PROCEEDINGS OF THE MEETING OF B.O.S. (UG) IN MICROBIOLOGY AND BIOTECHNOLOGY

The meeting of the B.O.S. (UG) in Microbiologyand Biotechnology was held on **18th June, 2014** in the Department of Microbiology and Biotechnology, Bangalore University, Bangalore. At the outset, the Chairman welcomed the members and initiated the proceedings.

Agenda-1

The Credit Based Semester Scheme for B.Sc. in Microbiology and Biotechnology, the Syllabus (theory and practical) and Scheme of examination for I, II, III & IV Semesters were finalized and approved.

Agenda-2

The panel of examiners for UG Microbiology and Biotechnology (both external and internal) was modified and approved for the year 2014-15.

Agenda-3

The B.O.S. approved the list for the formation of B.O.E. (UG) in Microbiology and Biotechnology for the year 2014-15.

The meeting concluded with the Chairman thanking all the members for their co-operation.

Members present:

- 1. Dr. Shastri P. S
- 2. Dr. Jyotsna B. S
- 3. Dr. Bharathi
- 4. Smt. Pushpalatha. T
- 5. Dr. Vijaya. B
- 6. Dr. ShanthiIyer
- 7. Dr. S.K. Sarangi

B.Sc. CREDIT BASED SEMESTER SCHEME BIOTECHNOLOGY (PART 2) SCHEME OF INSTRUCTIONS AND CREDITS

Paper No.	Title of the paper	Type of	Hours/	Duration	IA	Exam	Total	Credits
		paper	Week	of Exam			Marks	
				(Hours)				
	I Semester							
BTT-101	Cell Biology & Genetics	Т	4	3	30	70	100	2
BTP-102	Cell Biology & Genetics	Р	3	3	15	35	50	1
	Total Marks and Credits for I semester						150	3

Paper No.	Title of the paper	Type of paper	Hours/ Week	Duration of Exam (Hours)	IA	Exam	Total Marks	Credits
	II Semester							
BTT-201	General Microbiology & Biostatistics	Т	4	3	30	70	100	2
BTP-202	General Microbiology	Р	3	3	15	35	50	1
	Total Marks and Credits for II semester							3

Paper No.	Title of the paper	Type of	Hours/	Duration	IA	Exam	Total	Credits
		paper	Week	of Exam			Marks	
				(Hours)				
		III	Semester		•	•		
BTT-301	Biological chemistry	Т	4	3	30	70	100	2
BTP-302	Biological chemistry	Р	3	3	15	35	50	1
	Total Marks and	d Credits for	· III semes	ter	•	•	150	3
Paper No.	Title of the paper	Type of	Hours/	Duration	IA	Exam	Total	Credits
		paper	Week	of Exam			Marks	
				(Hours)				
	IV Semester							
BTT-401	Molecular biology	Т	4	3	30	70	100	2
BTP-402	Molecular biology	Р	3	3	15	35	50	1

	Total Marks a	nd Credits fo	or IV semes	ster			150	3
Paper No.	Title of the paper	Type of paper	Hours/ Week	Duration of Exam (Hours)	IA	Exam	Total Marks	Credits
	1	V	Semester				-1	
BTT-501	Genetic Engineering & Environ. Biotechnology	Т	4	3	30	70	100	2
BTT-502	Immunology & Animal Biotechnology	Т	4	3	30	70	100	2
BTP-503	Genetic Engineering & Environ. Biotechnology	Р	3	3	15	35	50	1
BTP-504	Immunology & Animal Biotechnology	Р	3	3	15	35	50	1
	Total Marks a	nd Credits fo	or V semes	ter	1	1	300	6

Paper No.	Title of the paper	Type of paper	Hours/ Week	Duration of Exam (Hours)	IA	Exam	Total Marks	Credits
	VI Semester							
BTT-601	Plant Biotechnology	Т	4	3	30	70	100	2
BTT-602	Industrial Biotechnology	Т	4	3	30	70	100	2
BTP-603	Plant Biotechnology	Р	3	3	15	35	50	1
BTP-604	Industrial Biotechnology	Р	3	3	15	35	50	1
	Total Marks and Credits for VI semester							6

Internal assessment:

