands-man, who, more, pipe, finger, cat, redirect, ls, cp, mv, rm.Working with directory and plain files-pwd, cd, mkdir, rmdir, lp, wc, date, cal, sort, diff, uniq and grep commands.
- 7. Using miscellaneous commands-head, tail, cut, copy, paste, spell, find and bc.
- 8. Working with shell scripts under Korn Shell and using shell variables, print, chmod and calendar commands.
- 9. Using quotes, relational operators, command substitution, arithmetic functions, shell control statements such as for-in, if-then-elseif-else, while,case,date and script.
- 10. Working under the Bourne shell-shell scripts, control statements such as test, for, for in, ifthen-else-fi, -if-then-elif-fi, while,until, case, relational operators and expressions.

Course Code	IT404
Course Title	Web and Open Source Technologies
	(Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamental, Object Oriented
	Programming using C++
Course Objectives	To enable students to get practical
	knowledge about various web and open
	source technologies like HTML, JavaScript,
	PHP, etc.

List of Practical

- 1. Introduction to HTML and its structure
- 2. To study various text formatting tags and attributes in HTML
- 3. To study various types of linking of documents in HTML
- 4. To study image maps in HTML
- 5. To study frames in HTML
- 6. To study various types of lists in HTML
- 7. To study table tag and its attributes in HTML
- 8. To study HTML Form element and its methods and attributes
- 9. Introduction about stylesheets and its types along with implementation
- 10. To study dialog boxes in JavaScript
- 11. To study and implementation of cookies in JavaScript
- 12. Introduction to browser objects in JavaScript
- 13. Building of web forms using HTML elements, JavaScript and CSS
- 14. Introduction to PHP, its installation and configuration
- 15. To study data types, variables and operators in PHP
- 16. To study loops and control structures in PHP
- 17. To study arrays, its types and array sorting in PHP
- 18. To study file handling in PHP
- 19. To study working of cookies and sessions in PHP
- 20. To design and build web forms using HTML elements, JavaScript and CSS in PHP

Course Code	ITE405
Course Title	Educational Tour
Type of Course	Core
LTP	000
Credits	Non- Credit
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment	00
Course Prerequisites	Nil
Course Objectives	 To enable students to get insight regarding the internal working environment of a company and functionality of company. To provide students with an opportunity to learn practically through interaction, working methods and employment practices.
Course Outcomes	 After completion of this course, the students are able to: I. Motivate and help to take full advantage of all learning opportunities presented. II. Bring a dimension to education, which cannot be gained in the classroom. III. Make connections between the different aspects of their educational experience.

PO CO	a	b	С	d	e	f	g	h	i
CO1				1	2	1	2	2	2
CO2				1	1	1	2	1	1
CO3				1	2		2	1	1

SYLLABUS FOR B.E. (I.T.) FIFTH SEMESTER

COURSE INFORMATION SHEET

Course Code	ITE571
Course Title	Database Management Systems (Theory)
Type of Course	Core
LTP	403
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	This course offers a good understanding of
	database systems concepts and prepares the
	student to be in a position to use and design
	databases for different applications.
	1. The objective of this course is to provide
	students with the background to design,
	manipulate and manage databases.
	2. The students are exposed to the various
	forms, types and models of database
	systems to enable them to make suitable
	choices from alternatives.
	3. The concepts of managing data are
	thoroughly examined and students are
	taught implementation using SQL and
Course Outcomes	PL/SQL.
Course Outcomes	are able to:
	I Understand the basic concepts of a
	database management system and its
	components
	II. Understand the relational data model.
	entity-relationship model and process of
	relational database design. Design
	entity-relationship diagrams to represent
	simple database application scenarios
	and apply the principles of good
	relational database design.
	III. Understand the concept of a transaction
	and different techniques for concurrency
	control.
	IV. Construct simple and moderately
	advanced database queries using
	Structured Query Language (SQL) and
	Procedural SQL (PL/SQL).

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Introduction to Database Systems: (06)File Systems Versus a DBMS, Advantages of a DBMS, Describing and Storing Data in a DBMS, Database System Architecture, DBMS Layers, Data independence **Physical Data Organization:** (07) File Organization and Indexing, Index Data Structures, Hashing, B-trees, Clustered Index, Sparse Index, Dense Index, Fixed length and Variable Length Records. **Data Models:** (05)Relational Model, Network Model, Hierarchical Model, ER Model: Entities, Attributes and Entity Sets, Relationships and Relationship Sets, Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Database Design with the ER Model, Comparison of Models. **The Relational Model:** (05)Introduction to the Relational Model, ER to Relational Model Conversion, Integrity Constraints over Relations, Enforcing Integrity Constraints, Relational Algebra, Relational Calculus, Ouerving Relational Data.

SECTION-B

SOL: Basic SQL Query, Creating Table and Views, SQL as DML, DDL and DCL, SQL Algebraic Operations, Nested Queries, Aggregate Operations, Cursors, Dynamic SQL, Integrity Constraints in SQL, Triggers and Active Database, Relational Completeness, Basic Query Optimization Strategies, Algebraic Manipulation and Equivalences.

Database Design: Design: Functional Dependencies, Reasoning about Functional (08)Dependencies, Normal Forms, Schema Refinement, First, Second and Third Normal Forms, BCNF, Multi-valued Dependency, Join Dependency, Fourth and Fifth Normal Forms, Domain Key Normal Forms, Decompositions.

Transaction Management:

ACID Properties, Serializability, Two-phase Commit Protocol, Concurrency Control, Lock Management, Lost Update Problem, Inconsistent Read Problem, Read-Write Locks, Deadlocks Handling, 2PL protocol.

Hours

(07)

(07)

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	An Introduction to Database Systems,	C.J. Date	Pearson
	8 th Edition		
2	Schaum's Outlines Fundamentals of	Toledo	Tata McGraw
	Relational Databases, 3 rd Edition		Hill
3	Database Management Systems, 2 nd	James Martin	PHI
	Edition		
4	Data Base Management Systems, 3 rd	Raghu Ramakrishnan and	McGraw Hill
	Edition	Johannes Gehrke	
5	Introduction to Data Base Systems, 3 rd	Bipin C Desai	Galgotia
	Edition		Publications

PO CO	a	b	C	d	e	f	g	h	i
CO1	1			1					1
CO2	1	1	2	2	1				2
CO3	1	1		1	1				1
CO4	1	1	2	2	1				2

Course Code	ITE541
Course Title	Database Management Systems (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	 To use the Oracle and SQL database systems along with hands on experience on DDL, DML as well as DCL Commands. To make students able to implement nested queries and various functions based on programming assignments.

SYLLABUS

List of Practicals:

1. Introduction to SQL and installation of SQL Server / Oracle.

2. Data Types, Creating Tables, Retrieval of Rows using Select Statement, Conditional Retrieval of Rows, Alter and Drop Statements.

3. Working with Null Values, Matching a Pattern from a Table, Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements. 4. Set Operators, Nested Queries, Joins, Sequences.

5. Views, Indexes, Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.

6. PL/SQL Architecture, Assignments and Expressions, Writing PL/SQL Code, Referencing Non-SQL parameters.

7. Stored Procedures and Exception Handling.

8. Triggers and Cursor Management in PL/SQL.

Course Code	ITE572
Course Title	Computer Graphics (Theory)
Type of Course	Core
LT P	4 03
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Data Structures
Course Objectives	 To learn the basic hardware and software fundamentals associated with digital image generation and manipulation with the help of computer. To study and apply the techniques and algorithms related with generation of 2D & 3D graphics with the help of computer.
Course Outcomes	 After completion of this course, the students are able to: I. Understand the basic principles & applications of computer graphics and the working of various interactive graphics IO devices II. Learn and apply the various concepts related to output primitives, transformations, viewing and clipping in 2D and 3D domain based on underlying algorithms and mathematical approach.
	 III. Understand and compare the variants of spline curves and visible surface detection methods. IV. Design and implement algorithms to create computer graphics applications

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Overview of Graphics System

Applications of computer graphics, Picture representation, color table ,Video Display Devices: Direct View Storage Tubes, Flat Panel Displays: Emissive andNonEmissiveDisplays; Plasma Panel, Thin Film Electroluminescent and Liquid CrystalDisplays, Color Display Techniques: Shadow Mask and Beam-penetration Hours

(07)

Three	Dimensional	Display	Methods,	Three	Dimen	sional	Tran	sforma	ations;	
ThreeD	imensional Vie	wing Pipeli	ne; Viewir	ng Coord	inates; S	pecifyi	ng the	View	Plane,	
Projecti	ions: Parallel Pr	ojections, F	Perspective	Projectio	ons.		-			
Splines	and Curves:	2	-	, i						(07)
Curved	Lines and Surf	faces, Splin	e Represer	ntations,	Cubic S	olines,	Bezier	Curve	es and	
theirpro	operties, B-Splin	ne Curves.	_		-	-				
Visibl	le Surface Dete	ction Meth	ods:							(07)
Classification of Visible Surface Detection Methods. Back Face Detection. Depth										
Buffer,	A-Buffer, Scan	Line and D	epth-Sortir	ng Metho	ds, Wire	frame I	Method	ls.	1	
RECO	MMENDED B	OOKS							DUDU	
S.		NAME			AU	JTHO	R(S)		PUBL	ISHER
No.										
1	Comput	er Graphics	C Version	ı]	Donald H	Iearn, I	M.P. B	aker	Pear	rson
									Educ	ation
2	Principle	of interactiv	ve Comput	er	Newn	nan and	Sprou	ıl	McGra	w Hill
	Gra	phics, 2 nd F	Edition							

Steven Harrington

Rogar and Adams

N.Krishnamurthy

3

4

Methods, ThreeDimensional Viewing Devices, Raster Scan Systems, Random ScanSystems, Display Processor, Co-ordinate Representations, Screen Coordinates Input Devices.

Output primitives:

Scan conversion, Frame buffer, Point and Lines, Line Drawing Algorithms: DDA Algorithm, Bresenham's Line Algorithm, Circle Generating Algorithm: Mid point circle algorithm, Pixel Addressing and Object Geometry, Scan-Line Polygon Fill Algorithm, Inside-Outside Tests, Boundary-Fill Algorithm, Flood-Fill Algorithm, Antialiasing and Halftoning, Character Generation.

Two Dimensional Geometric Transformations and Viewing:

Three Dimensional Concepts, Transformations and Viewing:

Basic Transformations: Translation, Rotation ,Scaling, Reflection and Shear, Inverse transform, Composite Transformation Matrix, Viewing Pipeline, Window to Viewport Coordinate Transformation, Clipping Operations: Line, Polygon, Segments: creation and storage.

SECTION-B

Graphics, A programming Approach, 2nd

Edition

Mathematical Elemants of Computer

Graphics, 2nd Edition Introduction to Computer Graphics, 1st

Edition

58

(07)

(08)

(09)

Tata McGraw

Hill

McGraw Hill

Tata McGraw

Hill

PO	a	b	C	d	e	f	g	h	i
СО									
CO1	2	1	1		2				
CO2	2	1	2	1	1				
CO3	2	1	2	1	1				
CO4	1	1	2	2	1				

Course Code	ITE 572
Course Title	Computer Graphics (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Data Structures, Programming Fundamental
Course Objectives	To understand how the various elements that
	underlie computer graphics (algebra,
	geometry, algorithms and data structures,
	optics, and photometry) interact in the design
	of graphics software systems.

SYLLABUS

Practical should be covered based on the following directions:

- 1. Introduction to graphics programming in C/C++ and OpenGL.
- 2. Initializing graphics system. Basic graphics functions.
- 3. Drawing lines, circles, ellipses and other common objects.
- 4. Apply simple and composite transformations
- 5. Project apply the various concepts studied in theory and practical.

Course Code	ITE 573
Course Title	Multimedia System (Theory)
Type of Course	Core
	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
	Introduction to Information Technology,
Course Prerequisites	Computer Networks.
Course Objectives	To gain an intuitive understanding of multimedia
	concepts and design.
Course Outcomes	After completion of this course, the students are
Course Outcomes	ship to:
	I Understand the basics of multimedia such
	1. Understand the basics of multimedia such
	as design issues, storage requirements and
	interchange standards.
	II. Explain the fundamentals of different media
	such as digitization process, file formats,
	color model.
	III. Apply and analyze the standard
	compression techniques on a given
	nrohlem
	W Outline the basics of multimedia
	IV. Outilité une basies of mutumedia
	communication and distributed multimedia
	systems.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION A Hours

Introduction:

Multimedia and its types, Introduction to Hypermedia, Hypertext, Multimedia Systems: Characteristics, Challenges, Desirable Features, Components and Applications, Trends in Multimedia.. (4)

Multimedia Technology:

Multimedia Authoring Paradigms, Design Issues in Multimedia Applications, (6) Standardsfor Document Architecture: SGML (Standard Generalized Markup Language), ODA (Open Document Architecture); Multimedia Standards for Document Interchange: MHEG (Multimedia Hypermedia Expert Group).

Storage Media :

Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards, (4) DVD and its standards, Multimedia Servers.

