Q.No. 1-5 Carry One Mark Each

1.	A student is required in the social sciences	to demonstrate a high	level of comprehe	nsion of the su	bject, especially
	The word closest in r	neaning to comprehen	sion is		
	(A) understanding	(B) meanir	g (C) co	oncentration	(D) stability
Answ	er: (A)				
2.	sentence.	propriate word from the	8, 8	low to comple	te the following
		was his abilit	The second of the Control of the Con	4750	21
	(A) vice	(B) virtues	(C) choices	(D):	strength
Answ	er. (B)				
3.	unhappiness, Sajan e Which one of the st sentences? (A) Rajan has decide (B) Rajan and Sajan (C) Sajan had decide	y that Sajan decided xplained to Rajan that alements below is log d to work only in a gro were formed into a gro d to give in to Rajan's ed that Sajan and he w	he preferred to work pically valid and ca up. up against their wis request to work wit	k independently in be inferred hes, h him.	y.
Answ	er: (D)				
4.	(A) passes through x(C) is parallel to the x		(B) has a slop (D) has a slop		
	er: (C)				
Exp:	$y = 5x^2 + 3$, $\frac{dy}{dx} = 10x$				
	Slope of tan gent =	$\left. \frac{\mathrm{dy}}{\mathrm{dx}} \right _{x = 0, y = 0} = 10 \times 0 = 0$			
	Slope = $0 \Rightarrow tangent$	is parallel to x-axis.			
5.	800Q, where Q is th	d daily cost of Rs 50,0 e daily production in fuction of 100 tonnes?	tonnes. What is the		
Answ	er: 1300 to 1300				
Exp.		00Q in tones duction daily, total co	st of production		
	= 50,000+800×100 =		120.000		
	So, cost of production	per tonne of daily pro	oduction= $\frac{150,000}{100}$	= Rs.1300.	

Find the odd one in the following group: ALRVX, EPVZB, ITZDF, OYEIK

(A) ALRVX (B) EPVZB (C) ITZDF (D) OYEIK

Answer: (D)

Exp: ALRVX-only one vowel

EPVZB-only one vowel

ITZDF →only one vowel

OYEIK-three vowels

7. Anuj, Bhola, Chandan, Dilip, Eswar and Faisal live on different floors in a six-storeyed building (the ground floor is numbered 1, the floor above it 2, and so on). Anuj lives on an even-numbered floor. Bhola does not live on an odd numbered floor. Chandan does not live on any of the floors below Faisal's floor. Dilip does not live on floor number 2. Eswar does not live on a floor immediately above or immediately below Bhola, Faisal lives three floors above Dilip. Which of the following floor-person combinations is correct?

	Anuj	Bhola	Chandan	Dilip	Eswar	Faisal
(A)	- 6	2	5	1	3	4
(B) (C)	2	6	5	1	3	4
(C)	4	2	6	3	1	5
(D)	2	4	6	1	3	5

Answer: (B)

Exp: (a) Anuj: Even numbered floor (2.4.6)

(b) Bhola: Even numbered floor (2,4,6)

(c) Chandan lives on the floor above that of Faisal.

(d) Dilip: not on 2rd floor.

 (e) Eswar: does not live immediately above or immediately below Bhola From the options its clear, that only option (B) satisfies condition (e). So, correct Ans is (B).

8. The smallest angle of a triangle is equal to two thirds of the smallest angle of a quadrilateral. The ratio between the angles of the quadrilateral is 3:4:5:6. The largest angle of the triangle is twice its smallest angle. What is the sum, in degrees, of the second largest angle of the triangle and the largest angle of the quadrilateral?

