6. With the usual notation show that if $T \in A(V)$ has all its characteristic roots in F then there is a basis of V in which the matrix of T is triangular.

Prove with the usual notation:

16.

- (a) if $T \in A(V)$ is such that $\langle vt, v \rangle = 0$ for all $v \in V$, then T = 0.
- (b) a linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

M.Sc. Maths (R) 2535/KM1 (IIC, after)

Paper I — ALGEBRA – I

(For those who joined in July 2009 and after)

Time: Three hours

isomorphic?

Maximum: 100 marks

PART A —
$$(4 \times 10 = 40 \text{ marks})$$

Answer any FOUR questions.

- When do you say that two elements of a group G are conjugates? Show that conjugacy is an equivalence relation. If c(a) is the equivalence class containing a with C_{α} elements what can you say about ΣC_{α} ?
- For $s \in N$, G an abelian group, define $G(s) = \{x \in G : x^s = e\}$. Is G(s) a subgroup of G? If G, G' are isomorphic finite abelian groups then show that for every integer s, G(s), G'(s) are
- 3. Let I be a two-sided ideal of a ring R. Show that R/I is a ring and is a homomorphic image of R.
- Define the term Euclidean Ring. Show that if a, b are two elements of a Euclidean ring R then they have a greatest common divisor d and that $d = \alpha a + \beta b$ for some α , $\beta \in R$.

Define the term primitive polynomial. Show that if f(x), g(x) are two primitive polynomial then their product is also a primitive polynomial.

Define an Inner Product Space. Establish the

Schwarz inequality. 7. Define invertibility of $T \in A(V)$. Show that if V is a finite dimensional vector space over a field F, then $T \in A(V)$ is invertible if and only if the

constant term of the minimal polynomial is

- Let V be a vector space over F. With the usual 8. notation for $T \in A(V)$ define the Hermitian adjoint T^* of T. Show that
 - (a) $\left(T^*\right)^* = T$. (b) $(S+T)^* = S^* + T^*$.

non-zero.

5.

6.

 $\lambda \in F$.

- (c) $(\lambda S)^* = \overline{\lambda} S^*$ and (d) $(ST)^* = T^*S^*$ for all $S, T \in A(V)$ and all
 - 2

- Answer any FOUR questions. 9. Write the class equation. Let G be a finite group of
- order n and let p be a prime dividing n. Show that G has an element of order p. What is the number of conjugate classes in S_n ?

isomorphic if and only if they have the same

PART B — $(4 \times 15 = 60 \text{ marks})$

- State the Sylow's theorem and give the second proof. Show that two abelian groups of order p^n are
- 12. State and prove (a) the division algorithm for polynomials. (b) the Eisenstein criterion.
- 13. Let V, W be finite dimensional vector spaces over a field F of dimension m, n respectively. Define Hom(V, W). Show that Hom(V, W) is a vector space of dimension mn over F.

invariants.

14. Suppose A is an algebra with identity over a field F, show that with the usual notation, A is isomorphic to a subalgebra of A(V) for some vector space V over F.

2535/KM1

Maximum: 100 marks

ANALYSIS – I (REAL AND COMPLEX ANALYSIS)

(For those who joined in July 2009 and after)

Time: Three hours

to Y.

PART A — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions. If E_1, E_2, E_3, \cdots is a sequence of countable sets

- show that their union is again countable.

 2. Suppose $K \subset X \subset Y$. Show that K is compact relative to X if and only if K is compact relative
- 3. State and prove the Root test or the Ratio test on the convergence of a series.
- Let f be a continuous mapping of a compact metric space into another metric space. Prove that f is uniformly continuous.
- State and prove the chain rule for differentiation.
- 3. If a, b are complex numbers show that $\left| \frac{a-b}{1-\overline{a}b} \right| = 1$ if and only if either $\left| a \right| = 1$ or $\left| b \right| = 1$

- 7. Define the term 'radius of convergence' of a power series about a point a. Prove that a series converges absolutely in the open disc center a and radius given by the radius of convergence.
- 8. Obtain the Cauchy Integral Formula.