Audio:

Basics of Digital Audio, Sample Rates, Bit Size, Nyquist's Sampling Theorem; Audio File Formats; Introduction to MIDI (Musical Instrument Digital Interface): Components of a MIDI System, Hardware Aspects of MIDI, MIDI Messages. (5)

SECTION B

Images, Graphics and Videos:

Types of Color Models, Graphic/Image Data Structures, Graphic/Image File Formats, (4) Types of Color Video Signals, TV Standards..

Image Compression:

Types of Redundancies, Classifying Compression Algorithms, Basics of Information Theory, Entropy Encoding: Run-length Encoding, Pattern Substitution, Huffman Coding, Huffman Coding of Images, Adaptive Huffman Coding, Arithmetic Coding, Lempel-Ziv-Welch (LZW) Algorithm, Source Coding Techniques: Transform Coding, Frequency Domain Methods, Differential Encoding, Hybrid Coding: Vector Quantization, JPEG Compression.

Audio Compression:

Simple Audio Compression Methods, Psychoacoustics Model, MPEG Audio (4) Compression.

Video Compression:

Intra Frame Coding (I-frame), Inter-frame (P-frame) Coding, H.261 Compression, MPEG Compression, MPEG Video, MPEG Video Bitstream, Decoding MPEG Video in Software. (5)

Multimedia Communication:

Building Communication Network, Application Subsystem, Transport Subsystem, (4) QOS, Resource Management, Distributed Multimedia Systems.

RECO	MMENDED BOOKS:		
S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Multimedia Computing, Communications and Applications	Ralf Steinmetz and KlaraNahrstedt	Pearson Education
2.	Multimedia System Design	Prabhat K. Andleigh, KiranThakkar	PHI
3.	Multimedia Computing	Li, Drew	Pearson Education
4.	Multimedia Communications	Fred Halsall	Pearson Education
5.	Multimedia Systems	ParagHavaldar, Gerard Medioni	Cengage Learning Publication

PO CO	a	В	C	d	e	f	сл)	Н	i
CO1			2	1					
CO2			2		1				
CO3	2		2	2	1				
CO4			2	2	1				

Course Code	ITE574
Course Title	Theory of Computation (Theory)
Type of Course	Core
	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Discrete Structures
Course Objectives	To construct and prove the equivalence of languages described by finite state machines and regular expressions, pushdown automata and Turing machines.
Course Outcomes	 After successful completion of this course, the students are able to: Explain and interpret the fundamental, mathematical and computational principles laying the foundation of computer science. II. Define and apply methods for the equivalence of languages described by various types of automata and their equivalent recognizable languages. III. Interpret and design grammars and recognizers for different formal languages

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
-----------	-------

Introduction to the Theory of Computation:

Basic concepts - Languages, Grammars, Automata, Strings, Alphabet, Chomsky Classification of Grammars and Languages

Finite Automata:

Finite automation model, Acceptance of strings and language, Deterministic Finite Automaton, Non Deterministic Finite Automaton (NDFA), Equivalence of NDFA

(02)

(10)

and DFA, Conversion of NFA into DFA, Minimization of Number of States in Finite Automata, equivalence between two FSMs, Moore and Mealy machines. Conversion of Mealy to Moore machine, Conversion of Moore to Mealy machine

Regular expressions and regular languages:

Regular Expressions, Identities for Regular Expressions, Finite Automata and Regular Expressions, Transition System Containing null moves, NDFAs with null moves and Regular Expressions, Eliminating epsilon-Transitions, Algebraic Method Using Arden's Theorem, Construction of Finite Automata Equivalent to a Regular Expression, Equivalence of Two Finite Automata, Equivalence of Two Regular Expressions, Closure Properties of Regular Languages under Simple Set Operations ((proofs omitted), Identifying Non regular Languages using Pumping Lemma.

SECTION-B

Context free grammar and Pushdown Automata:

Context-free Languages and Derivation Trees, Ambiguity in Context-free Grammars, Simplification of Context-free Grammars, Construction of Reduced Grammars, Elimination of Null Productions, Elimination of Unit Productions, Normal Forms for Context-free Grammars, Chomsky Normal Form, Greibach Normal Form, Pumping Lemma for Context-free Languages, Pushdown Automata - Basic Definitions, Acceptance by pushdown automata, Pushdown Automata and Context-free Languages, Parsing and pushdown automata, Top-down Parsing Using Deterministic pushdown automata, Bottom-up Parsing

Turing Machines Linear Bounded Automata

Turing Machine Model, Representation of Turing Machines, Language Acceptability by Turing Machines, Design of Turing Machines, Techniques for TM Construction -Turing Machine with Stationary Head, Storage in the State, Multiple Track Turing Machine, Subroutines, Variants of Turing Machines (proofs omitted) – Multi tape Turing Machines, Nondeterministic Turing Machines, The Model of Linear Bounded Automaton (LBA), Relation Between LBA and Context-sensitive Languages, Turing Machines and Type 0 Grammars

Undecidability:

Undecidability, Introduction to recursive & non-recursive enumerable languages, Universal Turing machine

(10)

(02)

(11)

(10)

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Theory of computation	Mishra	PHI Learning
		&Chandrashekharan	Pvt. Ltd
2	Introduction to automata theory,	Hopcroft H.E. & Ullman	Pearson/Addis
	languages and computation		on Wesley
3	An introduction to formal languages and	Peter linz	Jones &
	automata		Bartlett
			Learning
4	Introduction to languages and the theory	John C Martin	McGraw-Hill
	of automata		
5	Elements of theory of computation	H.P. Lewis and C.H.	Prentice-Hall
		papadimition	

PO CO	a	b	С	d	e	f	g	h	i
CO1	2				1				
CO2	2		1		1				
CO3	1			1	2				
CO4		2	1	1					

Course Code	ITE575
Course Title	Internet and Web Technology (Theory)
Type of Course	Core
	403
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	 To enable the students to get familiar with current technologies used in web development and maintenance. To highlight the features of different technologies involved in web technology and various scripting languages.
	 are able to: Explain and apply the concepts, terms and technologies used in web development. II. Highlight the theories and principles underlying the design of web pages. III. Apply the design principles and techniques of web site design. IV. Develop web pages using client side programming and analyze the web

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

	SECTION-A	nours
		(07)
ante	object oriented programming (regulate only) advanced	

Objected oriented concepts, object oriented programming (review only), advanced concept in OOP relationship, inheritance, abstract classes, polymorphism, Object Oriented design methodology approach, best practices, UML class diagrams, interface, common base class.

SECTION-A

Networking & Security

Introduction

Hours

(11)

Internetworking, working with TCP/IP, IP address, subnetting, DNS, VPN, proxy servers, firewalls, Client/Server concepts, World Wide Web, components of web application, MIME types, browsers and web servers, types of web content, URL, HTML, HTTP protocol, Web applications, performance, application servers, Web security, User Experience Design, basic UX terminology, UXD in SDLC, rapid prototyping in Requirements.

SECTION-B

HTML & Scripting

Connectivity (JDBC).

(07)

(10)

(10)

Client Tier using HTML, basic HTML tags, look and feel using CSS, client side scripting using Java Script and validations, Document Object Model (DOM) **Frameworks & Multithreading Programming** Business tier using POJO (Plain Old Java Objects), introduction to frameworks, introduction to POJO, multithreaded programming, Java I/O, Java Database

Java Servlets & Programming

Presentation tier using JSP, Role of Java EE in Enterprise applications, Basics of Servlets, introducing server side programming with JSP, Standard Tag Library.

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Multimedia Computing	Ralf, by Steinmetz and	Pearson
	Communications and Applications	KlaraNahrstedt	Education
2.	Internet Book, The: Everything You	Douglas E Comer	Prentice Hall
	Need to Know About Computer		
	Networking and How the Internet		
	Works		
3.	Web Technologies: A Computer	Jeffrey C. Jackson	Prentice Hall
	Science Perspective		
4.	Java: The Complete Reference	Herbert Schildt	McGraw-Hill
			Professional
5.	Java Frameworks and Components	Michael Nash	Cambridge
			University Press
6	XML Black Book 2nd Edition	Ted Wugofski	Certification
			Insider Press
7.	Core Servlets and JavaServer Pages	Marty Hall and Larry	Sun
	Vol. 1: Core Technologies 2nd Edition	Brown	Microsystems
8.	Head First Servlets and JSP	Bryan Basham, Kathy	O'Reilly Media
		Sierra, and Bert Bates,	
		SPD	
9.	The Complete reference JSP	Phil Hanna	Tata McGraw-
			Hill Education

PO CO	a	b	C	d	e	f	g	h	i
CO1	1				2				
CO2	2				1				
CO3	2			1	1				
CO4	1	1	2		2				

Course Code	ITE575
Course Title	Internet and Web Technology (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamentals, Object Oriented
	Programming using C++
Course Objectives	To enable the students to get practical
	experience with current technologies used in
	web development and maintenance.

SYLLABUS

Practical Exposure:

The assignments for OOC, HTML, JDBCand JSP are to be completed as part of the Hands-On for the subjects.

- OOC using Java
- HTML/JS
- JDBC
- JSP

Project based on developing & deploying web application(s). The Project Development is primarily based on the Client tier using HTML/JS, JDBC and Presentation tier using JSP with back end database such as MS-Access or Oracle 9i.

The project is a Group Activity-consisting of 4 members in a team. The project specification hosted on the portal has to be completed. The project has to be evaluated before the final examination.

Course Code	ITE576				
Course Title	Industrial Training (After 4 th Semester)				
Type of Course	Core				
LTP	000				
Credits	1				
Course Assessment Methods:					
End Semester Assessment (University Exam.)	00				
Continuous Assessment (Practical)	50				
Course Prerequisites	Nil				
Course Objectives	1. To enable students to integrate theory				
	with practice.				
	2. To introduce students to work culture				
	and industrial practices.				
	3. To provide opportunity for students to				
	work with industrial practitioners.				
Course Outcomes	After completion of this course, the students				
	are able to:				
	I. Analyze practical aspects of a problem				
	and designing its solution.				
	II. Apply skills and knowledge of recent				
	technologies to implement solution for a				
	real life problem.				
	III. Demonstrate interpersonal skills and				
	ability of team work and documentation				
	and reporting.				

PO CO	а	b	с	d	e	f	g	h	i
CO1	2	1	2	1	1				
CO2	1	2	2	2					
CO3						1	2	1	2

SYLLABUS FOR B.E. (I.T.) SIXTH SEMESTER

COURSE INFORMATION SHEET

Course Code	ITE671
Course Title	Wireless Communication (Theory)
Type of Course	Core
	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basics of Electronics Communication
Course Objectives	 To provide basic knowledge about the concepts, issues and design approaches in wireless communication systems. To make students familiarize with radio propagation techniques, channel impairment mitigation techniques and advanced wireless technologies.
Course Outcomes	After completion of this course, the students are able to:
	communication systems and understand their differences.
	II. Understand and apply the concepts of system design fundamentals, Multiple access techniques in general.
	III. Understand the working of GSM and CDMA mobile communication systems.
	IV. Understand and learn the channel impairment mitigation techniquesand advance wireless technologies.

SYLLABUS

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each. Candidate is required to attempt at least two questions from each part.

SECTION-A	Hours
Introduction	(05)
Evolution of Mobile Communication Systems: 1G, 2G, 2.5G, 3G, 4G, comparison of	
common wireless communication systems.	
System Design Fundamentals	(10)
Frequency reuse, Channel assignment strategies, handoff strategies, interference,	
improving coverage and capacity in cellular systems: cell splitting, cell sectoring and	
microcell zone concept, Multiple Access Techniques: FDMA, TDMA, SSMA, SDMA.	
Mobile Communication Systems	(08)
GSM: Architecture, Identifiers, Authentication and Security, Control Channels,	
Services.	
SECTION-B	
CDMA (IS-95): Architecture ,Forward and Reverse channels ,Soft handoff, call	(09)
processing Features: Near Far Effect, Cell Breathing, Mobile data over CDMA,	
CDMA-2000. Comparison of CDMA and GSM	
Channel Impairment Mitigation Techniques	(08)
Introduction, Power control, Diversity Techniques: Frequency Diversity, Time	
Diversity, Space Diversity, Path Diversity, Channel Equalization, Rake receiver,	
Channel coding and interleaving.	
Advance Technologies:	(05)

Advance Technologies:

Operation, Applications and Technical specification of WiFi, WiMax, EDGE, WSN, LTE

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
	Wireless Communications Principles	Theodore S. Rappaport	Prentice Hall
1.	and practice, 2 nd Edition		India
	Wireless and Cellular Communication,	Sanjay Sharma	SK Kataria
2.	2009 Edition		Publisher
	Mobile and Personal Communication	Raj Pandya	IEEE Press
3.	Systems and services, 1 st Edition		

PO CO	a	b	C	d	e	f	gg	h	i
CO1					1		1	1	1
CO2	1	2	1	1	1		2	1	2
CO3				1			1		
CO4	1		1	1	1		1		1

Hours
Course Code	ITE671
Course Title	Wireless Communication (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Provoquisites	Pasias of Electronics Communication
Course Prerequisites	Basics of Electronics Communication
Course Objectives	To familiarize students with the TCP/IP Suite, understand the Wireless Communication
	Technology (Satellite Cellular and Bluetooth
	networking).

