CAREER POINT JEE Main Online Exam 2019

Questions & Solutions

8th April 2019 | Shift - I

MATHEMATICS

 $\int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx \text{ is equal to} - (\text{where c is a constant of integration})$ Q.1 (1) $2x + \sin x + 2 \sin 2x + c$ (2) $2x + \sin x + \sin 2x + c$ (3) $x + 2 \sin x + 2 \sin 2x + c$ (4) $x + 2 \sin x + \sin 2x + c$ [4] Ans. $I = \int \frac{\sin\left(\frac{5x}{2}\right)}{\sin\left(\frac{x}{2}\right)} dx$ Sol. $I = \int \frac{2\sin\left(\frac{5x}{2}\right)\cos\left(\frac{x}{2}\right)}{\sin x} dx$ $I = \int \frac{\sin(3x) + \sin(2x)}{\sin x} \, dx$ $I = \int \frac{(3\sin x - 4\sin^3 x) + 2\sin x \cos x}{(\sin x)} dx$ $I = \int (3 - 4\sin^2 x + 2\cos x) dx$ $I = \int (3 - 2(1 - \cos 2x) + 2\cos x) dx$ $I = \int (3 - 2 + 2\cos 2x + 2\cos x) dx$ $I = \int (1 + 2\cos 2x + 2\cos x) dx$ $I = x + \sin 2x + 2\sin x + c$

Q.2 The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is -

(1) x - 3y - 2z = -2 (2) x - y - z = 0 (3) x + 3y + z = 4 (4) 2x - z = 2Ans. [2]

Q.3

Sol. Required equation of plane $(2x - y - 4) + \lambda (y + 2z - 4) = 0$ Required plane passes through (1, 1, 0) $(2 - 1 - 4) + \lambda (1 + 0 - 4) = 0$ $\lambda = -1$ (2x - y - 4) - (y + 2z - 4) = 0 2x - 2y - 2z = 0x - y - z = 0

 $y(1 + x^2) = tan^{-1}(x)$

Put x = 1 $y \cdot (2) = \frac{\pi}{2}$

 $\sqrt{a} y(1) = \frac{\pi}{32}, \text{ then the value of `a' is -}$ (1) $\frac{1}{2}$ (2) $\frac{1}{4}$ (3) $\frac{1}{16}$ (4) 1 Ans. [3] Sol. $(x^2 + 1)^2 \frac{dy}{dz} + 2x (x^2 + 1) y = 1$ $\frac{dy}{dx} + \left(\frac{2x}{x^2 + 1}\right) y = \frac{1}{(x^2 + 1)^2}$ I.F. $= e^{\int \frac{2x}{1 + x^2} dx} = (1 + x^2)$ Solution of diff. eq. $y (1 + x^2) \times \int \frac{1}{(1 + x^2)^2} \times (1 + x^2) dx$ $y (1 + x^2) = \tan^{-1}(x) + c$ Given that y(0) = 0 c = 0

Let y = y(x) be the solution of the differential equation, $(x^2 + 1)^2 \frac{dy}{dx} + 2x(x^2 + 1)y = 1$ such that y(0) = 0. If

$$y = \frac{\pi}{8}$$

$$\frac{1}{4} \cdot y = \frac{\pi}{32}$$
i.e. $\sqrt{a} = \frac{1}{4}$

$$a = \frac{1}{16}$$
Q.4 If $f(x) = \log_e\left(\frac{1-x}{1+x}\right)$, $|x| < 1$, then $f\left(\frac{2x}{1+x^2}\right)$ is equal to -
(1) $2f(x)$ (2) $2f(x^2)$ (3) $(f(x))^2$ (4) - $2f(x)$
Ans. [1]