Theory : (30)	
(a) Tests	- 10
(b) Assignments	- 15
(c) Attendance	- 05
Practical : (15)	
(a) Tests	- 10
(b) Class Records	- 05

BANGALORE UNIVERSITY, BANGALORE

Syllabus for B.Sc. BIOTECHNOLOGY (Credit Based Semester Scheme)

SEMESTER-I

BTT 101 – CELL BIOLOGY AND GENETICS

PART A: CELL BIOLOGY Total hours:28 Unit 1. Cell as a Basic unit of Living Systems Discovery of cell, The cell Theory. Ultra structure of an eukaryotic cell- (Both plant and animal cells) 2 Hours **Unit 2. Surface Architecture** Structural organization and functions of plasma membrane and cell wall of eukaryotes. 4 Hours **Unit 3. Cellular Organelles** Structure and functions of cell organelles – Endoplasmic reticulum, Golgi complex, Mitochondria, Chloroplast, Ribosomes, Lysosomes, Peroxisomes, Nucleus (Nuclear envelope with nuclear pore complex, Nucleolus, Nucleoplasm and Chromatin). Vacuole, Cytosol and Cytoskeleton structures (Microtubules, Microfilaments and 8 Hours Intermediate filaments). **Unit 4. Chromosomes** Discovery, Morphology and structural organization – Centromere, Secondary constriction, Telomere, Chromonema, Euchromatin and Heterochromatin, Chemical composition and Karyotype. Ultrastructure: Single-stranded and multi-stranded hypothesis, folded- fibre and 7 Hours nucleosome models. Special type of chromosomes: Salivary gland and Lampbrushchromosmes. **Unit 5. Cell Division** Cell Cycle and regulation, mitosis and meiosis. 5 Hours Unit 7. Cell Senescence and programmed cell death2 Hours

PART B: GENETICS

Total Hours: 24

2 Hours

Total hours: 52

Unit 1. Structure of DNA and RNA - a brief account

Unit 2.Mendelism

Mendel's work, Laws of heredity, Test cross, Incomplete dominance and simple Problems. 3 Hours

Unit 3. Interaction of Genes Supplementary factors: comb pattern in fowls Complementary genes- Flower colour in sweet peas Multiple factors – Skin colour in human beings Epistasis – Plumage colour in poultry	
Multiple allelism: Blood groups in Human beings.	4 Hours
Unit 4. Sex Determination in Plants and animals Concept of allosomes and autosomes, XX- XY, XX-XO, ZW-ZZ, ZO-ZZ types 2	Hours
Unit 5. Linkage and Crossing Over Coupling and repulsion hypothesis, Linkage in maize and Drosophila, Mechanism of crossing over and its importance, chromosome mapping-linkage map in maize.	3 Hours
Unit 6. Chromosomal variations A general account of structural and numerical aberrations, chromosomal evolution of wheat and cotton.	3 Hours
Unit 7. Cytoplasmic Inheritance	
Plastid inheritance in Mirabilis, Petite characters in yeast and Kappa particles in paramecium.	2 Hours
Unit 8. Mutations	
Types: Spontaneous and induced, Mutagens: Physical and chemical, Mutation at the molecular level, Mutations in plants, animals and microbes for economic benefit of n	
Unit 9. Human Genetics	
Karyotype in man, inherited disorders – Allosomal (Klinefelter syndrome and Turner's	

Raryotype in man, interned disorders 11	(itimetetet synaronie una runer s	
syndrome), Autosomal (Down synd	lrome and Cri-Du-Chat Syndrome).	2 Hours

SEMESTER - I

BTP 102 – Cell biology and Genetics

Т	otal units: 15
1. Use of Micrometer and calibration, measurement of onion epidermal cells and yeast	2 Units
2. Cell division: Mitotic and meiotic studies in grasshopper testes, onion root tips and flowerBuds	4 Units
3. Chromosomes: Mounting of polytene chromosomes	1 Unit
4. Buccal smear - Barr bodies	1 Unit
5. Karyotype analysis - Human and Onion	2 Units

Human – Normal and Abnormal – Down and Turner's syndromes (With the help of slides)