SYLLABUS

Wireless Communication lab course includes the following:

- Exposure to advanced wireless tools.
- Pertinent lab exercises related to wireless communication.

Course Code	ITE672
Course Title	Network Security and Cryptography
	(Theory)
Type of Course	Core
LT P	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Networks
Course Objectives	1. To understand and apply the principles of
	encryption algorithms, conventional and
	public key cryptography.
	2. To gain knowledge about authentication,
	hash functions and application level
	security mechanisms
	security moonamonis.
Course Outcomes	After completion of this course, the students
	are able to:
	I. Identify the security threats and apply
	relevant cryptographic techniques on
	data.
	II. Compare the different techniques of
	nublic key cryptography and key
	exchange
	UII A make the basis service of 1' 't 1
	signatures and hash algorithms.
	IV. Outline the basics of network and web
	security services and mechanisms.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Basic Encryption and Decryption: (06) Threats and Types of attacks, Challenges for Information Security, Classical Cryptographic Algorithms: Monoalphabetic Substitutions such as Caesar Cipher, Cryptanalysis of Monoalphabetic ciphers; Polyalphabetic Ciphers such as Vigenere, Vernam Cipher; Transposition Cipher. **Stream and Block Ciphers:** (07) Rotor Based System and Shift Register Based System. Block cipher: principles, modes of operations. Data Encryption Standard (DES), Analyzing and Strengthening of DES, Introduction to Advance Encryption Standard (AES) Number Theory and Basic Algebra: (04) Modular Arithmetic, Euclidean algorithm, Random number generation **Key Management Protocols:** (05) Solving Key Distribution Problem, Diffie-Hellman Algorithm, Key Exchange with Public Key Cryptography. **SECTION-B Public Key Encryption Systems:** (06) Concept and Characteristics of Public Key Encryption system, Rivets-Shamir-Adleman (RSA) Encryption, Digital Signature Algorithms and authentication protocols, Digital Signature Standard (DSA). **Hash Algorithms:** (05) Hash concept, description of Hash Algorithms, Message Digest Algorithms such as MD4 and MD5, Secure Hash Algorithms such as SH1 and SHA2 **Network Security:** (04) Kerberos, IP security: Architecture, Authentication Header, Encapsulating Security Payload Web Security: (04) Web security consideration, Secure Socket Layer Protocol, Transport Layer Security, Secure Electronic Transaction Protocol **Firewalls:** (04) Firewall Design principles, Trusted Systems, Virtual Private Networks.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Principles of Cryptography, 4 th Edition	William Stallings	Pearson
			Education
2.	Security in Computing, 2 nd Edition	Charles P.Pfleeger	Prentice Hall
			International
3.	Cryptography & Network Security, 2 nd	AtulKahate	TMH
	Edition		
4.	Applied Cryptography: Protocols,	Bruce Schneier	John Wiley
	Algorithms, and Source Code in C, 2 nd		and Sons
	Edition		

Hours

5.	Firewalls and Internet Security, 2 nd	Bill Cheswick and Steve	Addison-
	Edition	Bellovin	Wesley
6.	Security Technologies for the world wide web, 2nd Edition	Rolf Oppliger	Artech House,
	while web, 2nd Edition		inc

PO CO	a	b	с	d	e	f	g	h	i
CO1	1		2	2	1				
CO2	1		2	2	1				
CO3	1		2	2	1				
CO4	1		2	2	1				

Course Code	ITE673
Course Title	Software Engineering (Theory)
Type of Course	Core
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	This course aims to give students a theoretical foundation in software engineering. Students will learn about the principles and methods of software engineering, including current and emerging software engineering practices and support tools.
Course Outcomes	 After completion of this course, the students are able to: Understand the concept of process models. II. Analyze the project management and specification concepts. III. Understand the concept of software designing and testing IV. To gain the knowledge about the metrics measurements and CASE

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

Introduction	(05)
Introduction to Software Engineering, System Engineering Vs Software Engineering,	
Software Evolution, Software Characteristics, Cost of Software Production, Software	
Components, Crisis – Problem and Causes, Challenges in Software Engineering.	
Software Process Model	(06)
SDLC, Waterfall Model, Incremental Model, Prototyping Model, Evolutionary Model,	

Spiral Model, Rapid Application Development Model, Formal Methods, Open Source	
Development, Object Oriented Life Cycle Model, Agile Methods.	
Project Management Concepts	(06)
Management Activities, Project Planning, Project Scheduling, Size Estimation – LOC,	
FP; Cost Estimation Models –COCOMO, COCOMO-II.	
Software Requirements Analysis and Specification Concepts	(05)
Requirement Engineering, Requirement Elicitation Techniques, Requirements	
Documentation, Characteristics and Organization of SRS, Analysis Principles, Analysis	
Modeling – Data Modeling, Functional Modeling and Behavioral Modeling; Structured	
vs. Object Oriented Analysis.	
SECTION-B	
Software Design and Coding Concepts	(06)
Design Principles, Data Design, Architectural design, Interface Design, Component	
Level Design, Object Oriented Design Concepts, Cohesion and Coupling and their	
classification, top-down, bottom-up and middle-out design, Coding, Coding Standards,	
Coding Conventions, Programming Style.	
Testing	(05)
Verification and Validation, Testing Process, Design of Test Cases, Software Testing	
Strategies, Unit Testing, Integration Testing, Top Down and Bottom Up Integration	
Testing, Alpha & Beta Testing, System Testing and Debugging.	
Technical Metrics for Software	(06)
Software Measurements: What and Why, A Framework for Technical Software	
Metrics, Metrics for the Analysis Model, Metrics for Design Model, Metrics for Source	
Code, Metrics for Testing, Metrics for Software Quality, Metrics for Maintenance.	
CASE (Computer Aided Software Engineering) and Introduction to UML	(06)
CASE and its Scope, Building blocks of CASE, CASE Tools, CASE Environment,	. /
UML Concepts, Use Case Diagrams, Sequence Diagrams, Collaboration Diagrams,	
Class Diagrams, State Transition Diagrams, Component and Deployment Diagrams.	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Software Engineering, 3 rd Edition	Ian Somerville	Pearson
			Education
2.	S/W Engineering-A Practitioner's	Roger S. Pressman	McGRAW-
	Approach, 6 th Edition		HILL
3.	Software Engineering: Theory and	S.L. Pfleeger, J.M. Atlee	Pearson
	Practice, Second Edition		Education
4.	Software Engineering for Students,	Douglas Bell	Pearson
	Fourth Edition		Education
5.	Software Engineering	Pankaj Jalote	Narosa
			Publisher
6.	Software Engineering, Second Edition	K.K. Aggarwal, Yogesh	New Age
		Singh	International

PO CO	а	b	с	d	e	f	g	h	i
CO1		2	1	1					1
CO2			1	1	1		1		2
CO3	1	2	1						2
CO4	1				1				2

Course Code	ITE674
Course Title	Design and Analysis of Algorithms(Theory)
Type of Course	Core
	403
Credits	04
Total Lectures	45
Course Assessment Methods: End Semester Assessment (University Exam.) Continuous Assessment (Sessional)	50 50
Course Prerequisites	Programming Fundamental Data Structures
Course Objectives	 To understand the basic concepts related to analysis of algorithms. To demonstrate a familiarity with key algorithms. To understand and implement different algorithm design techniques. To design algorithms based on the strategies learned and apply the same to solve different problems.
Course Outcomes	 After completion of this course, the students are able to: Analyze the asymptotic performance of algorithms. II. Compare the performance of different algorithms in terms of time and space complexity. III. Apply important algorithmic design paradigms and methods of analysis. IV. Develop efficient algorithms in common engineering design situations.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Analysis of algorithm Role of Algorithms in Computing; Growth of functions: Asymptotic Notation, Standard notation, Performance measurements Introduction to Recurrences: substitution method, recursion-tree method, master method; Algorithms; Hours

(09)

Divide and Conquer Method General Method, Binary Search, Matrix Multiplication, Merge Sort, Quick Sort and their performance analysis	(07)
Greedy Approach Elements of Greedy strategy, Knapsack problem, Single source Shortest paths problem, Minimum Spanning tree problem and analysis of these problems.	(07)
SECTION-B	
Dynamic Programming	(09)
General Method, Multistage Graph, All Pairs Shortest Path Algorithm, 0/1 Knapsack	
Problem, Traveling Salesman Problem	
Backtracking	(07)
The General Method, 8-Queens Problem- Sum of Subsets, Knapsack	
P and NP Problems	(06)
Polynomial time, Nondeterministic Algorithms and NP, Reducibility and NP completeness NP complete Problems	
completeness, fur complete i foorenis	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Fundamentals of Computer Algorithms	Ellis Horowitz, SartajSahni	Galgotia
2.	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest	Prentice Hall
3.	The Design and Analysis of Computer Algorithms	Aho A.V., Hopcroft J.E., Ullman J.D.	Pearson Education
4.	Fundamentals of Algorithms	Gilles Brassard & Paul Bratley	Prentice Hall

PO CO	a	b	с	d	e	f	g	h	i
C01	2	2			1				
CO2	2	2	1		1				
CO3	2	2	1	2	1				
CO4	2	2	2	2	1				

Course Code	ITE674
Course Title	Design and Analysis of Algorithms
	(Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamental, Data Structures
Course Objectives	 To understand and implement different algorithm design techniques. To design algorithms based on the strategies learned and apply the same to solve different problems.

SYLLABUS

Practical based on theory.

ELECTIVE -I

COURSE INFORMATION SHEET

Course Code	ITE 675
Course Title	Business Intelligence (Theory)
Type of Course	Elective
LT P	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Database Management Systems
Course Objectives	 To impart knowledge of data warehousing and data mining for Business Processes. To understand the role of Business Intelligence in taking business decisions.
Course Outcomes	 After completion of this course, the students are able to: I. Illustrate the concept and importance of Business Intelligence, Data Integration, ETL, Data Profiling and Data Quality. II. Compare E-R model with multidimensional model and apply the concept of dimensions, facts, and starsnowflake schema to real world problems. III. Design and Implement different kinds of Enterprise Reports. IV. Understand the concept of data mining and be able to apply various data mining

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

(08)

Introduction to Business Intelligence:
Introduction to OLTP and OLAP, BI Definitions & Concepts, Business Applications of
BI, BI Framework, Role of Data Warehousing in BI, BI Infrastructure Components -
BI Process, BI Technology, BI Roles & Responsibilities

Basics of Data Integration (Extraction Transformation Loading) Concepts of data integration, need and advantages of using data integration, introduction to common data integration approaches, introduction to ETL, Introduction to data quality, data profiling concepts and applications. Introduction to Multi-Dimensional Data Modeling, Introduction to data and dimension modeling, multidimensional data model, ER Modeling vs. multi dimensional modeling, concepts of dimensions, facts, cubes,

SECTION-B

Basics of Enterprise Reporting

Introduction to enterprise reporting, concepts of dashboards, balanced scorecards, and overall architecture.

Data Mining Functionalities:

Association rules mining, Mining Association rules from single level, multilevel transaction databases, Classification and prediction, Decision tree induction, Bayesian classification, k-nearest neighbor classification

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
	Fundamentals of Business Analytics	R N Prasad, Seema	Wiley India
1.		Acharya	
	Data Mining: Concepts and Techniques	J. Han and M. Kamber	Morgan
2.			Kaufman
			publishers,
			Harcourt India
			pvt. Ltd
	Business Intelligence: The Savvy	David Loshin	Latest Edition
3.	Manager's Guide		By Knowledge
			Enterprise
	Business Intelligence roadmap	Larissa Terpeluk Moss,	Addison
4.		ShakuAtre	Weseley
	Successful Business Intelligence:	Cindi Howson	Tata McGraw
5.	Secrets to making Killer BI Applications		Hill
	Business intelligence for the enterprise	Mike Biere	Addison
6.			Weseley

Modeling vs. multi dimensional modeling, concepts attribute, hierarchies, star and snowflake schema.