(4) $\log_{e} 2$

Sol.
$$f(\mathbf{x}) = \log_{e} \left(\frac{1-\mathbf{x}}{1+\mathbf{x}}\right) |\mathbf{x}| + 1$$
$$f\left(\frac{2\mathbf{x}}{1+\mathbf{x}^{2}}\right) = \log_{e} \left(\frac{1-\frac{2\mathbf{x}}{1+\mathbf{x}^{2}}}{1+\frac{2\mathbf{x}}{1+\mathbf{x}^{2}}}\right)$$
$$= \log_{e} \left(\frac{(1-\mathbf{x})^{2}}{(1+\mathbf{x})^{2}}\right)$$
$$= 2\log_{e} \left(\frac{1-\mathbf{x}}{1+\mathbf{x}}\right) = 2f(\mathbf{x})$$

Q.5 If $f(x) = \frac{2 - x \cos x}{2 + x \cos x}$ and $g(x) = \log_e x$, (x > 0) then the value of the integral $\int_{-\pi/4}^{\pi/4} g(f(x)) dx$ is -

(2) $\log_{e} 3$

$$(1) \log_{e} 1$$

(3)
$$\log_e e$$

Ans. [1]

Sol.
$$f(x) = \frac{2 - x \cos x}{2 + x \cos x} \qquad g(x) = \log_e x$$
$$I = \int_{-\pi/4}^{\pi/4} \log_e \left(\frac{2 - x \cos x}{2 + x \cos x}\right) dx \qquad \dots(i)$$
$$Applying$$
$$I = \int_{-\pi/4}^{\pi/4} \log_e \left(\frac{2 + x \cos x}{2 - x \cos x}\right) dx \qquad \dots(ii)$$
Equation (i) + (ii)
$$2I = \int_{-\pi/4}^{\pi/4} \log_e(1) dx$$
$$2I = 0 \qquad I = 0$$

Q.6 The sum of the squares of the length of the chords intercepted on the circle, $x^2 + y^2 = 16$, by the lines, x + y = n, $n \in N$, where N is the set of all natural numbers, is -

(1) 160 (2) 320 (3) 210 (4) 105

Ans. [3]

Sol. Equation of circle $x^2 + y^2 = 16$ Equation of chord x + y = N $n \in N$ Length of chord $= 2\sqrt{16 - \frac{n^2}{2}}$ (Length of chord)² $= 2(32 - n^2)$ Possible value of n = 1, 2, 3, 4, 5Sum of squares of the length of chords = 2(31) + 2(28) + 2(23) + 2(16) + 2(7)= 210

(4) $\frac{11}{4\sqrt{2}}$

Q.7 The sum of the solutions of the equation $|\sqrt{x} - 2| + \sqrt{x} (\sqrt{x} - 4) + 2 = 0, (x > 0)$ is equal to -(1) 4 (2) 10 (3) 9 (4) 12

Ans. [2]
Sol.
$$|\sqrt{x} - 2| + \sqrt{x} (\sqrt{x} - 4) + 2 = 0$$
 (x > 0)
let $\sqrt{x} = t$
 $|t - 2| + t (t - 4) + 2 = 0$
 $t \ge 2$ $t < 2$
 $t - 2 + t^2 - 4t + 2 = 0$ $t < 2$
 $t^2 - 3t = 0$ $t^2 - 5t + 4 = 0$
 $t = 0$ (Reject) $t = 4$ (Reject)
 $t = 3$ $\sqrt{x} = 3$ $t = 1$ $\sqrt{x} = 1$
 $x = 9$ $x = 1$

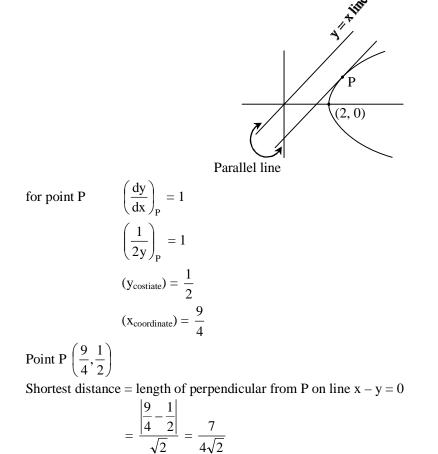
Sum of all colution = 9 + 1 = 10

Q.8 The shortest distance between the line y = x and the curve $y^2 = x - 2$ is -(1) $\frac{7}{4\sqrt{2}}$ (2) 2 (3) $\frac{7}{8}$