6. Simple genetic problems (Problems on Interaction of genes)	1 Unit
7. Isolation of Mitochondria	2 Unit

8. Vital staining of Mitochondria	1 Unit		
9. RBC cell count by Haemocytometer	1 Unit		
Each student is required to submit 5 permanent slides (mitosis & meiosis- at least two f	rom each)		
Practical Examination Scheme			

(15 marks)

(35 marks) **Major:** Mitosis/Meosis/Polytene Chromosomes/Haemocytometry (20 marks) **Minor:** Answer any two Barr body/ Karyotype/ Blood smear differential Staining/ Genetic Problem/ Vital Staining of Mitochondria

Record:To be submitted

REFERENCES:

CELL BIOLOGY

- 1. Molecular Biology of Cell Bruce Alberts et al, Garland publications.
- 2. Animal Cytology and Evolution MJD, White Cambidge University Publications
- 3. Molecular Cell Biology Daniel, Scienific American Books

- 4. Cell Biology Jack d Bruke, The William Twilkins Company
- 5. Principles of Gene Manipulations Old & Primrose, Black Well Scientific Publications
- 6. Cell Biology ambrose&Dorouthy M Easty, ELBS Publications
- 7. Fundamentals of Cytology Sharp, McGraw Hill Company
- 8. Cytology Willson&Marrison, Reinform Publications

9. Molecular Biology – Smith Faber & Faber Publications

- 10. Cell Biology & Molecular Biology EDP Roberties & EMF Roberties, Saunder College.
- 11. Cell Biology C.B Powar, Himalaya Publications

GENETICS

- 1. Basic Genetics Daniel L. Hartl, Jones & Barlett Publishers USA
- 2. Human Genetics and Medicine lark Edward Arnold P London
- 3. Genetics Monroe W Strickberger, Macmillain Publishers, New York
- 4. Genes V Benjamin Lewin, Oxford University Press.
- 5. Genes I Benjamin Lewin, Wiley Eastern Ltd., Delhi
- 6. Genes II Benjamin Lewin, Wiley & Sons Publications
- 7. Genes III- Benjamin Lewin, Wiley & Sons Publications
- 8. Principles of Genetics Winchester Sinnot& Dom
- 9. Genetics Blue print of life by sandhyaMitra, Tata McGraw Hill Publication
- 10. Genetics Edgar Altenburg Oxford & IBH publications
- 11. Principles of Genetics E.J. Gardener, M.J. Simmons and D.P. Snustad, John Wiley & Son **Publications**

BTT 201- GENERAL MICROBIOLOGY AND BIOSTATISTICS

Total hours: 52	
PART A: GENERAL MICROBIOLOGY	
Total hours	: 37
Unit 1. Introduction and Scope of Microbiology Definition and history of Microbiology, contributions of Antony van Leeuwenhoek,	
Louis Pasteur, Robert Koch, Joseph Lister and Alexander Fleming. Importance of Scope of Microbiology as a modern science Branches of Microbiology.	3 Hours
Unit 2. Microscopy	
Constructions and working principles of different types of microscopes – Compound, Dark field,	
Phase contrast, Fluorescence and Electron (Scanning and Transmission)	3 Hours
Unit 3. Microbial Techniques A). STERILIZATION: Principles and applications of	
a. Physical Methods: Autoclave, Hot air oven, laminar airflow, Seitz sintered glass Filter and Membrane filter.	filter,
b. Chemical Methods: Alcohol, Aldehydes, Phenols, Halogens and Gaseous agents c. Radiation Methods: UV rays and Gamma rays.	s. 4 Hours
B). STAINS AND STAINING TECHNIQUES: Principles of staining, Types of stains- Simple Stains, Structural stains and Differential stains	3 Hours
Unit 4. Microbial Taxonomy	
Concepts of Microbial species and strains, Classification of bacteria based on	
Morphology (Shape and flagella), Staining reaction, nutrition and extreme envi	ronment 2 Hours
Unit 5. General Account of Viruses and Bacteria	
A. VIRUSES – Structure and classification Plant Viruses – CaMV	
Animal Viruses – Hepatitis B Bacterial Viruses – Lambda phage	
B. BACTERIA – Ultra structure of a bacterial cell, cell wall, endospore and capsule	8 Hours
Unit 6. Eukaryotic Microorganism	
Salient features, Classification and reproduction of fungi, mycoplasma and alg	ae. 4 Hours
Unit 7. Pathogenic Microorganisms	+ 110u15
A. Bacterial diseases of man – Tetanus, Tuberculosis, Typhoid and Cholera B. Viral diseases: AIDS (HIV).	4 Hours