Answer: 180 to 180

Exp: Let the angles of quadrilateral are 3x, 4x, 5x, 6x

So, 3x+4x+5x+6x = 360

x = 20

Smallest angle of quadrilateral = 3×20 = 60°

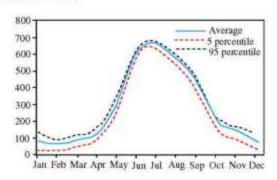
Smallest angle of triangle = $\frac{2}{3} \times 60^{\circ} = 40^{\circ}$

Largest angle of triangle = $2 \times 40^{\circ}$ = 60°

Three angles of triangle are 40°, 60°, 80°

Largest angle of quadrilateral is 120°

Sum (2nd largest angle of triangle + largest angle of quadrilateral)


9. One percent of the people of coantil Xtare later than 6 ft. Two percent of the people of country Y are taller than 6 ft. There are thrice as many people in country X as in country Y. Taking both countries together, what is the percentage of people taller than 6 ft? (A) 3.0 (B) 2.5 (C) 1.5 (D) 1.25

Answer: (D)

Exp: Let number of people in country y = 100So, number of people in country x = 300Total number of people taller than 6ft in both the countries

$$=300 \times \frac{1}{100} + 100 \times \frac{2}{100} = 5$$

- % of people taller than 6ft in both the countries = $\frac{5}{400} \times 100 = 1.25\%$.
- 10. The monthly rainfall chart based on 50 years of rainfall in Agra is shown in the following figure. Which of the following are true? (k percentile is the value such that k percent of the data fall below that value)

- (i) On average, it rains more in July than in December
- (ii) Every year, the amount of rainfall in August is more than that in January
- (iii) July rainfall can be estimated with better confidence than February rainfall
- (iv) In August, there is at least 500 mm of rainfall

(A) (i) and (ii) (B) (i) and (iii)

(C) (ii) and (iii) (D) (iii) and (iv)

Answer: (B)

EXIX In the question the monthly average rainfall chart for 50 years has been given. Let us check the options.

- On average, it rains more in July than in December => correct.
- Every year, the amount of rainfall in August is more than that in January.
- may not be correct because average rainfall is given in the question. (iii) July rainfall can be estimated with better confidence than February rainfall. ⇒ From chart it is clear the gap between 5 percentile and 95 percentile from average is
- (iv) In August at least 500 mm rainfall

⇒ May not be correct, because its 50 year average.

higher in February than that in July -> correct.

QING-1-28 Carry One Mark Each

L Gradient of a scalar variable is always

(A) a vector

(B) a scalar

(C) a dot product

(D) zero

Answer: (A)

Ciradient $\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$

If f is a scalar point function

$$\nabla f = \operatorname{grad} f = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z}$$
 is a vector.

- For the time domain function, $f(t) = t^{v}$, which ONE of the following is the Laplace transform 2. of ff(t)dt?
 - (A) $\frac{3}{4}$ (B) $\frac{1}{4x^2}$
- (C) $\frac{2}{3}$

(D) $\frac{2}{4}$

Answer (D)

Exp. We have
$$L\left[\int_{0}^{s} f(t)dt\right] = \frac{F(s)}{s}$$
 where $F(s) = L\left[f(t)\right]$

$$\Rightarrow L\left[\int_{0}^{s} t^{2}dt\right] = \left(\frac{2}{s^{3}}\right)/3 = \frac{2}{s^{6}}\left(\because L\left[t^{2}\right] = \frac{2}{s^{7}}\right)$$

If $f^*(x)$ is the complex conjugate of $f(x) = \cos(x) + i \sin(x)$, then for real a and b, 3. f *(x)f(x)dx is ALWAYS

(A) positive

- (B) negative (C) real
- (D) imaginary

Answer (C)

Exp. $f(x) = \cos(x) + i\sin(x)$ $f^*(x) = cos(x) - isin(x)$ $\int_{0}^{h} f^{*}(x) \cdot f(x) dx = \int_{0}^{h} (\cos x - i \sin x) (\cos + i \sin x) dx$ $=\int\limits_{-\infty}^{h}e^{-ia}\cdot e^{ia}\,dx\qquad =\int\limits_{-\infty}^{h}1.dx\,=\,b-a\!\in\!R\,\left(\because a,\,b,\in R\right)$

- If f(x) is a real and continuous function of x, the Taylor series expansion of f(x) about 4. its minima will NEVER have a term containing
 - (A) first derivative

⇒ Real for real a & b.