Ans. [1]

Sol. y = x

y = x line $y^2 = x - 2$ parabola



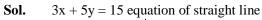
JEE Main Online Paper

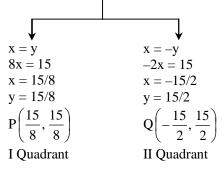
Q.9 The sum of the co-efficients of all even degree terms in x in the expansion of $(x + \sqrt{x^3 - 1})^6 + (x - \sqrt{x^3 - 1})^6$, (x > 1) is equal to -(1) 24 (2) 26 (3) 29 (4) 32

- Ans. [1]
- Sol. $(x + \sqrt{x^3 1})^6 + (x \sqrt{x^3 1})^6$ = $2 [{}^6C_0 x^6 (x^3 - 1)^0 + {}^6C_2 x^4 (x^3 - 1) + {}^6C_4 x^2 (x^3 - 1)^2 + {}^6C_6 x^0 (x^3 - 1)^3]$ Sum of coefficient at all even power = $2 [{}^6C_0 + {}^6C_2 \{-1\} + {}^6C_4 x^2 \{1 + 1\} + {}^6C_6 \{{}^{-3}C_1 - {}^{3}C_3\}]$ = 2 [1 + 15 (-1) + 15 (2) + (-4)]= 2 [1 - 15 + 30 - 4]= $2 \times 12 = 24$
- Q.10 Let A and B be two non-null events such that $A \subset B$. Then, which of the following statements is always correct?

(1) P(A|B) = P(B) - P(A)(2) $P(A|B) \ge P(A)$ (3) P(A|B) = 1(4) $P(A|B) \le P(A)$ Ans. [2] A < BSol. $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)}$ P(B) lies between (0, 1]So that $P(A/B) \ge P(A)$ **Q.11** The sum of all natural numbers 'n' such that 100 < n < 200 and H.C.F. (91, n) > 1 is -(1) 3221 (2) 3303(3) 3203 (4) 3121 [4] Ans. H.C.F. (91, n) > 1Sol. where 100 < n < 200 sum of all positive values of 'n' $= 7 [15 + 16 + \dots + 28] + 13 [8 + \dots + 15] - (13 \times 14)$ $=7 \times \frac{14}{2} [15 + 28] + 13 \times \frac{8}{2} [8 + 15] - (13 \times 14)$ $=(49 \times 43) + (52 \times 23) - 182$ = 2107 + 1196 - 182= 3121

Q.12A point on the straight line, 3x + 5y = 15 which is equidistant from the coordinate axes will lie only in -
(1) 1^{st} , 2^{nd} and 4^{th} quadrants(2) 1^{st} and 2^{nd} quadrants(3) 4^{th} quadrants(4) 1^{st} quadrantsAns.[2]





Q.13 Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of $\triangle AOP$ is 4, is -

(1)
$$8x^2 + 9y^2 - 9y = 18$$

(2) $9x^2 + 8y^2 - 8y = 16$
(3) $9x^2 - 8y^2 + 8y = 16$
(4) $8x^2 - 8y^2 + 9y = 18$
Ans. [2]
Sol.
O (0, 0)
 $(0, 1) A$
 $Q = 4P + OP = 4$
 $1 + \sqrt{x^2 + (y - 1)^2} + \sqrt{x^2 + y^2} = 4$
 $(\sqrt{x^2 + y^2})^2 = (3 - \sqrt{x^2 + (y - 1)^2})^2$
 $x^2 + y^2 = 9 + x^2 + y^2 - 2y + 1 - 6\sqrt{x^2 + (y - 1)^2}$
 $3\sqrt{x^2 + (y - 1)^2} = (5 - y)$
 $9(x^2 + (y - 1)^2) = (5 - y)^2$
 $9x^2 + 8y^2 - 8y = 16$
Q.14 If $2y = \left(\cot^{-1}\left(\frac{\sqrt{3}\cos x + \sin x}{\cos x - \sqrt{3}\sin x}\right)\right)^2$, $x \in \left(0, \frac{\pi}{2}\right)$ then $\frac{dy}{dx}$ is equal to -
 $(1) x - \frac{\pi}{6}$
(2) $\frac{\pi}{3} - x$
(3) $\frac{\pi}{6} - x$
(4) $2x - \frac{\pi}{3}$