Unit 8. Microbial Metabolism

A) Respiration: EMP, HMP and ED Pathways, Kreb's cycle, Oxidative Phosphorylation.	
B) Bacterial Photosynthesis: Photosynthetic pigments in Prokaryotes, Photophosphorylation & Dark reaction.	6 Hours
PART B-BIOSTATISTICS	Total hours: 15
Unit 1. Importance and application Tabulation and classification of data, Frequency distribution and Graphical distribution of data.	2 Hours
Unit 2. Measures of Central Tendencies Mean, Median, Mode and their properties	3 Hours
Unit 3. Measures of Dispersion Mean deviation, Variance, Standard deviation and Coefficient of Variation	3 Hours
Unit 4. Hypothesis Testing Student <i>t</i> and Chi-square test	2 Hours
Unit 5 Duchability and Distribution	

Unit 5. Probability and Distribution

Concepts and problems on probability, Binomial, Poisson, Normal Distribution ⁵ Hours and their applications

BTP 202-GENERAL MICROBIOLOGY

Total	Units: 15
1. Safety measures in microbiology laboratory	1 Unit
2. Cleaning and sterilization of glass wares	1 Unit
3. Study of instruments: Compound microscope, Autoclave, Hot air oven,	
P _H meter, Laminar airflow and centrifuge. Unit	3
4. Staining Techniques: Simple, Negative staining, Gram staining, Endospore	
fungal Staining, Bacterial mobility by hanging drop method.	2 Unit
5. Media preparation: Nutrient agar, MRBA and Nutrient broth.	2 Unit
 Isolation of bacteria and fungi from soil, air, and water- dilution and pour p methods. Unit 	olate 2
7. Estimation of microorganisms - Total Count (haemocytometer)	1 Unit
8. Antibiotic sensitivity test – paper disc method	1 Unit
 Biochemical tests – starch hydrolysis, catalase & gelatin liquefaction. 1 Unit 	
10. Study of Rhizobium from root nodules of legumes. I Unit	

Practical Examination Scheme

		(35 marks)
Major:	20 Marks	
Gram Staining & Endospore Staining/ Haemocytometry or Gran	n Staining/	
Endospore staining	_	
Minor:	15 Marks	
Answer any two of the following		
Instruments (any one)/ culture media / components (any one)		
Biochemical tests (any one)		
AST		

Records: To be submitted

REFERENCES:

MICROBIOLOGY:

- 1. Microbiology-Pelzer, Chan, Krieg Tata McGraw Hill Publications
- 2. Microbiology- Concepts and applications by Paul A. Ketchum, Wiley Publications
- 3. Fundamentals of Microbiology –Furbisher, Saunders & Toppan Publications
- 4. Microbiology Ronald M.Atals
- 5. Introductory Biotechnology-R.B Singh C.B.D. India (1990)
- 6. Industrial Microbiology-Casual Wiley Eastern Ltd.
- 7. Fundamentals of Bacteriology Salley
- 8. Fontiers in Microbial technology-P.S. Bison, CBS Publishers.
- 9. Biotechnology, International Trends of perspectives A. T. Bull, G. HollM.D.Lilly Oxford & T Publishers.
- 10. General Microbiology -C.B. Powar, H.F. Daginawala, Himalayan Publishing House

BIOSTATISTICS:

- 1. Bliss, C.J.K. (1967) Statistics in Biology, Vol. I McGraw hill. New York.
- 2. Campbell R.C. (1974) Statistics for Biologists, Cambridge Univ, Press, Cambridge
- 3. Daniel (1999) Biostatistics (3rd edition) Panima Publishing, Corporation
- 4. Sward law, A. C. (1985) Practical Statistics for Exponents Biologists, John Wiley and Sons, Inc., NY
- 5. Khan (1999) Fundamentals of Biostatistics Publishing Corporation.

