Set No. 1

Question Booklet No.

03922

17P/216/22 (i)

	(To be filled up by	the candidate b	y blue/bluck be	ill-point pen)	18	
Roll No.					in the second	19
Serial No. of	OMR Auswer S	heet	2017		47	
Day and Dai	le	*****************	***************************************		e of Inviolete	

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mulitated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Quantion Booklet no. and Set no. (If any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option off the Answer Sheet by darkening the appropriate circle in the corresponding now of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in this cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Ter
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपबुक्त निर्देश हिन्दी में अस्तिम आवरण युष्ट पर दिये गए हैं।]

ROUGH WORK एक कार्य

Mrc. Zoolog & code No (484)

20子 17P/216/22 (i)

No. of Questions: 120

ks : 36	1.5	(4)	Time : 2 Hours
54		2-5-0	rime : 2 Hours

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted
question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 01. Which type of cleavage occurs in most of the protostomes?(1) Radial (2) Bilateral
 - (3) Spiral (4) Elliptical
- 02. Which of the following echinoderms resembles the ancestral from?
 - (1) Sea star

(2) Sea lily

(3) Sea urchin

- (4) Sand dellar
- 03. Larva of gastropoda is:
 - (1) Trochophore

(2) Veliger

(3) Nauplius

- (4) Plateus
- 04. The larva of crustaceans are called as :
 - (1) Trochophore

(2) Pluteus

(3) Naupilus

(4) Veliger

05.	Which class of phylum Cnidaria lacks a medusa stage is :						
	(1)	Hydrazoa	(2)	Anthozoa			
	(3)	Scyphozoa	(4)	None of the above			
06.	Hok	othuria is :					
	(1)	Biradial symmetrical	(2)	Radial symmetrical			
	(3)	Bilateral symmetrical	(4)	Spherical symmetrical			
07.	Pala	emon has :					
	(1)	18 pairs of appendages					
	(2)	19 pairs of appendages					
	(3)	20 pairs of appendages					
	(4)	21 pairs of appendages		65			
08.	A cn	idocyte is a specialized cell wh	rich l	helps in :			
	(1)	Digesting food	(2)	Sensing light			
	(3)	Capturing food	(4)	Circulating water			
09.	Whi	ch stage of liver fluke is infect	ious 1	to human ?			
	(1)	Sporocyst	(2)	Metacercaria			
	(3)	Cercaria	(4)	Redia			
		1 541 5 Nombre la mandanta		an of emistaceons 2			
10.	Whi	ch of the following is respirate	100				
	(1)	Book gills	(2)	Book lungs			
	(3)	Gills	(4)	Tracheae			

	(1)	Connecting link between	en arthropo	ds and annelids .
	(2)	Connecting link between	en annelids	and molluscans
	(3)	Connecting link between	en plants ar	nd animals
	(4)	Connecting link between	en arthropo	ds and molluscans
12.	Thi	rd chamber in the stom	ach of a rum	inant mammal is :
21	(1)	Abomasum	(2)	Rumen
	(3)	Omasum	(4)	Reticulum
13.	In r	man, the deciduous set	of teeth incl	udes :
	(1)	8 incisors, 4 canines,	8 molars	<u>.</u>
	(2)	8 incisors, 4 canines,	8 premolars	¥i
	(3)	8 incisors, 4 canines,	4 premolars	molars, 4 molars
	(4)	8 incisors, 2 canines,	10 molars	-
14.	_	which of the following oughout life?	g animals r	notochord does not persist
	(1)	Branchiostoma	(2)	Myxine
	(3)	Dollotum	(4)	Ichthyophis
15.	Hep	patic portal system is pro	esent in all.	The state of the s
	(1)	Amniotes only	(2)	Amniotes and Anamniotes
	(3)	Anamniotes only	(4)	Fishes only
÷			5 _	
	82.28	¥ 000.	27	P.T.O.