Ans. [1]

Sol.
$$2y = \left(\cot^{-1}\left(\frac{\sqrt{3}\cos x + \sin x}{\cos x - \sqrt{3}\sin x}\right)\right)^2 \quad x \in \left(0, \frac{\pi}{2}\right)$$
$$2y = \left(\cot^{-1}\left(\frac{\sqrt{3} + \tan x}{1 - \sqrt{3}\tan x}\right)\right)^2$$

$$2y = \left(\frac{\pi}{2} - \tan^{-1}\left(\tan\left(\frac{\pi}{3} + x\right)\right)\right)^{2}$$

$$0 < x < \frac{\pi}{6}$$

$$x = \frac{\pi}{6}$$

$$\frac{\pi}{6} < x < \frac{\pi}{2}$$

$$\left(\frac{\pi}{3} < x + \frac{\pi}{3} < \frac{\pi}{2}\right)$$

$$f \times u \text{ is undefined}$$

$$\frac{\pi}{2} < x + \frac{\pi}{3} < \frac{5\pi}{6}$$

$$2y = \left(\frac{\pi}{2} - \frac{\pi}{3} - x\right)^{2}$$

$$2y = \left(\frac{\pi}{6} - x\right$$

- **Q.15** All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is -
 - (1) 180 (2) 175 (3) 160 (4) 162

Sol. Total number of possible numbers

$$= \left({}^{4}\mathrm{C}_{3} \times \frac{3!}{2!} \right) \left(\frac{6!}{4! \, 2!} \right)$$
$$= 180$$

Q.16 If the tangents on the ellipse $4x^2 + y^2 = 8$ at the points (1, 2) and (a, b) are perpendicular to each other, then a^2 is equal to -

(1)
$$\frac{2}{17}$$
 (2) $\frac{64}{17}$ (3) $\frac{128}{17}$ (4) $\frac{4}{17}$

Ans. [1]

Sol. Equation of ellipse $4x^2 + y^2 = 8$ $\frac{dy}{dx} = -\frac{4x}{y}$ tangent at (1, 2) and (a, b) are perpendicular $\left(-\frac{y}{2}\right)\left(-\frac{4a}{b}\right) = -1$ b = -8a(i) (a, b) lies on ellipse $4a^2 + b^2 = 8$ (from eq. (i)) $4a^2 + 64a^2 = 8$ $a^2 = \frac{8}{68} = \frac{2}{17}$ 🤨 🛛 CAREER POINT

Q.17
$$\lim_{x\to 0} \frac{\sin^2 x}{\sqrt{2 - \sqrt{1 + \cos x}}} \text{ equals -}$$
(1) 4 (2) $2\sqrt{2}$ (3) $4\sqrt{2}$ (4) $\sqrt{2}$
Ans. [3]
Sol.
$$\lim_{x\to 0} \frac{\sin^2 x}{\sqrt{2 - \sqrt{1 + \cos x}}}$$

$$\lim_{x\to 0} \left(\frac{\sin^2 x}{\sqrt{2 - \sqrt{1 + \cos x}}}\right) \left(\frac{\sqrt{2} + \sqrt{1 + \cos x}}{\sqrt{2 - \sqrt{1 + \cos x}}}\right)$$

$$\lim_{x\to 0} \frac{\sin^2 x}{2\sin^2\left(\frac{x}{2}\right)} (\sqrt{2} + \sqrt{1 + \cos x})$$

$$\lim_{x\to 0} \frac{\sin^2 x}{2\sin^2\left(\frac{x}{2}\right)} (\sqrt{2} + \sqrt{1 + \cos x})$$

$$\lim_{x\to 0} \frac{1}{2} \left(\frac{\sin x}{x}\right)^2 \times x^2 \times \left(\frac{x/2}{\sin x/2}\right)^2 \times \frac{1}{\left(\frac{x^2}{4}\right)} \times (\sqrt{2} + \sqrt{1 + \cos x})$$

$$= \frac{1}{2} \times 4 \times 2\sqrt{2} = 4\sqrt{2}$$
Q.18 If $\cos(\alpha + \beta) = \frac{3}{5}$, $\sin(\alpha - \beta) = \frac{5}{13}$ and $0 < \alpha$, $\beta < \frac{\pi}{4}$, then $\tan(2\alpha)$ is equal to -