SEMESTER III

BTT 301- BIOCHEMISTRY AND BIOPHYSICS

DADT A. DIOCUMPICTDY	Total Hours: 52
PART-A: BIOCHMEISTRY	Total Hours: 35
Unit 1. Amino acids Classification and properties due to intra, centre and side chain, titration against ac and abase.	id 4 Hours
Unit 2. Proteins	
Classification based on structure and functions, structural organization of proteins (Primary, secondary, tertiary and quaternary structure)	6 Hours
Unit 3.Enzymes	
Introduction, classification, enzyme kinetics, factors influencing enzyme activity, co-Enzymes and co-factors.	8 Hours
Unit 4.Carbohydrates Structure, properties and classification with examples, Carbohydrates as a source o Energy.	f 5 Hours
Unit 5.Lipids Structure, properties and classification and functions.	5 Hours
Unit 6.Vitamins Water Soluble and fat-soluble vitamins, Dietary source.	4 Hours
Unit 7.Hormones Steroid hormones- structure O, E ₂ , P ₄ , Glucocortocoid hormones. mechanism of steroid hormone action.	3 Hours
PART-B: BIOPHYSICS	
Unit 1.Introduction and scope of Biophysics. Total Hours: 17	
Unit 2.pH and buffer concepts.	
	1 Hour
Unit 3.Chemical bonding – Ionic bond, covalent bond, hydrogen bond and peptide bond Vander waals forces, Principles of thermodynamics.	2 Hours

2 Hours

Unit 4. Analytical techniques	
Principles and applications of	
a) Chromatography (Paper, thin – layer, column, GLC and HPLC)	
b) Centrifugation (RPM and G, Ultra centrifugation)	7 Hours
Unit 5.Spectroscopic techniques	
Principles and applications of UV, Visible spectroscopy, X-ray crystallography, NMR,	
IR, fluorescence & atomic absorption.	3 Hours
Unit 6. Iosotopes	
Types, their importance in biological studies, measure of radioactivity, GM counters and	l
Scintillation counting.	2 Hours
BTP 302- Biochemistry and Biophysics	
Total	units : 15
1. Preparation of Buffers-Citrate and Phosphate.	1 Unit
 2. Estimation of reducing sugars (Glucose, Maltose and Lactose) by DNS and Somoji's 	1 Unit
2. Estimation of reducing sugars (Grucose, Waltose and Eactose) by Divis and Somoji s Methods.	4 Units
3. Estimation of Protein by Biuret method and Lowry's method	3 Units
4. Assay of enzyme activity- Amylase.	2 Units
5. Separation of Sugars by TLC.	2 Units
6. Estimation of Amino acids by ninhydrin method.	2 Units
7. Estimation of inorganic phosphate by Subba row method	1 Unit
Practical Examination Scheme	
(35 marks)	
	20 1)
	20 marks)
a) Estimate the amylase enzyme activity of the given sample, write the principle and Procedure	
b) Write the principle of TLC/Ninhydrin	
Or	
Comment on preparation of Citrate buffer/Phosphate buffer	
Minor:	(15 marks)
Estimation of Reducing sugar/Protein/Inorganic PO ₄	(15 marks)
Estimation of Reducing sugar/1100ml/morganic 104	
Record: To be submitted	

REFERENCES: BIOCHMISTRY

1. Principles of Biochemistry- AlbertLLehninger CBS Publishers & Distributors.

2. Biochemistry-LUbretStryer Freeman International Edition.

3. Biochemistry-KeshavTrehan Wiley Eastern Publications

- 4. Fundamentals of Biochemistry J.L. Jain S.Chand and company
- 5. Biochemistry, Prasaranga, Bangalore University
- 6. Fundamental of Biochemistry-Dr. A.C. Deb
- 7. Textbook of Organic Chemistry (A Modern approach) P.L. Soni, Sultan Chand and Sons, Publishers.
- 8. The Biochemistry of Nucleic acid-tenth Edition-Roger L.P. Adams, John T. Knower and David P. Leader, Chapman and Hall Publications.