(15)

(06)

(08)

1

PO CO	a	b	С	d	e	f	g	h	i
CO1	×			2					
CO2		1		2					
CO3			2						2
CO4	1			2					

Course Code	ITE676
Course Title	System Software
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Architecture and Organization,
	Microprocessor & assembly language
	programming
Course Objectives	 To introduce the major concepts areas of language translation and compiler design and to develop an awareness of the function and complexity of modern compilers, linkers, loaders and assemblers. To gain knowledge and skills necessary to develop system software covering a broad range of engineering and scientific applications and will learn context free grammars, compiler parsing techniques, construction of abstract syntax trees, symbol tables, and actual code generation and provided with a thorough coverage of the basic issues in programs interacting directly with operating systems.
Course Outcomes	 After completion of this course, the students are able to: Understand the functions of modern compilers, linkers, loaders, assemblers & macros w.r.t. machine architecture. II. Understand the machine dependent and machine independent features of various system softwares. III. Apply knowledge of data structures & algorithms needed for the processing of assemblers, compilers, linkers, loaders and macros. IV. Understand system software for real machines by using implementation examples.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper. Hours

SECTION-A

Introduction:	(06)
System software and machine architecture. Simplified Instructional Computer (SIC),	
Traditional CISC and RISC Machines.	
Assemblers:	(08)
Basic assembler functions, Machine-dependent assembler features, Machine-	
Independent assembler features, Assembler Design options, Implementation examples:	
AIX Assembler.	
Macro Processors:	(08)
Basic Macro processor functions, Machine-Independent Macro processor features,	
Design options.	
SECTION-B	
Loader and Linkers:	(07)
Basic loader functions, Machine dependent Loader features, Machine-Independent	
Loader features, Loader Design options, Implementation examples.	
Compilers:	(10)
Basic Compiler functions, Phases of Compiler, Grammar, Lexical Analysis, Syntax	
Analysis, Code Generation, Machine dependent compiler features, Machine-	
Independent compiler features, and Compiler Design options.	
Operating Systems:	(06)
Basic operating system functions, Machine dependent operating system features,	. ,
Machine independent operating system features, Operating System Design options	

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	System Software, An Introduction to	Leland L.Beck	Addison
	System Programming, 3d Edition		Wesley
2	System Programming and Operating	D.M.Dhamdere	TMH
	System, 2 nd edition		
3	System Programming, 1 st Edition	Mednick& Donovan	TMH
4	Compilers: Principles Techniques and	A V Abo R Sethi I D	Addison
	Tools	Ullman	Wesley

PO CO	a	b	c	d	e	f	g	h	i
C01	1	2	2				2		
CO2	1		1	2					
CO3			2	2					
CO4	1	2	1	1					

Course Code	ITE677
Course Title	Neural Network and Fuzzy Logic (Theory)
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Discrete Structures
Course Objectives	 To introduce students to neural networks and fuzzy logic concepts and techniques and foster their abilities in designing. To implement neural networks and fuzzy logic based solutions for real-world problems.
Course Outcomes	After completion of this course, the students are able to:
	 I. Identify and describe neural network and Fuzzy Logic techniques and their roles in building intelligent machines II. Design and apply neural networks to pattern classification and regression problems III. Model fuzzy logic and reasoning to handle uncertainty and solve engineering problems IV. Analyze and implement neuro-fuzzy
	systems for various real life problems

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

Fundamentals of Artificial Neural Networks & Applications, Characteristics of ANNs (15) The Biological Prototype, Evolution of Neural Networks, Learning Methods McCulloch-Pitts Neuron, Hebb Network, PerceptronNetworks, Adaline and Madaline, Multilayer Neural Networks, Backpropagation Network, Associative Memory Networks, BAM, Hopfield Networks, Kohonen Self Organizing Feature Maps, Counter propagation Networks, Adaptive Resonance Theory Networks Introduction to Fuzzy Logic, Classical Vs Fuzzy sets, Membership Functions, (10) Defuzzification, Fuzzy model, Fuzzy Rule Base, Fuzzy inference systems, Fuzzy Expert System

SECTION-B

Fuzzy Arithmetic: Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on	(04)
Intervals, Arithmetic Operations on Fuzzy Numbers, Fuzzy Equation	
Fuzzy Logic: Classical Logic, Multivalued Logic, Fuzzy Propositions, Fuzzy	(04)
Quantifiers, Linguistic Hedges	
Uncertainty Based Information: Information and Uncertainty, Nonspecificity of Crisp	(04)
Sets, Nonspecificity of Fuzzy Sets, Fuzziness of Fuzzy Sets	
Applications of Fuzzy Logic: Medicine and Economics	(04)
Introduction to Neuro Fuzzy Systems, Architecture of a Neuro Fuzzy systems	(04)

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	An Introduction to Neural Networks,	J. A. Anderson	MIT Press
2	Introduction to the Theory of Neural	Hertz J. Krogh, R.G.	Addison-
	Computation	Palmer,	Wesley
3	Fuzzy Sets & Fuzzy Logic	G.J. Klir& B. Yuan	Prentice Hall
4	Neural Networks-A Comprehensive	Simon S. Haykin	Prentice-Hall
	Foundations		International
5	Neural Networks: Algorithms,	J.A. Freeman & D.M.	Addison
	Applications and Programming	Skapura	Wesley,
	Techniques		Reading, Mass

PO CO	a	b	c	d	e	f	g	h	i
CO1	1	2	2	2					
CO2	1	2	2	2	1				
CO3	1	2	2	2	1				
CO4	1	2	2	2	1				

Course Code	ITE678
Course Title	System Analysis and Design (Theory)
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Introduction to Information Technology
Course Objectives	To be able to analyze business problems, design solutions and document the results.
Course Outcomes	 After completion of this course, the students are able to: Demonstrate the concept of different types of system by giving examples and understand the role and need of a system analyst. II. Understand the various phases of SDLC and be able to develop different types of documentation based on the outcome of different phases. III. Analyze different techniques like fact gathering technique, prototyping, costbenefit analysis and fact analysis to perform feasibility study and be able to create feasibility reports. IV. Design graphical user interface by designing the input-output forms and make use of top-down and bottom-up design techniques for module designing.

SYLLABUS

Note: Examiner shall set eight questions, four from Part-A and four from Part-B of the syllabus. Candidate will be required to attempt any five questions selecting at least two questions from Part-A and two from Part-B.

SECTION-A

Hours

System definition and concepts:	(03)
Characteristics and types of system, Manual and automated systems, Real-life Business	
sub-systems: Production, Marketing, Personnel, Material, Finance	
Systems models:	(03)

Systems environment and boundaries, Rear time and distributed systems, Basic	
principles of successful systems, Role and need of systems analyst	
System Development cycle:	(03)
Introduction to systems development life cycle (SDLC), various phases of	
development : Analysis, Design, Development, Implementation, Maintenance	
Systems documentation considerations:	(03)
Principles of system documentation, Types of documentation and their importance	
System Planning:	(06)
Data and fact gathering techniques: Interviews, Group communication, Presentations,	
Site visits; Feasibility study and its importance, Types of feasibility reports, selection	
plan and proposal, prototyping, tools and techniques of cost-benefit analysis	
Systems Design and modeling:	(06)
floweborts and structured charts. Data flow diagrams. Common diagramming	
conventions and guidelines using DED. Data Modeling and systems analysis	
Designing the internals: Program and Process design. Designing Distributed Systems	
Designing the internals. I togram and I focess design, Designing Distributed Systems	
SECTION-B	
Input and Output: Classification of forms:	(04)
Input/output forms design, User-interface design, Graphical interfaces	
Modular and structured design:	(05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design	(05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance:	(05) (05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System	(05) (05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation,	(05) (05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues	(05) (05)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security:	(05) (05) (03)
Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security: Computer system as an expensive resource: Data and strong media procedures and	(05) (05) (03)
 Input/output forms design, User-interface design, Graphical interfaces Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security: Computer system as an expensive resource: Data and strong media procedures and norms for utilization of computer equipment, Audit of computer system usage, Audit 	(05) (05) (03)
Input/output forms design, User-interface design, Graphical interfaces Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security: Computer system as an expensive resource: Data and strong media procedures and norms for utilization of computer equipment, Audit of computer system usage, Audit trails	(05) (05) (03)
 Input/output forms design, User-interface design, Graphical interfaces Modular and structured design: Module specifications, coupling and cohesion, Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security: Computer system as an expensive resource: Data and strong media procedures and norms for utilization of computer equipment, Audit of computer system usage, Audit trails Types of threats to computer system and control measures: 	(05) (05) (03) (04)
Input/output forms design, User-interface design, Graphical interfaces Modular and structured design: Module specifications, coupling and cohesion , Top-down and bottom-up design System Implementation and Maintenance: Planning considerations, Conversion methods, producers and controls, System acceptance criteria, System evaluation and performance, Testing and validation, Maintenance activities and issues System Audit and Security: Computer system as an expensive resource: Data and strong media procedures and norms for utilization of computer equipment, Audit of computer system usage, Audit trails Types of threats to computer system and control measures: Threat to computer system and control measures, Disaster recovery and contingency	(05) (05) (03) (04)

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	System analysis and design	Perry Edwards	McGraw-Hill
2	Analysis and design of information systems	James A.Senn	McGraw-Hill

COs	POs								
	a	b	C	d	e	f	g	h	i
CO1					2	1		2	
CO2	1								
CO3					2				
CO4				1	2				

Course Code	ITE679
Course Title	Distributed Operating System (Theory)
Type of Course	Elective
	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Operating System
Course Objectives	This course is designed to examine the fundamental principles of distributed operating systems, and provide students hands-on experience in developing distributed protocols. Emphasis will be placed on communication, process, naming, synchronization, consistency and replication, and fault tolerance.
Course Outcomes	 After completion of this course, the students are able to: Understandtheprocess of distributed system design and implementation. II. Knowledge of various areas of research in distributed systems and mobile computing. III. Understand and design of fault tolerant distributed system IV. Compare various types of distributed operating systems.

SYLLABUS

Note: Examiner shall set eight questions, four from Part-A and four from Part-B of the syllabus. Candidate will be required to attempt any five questions selecting at least two questions from Part A and Part B.

SECTION-A

Operating System Structures

Review of structures: monolithic kernel, layered systems, virtual machines, Process

Hours

(05)

recovery	e management in and distributed d	distrib leadlo	outed s	system	ns: Log	gical t	ime, rea	ching a	igreeme	ent,	failure	
lecovery		icaulo	CKS.	S	ECTI	ON-F	8					
Protecti Requirer protectio	on and Security ments for protection. System and u	ction ser mo	and s odes, r	ecurity	y regi	mes.	The a	ccess 1 s lists,	natrix capabil	mo ities	(08) del of s. User	
File Syst	tems	and 5	Ignatu	105.							(09)	
Issues in and faul systems	the design of dis tresilience. Use including Sun N	stribute of th FS, an	ed file ne Vir nd Co	syster tual F da file	ms: na File sy es syst	ming, stem em. I	transpa layer. Design	arency, Exampl of the s	update es of sever fi	sen distr le s	nantics ributed ystem.	
Middlev	vare	UIIX	EXIZ a	nu ext							(07)	
The con	nmon Object Rec	juest H	Broker	Arch	itectur	e and	Micro	soft DC	COM n	node	els and	
software	and their relation	nship t	o Ope	rating	System	ns.						
RECON	AMENDED BOO	OKS										
a	NAME						AUTHOR(S)				PUBLISHER	
S .		IN FAIN.					110		(~)		1 CDLISILLI	
S. No.	Distributed S			ainlas	and		- deare	C Tron			Deemoon	
S. <u>No.</u> 1	Distributed S	ystem	s: Prin	nciples	and	A	Andrew	S. Tran	ebnaur	n	Pearson	
S. No. 1 2	Distributed S Distributed	ystem Paradig	s: Prin gms ating S	nciples System	and ns	/	Andrew	S. Tran	ebnaur enbaun	n 1	Pearson Education Pearson	
S. No. 1 2	Distributed S I Distributed	ystem Paradig l Oper	s: Prin gms ating S	nciples Systen	and ns		Andrew	S. Tran	enbaun	n 1	Pearson Education Pearson Education	
S. No. 1 2 3	Distributed S Distributed Distributed	ystem Paradig I Oper	s: Prin gms ating S	nciples Syster	s and ns ns:		Andrew Andrew Prade	S. Tran S. Tan	ebnaur enbaun Sinha	n 1	Pearson Education Pearson Education PHI Learning	
S. No. 1 2 3	Distributed S Distributed Distributed Conce	ystem Paradig l Oper Opera	s: Prin gms ating S ating S ad Des	nciples Systen Systen ign	s and ns ns:		Andrew Andrew Prade	S. Tran S. Tan eep K. S	ebnaur enbaun Sinha	n 1	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	
S. No. 1 2 3	Distributed S Distributed Distributed Distributed Conce	ystem Paradig I Oper Opera	s: Prin gms rating S ating S d Des	nciples Systen Systen ign	s and ns ns:		Andrew Andrew Prade	S. Tran S. Tan eep K. S	ebnaur enbaun Sinha	n 1	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	
S. No. 1 2 3	Distributed S Distributed Distributed Conce	ystem Paradig Oper Opera opts an	s: Prin gms ating S ating S ad Des	nciples System System ign	s and ns ns:		Andrew Andrew Prade	S. Tran	ebnaur enbaun Sinha	n 1	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	
S. No. 1 2 3	Distributed S Distributed Distributed Conce	ystem Paradig I Opera opts an	s: Prin gms ating S ating S ad Des b	c c c c	and ns ns:	e	Andrew Andrew Prade	S. Tran S. Tan eep K. S	ebnaur enbaun Sinha	n ı i	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	
S. No. 1 2 3	Distributed S Distributed Distributed Conce PO CO CO	ystem Paradig 1 Opera 1 Opera 2 opts an 1	s: Prin gms ating S ating S ad Des b	c c c	and ns ns:	e	Andrew Andrew Prade	S. Tran	ebnaur enbaun Sinha h	n 1 i	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	
S. No. 1 2 3	Distributed S Distributed Distributed Conce PO CO CO CO1 CO2	ystem Paradig I Opera pts an 1 1	s: Prin gms ating S ating S ad Des b	system System ign c	and ns ns	e 2	Andrew Andrew Prade	S. Tran	h	n 1 i	Pearson Education Pearson Education PHI Learning Pvt. Ltd.	