(1)
$$\frac{63}{52}$$
 (2) $\frac{63}{16}$ (3) $\frac{33}{52}$ (4) $\frac{21}{16}$

Ans. [2]

Sol.
$$\cos (\alpha + \beta) = \frac{3}{5}$$
 $\tan (\alpha + \beta) = \frac{4}{3}$
 $\sin (\alpha - \beta) = \frac{5}{13}$ $\tan (\alpha - \beta) = \frac{5}{12}$
 $\tan (2\alpha) = \tan ((\alpha + \beta) + (\alpha - \beta))$
 $= \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)}$
 $= \frac{\frac{4}{3} + \frac{5}{12}}{1 - \frac{4}{3} \times \frac{5}{12}} = \frac{48 + 15}{36 - 20} = \frac{63}{16}$
Q.19 The sum of the series $2 \cdot {}^{20}C_0 + 5 \cdot {}^{20}C_1 + 8 \cdot {}^{20}C_2 + 11 \cdot {}^{20}C_3 + \dots + 6$

Q.19 The sum of the series
$$2 \cdot {}^{20}C_0 + 5 \cdot {}^{20}C_1 + 8 \cdot {}^{20}C_2 + 11 \cdot {}^{20}C_3 + \dots + 62 \cdot {}^{20}C_{20}$$
 is equal to -
(1) 2^{23} (2) 2^{25} (3) 2^{26} (4) 2^{24}
Ans. [2]

 $\begin{aligned} & \text{Sol.} \qquad S = 2 \cdot {}^{20}C_0 + 5 \cdot {}^{20}C_1 + \dots 59 \cdot {}^{20}C_{19} + 62 \cdot {}^{20}C_{20} & \dots (i) \\ & S = 62 \cdot {}^{20}C_{20} + 59 \cdot {}^{20}C_{19} + \dots + 5 \cdot {}^{20}C_1 + 2 \cdot {}^{20}C_0 & \dots (ii) \\ & \text{Add equation (i) & (ii)} \\ & 2S = 64 \left[{}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{20} \right] \\ & 2S = 64 \cdot 2^{20} \\ & S = 64 \cdot 2^{19} \\ & S = 2^6 \cdot 2^{19} = 2^{25} \end{aligned}$

Q.20 The length of the perpendicular from the point (2, -1, 4) on the straight line, $\frac{x+3}{10} = \frac{y-2}{-7} = \frac{z}{1}$ is -

- (1) greater than 3 but less then 4 (2) greater than 2 but less than 3
- (3) greater than 4 (4) less than 2

Ans. [1]

Sol.

A
B

$$[10\lambda - 3, -7\lambda + 2, \lambda]$$

 $\frac{x+3}{10} = \frac{y-2}{-7} = \frac{3}{1} = \lambda$
Drs of AB = $(10\lambda - 5, -7\lambda + 3, \lambda - 4)$
Drs of given line = $(10, -7, 1)$
 $10(10\lambda - 5) - 7(-7\lambda + 3) + (\lambda - 4) = 0$
 $100\lambda - 50 + 49\lambda - 21 + \lambda - 4 = 0$
 $150\lambda = 75$
 $\lambda = \frac{1}{2}$
Point B $\left(2, -\frac{3}{2}, \frac{1}{2}\right)$
Distance length AB = $\frac{5}{\sqrt{2}} = 3.53$