11. Neopilina is a

10.	Cen	dum, pre and post zygapopnys	as, u	ansverse Process are parts of :
	(1)	Skull of frog		27
	(2)	Vertebrae of frog	a	28
	(3)	Sternum of frog		
	(4)	Pectoral girdle of frog		
17.		ch one of the following anim sesses functional mammary gl		
	(1)	Pteropus	(2)	Salpa
	(3)	Delphinus	(4)	Ornithorhychus
18.		cranial nerves, Branchialis in	nerv	ate gills in fishes and are the
	(1)	Glossopharyngeal	(2)	Vagus
	(3)	Trigeminal	(4)	Abducens
19.	Sca	les arranged in overlapping m	annei	r having posterior margin with
	teet	h are :		
ž.	(1)	Placoid	(2)	Ganoid
	(3)	Cycloid	(4)	Ctenoid
			20	

P.T.O.

20.	Whi	ch one of the following mamm	al is	cursorial in habit ?
	(1)	Horse	(2)	Bat.
	(3)	Whale	(4)	Mole -
21.	The	ear ossicle 'Stapes' in man is	homo	ologous to :
	(1)	Articular	(2)	Hyomandibular
	(3)	Quadrate	(4)	None
22.	ln a	mammal like rat, dorsal aorta	give	out a pair of arteries supplying
	bloc	d to disphragm. Which of the	follo	wings is that artery ?
	(1)	Anterior mesentery	(2)	Phrenic
	(3)	Posterior mesentery	(4)	Iliac
23.	If a	cell contains 23 pairs of chr	omos	omes just after completion of
	mite	otic telophase, how many chro	matic	s were present in metaphase?
	(1)	23	(2)	46
±31	(3)	92	(4)	184
24.	The	membrane phopholipida form	bilay	yer, when water is available on
	botl	h sides, due to :		*
	(1)	Its amphipathic nature		at the second se
	(2)	Presence of unsaturated fatt	y acid	is
	(3)	Presence of saturated and u	nsatu	rated fatty acids in its tail
340	(4)	Presence of cholesterol along	200	

		施					
25.	In	hybridization	experiments,	, high	stringency	washing	means,
	wa	shing in preser	nce of:				
	(1)	Low salt con-	centration and	l high t	temperature		
	(2)	High salt cor	ncentration and	d high	temperature	:	
	(3)	High salt con	centration and	d low t	emperature		
	(4)	Only water					
26.	The	e most importar	nt cell type ass	ociated	with immun	ity of the	body is :
	(1)	Platelets		(2)	Lymphocyt	es	
	(3)	RBCs		. (4)	Neutrophile	s	
27.	Pol	ysomes are ma	ıny :				
	{1}	Ribosomes at	ttached to an i	ndivid	ual mRNA		
	(2)	Chain of nuc	elesomes formi	ng chr	omatin		
	(3)	Several lysos	omes fusing d	uring p	hagocytosis		
	(4)	Centrosomes	clustering du	ring m	itotic divisio	n	
28.	Wh	nich one of the	following orga	nelles i	s rich in aci	d hydrolas	ses ?
20	(1)	Lysosomes					
	(2)	Golgi comple	×x				
	(3)	Peroxisomes			B N		
	(4)	Rough endop	olasmic reticul	um	\$ *1		

29.	Whi	ich of the following chromosome will have highest DNA content?
	(1)	Satellite chromosomes
	(2)	X-chromosome
	(3)	Lampbrush chromosomes
	(4)	Polytene chromosomes
30.		n object is viewed under a compound microscope in the following ditions: Wavelength of light used = 500 nm; Refractive index of
	med	lium = 1; Angular aperture Sin 70° = 0.94, the limit of resolution be:
3	(1)	Approximately 230 nm
	(2)	Approximately 330 nm
	(3)	Approximately 430 nm
	(4)	Approximately 30 nm
31.	The	fuels for Krebs cycle occurring in mitochondria are:
	(1)	amino acids and nucleosides
	(2)	nucleic acids and monopeptides
	(3)	pyruvate and fattyacids

(4) pyramidine and phospholipids

- 32. What will happen if a lysosome is ruptured in side a cell?
 - (1) All the organelles of the cell will get digested
 - (2) The lysosomal enzymes wil get inactivated due to non acidic pH of cytoplasm
 - (3) The lysosomal proteins will get transported back to other lysosomes
 - (4) The individual will get inclusion cell disease
- 33. Due to mutation one amino acid may get replaced by another amino acid. Such mutations are termed as
 - (1) Nonsense mutation
 - (2) Missense mutation
 - (3) Frame shift mutation
 - (4) In frame mutation
- 34. A human baby born with a short, fleshy tail protruding from the base of the spine is an example of:
 - (1) Elongated vertebral column
 - (2) Atavism
 - (3) Edward's syndrome
 - (4) Placental infection

P.T.O.