Windows NT.

based models and client server.

Resource Management

Distributed Systems

Resource allocation and deadlock. Deadlock prevention, avoidance and detection. R re

The micro-kernel based client-server approach. Inter process communication and Remote Procedure Call. Tasks and Threads. Examples from LINUX, Solaris 2 and

F

N

R

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Distributed Systems: Principles and	Andrew S. Tranebnaum	Pearson
	Paradigms		Education
2	Distributed Operating Systems	Andrew S. Tanenbaum	Pearson
			Education
3	Distributed Operating Systems:	Pradeep K. Sinha	PHI Learning
	Concepts and Design		Pvt. Ltd.

со	а	b	C	d	e	f	g	h	i
CO1	1			2					
CO2	1	2			2				
CO3	1				2				
CO4	1			2	1				
CO5				2	1				

(08)

(08)

COURSE INFORMATION SHEET

Course Code	ITE680
Course Title	Network Management and
	Administration (Theory)
Type of Course	Elective
	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Networks
Course Objectives	To familiarize students with advanced
	concepts of networks, network management,
	administration and security concepts
Course Outcomes	After completion of this course, the students
	are able to:
	I. Understand the principles of network
	management.
	II. Analyze performance management
	strategies in broadband networks
	III. Learn UNIX system administration
	and configuration.
	IV. Identify various security issues and
	security mechanisms.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Large Enterprise Networks: (05)Managing Enterprise Networks, need for network management, SNMP: the de facto network management standard. **Elements of NMS Development:** NMS development, data analysis, class design for major NMS features, GUI development, insulating applications from low level code, multiservice switches, MPLS, MPLS and scalability. **Performance Management in Broadband Networks:** (10)

Performance Control, Performance Monitoring in T-carrier systems, Performance Monitoring in SDH/SONET based networks, Performance Monitoring in ATM networks, Performance Monitoring in Frame Relay networks, Transmission Quality Assurance, Traffic Management.

Hours

(12)

Introduction to Unix System Administration

Daily Tasks of a System Administrator, Startup and Shutdown, Periodic Processes, Managing File Systems, Responsibilities to the users, Hardware responsibilities, Types of SunOS Systems.

System Configuration

Kernel configuration; Adding Hardware Special Files in Solaris 10.0, IRIX 5.X, Digital UNIX and Ultrix, Systems Directories,/ -root/ etc- systems. Creating networks and subnets, configuring network interfaces, obtaining network statistics, routing , /user-system programs, libraries, etc; User accounts-admittance, login procedure, Password Aging.

Security

System Security Concerns, Need for security, Security Programs, Security Response Teams, The password and group files, File and Directory Permissions, EEPROM Security, Secure the console port, Security Loopholes, Additional Security features in Solaris 10.0, Secure Shell, SSII, SSII Programs, Control Files, Setting up the Service, Login Process.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Network Management, MIBs and MPLS	Stephen B. Morris	Pearson
			Publications
2	Network Management in wired and	Tejinder S. Randhawa,	Kulwer
	wireless networks	Stephen Hardy	Academic
			publication
3	Unix System Administration Handbook	Evi Nemeth, Garth Snyder,	Prentice Hall
		Scott Seabass, Trent Hein	of India
			Private Ltd
4	Essential UNIX System Administration	Aeleen Frisch	O'Reilly
			Media
5	Solaris System Administration's Guide	Janice Winsor	Macmillian
			Technical
			Publishing

PO CO	a	b	С	d	e	f	g	h	i
CO1	1		1			1			
CO2	1		2	1					
CO3	1		1						
CO4	1		2			1			

(04)

(07)

(07)

Course Code	ITE681
Course Title	Cyber Crime and Digital Forensic
	(Theory)
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Architecture and Organization, Network Security& Cryptography
Course Objectives	 To teach students about the various forms of cybercrimes and fundamentals ofcomputer forensic technology Introduce students to the different techniques used to collect, preserve and recover computer evidences
Course Outcomes	 After completion of this course, the students are able to: I. Understand and identify the need for computer forensics. II. Learn the legal aspects of collecting
	&preserving computer evidence and the process of data recovery.
	III. Analyze the computer forensics technology and learn how to recover electronic documents.
	IV. Examine different forensic scenarios for reconstruction from past events.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Computer forensics fundamentals : Introduction: Basics of computer forensics, Use of computer forensics in law enforcement, Computer forensics assistance to human resources /employment proceedings, Computer forensics services, Benefits of professional forensics methodology SLC:Steps taken by computer forensics specialists **Types of computer forensics technology**. Types of military computer forensic technology, Types of law enforcement, Computer forensic technology, Occurrence of

cybercrime, Cyberdetectives, Fighting cyber crime with risk –management techniques, Computer forensicsinvestigative services SLC: Forensic process improvement. **Data recoverv**

Introduction of Data recovery, Data back-up and recovery, the role of back-up in data recovery, data-recovery solution.

SECTION-B

Evidence collection and data seizure

Why collect evidence?, Collection options, Obstacles, Types of evidence, The rules of evidence, Volatile evidence, General procedure, Collection and archiving, Methods of collection, Artifacts, Collection steps, Preserving the digital crime scene, Computer evidence processing scene, Legalaspects of collecting SLC: preserving computer forensic evidence.

Computer image verification and authentication: Special needs of evidential authentication, Practical consideration, Practical implementation, Electronic document discovery:a powerful new litigation tool, Time travel, SLC: Forensics identification and analysis of technical surveillance devices.

Reconstruction past events : How to become a digital detective, Useable file formats, Unusable file formats, Converting files, Network forensics scenario, A technical approach, Destruction of e-mail, Damaging computer evidence, Documenting the intrusion on destruction of data SLC:System testing.

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Computer Forensics: Computer Crime	John R VACCA	FirewallMedia
	Scene Investigation.		
2.	Guide To Computer Forensics And	Bill Nelson, Amelia	Cengage Learning
	Investigations	Phillips, Christopher	Publications
		Stuart	
3.	Computer Forensics	David Cowen -CISSP	McGraw Hill
			Education

RECOMMENDED BOOKS

(8)

(7)

(8)

(8)

(7)

(7)

PO CO	a	b	С	d	e	f	g	h	i
CO1					2	1			
CO2	2	2			1				
CO3		2		2	1				
CO4	2	2	1	1					

Course Code	ITE682
Course Title	Data Mining and Analytics
Type of Course	Elective
LT P	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Database Management Systems
Course Objectives	1. To introduce basic concepts and
	algorithms of data mining.
	2. To examine different types of data to be mined and apply preprocessing and
	mining methods.
	3. To comprehend the role that data mining
	plays in various fields.
Course Outcomes	After completion of this course, the students
	are able to:
	I. Understand the basic concepts of data
	mining such as preprocessing,
	generalization, characterization,
	comparison.
	II. Evaluate and implement various types of
	data mining techniques such as
	Association Rule minning, Classification
	III Illustrate the concent of cluster analysis
	and understand how to do the mining of
	complex data types
	IV Apply the understanding of data mining
	techniques to various domains such as
	Biomedical, finance etc.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Introduction to Data Mining	(04)
Concepts of Data mining, Functionalities, Issues, Multidimensional data models.	
Elements of Data Analysis	(03)
Averaging, Filtering and Smoothing, Descriptive and summary statistics, Discrete	
Random Variables, distributions, cumulative distribution, expectation, Variance,	
Conditional Probability, independence, Bayes, Continuous random variables, density	
function, linear functions, Multiple Linear regression	
Data Preprocessing	(04)
Need, Data Cleaning, Integration and Transformation, Reduction, Discretization and	
Concept Hierarchy Generation Methods	
Concept Description	(04)
Data Generalization and Summarization based Characterization, Analytical	
Characterization, Attribute relevance analysis, Mining class comparisons; Comparison	
with typical machine learning methods.	
Mining Association Rules	(07)
Introduction, Mining single dimensional, boolean rules using Apriori, FP-Tree method,	
Mining Multilevel Association Rules, Mining Multidimensional Association Rules,	
Constraint-Based Association Rule Mining.	
SECTION-B	
Classification and Prediction	(06)
Issues, Classification by Decision Tree Induction, Bayesian Classification,	
Backpropagation, k-Nearest-Neighbor Classifiers, Genetic Algorithms, Fuzzy Set	
Approaches, Bagging and Boosting, Ensemble classifiers.	
Cluster Analysis	(05)
Definition, Types of Data in Cluster Analysis, Introduction to Partitioning, Hierarchical	
and Density-Based Methods, Introduction to Outlier Analysis.	
Mining Complex Data Types	(05)
Mining spatial databases, Multimedia databases, Time series databases and WWW	
Application and Trends	(03)
Biomedical, Finance, Retail and Telecommunication applications, Social aspects,	
Trends in Data Mining.	
Project Work (Using SAS Analytica, R tool)	(04)
Comprehensive descriptive statistical analysis of data in different formats. Data pre-	
processing, Normalising, cleaning, integration and transformation tasks using SAS	
toolboxes. Application of different data mining functionalities such as frequent pattern	

RECOMMENDED BOOKS

clustering on different categories of data.

S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Data Mining: Concepts and Techniques	JiaweiHan&MichelineK	Morgan
		amber	Kaufman
			publishers
2	Data Mining	Pieter Adrians,	Addison
		DolfZantinge	Wesley
3	Data Warehousing, Data Mining and	Alex Berson	McGraw Hill
	OLTP		

analysis, linear (uni variable and multi variable) and logistic regression, classification,

PO CO	a	b	С	d	e	f	g	h	i
CO1	2								
CO2	2	1	1	1					
CO3	1	1	1	1	1				
CO4		1	1	2	1				

SYLLABUS FOR B.E. (I.T.) SEVENTH SEMESTER

COURSE INFORMATION SHEET

Course Code	ITE741
Course Title	Digital Signal Processing (Theory)
Type of Course	Core
	403
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basics of Electronics Communication
Course Objectives (CO)	 To understand how to analyze and manipulate digital signals and have the fundamental MATLAB programming knowledge to do so. To provide the student with the necessary background for taking advanced level courses in signal and image processing.
Course Outcome	After the completion of this course, the
	students are able to:
	 I. Understand and learn the concept of Digital Signal Processing, types of digital signals/systems and their implementation in MATLAB. II. Analyze and implement z-transform, Discrete Fourier Transform in MATLAB. III. Learn the structures of digital filters and
	apply in designing them both theoretically and in MATLABIV. Understand the architecture and features of Digital Signal Processors

SYLLABUS

Note: The Semester question paper of a subject be of 50 Marks having 7 questions of equal marks. First question, covering the whole syllabus and having questions of conceptual nature, be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each section.

SECTION-A	Hours
Introduction to Digital Signal Processing Applications and advantages of DSP. Sampling theorem concept of frequency in	(04)
discrete time signals.	
Discrete Time Signals and Systems	(08)
Classification of signals, standard signals and classification of discrete time systems. Linear Time Invariant systems and their representation by difference equations and	
Structures.	(04)
Definition of direct, inverse z-transform and its properties. System functions of a LTI system. Inverse z-transform by power series expansion and partial fraction expansion.	(04)
Frequency Analysis	(08)
Fourier series and transform of discrete time signals and properties (DTFT). Discrete Fourier Transform and its properties. Fast Fourier Transform algorithms, decimation in time and decimation in frequency algorithms (radix 2).	
SECTION-B	
Realization of FIR & IIR Systems:	(04)
Direct forms, cascade and parallel form IIR structures. Direct form, cascade and linear	
phase FIR structures.	
Design of Digital Filters:	(12)

Comparison of Analog and Digital filters, Comparison of IIR and FIR filters.FIR Filters and linear phase requirement. FIR filters design using the window technique. IIR Filters and their design using the impulse invariance technique and bilinear transformation. Finite word length effects.

DSP Processors

Introduction to DSP Processors, architecture of TMS 320CXX and ADSP 21XX

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER	
No.				
1.	Digital Signal Processing: Principles,	Proakis&Manolakis	Pearson	
	Algorithms and Applications, 3 rd Edition			
2.	Digital Signal Processing	E C Ifeacher and B W	Prentice Hall	
		Jervis		
3.	Digital Signal Processing, 1 st Edition	S Salivaharan, A Vallavraj,	TMH	
		C Granapriya		
4.	Digital Signal Processing	Sanjay Sharma	S.K. Kataria&	
			Sons	

(05)

PO CO	a	b	С	d	e	f	gg	h	i
C01	1	1			1				
CO2	1	2	2	1	1				
CO3	1	2	2	1	1				
CO4	1	1	2	1	1				

Course Code	ITE741
Course Title	Digital Signal Processing (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Basics of Electronics Communication
Course Objectives	To develop skills for analyzing and
	synthesizing algorithms and systems that
	process discrete time signals, digital and
	analog filters with emphasis on realization
	and simulation in MATLAB.