Q.21 Let f: [0, 2] → R be a twice differentiable function such that f''(x) > 0, for all x ∈ (0, 2). If φ(x) = f(x) + f(2 - x), then φ is (1) increasing on (0, 2)
(2) increasing on (0, 1) and decreasing on (1, 2)
(3) decreasing on (0, 2)
(4) decreasing on (0, 1) and increasing on (1, 2)
Ans. [4]

Sol. Given that
$$f''(x) > 0$$
 $x \in (0, 2)$
i.e. $f'(x)$ is increasing function
 $\phi(x) = f(x) + f(2 - x)$
 $\phi'(x) = f'(x) - f'(2 - x)$
 $\phi(x)$ is increasing $\phi(x)$ is decreasing
i.e. $\phi'(x) > 0$ i.e. $\phi'(x) < 0$
 $f'(x) - f'(2 - x) > 0$ $f'(x) - f'(2 - x) < 0$
 $f'(x) > f'(2 - x) > 0$ $f'(x) - f'(2 - x) < 0$
 $f'(x) > f'(2 - x)$ $x < 2 - x$
 $x > 2 - x$ $x < 1$
 $x > 1$ i.e. $x \in (0, 1)$
i.e. $x \in (1, 2)$

Q.22 The greatest value of $c \in R$ for which the system of linear equations

x - cy - cz = 0cx - y + cz = 0cx + cy - z = 0has a non-trivial solution, is - $(1)\frac{1}{2}$ (2) 0(3) 2 (4) - 1[1] **Sol.** $\begin{vmatrix} 1 & -c & -c \\ c & -1 & c \\ c & c & -1 \end{vmatrix} = 0$ $1 (1 - c^{2}) + c (-c - c^{2}) - c (c^{2} + c) = 0$ $1 - c^2 - c^2 - c^3 - c^3 - c^2 = 0$

 $c = \frac{1}{2}$ Maximum value of $c = \frac{1}{2}$

 $2c^3 + 3c^2 - 1 = 0$

c = -1

Ans.

Ans.

The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing Q.23 the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, is -

(1)
$$\frac{\sqrt{3}}{2}$$
 (2) $\sqrt{\frac{3}{2}}$ (3) $3\sqrt{6}$ (4) $\sqrt{6}$ [2]

Þ

(4) 40

Sol. Vector \perp to given to vectors is

$$\vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$
$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$$

projection of
$$\vec{b}$$
 in direction of $\vec{a} = \frac{|\vec{a}.\vec{b}|}{\rightarrow}$

$$|a| = \frac{|(\hat{i} - 2\hat{j} + \hat{k}) \cdot (2\hat{i} + 3\hat{j} + \hat{k})|}{\sqrt{6}}$$
$$= \frac{|2 - 6 + 1|}{\sqrt{6}} = \frac{3}{\sqrt{6}} = \sqrt{\frac{3}{2}}$$

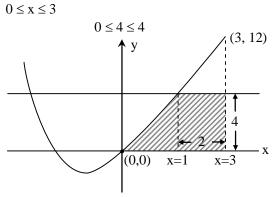
Q.24 The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is -

(1) 45 (2) 48 (3) 49 Ans. [2] Sol. Let unknown observation are $x_1 \& x_2$ $\frac{2+4+10+12+14+x_1+x_2}{7} = 8$ $x_1 + x_2 = 14$ (i) $\frac{1}{7} \Sigma x_1^2 - (\overline{x})^2 = 16$ (given) $\frac{1}{7} (2^2 + 4^2 + 10^2 + 12^2 + 14^2 + x_1^2 + x_2^2) - (8) = 16$ $x_1^2 + x_2^2 = 100$ $(x_1 + x_2)^2 - 2x_1x_2 = 100$ $2x_1x_2 = 96$ $x_1x_2 = 48$

Q.25 The area (in sq. units) of the region A = {(x, y) $\in \mathbb{R} \times \mathbb{R} | 0 \le x \le 3, 0 \le y \le 4, y \le x^2 + 3$ } is -(1) 8 (2) $\frac{53}{6}$ (3) $\frac{26}{3}$ (4) $\frac{59}{6}$

Ans. [4]