35.	The	first ancestral mammals belo	ong to	:
•	(1)	Morganucodontidae	(2)	Theropods
	(3)	Balacnopteridae	(4)	Tarsiidae
36.	For-	an advantageous trait havin	g very	low or no heritability, what is
	the	probability that it will be sele	ected	in the evolutionary process?
	(1)	High	(2)	Intermediate
	(3)	Low	(4)	Almost none
37.	Gen	etic drift play an important r	ole in	
	(1)	Large population		
	(2)	Small population .		
	(3)	Bottleneck population		4
Œ.	(4)	Both 2 and 3		* · · · · · · · · · · · · · · · · · · ·
38.	Dive	ersification of a small group of	ances	tral species into a lage number
	of d	escendant species that occur	y a w	vide range of ecological niches
	100	nown as :		**************************************
- 2	(1)	Genetic drift	(2)	Migration
	(3)	Gradualism	(4)	Niche selection
•		e e	or o	
		0 47		

59.	THE	increase in body size with d	ecrea	ase in average temperature in
	case	e of warm blooded animals is s	tated	l by:
	(1)	Bergmann's rule	(2)	Wallace's rule
	(3)	Spencer's rule	(4)	Allen's rule
40.	The	first fossilized evidence of cell	s are	microfossils of:
	(1)	Prokaryotic cells in stromatol	ites	
	(2)	Prokaryotic cells in Allochtho	nous	Si :
	(3)	Acritarchs		
	(4)	Ediacaran fossils		×i
41.	Acco	ording to Darwinism, which of	the fo	ollowing can evolve and hence,
	forn	ns the unit of evolution :		
	(1)	Chromosome	(2)	Gene
	(3)	Population	(4)	Individual
42.	Whi	ch of the following individuals	have	e the greatest fitness?
	(1)	An individual who is homozyg a malaria – free area of the w		for sickle-cell anemia living in
8	(2)	An individual who is heterozy an a malaria-infested area	gous	for a sickle-cell trait living
	(3)	An individual who is homozyg	gous	for sickle-cell anemia living in
		a malaria-infested area		
	(4)	An individual not carrying a m	ıutat	ion for sickle-cell anemia living
		in a malaria-infested area .		33
	11.4			

43.	Acc	ording t	o Hardy	y-Wein	berg the	eory, p	2 + 2p	q = _		_	
	(1)	100			ŒF	(2)	1 – q	3	89		
ć.	(3)	\mathbf{q}^2				(4)	1	·	64		
44.	Acc	ording t	o "Out	of Afr	ica" the	ory, v	hich	of the	follo	wing h	uman
	spec	cies mig	rated o	ut of A	frica?						
	(1)	Homo	habilis	and A	ustralop	ithecu	S				
	(2)	Homo	erectus	and I	Iomo ha	bilis					
	(3)	Homo (erectus:	and H	lomo saj	piens	¥0				
	(4)	Homo	sapiens	s and	Homo n	eande	Midle	ķis		28	
45.	Whi	ch chan	icterist	ic was	selected	l for in	the e	arlies	t prim	ates to	allow
	ther	n to bec	ome su	accessi	ul in th	eir env	ironn	ient ?			ā
	(1)	Prehen	sile fin	gers a	nd toes		1 2 2 4	55			
	(2)	Bipeda	lism		98						ti.
	(3)	Crania	capac	ity			M.				
	(4)	Ability	to mig	rate	4 -1	8		٠			
		8							با الم	٧	8
					13		134	eri Si		15	

- **46.** Which one of the following characteristics of an axon is most dependent on its diameter?
 - (1) The magnitude of its resting potential
 - (2) The duration of its refractory period
 - (3) The conduction velocity of its action potential
 - (4) The activity of its sodium-potassium pump
- 47. The amount of force produced by a skeletal muscle can be increased by :
 - Increasing extracellular Mg²⁺
 - (2) Decreasing extracellular Ca2+
 - (3) Increasing the concentration of acetylcholinesterase
 - (4) Decreasing the interval between contractions
- 48. Connexin is an important component of:
 - (1) Gap junction
 - (2) Sarcoplasmic reticulum
 - (3) Microtubule
 - (4) Synaptic vesicle