SYLLABUS

Practical based on theory.

Course Code	ITE746			
Course Title	Compiler Design (Theory)			
Type of Course	Core			
	400			
Credits	04			
Total Lectures	45			
Course Assessment Methods:				
End Semester Assessment (University Exam.)	50			
Continuous Assessment (Sessional)	50			
Course Prerequisites	Computer Architecture and Organization			
Course Objectives	To provide the in-depth knowledge of			
	different concepts involved while designing a			
	compiler.			
Course Outcomes	After the completion of this course, the			
	students are able to:			
	I. Understand the working of complier			
	and translators.			
	II. Develop in-depth knowledge of major			
	stages of compiling.			
	III. Relate and analyze the concepts			
	learned earlier in their study like higher			
	level programming, assemblers,			
	automata theory and formal languages,			
	data structure and algorithms,			
	operating systems.			
	IV. Apply the ideas, the techniques, and			
	the knowledge acquired for the			
	purpose of designing the compiler.			

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A	Hours
Introduction	(05)
Compilers and Translators; The phases of the compiler – Lexical Analysis, Syntax	
Analysis, Intermediate Code Generation, Optimization, Code generation, Bookkeeping,	
Error handling.	
Lexical Analysis	(05)
The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering,	
Specifications of a token, Recognition of a tokens, Finite automata: Regular	
expressions, NFA, DFA.Design of a lexical analyzer generator.	
Syntax Analysis	(12)

The role of a parser, Context free grammars, Writing a grammar, Top down Parsing: Recursive decent parser, Predictive parser, Bottom up Parsing: Handles, Viable prefixes, Operator precedence parsing, LR parsers: SLR, LALR, CLR. Parser generator (YACC).Error Recovery techniques for different parsers.

SECTION-B

Syntax directed translation	(04)
Syntax directed definitions, Synthesized and inherited attributes, Construction of	
syntax trees.	
Run time environments	(06)
Source language issues (Activation trees, Control stack, scope of declaration, Binding	
of names), Storage organization (Subdivision of run-time memory, Activation records),	
Storage allocation strategies, Symbol tables: storage, data structures used.	
Intermediate code generation	(03)
Intermediate languages, Graphical representation, Three-address code, Implementation	
of three address statements (Quadruples, Triples, Indirect triples).	
Code optimization and code generation	(10)
Introduction, Basic blocks & flow graphs, DAG, principle sources of optimization:	
loop optimization, eliminating induction variable, eliminating common sub-expression,	

loop unrolling, loop jamming etc., Issues in the design of code generator, a simple code generator, Register allocation & assignment, Peephole optimization.

S.	NAME	AUTHOR(S)	PUBLISHER	
No.				
1.	Compilers: Principles, Techniques and	Aho, Sethi and Ullman	Pearson	
	Tools		Education	
2.	Principles of Compiler Design	Aho, Ullman	Narosa	
			Publication	
3.	Compiler Construction- Principles and	Dhamdhere	Macmillan,	
	Practice		India	
4.	Compiler Design in C	Holub	PHI	

PO CO	a	b	С	d	e	f	g	h	i
C01 `	1		2	2					
CO2	1	1	2	2	1				
CO3	1	1	2	2	1			1	
CO4	1	1	2	2	1		1		
Course Code	ITE754								
--	--								
Course Title	Agile Software Development (Theory)								
Type of Course	Core								
LTP	403								
Credits	04								
Total Lectures	45								
Course Assessment Methods:									
End Semester Assessment (University Exam.)	50								
Continuous Assessment (Sessional)	50								
Course Prerequisites	Software Engineering								
Course Objectives	1. To understand the basic concepts of agile								
	software process.								
	2. To gain knowledge in the area of various								
	Agile Methodologies.								
	3. To know the principles of Agile Testing.								
Course Outcomes	At the end of the subject, student will be able to :								
	I. Define the practices and philosophies of								
	agile methods.								
	II. Analyze the tradeoffs in selecting a								
	software engineering method.								
	III. Define and extend the usage of Scrum and								
	Extreme Programming in software								
	product development.								
	IV. Understand about various testing methods								
	used in agile.								

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper. SECTION A Hours

Overview of Agile Software development Introduction: What is Agile?, Goals/Manifesto and principles, Key Features, Challenges, Advantages and disadvantages, Agile usage, Agile Vs Traditional Software development (Waterfall), Agile Software Development lifecycle.

Agile Design

Agile Design Practices, Design smells and software rotting, SOLID Principles: SRP – The Single Responsibility Principle, OCP – the Open Closed Principle, LSP – The Liskov Substitution, DIP – The Dependency Inversion Principle, ISP – The Interface Segregation Principle.

Agile Methodologies

Scrum: Overview of scrum theory, Scrum Team, Scrum Roles, The Sprint, Sprint

(09)

(08)

(06)

Planning, Daily Scrum, Sprint review, Sprint retrospective, Scrum artifacts, Product back log, sprint backlog, Progress Monitoring. Extreme Programming(XP): Overview of XP, Concept, Values, Rules, Principles, Scalability, Practices, Issues.

SECTION-B

Agile Project Management

Overview of Agile project management, Agile project management model: Overview of agile enterprise framework and agile delivery framework, Scaling and governing agile projects. Tools for Agile project management

Agile Testing

Introduction to agile testing, Principles for testers, Overview of organizational challenges, The Agile testing Quadrants, Test Automation, The Agile lifecycle and its impact on testing, Types of testing in agile : TDD, BDD, Acceptance tests Exploratory testing, Risk based testing, Regression tests, Unit testing, Integration testing, system testing, Tools to support the Agile Tester

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	Agile Principles, Patterns, and Practices in C#	Martin C. Robert, Martin Micah	Prentice Hall, 2006
2.	Agile Project Management: Creating Innovative Products, 2nd Edition	Jim Highsmith	Addison-Wesley Professional, 2010
3.	Agile Testing: A Practical Guide for Testers and Agile Teams	Janet Gregory, Lisa Crispin	Addison-Wesley Professional, ISBN: 9780321616944

	a	b	c	d	e	f	g	h	i
PO CO									
CO1	2				1			1	1
CO2		2	1	2	1			1	
CO3	1	1	1	2	1			1	
CO4	1	2	1		1	1	2	1	1

(10)

(12)

Course Code	ITE754
Course Title	Agile Software Development (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Software Engineering
Course Objectives	To get exposure to various tools such as
	AgileFant, JUnit.

SYLLABUS

Practical based on theory.

Elective-II

COURSE INFORMATION SHEET

Course Code	ITE744
Course Title	Cloud Computing (Theory)
Type of Course	Elective
	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Operating System , Computer Networks
Course Objectives	 To understand the basics of Cloud Computing, different deployment models and service models of Cloud. To have an overview about the Public cloud and Private cloud, and the security issues related to Cloud computing.
Course Outcomes	After the completion of this course, the
	 I. Illustrate the concepts of Cloud Computing and the various deployment and service models of Cloud Computing. II. Demonstrate the functioning of Private and Public Cloud. III. Describe the security concerns of Cloud Computing. IV. Understand the need of cloud computing in industry domains and current challenges and future directions of cloud computing.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Overview of Cloud Computing:

Brief history and evolution - History of Cloud Computing, Evolution of Cloud Computing, Traditional vs. Cloud Computing. Why Cloud Computing, Cloud service models (IaaS, PaaS& SaaS). Cloud deployment models (Public, Private, Hybrid and Community Cloud), Benefits and Challenges of Cloud Computing.

Hours

(04)

Understanding Virtualization

Basics of virtualization, Virtualization technologies, Server virtualization, VM migration techniques, Role of virtualization in Cloud Computing.

Working with Private Cloud:

Private Cloud Definition, Characteristics of Private Cloud, Private Cloud deployment models, Private Cloud Building blocks namely Physical Layer, Virtualization Layer, Cloud Management Layer, Challenges to private Cloud, Virtual Private Cloud. Implementing private cloud (**one out of**CloudStack, OpenStack, Eucalyptus, IBM or Microsoft)

Working with Public Clouds:

What is Public Cloud, Why Public Cloud, When to opt for Public Cloud, Public Cloud Service Models, and Public Cloud Players. Infrastructure as a Service Offerings (IaaS), PaaS offerings, Software as a Service Offering (SaaS). Implementing public cloud (**one out of** AWS, Windows Azure, IBM or Rackspace)

SECTION-B

Overview of Cloud Security:

Explain the security concerns in Traditional IT, Introduce challenges in Cloud Computing in terms of Application Security, Server Security, and Network Security. Security reference model, Abuse and Nefarious Use of Cloud Computing

Overview of Multi-Cloud Management Systems & Business Cloud:

Explain concept of multi-cloud management, Challenges in managing heterogeneous clouds, benefits and advantages of multi-cloud management systems. Cloud Computing in Business, Clouds focused on industry domains (Life Sciences and Social networking) Introduction of Business Intelligence on cloud and Big Data Analytics on Cloud

Future directions in Cloud Computing

Future technology trends in Cloud Computing with a focus on Cloud service models, deployment models, cloud applications, and cloud security, Current issues in cloud computing leading to future research directions.

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Cloud Computing: Principles and	RajkumarBuyys, James	Wiley, 2011
	Paradigms	Broberg, Andrzej	
		Goscinski (Editors)	
2.	Cloud Computing	Michael Miller	Pearson
			Education
			2009
3.	Cloud Computing for dummies,	Judith Hurwitz, Robin	Wiley, 2009
		Bllor, Marcia Kaufman,	
		Fern Halper	
4.	Cloud Computing: A Practical	Anthony T. Velte, Toby J.	McGraw Hill,
	Approach	Velte, and Robert	2010.
		Elsenpeter	
5.	Handbook of Cloud Computing	BorkoFurht, Armando	Springer,
		Escalante	2010

RECOMMENDED BOOKS

(06)

(10)

(08)

(04)

(04)

(09)

PO CO	a	b	С	d	e	f	g	h	i
C01	1	1							
CO2	1	2	2						
CO3		1	1	1					
CO4		1	1	2					

Course Code	ITE745
Course Title	Artificial Intelligence (Theory)
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Data Structures, Discrete Structures
Course Objectives	 To introduce the main concepts, ideas and techniques of artificial intelligence (AI) to the students so that they could know the various aspects of AI. To understand some essential principles and are able to implement some basic AI techniques in their projects or other related work.
Course Outcomes	After the completion of this course, the
	students are able to:
	 I. Understand the various problem solving techniques of Artificial Intelligence. II. Utilize knowledge representation concepts for inference-based problem solving. III. Understand various Planning problems, algorithms and approaches.
	IV. Apply knowledge obtained from observations, neural networks and expert system.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A Hours

(06)

Introduction:

Artificial Intelligence and its applications, Artificial Intelligence Techniques, criteria of success, Intelligent Agents, Nature and structure of Agents, Learning Agents
 Problem solving techniques: (09)
 State space search, control strategies, heuristic search, problem characteristics,

A* search, Constraint satisfaction problem, Mean-end analysis, Min-Max Search, Alpha-Beta Pruning, Additional refinements, Iterative Deepening

Knowledge representation:

Mapping between facts and representations, Approaches to knowledge representation, procedural vs declarative knowledge, Forward vs. Backward reasoning, Matching, conflict resolution, Non-monotonic reasoning, Default reasoning, statistical reasoning, fuzzy logic Weak and Strong filler structures, semantic nets, frame, conceptual dependency, scripts

SECTION-B

Planning:

The Planning problem, planning with state space search, partial order planning, planning graphs, planning with propositional logic, Analysis of planning approaches, Hierarchical planning, conditional planning, Continuous and Multi Agent planning

Learning :

Forms of Learning, inductive learning, Decision trees, Computational learning theory, Logical formulation, knowledge in learning, Explanation based and relevance based learning, statistical learning, Learning with complete data and hidden variables, instance based learning, Neural Networks

Introduction to Natural Language processing and Expert system:

Basic Tasks of Natural Language processing, Expert systems, Expert system examples, Expert System Architectures, Rule base Expert systems, Non Monotonic Expert Systems, Decision tree base Expert Systems.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	AI: A Modern Approach	Stuart J.Russel, Peter	Pearson
		Norvig	Education,
			Latest Edition
2.	Artificial Intelligence	Elaine Rich, Knight	McGraw Hill,
			1993
3.	Artificial Intelligence	Partick Henry Winston	Addison
			Wesley, Latest
			Edition
4.	Artificial Intelligence	George Luger	Pearson
			Education,
			Latest Edition
5.	Introduction to AI and Expert Systems	DAN, W. Patterson	PHI, latest
			Edition
6.	Principles of AI	A.J. Nillson	Narosa
			publications,
			latest Edition

(06)

(08)

(10)

(06)

PO CO	a	b	C	d	e	f	50	h	i
C01	1	2	1	2	1				
CO2	1	2	1	2	1				
CO3	1		1	1	2				
CO4	1	2	1	2	1				

Course Code	ITE748
Course Title	Principles of Telecommunication (Theory)
Type of Course	Elective
LTP	400
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Basics of Electronic Communication
Course Objectives	To provide basic knowledge about the concepts of different types of communication approaches.
Course Outcomes	 After completion of this course, the students are able to: Understand and apply the concepts of signal theory. II. Learn the concepts of Noise and its types. III. Analyze the concepts of Information theory and coding IV. Learn basics of optical, Satellite and Wireless Communication.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Introduction	(03)
The communication process, Block diagram of a general communication system.	
Probability and Random Signal Theory	(09)
Probability basics, Conditional Probability, Random Variables, Discrete Random	
Variables, Continuous Random Variables, Variance, Standard deviation, Moments,	
Binomial, and Gaussian distribution	
Noise	(08)
Sources of Noise, Shot Noise, resistor Noise, White Noise, Noise Temperature, Signal-	
to-Noise Ratio, Noise Figure.	