(B) second derivative

(C) third derivative

(D) any higher derivative

Exp. For a real valued function $y = f(x)^{\text{Wingovtjobs.com}}$

$$f(x)=f(a)+(x-a)f'(a)+\frac{(x-a)^2}{2!}f''(a)+...$$

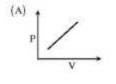
For min ima at x = a, f'(a) = 0.

Taylor series expansion about 'a'

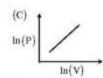
So, Taylor series expansion of f(x) about 'a' will never contain first derivative term.

 From the following list, identify the properties which are equal in both vapour and liquid phases at equilibrium
 P. Density
 Temperature

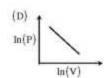
(D) P and S only


P. Density Temperature
R. Chernical potential
S. Enthalpy
(A) P and Q only
(B) Q and R only

(C) R and S only Answer: (B)


Exp. For phase equilibrium

Temperature; $T^{\mu} = T^{1}$ Pressure; $P^{\mu} = P^{1}$ Chemical potential; $\mu^{\mu} = \mu^{1}$


 In a closed system, the isentropic expansion of an ideal gas with constant specific heats is represented by

For isentropic expansion,

Answer: (D)

Exp.

PV* = constant

Taking log on both sides $\ln P + \gamma \ln V = 0$ $\frac{\ln P}{\ln V} = -\gamma = \text{negative}$

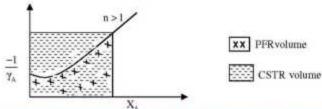
γ is positive slope of InP vs In V is negative.

Match the following: www.wingovtjobs.com

Group 1	Group 2		
$(P) \left(\frac{\partial G}{\partial n_i} \right)_{T_i P_i n_{jet}}$	I. Arrhenius equagtion		
$(Q) \left(\frac{\partial G}{\partial n_i}\right)_{\Xi,V,n_{ju}}$	II. Reaction equilibrium constant		
(R) $exp\left(\frac{-\Delta G_{maxton}^{0}}{RT}\right)$	III. Chemical potential		
(S) $\Sigma \{n_i d\mu_i\}_{T,P} = 0$	IV. Gibbs-Duhem equation		

(A) Q-III, R-I, S-II (C) P-III, R-II, S-IV

(B) Q-III, R-II, S-IV
(D) P-III, R-IV, S-I


Answer: (C)

 In order to achieve the same conversion under identical reaction conditions and feed flow rate for a non-autocatalytic reaction of positive order, the volume of an ideal CSTR is

- (A) always greater than that of an ideal PFR(B) always smaller than that of an ideal PFR
- (C) some so that of an ideal DED
- (C) same as that of an ideal PFR
 (D) smaller than that of an ideal PFR only for first order reaction
- Answer: (A)

Exp. For CSTR, volume $V = \frac{F_{AB}X_A}{-\gamma_A}$

For PFR volume
$$V = F_{AB} \int \frac{dX_A}{-\gamma_A}$$

From plot it is clear that volume of ideal CSTR (area) is higher than that of the ideal PFR.

9. Integral of the time-weighted absolute error (ITAE) is expressed as

(A)
$$\int_{0}^{\infty} \frac{|\mathcal{E}(t)|}{t^2} dt$$
 (B) $\int_{0}^{\infty} \frac{|\mathcal{E}(t)|}{t} dt$ (C) $\int_{0}^{\infty} t |\mathcal{E}(t)| dt$ (D) $\int_{0}^{\infty} t^2 |\mathcal{E}(t)| dt$

Let number of people in colling wing out jobs. com

So, number of people in country x = 300

Total number of people taller than 6ft in both the countries = $300 \times \frac{1}{100} + 100 \times \frac{2}{100} = 5$