49.	Prop	pagation of the action potenti	al t	hro	ugh the heart is fas	test in the
	(1)	SA node	(2)	Atrial muscle	
	(3)	Purkinje fibres	. (4)	AV node	80
			8			100
50.	Dur	ing exercise, there is an incr	eas	e ir	a person's :	
				Si.		
	(1)	Diastolic pressure				•
	V2.2		*			1
	(2)	Stroke volume	58.		20 8	
	(3)	Venous compliance		,		12
	(4)	Pulmonary arterial resistan	ce			
	1.3	· ·				
		•			28	0
51.	Puls	se pressure increases when :				
83	(1)	Heart rate increases			20	
	(2)	Stroke volume decreases	10			
	(3)	Mean arterial pressure incr	eas	cs	e .	
	(4)	Aortic compliance increases	í	ř	*	
52.	Volt	tage gated K* channel is inhi	oite	d b	y :	
	(1)	Tetradotoxin	((2)	Triethanolamine	и,
	(3)	Sexitoxin	(4)	Both 1 and 3	
		· · · · · · · · · · · · · · · · · · ·			5:	

53.	Dur	During scotopic vision, rod cells are activated by:						
	(1)	Opening cGMP coupled Na*	chan	nel				
	(2)	Closure of Na+-K* ATPase						
	(3)	(3) Closure of 5'-GMP coupled Na* channel						
	(4)	Increase in the glutamate re-	lease					
54.	Removal of the N-terminal Val (Asp), Lys activates:							
	(1)	Trypsinogen	٠					
	(2)	Chymotrypsinogen		1500				
	(3)	Pepsinogen						
	(4)	Procarboxypeptidase		er er				
55.	H+-F	C ATPase in parietal cells can	be in	hibited by:				
	(1)	Ranitidine	(2)	Cimetidine				
	(3)	Opemprazole	(4)	Ouabain				
56.				ring groups of neurons in the				
	resp	iratory centre stimulates both i	inspir	atory and expiratory muscles?				
	(1)	DRG	(2)	VRG				
	(3)	both 1 and 2	(4)	Broca's neurons				

57.	Neb	oulin is associated with the st	ructu	re of:			
	(1)	Z line	(2)	Tick filament			
	(3)	Myosin head	(4)	Thin filaments			
58.	Bas	e titration of which of the fol	lowin	g -amino acids will yield 3 pK			
	valu	les:					
	(1)	Ser	(2)	Asp			
	(3)	Val	(4)	Met			
59.	Dist	ulphide bond in a protein is a	genera	ated between :			
	(1)	Met - Met	(2)	Met - Cys			
N.	(3)	Cys - Cys	(4)	Met - Thr			
60.	In a	protein, Helix-loop-helix den	otes	125 107			
	(1)	Tertiary structure					
	(2)	Quaternary structure	0t				
	(3)	Structural motif					
	(4)	Supercoiled unit					
61.	The	kinetic pattern of an enzy	me ir	the presence of increasing			
				Comme in Km but declined			
	Vmax value, Identify nature of the inhibitor used:						
	(1)	Uncompetitive	(2)	Non-competitive			
	(3)	Competitive	(4)	Mixed type			
		66 80M115384					

- 62. Formation of lariat configuration is associated with:
 - (1) Initiation of translation
 - (2) Poly A tailing of mRNA
 - (3) Splicing of mRNA
 - (4) Termination of transcription
- 63. Degeneracy of genetic codes indicates for
 - (1) Degradation of codons
 - (2) Inconsistency of codons
 - (3) More than one codons for a single amino acid
 - (4) One codon for more than one amino acids
- 64. Aminoacyl-tRNA-synthetase is utilized for
 - (1) Splicing of a tRNA
 - (2) Charging of a tRNA
 - (3) Synthesis of a tRNA
 - (4) Degradation of a tRNA
- 65. A cDNA is constructed from:
 - (1) A double stranded DNA
 - (2) A single stranded DNA
 - (3) A rRNA
 - (4) A mRNA