SECTION-B

Information Theory

(10)

Hours

Unit of Information, Entropy, Rate of Information, Joint entropy and Conditional	
Entropy, Mutual Information, Channel Capacity, Shannon's Theorem	
Coding	(08)
Need for Coding, Coding Efficiency, Shannon Fano Coding, Huffman Coding	
Types of Communications	(07)
Basics of Fiber Optic Communication, Principles of Satellite communication,	

Basics of Fiber Optic Communication, Principles of Satellite communication, Fundamentals of Wireless communications

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Communication Systems: Analog and	R P Singh and S D Sapre	TMH, latest
	Digital		Edition
2.	Principles of Communication Systems	H. Taub, D. L. Schilling,	McGraw Hill,
		G. Saha	2011
3.	Communication Systems	S. Haykin	Wiley India
			Limited, 5th
			Edition
4.	Fiber optic communication systems,2E	Govind P. Agrawal	Wiley India
5.	Optical Fiber Communications	Gerd Keiser	McGraw Hill
	Designs, 3rd Edition		
6.	Satellite Communications	Dennis Roddy, John	Mc-Graw Hill
		Coolen	
7.	Wireless Communications Principles	Theodore S. Rappaport	Prentice Hall
	and practice, 2nd Edition		India

		Pos							
COs	a	b	c	d	e	f	g	h	Ι
CO1	2			1					
CO2	2								
CO3	2		1	1					
CO4			1				1		

Course Code	ITE795
Course Title	Project-1
Type of Course	Core
LTP	004
Credits	02
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	100
Course Prerequisites	Nil
Course Objectives	1. Students learning skills to tackle realistic problems as they would be solved in the real world.
	2. Teachers serving as facilitators help in clarity of objectives to be achieved.
	3. Students (usually, but not always) working in pairs or groups.
Course Outcomes	After the completion of this course, the students are able to:I. Understand the requirements for real life engineering and societal problems.II. Analyze and apply skills and knowledge to solve real life problem.
	III. Demonstrate interpersonal skills and ability of team work and documentation and reporting.

PO CO	a	b	С	d	e	f	g	h	i
CO 1	1	2	1	2	1		1		2
CO2	2	2	1	2	1		1		1
CO3			1	1		1	2	1	2

Course Code	ITE796
Course Title	Industrial Training (after 6th Semester)
Type of Course	Core
LTP	000
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Nil
Course Objectives	1. To enable students to integrate theory
	with practice.
	2. To introduce students to work culture
	and industrial practices.
	3. To provide opportunity to students to
	hands on current problems industrial
	practitioners are dealing with.
Course Outcomes	After the completion of this course, the
	students are able to:
	I. Analyze practical aspects of a problem and designing its solution.
	II. Apply skills and knowledge of recent
	technologies to implement solution for a real life problem.
	III. Demonstrate interpersonal skills and
	ability of team work and documentation and reporting.

PO CO	a	b	С	d	e	f	g	h	i
CO1	2	1	2	1	1				
CO2	1	2	2	2					
CO3						1	2	1	2

SYLLABUS FOR B.E. (I.T.) EIGHTH SEMESTER

COURSE INFORMATION SHEET

Course Code	ITE841
Course Title	Digital Image Processing (Theory)
Type of Course	Core
LTP	313
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Computer Graphics, Digital Signal Processing
Course Objectives	 To introduce students the significance of digital image processing. To apply the various algorithms to solve different image processing problems.
Course Outcomes	After the completion of this course, the
	students are able to:
	I. Understand and learn the basics of image processing.
	II. Learn& apply various image enhancement filters and restoration techniques.
	III. Analyze basic image processing functions that can help in identifying boundaries, edges and objects/regions in a given digital image.
	IV. Implement algorithms to solve different image processing problems.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A Hours

Introduction to Image Processing: Digital Image representation, Sampling & (7) Quantization, Steps in image Processing, Image acquisition, color image representation, color models.

Image Transformation and Filtering:

(12)

Intensity transform functions, histogram processing, Spatial filtering, fourier transforms and its properties, frequency domain filters, Pseudo coloring, color transforms, Basics of Wavelet Transforms.

Image Restoration:

Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphic Filtering.

SECTION-B

Image Compression: Coding redundancy, Interpixel redundancy, Psycho-visual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression **Image Segmentation & Representation:** Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors, Regional Descriptors (2)

Object Recognition:

Patterns and Patterns classes, Recognition based on Decision Theoretic methods

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Digital Image Processing	Gonzalez and Woods	Addison Wesley
			1992
2.	Computer Vision - A First Gurse 2nd	Boyle and Thomas	Blackwell
	Edition		Science 1995
3.	Introductory Techniques for 3-D	Trucco&Verri	Prentice Hall,
	Computer Vision		Latest Edition
4.	Introductory Computer Vision and Image	Low	McGraw-Hill
	Processing		1991
5.	Machine Vision	Jain, Kasturi and Schunk	McGraw-HiII.
			1995
6.	Image -Processing, Analysis and	Sonka, Hlavac, Boyle	PWS
	Machine Vision 2nd edition		Publishing,1999

PO CO	a	b	c	d	e	f	g	h	i
CO1	2		1		1				
CO2	2	2	1		2				
CO3	1	1	2	2	2				
CO4	1	1	2	2	1				

(6)

(6)

(12)

Course Code	ITE 841
Course Title	Digital Image Processing (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Programming Fundamentals, Digital Signal
	Processing
Course Objectives	I. To develop an overview of the field of
	image processing, understand the
	fundamental algorithms.
	II. To implement, prepare and read the
	current image processing research
	literature, gain experience in applying
	image processing algorithms to real
	problems.

SYLLABUS

Practical should be covered based on the following directions:

- 1. Reading and displaying images in different formats using different color models.
- 2. Converting color images into monochrome images, Image color enhancements using
- 3. Pseudo coloring techniques.
- 4. Images enhancements using grey level transformations
- 5. Images enhancements in spatial domain
- 6. Images enhancements in frequency domain.
- 7. Image Noise removal and inverse filtering of images
- 8. Point, Line, Edge and Boundary Detections in images
- 9. Histogram Processing on images
- 10. Boundary Linking, Representation and Description techniques on images
- 11. Thresholding of Images.

Note: Students are required to complete any 10 practicals by implementing them in any of the programming language such as Java, C/C++, C#, MATLAB.

Course Code	ITE842
Course Title	Embedded System Design (Theory)
Type of Course	Core
LTP	313
Credits	04
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Microprocessor & Assembly Language Programming, Computer Architecture &Organization
Course Objectives	 To introduce students to the embedded systems, its hardware (micro-controllers) and software. To explain real time operating systems, inter-task communication and an exemplary case of RTOS.
Course Outcomes	After the completion of this course, the students
	are able to:
	I. Understand the concept and features of
	Microprocessors & Microcontrollers,
	Embedded & external memory devices,
	CISC & RISC processors. Harvard & Von
	Neumann Architectures.
	II Learn and understand the architecture
	addressing modes, instructions interrupts, timers/counters, serial communication and applications of 8051 Microcontroller and apply and evaluate 8051 based solutions to real problems
	III. Explain the features, architecture, memory organization, instructions, addressing Modes and applications of PIC 16C6Y/7Y
	Microcontroller.
	IV. Describe the evolution of architectures
	used for Embedded Software Development
	and apply to real-time system's design.

SYLLABUS

Note: The Semester question paper of a subject will be of 50 Marks having 7 questions of equal marks. First question, covering the whole syllabus and having questions of conceptual nature, be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each section.

SECTION-A

Introduction to Microcontrollers Comparison of Microprocessors and Microcontrollers. Embedded and external memory devices, CISC and RISC processors, Harvard and Von Neumann Architectures.

Overview of 8 bit Microcontrollers

Overview of 8051, Architecture, addressing modes and instructions. Interrupts, Timer/ Counters, Serial Communication and applications. Interfacing Overview of Atmel 89C51 microcontroller.

SECTION-B

PIC Microcontrollers

Introduction and features, PIC 16C6X/7X: Architecture, Registers, Reset actions, Memory Organization, Instructions, Addressing Modes, I/O Ports, Interrupts, Timers, ADC. Input Capture, Output Compare, Frequency Measurement, Serial I/O Device

Software Development & Tools

Embedded System Evolution Trends, Round Robin, Round Robin with Interrupts, Function Scheduling architecture, Real Time scheduling: their development, applications and examples.

Real Time Operating Systems

RTOS Architecture, Task and Task States, Tasks and Data, Semaphores and shared data, Operating System Services: message queues, timer function, events, memory management, interrupt Routines in an RTOS environment, Basic Design Using RTOS

RECOMMENDED BOOKS

S. No.	NAME	AUTHOR(S)	PUBLISHER
1.	The 8051 Microcontroller and	Muhammed Ali Mazidi,	Pearson 2 nd
	Embedded Systems	Janice GillispieMazidi and	Edition
		Robin D. Mckinlay	
2.	The 8051 Microcontroller:	Kenneth J. Ayala	Pearson 2 nd
	Architecture, Programming &		Edition
	Applications		
3.	Microcontrollers (Theory and	Ajay Deshmukh	TMH
	Applications)		Publishers
4.	An Embedded Software Primer	David E. Simon	Addison
			Wesley
5.	Specification and Design of Embedded	D. D. Gajski, F. Vahid, S.	Prentice Hall
	Systems, Latest Edition	Narayan, J. Gong	

(04)

(19)

(12)

(06)

(04)

PO CO	a	b	с	d	e	f	g	h	i
CO1	1			1	1				
CO2	1	2	2	1	1	2			
CO3	1	2	2	1	1	2			
CO4	1	2	2	1	1	2			

Course Code	ITE 842
Course Title	Embedded System Design (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Microprocessor & Assembly Language
	Programming
Course Objectives	To design, implement, test and document the
	microprocessor-based systems.

SYLLABUS

Practical based on theory.

Course Code	ITE843
Course Title	Java Technologies (Theory)
Type of Course	Core
LTP	403
Credits	4
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Programming Fundamental, Object Oriented
	Programming using C++
Course Objectives	1. To provide students with the principles of
	object orientation from the perspective of
	Java implementation and UML.
	2. To be able to learn the concepts of and
	practical approaches to object-oriented
	UML and Java
Course Outcomes	After the completion of this course, the
	students are able to:
	I. Understand Java programming
	fundamentals such as encapsulation.
	inheritance exception handling and
	multithreading
	II Understand I/O stream classes
	III Design graphical user interface using
	standard java librarias to implement
	standard java noraries to implement
	event driven appreations.
	IV. Examine the enterprise components
	including Enterprise JavaBeans (EJB)
	technology, servlets, and Java Server
	Pages (JSP) technology, JDBC.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Java Methods, Classes and Inheritance:

Introduction; classes; methods; constructors; overloading methods; arrays; recursion; passing arrays and objects to methods; Inheritance; method overriding; abstract classes; using final; packages; interfaces.

Exceptional Handling and Multithreaded Programming:

Exception handling fundamentals; exception types; uncaught exceptions; try and catch; creating exception classes; throwing exceptions; Java thread model; thread priorities; creating a thread; interthread communication; thread synchronization; suspending, resuming and stopping threads.

I/O, Applets and Graphics:

I/O basics; stream classes; byte and character streams; reading and writing files; Applet fundamentals; Applet class; Applet initialization and termination; event handling; keyboard and mouse events; AWT class; Layout managers; panels; canvases; Frame windows; drawing lines, rectangles, ellipses.

SECTION-B

Overview of J2EE and working with JDBC:

What is J2EE, component based architecture of J2EE: Web, Business and Application component, commonly used classes and interfaces of java.sql package, connecting java application to a database, prepared statements.

Servlets and JSP:

Java Servlets, compilation, deployment, and testing a servlet, session management, request dispatching, Java Server Pages, deploying and testing a JSP, using java beans in JSP.

Enterprise Java Beans(EJB):

Architecture of EJB, creating a stateless-session EJB, statefull-session bean, Life Cycle of session beans, Entity beans, life cycle of entity beans.