Sol. $y \le x^2 + 3x$



Required region

$$= \int_{0}^{1} [x^{2} + 3x] dx + [2 \times 4]$$
$$= \left[\frac{x^{3}}{3} + \frac{3}{2} x^{2} \right]_{0}^{1} + 8$$
$$= \frac{2 + 9 + 48}{6} = \frac{59}{6}$$

Q.26 If $\alpha = \cos^{-1}\left(\frac{3}{5}\right)$, $\beta = \tan^{-1}$, where $0 < \alpha$, $\beta < \frac{\pi}{2}$, then $\alpha - \beta$ is equal to -(1) $\tan^{-1}\left(\frac{9}{5\sqrt{10}}\right)$ (2) $\sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$ (3) $\tan^{-1}\left(\frac{9}{14}\right)$ (4) $\cos^{-1}\left(\frac{9}{5\sqrt{10}}\right)$

[2] Ans.

Sol.

$$\alpha = \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{4}{3}\right)$$

$$\beta = \tan^{-1}\left(\frac{1}{3}\right)$$

$$\alpha - \beta = \tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{1}{3}\right)$$

$$= \tan^{-1}\left(\frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \times \frac{1}{3}}\right) = \tan^{-1}\left(\frac{1}{1 + \frac{4}{9}}\right) = \tan^{-1}\left(\frac{9}{13}\right)$$

$$= \sin^{-1}\left(\frac{9}{\sqrt{(13)^2 + 9^2}}\right) = \sin^{-1}\left(\frac{9}{\sqrt{250}}\right)$$

$$= \sin^{-1}\left(\frac{9}{5\sqrt{10}}\right)$$

If S_1 and S_2 are respectively the sets of local minimum and local maximum points of the function, Q.27 $f(x) = 9x^4 + 12x^3 - 36x^2 + 25, x \in \mathbb{R}$, then -(1) $S_1 = \{-2, 0\}; S_2 = \{1\}$ (2) $S_1 = \{-1\}; S_2 = \{0, 2\}$ (3) $S_1 = \{-2, 1\}; S_2 = \{0\}$ (4) $S_1 = \{-2\}; S_2 = \{0, 1\}$

Ans

JEE Main Online Paper

(4) 2

Q.28 Let
$$A = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
, $(a \in \mathbb{R})$ such that $A^{32} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then a value of α is -
(1) $\frac{\pi}{64}$ (2) 0 (3) $\frac{\pi}{32}$ (4) $\frac{\pi}{16}$
Ans. [1]
Sol. $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$
 $A^2 = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$
 $A^2 = \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix}$
Similarly
 $A^{32} = \begin{bmatrix} \cos 32\alpha & -\sin 32\alpha \\ \sin 32\alpha & \cos 32\alpha \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
 $32\alpha = \frac{\pi}{2}$
 $\alpha = \frac{\pi}{64}$

If α and β be the roots of the equation $x^2 - 2x + 2 = 0$, then the least value of n for which $\left(\frac{\alpha}{\beta}\right)^n = 1$ is -Q.29

(3) 4

(1) 3 $\begin{bmatrix} 3 \\ x^2 - 2x + 2 = 0 \\ (x - 1)^2 = -1 \end{bmatrix}$ Ans. Sol. x = 1 + i & 1 - iLet $\alpha = 1 + i$ $\beta = 1 - i$ $\frac{\alpha}{\beta} = \frac{1+i}{1-i} = \frac{(1+i)^2}{2} = \frac{1+i^2+2i}{2}$ $\frac{\alpha}{\beta} = i$

$$\left(\frac{\alpha}{\beta}\right)^n = (i)^n = 1$$

least value of n = 4

Q.30 The contrapositive of the statement "If you are born in India, then you are a citizen of India", is -

- (1) If you are a citizen of India, then you are born in India
- (2) If you are born in India, then you are not a citizen of India

(2)5

- (3) if you are not a citizen of India, then you are not born in India
- (4) If you are not born in India, then you are not a citizen of India
- Ans. [3]
- Sol. Contrapositive of given statement is. If you are not a citizen of India, then you are not born in India.