66.	Which of the following hormone is used to india labour in human					
	fem	ales?	*		35	
	(1)	Vasopressin	8.53	(2)	Prolactin	
	(3)	Oxytocin	2	(4)	Somatotropin	*
67.	If or	er production	of growth horm	one i	s initiated early in life	, it leads
	to:	•	54			21.
	(1)	Acromegaly		(2)	Dwarlism	
	(3)	Gigantism		(4)	Myxedema	
68.	Sup	erior hypophys	sial artery form	s sec	ondary plexus in :	
	(1)	pars distalis	· 		· · ·	*:
	(2)	Pars tuberalis	ı <u>.</u>			
	(3)	Pars intermed	lia	#17 Capa		
	(4)	Pars nervosa	d.			
			the section of the section			
69.	Whi	ich hormone of	the pars distal	is sho	ws increased secretio	n during
	stre	ss ?			To endidore a just	34 32
	(1)	ACTH	of the way	(2)	STH	
	(3)	FSH		(4)	LH	
		***	<i></i>	-		
			19		17. 4	P.T.O

70.	And	Androgen binding protein (ABP) is secreted by:			
	(1)	Leydig cells	(2)	Myoid cells	
	(3)	Germ cells	(4)		
			1	8 18	
71.	Ovu	lation takes place during which	ch sta	age of the estrous cycle?	
	(1)	Metestrus	(2)	Proestrus	
	(3)	Estrus	(4)	Diestrus	
72.	Add	ison's disease is associated wi	th pe	tho- physiology of :	
	(1)	Thyroid gland	(2)	Pituitary gland	
	(3)	Pineal gland	(4)	Adrenal gland	
73.	Inh	nhibin exerts negative feedback action on :			
	(1)	STH	(2)	FSH	
	(3)	TSH	(4)	LH	
				- 60 - 13 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15	
74.	Prec	cursor amino acid for thyroid !	norm	one synthesis is :	
	(1)	Alanine	(2)	Threonine	
	(3)	Tyrosine	(4)	Tryptophan	

P.T.O.

7 5.	Cal	citonin is derived from which	of th	ne following gland?
	(1)	Parathyroid	(2)	Pituitary
	(3)	Thyroid	(4)	Pincal
76.	Wh	ich cell is not found in islets	of La	ngerhans ?
	(1)	A cell	(2)	B cell
	(3)	C cell	(4)	D cell
77,	Нур	ophysectomy refers to remov	al of	:
	(i)	Hypothalamus	(2)	Pineal gland
	(3)	Pituitary gland	(4)	Thyroid gland
78.	The	second set of genes to be ac	tivat	ed fro anterior - posterior axis
	(1)	Gap genes		y ombijome development is .
	(2)	Pair rule genes		
	(3)	Segment polarity gene		
	(4)	Homeotic selector genes		
79.	Duri entir	ing gastrulation the moveme e embryo is known as :	nt of	ectodermal cells to cover the
	(1)	Delamination	(2)	Invagination
	(3)	Ingression	(4)	Epiboly

80.	Fast	t block to polyspermy is accon	nplish	ned by:	
	(1)	Changes in membrane poter	ntial		
	(2)	Cortical rotation			
	(3)	Cortical reaction			
	(4)	Acrosomal reaction			
81.	Acro	crosomal vesicle in mature sperm is derived from:			
	(1)	Endoplasmic reticulum	(2)	Golgi complex	
	(3)	Lysosome	(4)	Mitochondria	
82.	Mar	nmalian oocyte is:		ia .	
	(1)	Alecithal	(2)	Isolecithal	
	(3)	Centrolecithal	(4)	Telolecithal	
83.	3. A transparent model system which revolutionized studies of developmental biology after Drosophila is:				
	(1)	Dictyostelium discoidium		Sea urchin	
	(3)	Caenorhabditis elegans	(4)	Xenopus	
84.	Mar	nmalian genome has :			
	(1)	Two HOX complexes, ANT-C	and I	вх-с	
	(2)	Four HOX complexes, HOXA	, но	XB, HOXC and HOXD	
	(3)	One complex namely HOM-	С		
	(4)	Variable number of complex	es in	different species	
				(x .)	