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1.	Java: How to Program, 6 th Edition	Deitel and Deitel	Pearson Education
2.	The Complete Reference Java2	Herbert Schildt	TMH
3.	J2EE: The Complete Reference	James Edward Keogh, Jim Keogh	McGraw-Hill

(8)

(8)

(8)

(7)

(7)

(7)

PO	a	b	С	d	e	f	g	h	i
со									
CO1	2			1					
CO2	2			1					
CO3	2	1	2	1					
CO4	2			1					

Course Code	ITE843
Course Title	Java Technologies (Practical)
Type of Course	Core
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Object Oriented Programming using C++
Course Objectives	To be able to learn the concepts of and
	practical approaches to object-oriented
	analysis, design and programming using
	UML and Java.

SYLLABUS

Practical based on theory.

ELECTIVE-III

COURSE INFORMATION SHEET

Course Code	ITE845
Course Title	Soft Computing (Theory)
Type of Course	Elective
LTP	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Discrete Structures
Course Objectives	 To introduce students to soft computing concepts and techniques and foster their abilities in designing. To implement soft computing based solutions for real-world problems.
Course Outcomes	After the completion of this course, the students are able to:
	 Identify and describe soft computing techniques and their roles in building intelligent machines II. Design and apply neural networks to pattern classification and regression problems III. Model fuzzy logic and reasoning to handle uncertainty and solve engineering
	problems IV. Implement genetic algorithms and hybrid systems for various optimization and real life problems

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

Fundamentals of Artificial Neural Networks & Applications, Characteristics of ANNs (15) The Biological Prototype, Evolution of Neural Networks, Learning Methods McCulloch-Pitts Neuron, Hebb Network, Perceptron Networks, Adaline and Madaline, Multilayer Neural Networks, Backpropagation Network, Associative Memory Networks, BAM, Hopfield Networks, Kohonen Self Organizing Feature Maps

Introduction to Fuzzy Logic, Classical Vs Fuzzy sets, Membership Funstions, (8) Defuzzification, Fuzzy model, Fuzzy Rule Base, Fuzzy inference systems, Fuzzy Expert System

SECTION-B

Fuzzy Arithmetic: Fuzzy Numbers, Linguistic Variables, Arithmetic Operations on (12)
Intervals, Arithmetic Operations on Fuzzy Numbers, Fuzzy Equation
Fuzzy Logic: Classical Logic, Multivalued Logic, Fuzzy Propositions, Fuzzy
Quantifiers, Linguistic Hedges
Uncertainty Based Information: Information and Uncertainty, Nonspecificity of Crisp
Sets, Nonspecificity of Fuzzy Sets, Fuzziness of Fuzzy Sets

Applications of fuzzy logic: Medicine and Economics(04)Introduction to Neuro Fuzzy Systems, Architecture of a Neuro Fuzzy system(04)

Genetic Algorithm: An overview, Basic Terminologies in Genetic Algorithm, (06) Operators in Genetic Algorithm, Problem solving using Genetic Algorithm, Implementation of GA and GP, Applications of GA & GP

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	An Introduction to Neural Networks,	J.A.Anderson	MIT Press
2	Introduction to the Theory of Neural	Hertz J. Krogh, R.G.	Addison-
	Computation	Palmer,	Wesley
3	Fuzzy Sets & Fuzzy Logic	G.J. Klir & B. Yuan	Prentice Hall
4	An Introduction to Genetic Algorithm	Melanie Mitchell	MIT Press
5	Neural Networks-A Comprehensive	Simon S. Haykin	Prentice-Hall
	Foundations		International
6	Neural Networks: Algorithms,	J.A. Freeman & D.M.	Addison
	Applications and Programming	Skapura	Wesley,
	Techniques		Reading, Mass

RECOMMENDED BOOKS

PO CO	a	b	c	d	e	f	g	h	i
CO1	1	2	2	2					
CO2	1	2	2	2	1		1		
CO3	1	2	2	2	1		1		
CO4	1	2	2	2	1		1		

Course Code	ITE 847
Course Title	Natural Language Processing (Theory)
Type of Course	Elective
LTP	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Discrete Structures
Course Objectives	The students should be able to study
	language and the tools that are available to
	efficiently study and analyze large
	collections of text. They should learn about
	and discuss the effects of electronic
	communication on our language.
Course Outcomes	After completion of this course, the
	students are able to:
	I. Understand different levels of
	natural language processing.
	II. Relate and analyze the concepts
	learned earlier like: regular
	expressions, finite automata, context
	free grammar and parsing in the
	study of natural language systems.
	III. Apply the concepts of natural
	language processing for creating
	intelligent language systems.
	IV. Develop in depth knowledge of
	language generation tasks.

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

SECTION-A

Hours

INTRODUCTION

A computational framework for natural language, description of English or an (08) Indian language in the frame work, lexicon, algorithms and data structures for implementation of the framework, Finite state automata, The different analysis levels used for NLP (morphological, syntactic, semantic, pragmatic and discourse). Applications like machine translations.

WORD LEVEL AND SYNTACTIC ANALYSIS

Word Level Analysis: Regular Expressions, Finite-State Automata, Morphological (10) Parsing, Spelling Error Detection and correction, Words and Word classes, Part-of Speech Tagging. Syntactic Analysis: Context-free Grammar, Constituency, Parsing-Probabilistic Parsing. Machine-readable dictionaries and lexical databases, RTN, ATN.

SEMANTIC ANALYSIS

Semantic Analysis: Meaning Representation, Lexical Semantics, Ambiguity, Word (10) Sense Disambiguation. Discourse Processing: cohesion, Reference Resolution, Discourse Coherence and Structure. Knowledge Representation, reasoning.

SECTION-B

NATURAL LANGUAGE GENERATION

Natural Language Generation (NLG): Architecture of NLG Systems, Generation Tasks and Representations, Application of NLG. Machine Translation: Problems in Machine Translation, Characteristics of Indian Languages, Machine Translation Approaches, Translation involving Indian Languages.

INFORMATION RETRIEVAL AND LEXICAL RESOURCES Information Retrieval: Design features of Information Retrieval Systems, Classical, Nonclassical, Alternative Models of Information Retrieval, valuation Lexical Resources:WordNet,Frame Net, Stemmers, POS Tagger.

C			DUDI ICHED
5.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Natural Language Understanding	James Allen	Pearson Education
2	NLP: A Paninian Perspective	AksharBharati,	Prentice Hall
		Vineet	
		Chaitanya, and	
		Rajeev Sangal	
3	Meaning and Grammar	G. Chirchia	MIT Press
		and S.	
		McConnell	
		Ginet	
4	An Introduction to Natural Language	Daniel	Pearson Education
	Processing, Computational Linguistics,	Jurafsky and	
	and Speech	James H.	
	Recognition	Martin	
5	Natural language processing in Prolog	Gazdar,	Addison-Wesley
		&Mellish	

RECOMMENDED BOOKS

(10)

(07)

PO CO	a	b	С	d	e	f	G	h	i
CO1	1	2	2	1					1
CO2	1	1	2	1					
CO3	2	2	2	1	1				1
CO4	1	1	2	1					

Course Code	ITE848
Course Title	Theory of Computation (Theory)
Type of Course	Elective
	310
Credits	04
Total Lectures	45
Course Assessment Methods:	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional)	50
Course Prerequisites	Discrete Structures
Course Objectives	To construct and prove the equivalence of
	languages described by finite state machines
	and regular expressions, pushdown automata
	and turing machines.
Course Outcomes	After successful completion of this course,
	the students are able to:
	I. Explain and interpret the fundamental,
	mathematical and computational
	principles laying the foundation of
	computer science.
	II. Define and apply methods for the
	equivalence of languages described by
	various types of automata and their
	equivalent recognizable languages.
	III. Understand the key results in
	algorithmic complexity, computability
	and solvability of problems.
	IV. Interpret and design grammars and
	recognizers for different formal
	languages

SYLLABUS

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part. All the course outcomes must be covered by the question paper.

Introduction to the Theory of Computation:

Basic concepts - Languages, Grammars, Automata, Strings, Alphabet, Chomsky Classification of Grammars and Languages

Finite Automata:

Finite automation model, Acceptance of strings and language, Deterministic Finite

(02)

(10)

Automaton, Non Deterministic Finite Automaton (NDFA), Equivalence of NDFA and DFA, Conversion of NFA into DFA, Minimization of Number of States in Finite Automata, equivalence between two FSMs, Moore and Mealy machines. Conversion of Mealy to Moore machine, Conversion of Moore to Mealy machine

Regular expressions and regular languages:

Regular Expressions, Identities for Regular Expressions, Finite Automata and Regular Expressions, Transition System Containing null moves, NDFAs with null moves and Regular Expressions, Eliminating epsilon-Transitions, Algebraic Method Using Arden's Theorem, Construction of Finite Automata Equivalent to a Regular Expression, Equivalence of Two Finite Automata, Equivalence of Two Regular Expressions, Closure Properties of Regular Languages under Simple Set Operations ((proofs omitted), Identifying Non regular Languages using Pumping Lemma.

SECTION-B

Context free grammar and Pushdown Automata:

Context-free Languages and Derivation Trees, Ambiguity in Context-free Grammars, Simplification of Context-free Grammars, Construction of Reduced Grammars, Elimination of Null Productions, Elimination of Unit Productions, Normal Forms for Context-free Grammars, Chomsky Normal Form, Greibach Normal Form, Pumping Lemma for Context-free Languages, Pushdown Automata - Basic Definitions, Acceptance by pushdown automata, Pushdown Automata and Context-free Languages, Parsing and pushdown automata, Top-down Parsing Using Deterministic pushdown automata, Bottom-up Parsing

Turing Machines Linear Bounded Automata

Turing Machine Model, Representation of Turing Machines, Language Acceptability by Turing Machines, Design of Turing Machines, Techniques for TM Construction -Turing Machine with Stationary Head, Storage in the State, Multiple Track Turing Machine, Subroutines, Variants of Turing Machines (proofs omitted) – Multi tape Turing Machines, Nondeterministic Turing Machines, The Model of Linear Bounded Automaton (LBA), Relation Between LBA and Context-sensitive Languages, Turing Machines and Type 0 Grammars

Undecidability:

Undecidability, Introduction to recursive & non-recursive enumerable languages, Universal Turing machine

(02)

(11)

(10)

(10)

RECOMMENDED BOOKS

S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Theory of computation	Mishra	PHI Learning
		&Chandrashekharan	Pvt. Ltd
2	Introduction to automata theory,	Hopcroft H.E. & Ullman	Pearson/Addis
	languages and computation		on Wesley
3	An introduction to formal languages and	Peter linz	Jones &
	automata		Bartlett
			Learning
4	Introduction to languages and the theory	John C Martin	McGraw-Hill
	of automata		
5	Elements of theory of computation	H.P. Lewis and C.H.	Prentice-Hall
		papadimition	

PO CO	a	b	С	d	e	f	gg	h	i
CO1	2				1				
CO2	2		1		1				
CO3	1			1	2				
CO4		2	1	1					

Course Code	ITE897
Course Title	Seminar
Type of Course	Core
LTP	002
Credits	01
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	50
Course Prerequisites	Nil
Course Objectives	 Investigate some of the current scientific issues facing society. Students will examine and develop self- management skills necessary for academic success.
Course Outcomes	 After successful completion of this course, the students are able to: I. Understand current technology topics being studied. II. Extend a greater amount of interaction between teacher and students.

РО СО	а	b	С	d	e	f	g	h	i
CO1	1		1	1	2	1		1	1
CO2						2	1	2	2

Course Code	ITE898
Course Title	Project-II
Type of Course	Core
LTP	004
Credits	02
Course Assessment Methods:	
End Semester Assessment (University Exam.)	00
Continuous Assessment (Practical)	100
Course Prerequisites	Nil
Course Objectives	1. Students learning skills to tackle realistic problems as they would be solved in the real world.
	2. Teachers serving as facilitators help in clarity of objectives to be achieved.
	3. Students (usually, but not always) working in pairs or groups.
Course Outcomes	 After the completion of this course, the students are able to: Understand the requirements for real life engineering and societal problems. II. Analyze and apply skills and knowledge to solve real life problem. III. Demonstrate interpersonal skills and ability of team work and documentation and reporting.

PO CO	a	b	С	d	e	f	g	h	i
CO 1	1	2	1	2	1		1		2
CO2	2	2	1	2	1		1		1
CO3			1	1		1	2	1	2

Course Code	ITE899
Course Title	Industrial Training
Type of Course	Core
Duration	6 months
Credits	22
Course Assessment Methods:	
Marks	400
Internal Assessment	300
Course Prerequisites	Nil
Course Objectives	1. To enable students to integrate theory
	with practice.
	2. To introduce students to work culture and
	industrial practices.
	3. To provide opportunity to students to
	hands on current problems industrial
	practitioners are dealing with.
Course Outcomes	After the completion of this course, the
	students are able to:
	I. Analyze practical aspects of a problem and designing its solution.
	II. Apply skills and knowledge of recent
	technologies to implement solution for a
	real life problem.
	III. Demonstrate interpersonal skills and
	ability of team work and documentation
	and reporting.

PO CO	a	b	С	d	e	f	g	h	i
CO1	2	1	2	1	1				
CO2	1	2	2	2					
CO3						1	2	1	2