BIOPHYSICS

- 1. Narayanan, P (2000) Essentials of Biophysics, New Age Int. Pub. New Delhi.
- 2. Bliss, C.J.K. (1967) Statistics in Biology, Vol. I McGraw hill. New York.
- 3. Campbell R.C. (1974) Statistics for Biologists, Cambridge Univ, Press, Cambridge
- 4. Daniel (1999) Biostatistics (3rd edition) Panima Publishing, Compotation
- 5. Sward law, A. C. (1985) Practical Statistics for Exponents Biologists, John Wiley and Sons, In
- 6. Khan (1999) Fundamentals of Biostatistics Publishing Corporation
- 7. Roy R.N. (1999) A Text Book of Biophysics New Central Book Agency

SEMISTER IV

BTT-401 – MOLECULAR BIOLOGY

Total Hours: 52

Unit 1.Molecular basis of life – an introduction RNA and DNA as genetic material, experimental proof of DNA as genetic material.	3 Hours
Unit 2.Nucleic Acids	
Structure and functions of DNA and RNA	
Watson and Crick model of DNA and other forms of DNA (A and Z)	
Functions of DNA and RNA including ribozymes	5 Hours
Unit 3. DNA Replication	
Prokaryotic and Eukaryotic – Enzymes and proteins involved in replication, Theta	
model and Rolling circle model.	4 Hours
Unit 4. DNA Repair	
Causes and mechanism – photoreactivation, excision repair, mismatch repair,	
SOS repair.	4 Hours
Unit 5. Recombination in prokaryotes	
Transformation, Conjugation and Transduction	5 Hours
Unit 6. Structure of Prokaryotic and Eukaryotic gene – genetic code, Properties	
and wobble hypothesis.	4 Hours

Unit 7. Transcription in Prokaryotes and Eukaryotes Mechanisms, Promoters and RNA polymerase, transcription factors, Post transcriptional modifications of eukaryotic mRNA.	5 Hours
	0 110015
Unit 8. Translation	
Mechanism of translation in prokaryotes and Eukaryotes, Post translational modification of Proteins.	7 Hours
Unit 9. Regulation of Gene Expression	
Regulation of Gene expression in Prokaryotes – Operan concept (Lac and Tryp)	
Regulation of Gene expression in Eukaryotes – transcriptional activation, galactose	
metabolism in yeast.	8 Hours
Unit 10 Care argonization and anneasion in Mitachandria and ablancelasts	2.11
Unit 10. Gene organization and expression in Mitochondria and chloroplasts.	3 Hours
Unit 11.Insertional elements and transposons.	
Transposable elements in Maize and Drosophila.	4 Hours
PTD 402 Molecular Biology	
BTP 402 – Molecular Biology Total	Units: 15
1. Preparation of DNA model	1 Unit
2. Estimation of DNA by DPA method.	1 Unit
3. Estimation of RNA by Orcinol method	1 Unit
4. Column chromatography – gel filtration (Demo)	
5. Extraction and partial purification of protein from plant source by Ammonium	
sulphate precipitation.	3 Units
6. Extraction and partial purification of protein from animal source by organic solvents.	3 Units
7. Protein separation by Polyacrylamide Gel Electrophoresis (PAGE)	3 Units
8. Charts on- Conjugation, Transformation and Transduction	1 Units
Practical Examination Scheme	
(35 Marks)	
Major:	20 Marks
Extraction and estimation of protein by salt precipitation method/organic solvent method (Plant and animal source)	
Minor:	15 Marks
Estimation of DNA/RNA	
and	
Comment on PAGE/Column chromatography/conjugation/transformation/transduction	

Records: To be submitted

REFERENCES: MOLECULAR BIOLOGY

- 1. Glick, B.R and Pasternak J.J (1998) Molecular biotechnology, Principles and application of recombinant DNA, Washington D.C. ASM press.
- 2. Howe. C. (1995) Gene cloning and manipulation, Cambridge University Press, USA
- 3. Lewin, B., Gene VI New York, Oxford University Press.
- 4. Rigby, P.W.J. (1987) Genetic Engineering Academic Press Inc. Florida, USA.
- 5. Sambrook et al (2000) Molecular cloning Volumes I, II & III, Cold spring Harbor Laboratory Press New York, USA
- 6. Walker J. M. and Ging old, E.B. (1983) Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K.
- 7. Karp. G (2002) Cell & Molecular Biology, 3rdEdition, John Wiley & Sons; I