85. In mammals the primary sex is not determined by :

- (1) X-autosome ratio
- (2) SRY gene
- (3) Presence of Y-Chromosome
- (4) SOX9

86. Teratogens are:

- (1) Endogenous metabolites that cause birth defects
- (2) Exagenous agents that cause birth defects
- (3) Exogenous agents causing cancer
- (4) Used to cure birth defects '

87. The term 'epimorphosis' is used for :

- (1) Regenerations where dedifferenciation of adult structures followed by redifferentiation occurs
- (2) Regenerations where only re-patterning of the existing tissue occurs
- (3) The differentiation of epithelial tissue
- (4) Mid blastula transition

88. Bones and cartilages of our body develops from :

- (1) embryonic ectoderm
- (2) embryonic mesoderm
- (3) embryonic endoderm
- (4) ecto-endodermal transition

89.	The	The thickened ectodermal tissue in limb bud which stimulates and			
	guid	es the mesenchymal cells to f	orm l	imb is known as :	
	(1)	Primary organizer	(2)	Limb mesnchyme	
	(3)	Zone of polarizing acivity	(4)	Apical ectodermal ridge	
90.	Whi	ch one of the following shows a	one-	way passage in an ecosystem?	
	(1)	Free energy	(2)	Carbon	
	(3)	Nitrogen	(4)	Potassium	
91.	The	area of heaviest use within th	e hor	ne range is known as :	
	(1)	Busy area	(2)	Heavy area	
	(3)	Core area	(4)	Shell area	
92.	Acid	rain is due to increase in atn	nospł	neric concentration of :	
	(1)	Ozone and dust	(2)	CO ₂ and CO	
*5	(3)	SO ₂ and CO	(4).	SO ₂ and NO ₂	
93.	Whi	Which one of the following is the correct sequence in a food chain?			
	(1)	Grass → chameleon → insec	ct →	bird	
	(2)	Grass \rightarrow fox \rightarrow rabbit \rightarrow bir	d		
	(3)	Phytoplankton → zooplankto	on –	fish	
	(4)	Fallen leaves → bacteria →	insec	t larvae	
	*			¥2	

94	. T	The second trophic level in a lake ecosystem is:					
	(1) Phytoplankton	(2)	Zooplankton			
	(3) Benthos	(4)	Periphyton			
95	. Th	ne Taj Mehal' is threatene	d due to th	e,effect of:			
	(1)) Oxygen	(2)	Hydrogen			
	(3)	Chlorine	(4)	Sulphur dioxide			
96	. Mi	namata disease in Japan	was caused	through the pollution of water			
	by		i.				
	(1)	Mercury	(2)	Methyl isocyanate			
į.	(3)	Lead	(4)	Cyanide			
97.	An	inventory of all behavior	iral pattern	s of a species is known as an :			
	(1)	Ethogram	(2)	Actogram			
	(3)	Actigraphy	(4)	Ethography			
98.	An ind	innate behaviour patter	n that is s ontrol is ca	tereotyped, spontaneous and			
	(1)	Fixed action pattern	7	25 26			
33	(2)	Stereotype pattern	谱				
	(3)	Social pattern		25 to 60			
	(4)	Individual pattern	5.AG				
		E (M)		and the same of th			

99. A biological rhythm of about 24 hours' duration is know			duration is known as:	
	(1)	Circalunar rhythm	(2)	Circatidal rhythm
	(3)	Circadian rhythm	(4)	Circannual rhythm
100	repe			response that results from ot followed by any form of
	(1)	Fatigue	(2)	Sensory block
	(3)	Habituation	(4)	Learning
101	. A pl	neromone which produce an initiation of a mounting sequ	imme ence	diate motor response, such as is known as :
	(1)	Priming pheromone	(2)	General pheromone
	(3)	Specific pheromone	(4)	Signaling pheromone
102	.A sc	eientific name contains inforn	ation	about its:
	(1)	Family and Species		
	(2)	Genus and Species		
	(3)	Phylum and Order		
	(4)	Class and Family		2
103	3.A d	ichotomous key is used to :		
	(1)	Locate an organism		
	(2)	Identify an organism		15
	(3)	Divide a kingdom		
	(4)	Interbreed species		th.