PART B —
$$(4 \times 15 = 60 \text{ marks})$$

Answer any FOUR questions.

- 9. State and prove the Heine-Borel theorem for the Euclidean space \mathbb{R}^k .
- 10. Show that $\lim_{n\to\infty} (1+1/n)^n = e$. Prove also that e is irrational.
- 11. Let f be a monotonically increasing function in (a,b). Show that for any $x \in (a,b)$ both f(x+) and f(x-) exists. Prove also that for such a function the discontinuities is at most countable.
- 12. State and prove Taylor's theorem for a real valued function defined on a closed interval.
- 13. Define an analytic function. Show that every analytic function satisfies the Cauchy-Riemann differential equations. Prove that if f = u + iv, where u and v have continuous first order partial derivatives satisfying the C R equations then f is analytic.

- 14. Define a linear transformation on the complex plane. Prove :
 - (a) if z_1, z_2, z_3, z_4 are distinct points in the extended complex plane then for any linear transformation T,

$$(T_{z_1}, T_{z_2}, T_{z_3}, T_{z_4}) = (z_1, z_2, z_3, z_4);$$

- (b) a linear transformation carries circles to circles.
- 15. State and prove the Cauchy's theorem for a rectangle.
- 16. Define removable singularity. State and prove Weierstrass theorem regarding essential singularity.

3

- 6. Let X be a non-zero Banach space over C, the complex field and $A \in BL(X)$. Prove that with the usual notation
 - (a) $\sigma(A)$ is non-empty.
 - (b) $r_{\sigma}(A) = \inf_{n=1, 2, \dots} ||A^n||^{1/n} = \lim_{n \to \infty} ||A^n||^{1/n}$.

2537/KM3

OCTOBER 2011

ANALYSIS – II (TOPOLOGY AND FUNCTIONAL ANALYSIS)

(For those who joined in July 2009 and after)

Time: Three hours

rs Maximum: 100 marks

PART A —
$$(4 \times 10 = 40 \text{ marks})$$

Answer any FOUR questions.

- 1. Define the term 'Topological space'. Explain complement finite topology. Show that it is indeed a topological space.
- 2. Define the term 'Basis for the topology'. Describe a basis for the usual topology of the real line. If B is a basis for a topology on X and if Y is a subspace show that the collection $B \cap Y$ yields a basis for the subspace topology on Y.
 - Let (X, d) be a metric space. Show that d'(x, y) = d(x, y)/(1 + d(x, y)) is also a metric on X. Prove that d and d' induce the same topology on X.
- 4. Show that a closed subset of a compact space is compact and that a compact subset of Hausdorff space is closed.

- 5. Define the terms: Second countable space, separable space. Show that a separable metric space is second countable.
- 6. Under what operations and norm the Euclidean space \mathbb{R}^n is a normed linear space over \mathbb{R}^n ? Establish the Minkoswki and Holder inequalities in \mathbb{R}^n .
- 7. What is a Banach space? If X is a Banach space and M a closed subspace of X? Define the norm on the quotient space X/M and show that it is indeed a complete norm.
- 8. When is a map $T: X \to Y$, where X, Y are normed linear spaces, said to be a bounded linear transformation? For a bounded linear transformation define its norm. Show that the norm is given by the following two:
 - (a) $\sup \{ | f(x)| / | x | | : x \neq 0 \}.$
 - (b) $\sup \{ || f(x)|| : || x || = 1 \}.$

PART B — $(4 \times 15 = 60 \text{ marks})$

Answer any FOUR questions.

9. If β is a basis for a topology on X, then show that the topology generated by β equals the intersection of all topologies on X that contains β . Prove the same if β is a sub-basis.