					*		
104.	Whi	ich of the following n	ame is w	ritten	according to tr	inominl	pattern
	of n	omenclature?	25				
	(1)	Drosophila bipectin	ata, Dud	a .	*		8
	(2)	Musca nebula			15	W.	
*	(3)	Drosophila melano	gaster		13	1.5	
	(4)	Corvus spiendens s	plendens		F		
105.	The	term 'tautonym' sta	nds for :			5 0 <i>is</i>	
	(1)	Same generic and	species n	ame	î .		
	(2)	Different genus and	d species	nem	g a da tan a s		286
	(3)	Same species and s	subspecie	s nar	ne		
	(4)	A species without a	my race				
106.	Whi	ich of the following	species	conc	ept considers	morpho	ological
		ures of animals to di					0
***	(1)	Typological		(2)	Ecological		
32	(3)	Evolutionary		(4)	Biological	21. V2	•
107.	A ta	xonomic level concer	ned with	the c	haracterization	and na	ming of
		cies is known as :	12				
	(1)	Alpha taxonomy			52.0 12.	1	
	(2)	Beta taxonomy					
	(3)	Gamma taxonomy	and the state of		C 72 55 9	200 000	
	(4)	Omega tayanamy	20		m and at	R0 (2)	

- 108. A gradual geographic change of a character im a series of contiguous populations is known as :
 - (1) Continuous variation
 - (2) Phylogenetic variation
 - (3) Clinal variation
 - (4) Discontinuous variation
- 109. Which species concept advocates that "Only individuals exist while species are abstractions created by people:
 - (1) Typological species concept
 - (2) Nominalistic species concept
 - (3) Biological species concept
 - (4) Evolutionary species concept
- 110. Biological species concept gives emphasis mainly on :
 - (1) Geographical isolation
 - (2) Morphological features
 - (3) Phylogenetic relationships
 - (4) Reproductive relationships

- 111. Which of the following is a correct match of the animal with its taxonomic group?
 - (1) Chelicerata-Tape worm; Cestoda-Horse shoe crab; Echinoidea-Sea urchins; Cephalopoda- Octopus
 - (2) Chelicerata Horse shoe crab; Cestoda Tape worm; Echinoidea
 Sea urchins; Cephalopoda Octopus
 - (3) Chelicerata Horse shoe crab; Cestoda Octopus; Echinoidea Sea urchins; Cephalopoda Tape worm
 - (4) Chelicerata Tape worm; Cestoda Octopus; Echinoidea Sea urchins; Cephalopoda - Horse shoe crab

112. In Linean hierarchy Family comes between:

- (1) Order and Tribe
- (2) Class and Order
- (3) Phylum and Class
- (4) Genus and Species

113. The silk glands of Bombyx mon are modified :

(1) Scent glands

(2) Herold's gland

(3) Salivery glands

(4) Prothoracic glands

114. The Pebrine disease of silk worm is caused by :

(1) Nosema bombycis

(2) Exorista bombycis

(3) Labia arachidis

(4) Nosema cerrange

115. Whic	h of the following is an a	gricultura	d pest?
(1)	Apis Indica		
(2)	Locusta migratoria		
(3)	Laccifer lacca	E o S	
(4)	Coccinella septempuncto	ıta	r.
116. Polle	n basket is present on :	74.7	
(1)	Fore leg	(2)	Middle leg
(3)	Hind leg	(4)	Abdomen
117. Whi	ch of the following lacks	sting in h	oney been colony?
(1)	Queen	(2)	Workers
(3)	Drone	(4)	None
118. Indi	an Institute of Natural R	esins and	Gums:
(1)	Ranchi	(2)	Bhuvneshwar
(3)	Raipur	(4)	Mirzapur
119. Ale	uritic acid is		**
(1)	Amino acid		
(2)	Fatty acid		
(3)	A fatty acid obtained fr	om shella	c by saponification
(4)	None		8
120 In	India, which is not the m	ost comm	non host trees for lac insect?
(1)		<u>rma</u>)	
(2)	- Williams Mouritie		
(3)	- (C.blaichers o		
(4)		320	
C		30.	
			6000

ROUGH WORK एक कार्य

121

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्याइंट पेन से ही लिखें)

 प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।

2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ

में न लायें।

 उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।

अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।

- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ ० एम ० आर ० पत्र घर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (चिंद कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ ० एम ० आर ० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति

 उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगाः।

 प्रमन-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये दृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।

9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाड़ा करें। एक से अधिक वृत्तों को गाड़ा करने

पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।

10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य

11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ

का प्रयोग करें।

12. परीक्षा के उपरान्त केवल औ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।

13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।

14. यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।