- 10. Explain how the product topology is defined on an arbitrary product of topological spaces. Prove that the topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .
- 11. Show that compactness implies limit point compactness. State and prove the Lebesgue number lemma.
- 12. Show that a well ordered set X is normal in the order topology.
- 13. Let (X, τ) be a compact Hausdorff space and let C(X, R) be the space of all continuous real functions on X. Show that $||f|| = \sup ||f(x)|| : x \in X|$ defines a norm on C(X, R) making it into a Banach space.
- 14. Let X be a normed linear space over K, E a non-empty open convex subset of X. Let Y be a subspace of X such that $E \cap Y = \emptyset$. Show that there is $f \in X'$ such that f(x) = 0 for every $x \in Y$ but $\operatorname{Re} f(x) \neq 0$ for every $x \in E$.
- 15. State and prove the principle of uniform boundedness. Deduce that a subset E of a normed linear space X is bounded if and only if f(E) is bounded in K for every $f \in X'$.

- Consider the Laguerre equation $xy'' + (1-x)y' + \alpha y = 0$, where α is a constant. Show that this equation has a regular singular point at x = 0. Compute the indicial polynomial and its roots. Show that if $\alpha = n$, a non-negative integer, then there is a polynomial solution of degree n.
- 16. Find:
 - (a) the general solution of

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y) z$$
.

(b) the integral surface of the linear partial differential equation

$$x(y^{2}+z)p - y(x^{2}+z)q = (x^{2}-y^{2})z$$
which contains the straight line

which contains the straight line x + y = 0, z = 1.

2538/KM4

OCTOBER 2011

Maximum: 100 marks

NUMERICAL METHODS AND DIFFERENTIAL EQUATIONS

(For those who joined in July 2009 and after)

PART A —
$$(4 \times 10 = 40 \text{ marks})$$

Answer any FOUR questions.

- 1. A real root of the equation $f(x) = x^3 5x + 1 = 0$ lies in the interval (0, 1). Perform four iterations of the Secan method and the Regula-Falsi method to contain this root.
- 2. Find the inverse of the coefficient matrix of the system $\begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$ by Gauss-Jordan

method with partial pivoting and hence solve the system.

3. Given the following values of the function $f(x) = \sin x + \cos x$.

$$x$$
 10° 20° 30° $f(x)$: 1.1585 1.2817 1.3660

construct the quadratic interpolating polynomial that fits the data and find $f(\pi/12)$.

Write the formula to find the remainder of the Simpson three-eight rule for equally spaced points. Use this to find the approximate value of the integral $\int_{1}^{1} \frac{dx}{1+x}$. Find the solution of the initial value problem

4.

5.

7.

8.

- $\frac{du}{dt} = Au$, $u(0) = [1, 0]^T$ where A is the 2×2 matrix given by $A = \begin{pmatrix} -2 & 1 \\ 1 & -20 \end{pmatrix}$ and $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$. Is
- the system asymptotically stable? Show that any set of n linearly independent 6. solutions of L(y) = 0 on I is a basis for the solutions of L(y) = 0 on I.
 - Show that the differential equation $y' = \frac{3x^2 2xy}{x^2 2y}$ is exact and obtain its solution.
 - the solution of the equation $z = (1/2)(p^2 + q^2) + (p - x)(q - y)$ which passes through the x-axis.
 - PART B $(4 \times 15 = 60 \text{ marks})$

polynomial.

Answer any FOUR questions. 9. Explain the Birge-Vieta method and the smallest positive root of the polynomial $P_3 = 2x^3 - 5x + 1 = 0$, using the initial approximation $p_0 = 0.5$. Also obtain the deflated 12. Evaluate the integral $I = \int dx/(1+x)$ using (a) composite trapezoidal rule.

10. Solve $4x_1 + x_2 + x_3 = 4$; $x_1 + 4x_2 - 2x_3 = 4$;

 $3x_1 + 2x_2 - 4x_3 = 6$ by

(a) Gauss elimination method.

(b) by the LU-decomposition method.

Explain quadratic Spline Interpolation.

(b) composite Simpson's rule with 4 equal subintervals and Romberg integration.

Use the Euler method to solve numerically the

- initial value problem $n' = -2t\alpha^2$, u(0) = 1, with h = 0.2, 0.1 and 0.05 on the interval [0, 1]. Neglecting the round off errors, determine the bound for the error. Apply Richardson's extrapolation to improve the computed value u(1,0).
- For the Legendra equation $L(y) = (1 - x^2) y'' - 2xy' + \alpha (\alpha + 1) y = 0,$ show that convergent power series solutions exist and find a basis for the solutions.

MECHANICS AND FUZZY SETS

(For those who joined in July 2009 and after)

Time: Three hours

6.

Maximum: 100 marks

PART A - (4 × 10 = 40 marks)

Answer any FOUR questions.

- 1. State and prove the conversion theorem for the angular momentum of a particle.
- 2. Obtain Lagrange's equation for conservative and non-conservative holonomic and scaleronomic system.
- 3. Discuss the motion of a loop on an inclined plane using Langrange undetermined multipliers.
- 4. A particle describes the curves $r^n = a^n \cos n\theta$ under a force p to the pole find the laws of force.
- 5. Show that in the case of an elliptical orbit, the major axis depends upon E the total energy.
 - Define the terms: Scalar cardinality and Fuzzy cardinality. Obtain the cardinalities for the fuzzy set $B = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.

Let

$$M_P = \begin{pmatrix} 0.3 & 0.5 & 0.8 \\ 0 & 0.7 & 1 \\ 0.4 & 0.6 & 0.5 \end{pmatrix} \text{ and } M_Q = \begin{pmatrix} 0.9 & 0.5 & 0.7 & 0.7 \\ 0.3 & 0.2 & 0 & 0.9 \\ 1 & 0 & 0.5 & 0.5 \end{pmatrix}.$$

Draw the sagittal diagram and also find $P \odot Q$.

8. With the usual notation find B' and conclude "y is B", when $A = \frac{0.6}{x_1} + \frac{1}{x_2} + \frac{0.9}{x_3}$, $B = \frac{0.6}{y_1} + \frac{1}{y_2}$ and $A' = \frac{0.5}{x_1} + \frac{0.9}{x_2} + \frac{1}{x_3}$.

PART B —
$$(4 \times 15 = 60 \text{ marks})$$

Answer any FOUR questions.

- 9. Show that the total angular momentum about a point is the angular momentum of a system concentrated at the centre of mass and the angular momentum of motion about the centre of mass.
- 10. Obtain the Lagrange equations of motion for a spherical pendulum i.e. a mass point suspended by a rigid weightless rod.
- 11. State and prove the Virial theorem.

- With the usual notation derive the equation of the central orbits under inverse square law of force. Show also that the force of attraction is balanced by a centrifugal force in the case of circular motion.
 - Show that all α -cuts of any fuzzy set A defined on $R^n (n \ge 1)$ are convex if and only if $\mu_A \left(\lambda r + (1 - \lambda)_S \right) \ge \min \left[\mu_A \left(r \right), \, \mu_A \left(s \right) \right]$ for $r, s \in \mathbb{R}^n$ and all $\lambda \in [0, 1]$.
- 14. Prove that if $A \subseteq E$ and $B \subset F$, then
 - (a) $A + B \subset E + F$
 - (b) $A B \subset E F$.
 - (c) $A \cdot B \subset E \cdot F$ and
 - and F are closed intervals.
- 15. Find R_T if $M_R = \begin{bmatrix} 0.7 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0.4 & 0 & 0 \\ 0 & 0 & 0.8 & 0 \end{bmatrix}$.
- Discuss in detail on any two areas of applications of fuzzy set theory.

(d) $A/B \subseteq E/F$ ($0 \notin F$, in this case), where A, B, E