% of people taller than 6ft in both the countries =
$$\frac{5}{400} \times 100 = 1.25\%$$

A unit IMPULSE response of a first order system with time constant \u03c4 and steady 10. state gain K_p is given by

(A)
$$\frac{1}{K_p \tau} e^{i/\tau}$$
 (B) $K_p e^{-i/\tau}$ (C) $\tau K_p e^{-i/\tau}$ (D) $\frac{K_p}{\tau} e^{-i/\tau}$

Answer: (D)

Unit Impulse input $x(t) = \delta(t)$ Exp.

So, X(s) = 1

$$\begin{split} G(s) = & \frac{Y(s)}{X(s)} = \frac{K_p}{\tau s + 1} \Rightarrow y(s) = \frac{K_p}{\tau s + 1}.1 \\ y(t) = & \frac{K_p}{\tau s} e^{-\phi \tau}. \end{split}$$

- In a completely opaque medium, if 50% of the incident monochromatic radiation is absorbed, 11. then which of the following statements are CORRECT?
 - (P) 50% of the incident radiation is reflected (Q) 25% of the incident radiation is reflected
 - (R) 25% of the incident radiation is transmitted
 - (S) No incident radiation is transmitted
- (C) P and Q only (D) R and S only (A) P and S only (B) Q and R only Answer: (A)

For a completely opaque system $\tau = 0 \Rightarrow S$ Exp. Given $\infty = 0.5$ $\infty + t + \gamma = 1$

Final Ans is (A) P and S only.

So, $\gamma = 0.5 \Rightarrow P$

Answer: (C)

12. In case of a pressure driven laminar flow of a Newtonian fluid of viscosity (u) through a horizontal circular pipe, the velocity of the fluid is proportional to (D) µ-0.5

(A)
$$\mu$$
 (B) $\mu^{0.1}$ (C) μ^{-1}

Pressure drop in case laminar flow is Exp.

$$\frac{\Delta P}{L} = \frac{32\mu LV}{D^2}$$
clearly $V \approx \mu^{-1}$.

- Which of the following statements are GORREGEP, com 13. (P) For a rheopectic fluid, the apparent viscosity increases with time under a constant applied
 - (Q) For a pseudoplastic fluid, the apparent viscosity decreases with time under a constant applied shear stress (R) For a Bingham plastic, the apparent viscosity increases exponentially with the deformation rate
 - (S) For a dilatant fluid, the apparent viscosity increases with increasing deformation rate (A) P and Q only (B) Q and R only (C) R and S only (D) P and S only
- Answer: (D)
 - 14. Assume that an ordinary mercury-in-glass thermometer follows first order dynamics with a time constant of 10s. It is at a steady state temperature of 0°C. At time t = 0, the thermometer is suddenly immersed in a constant temperature bath at 100°C. The time required (in s) for the thermometer to read 95°C, approximately is (A) 60 (B) 40 (C) 30 (D) 20
- Answer: (C)

shear stress

Exp. Given $\tau = 10s$

$$y(t) = K_p \Lambda (1 - e^{-\psi t})$$

 $95 = 100(1 - e^{-\psi t})$
 $\Rightarrow \frac{1}{2} = 2.995 - 3 \Rightarrow t = 30 \text{ sec.}$

For first order system

- Packed towers are preferred for gas-liquid mass transfer operations with foaming liquids 15. because (A) in packed towers, high liquid to gas ratios are best handled
 - (B) in packed towers, continuous contact of gas and liquid takes place
 - (C) packed towers are packed with random packings
 - (D) in packed towers, the gas is not bubbled through the liquid pool
- Answer: (D)

16.

- A spherical storage vessel is quarter-filled with toluene. The diameter of the vent at the top of the vessel is 1/20th of the diameter of the vessel. Under the steady state condition, the diffusive flux of toluene is maximum at (A) the surface of the liquid
 - (B) the mid-plane of the vessel
 - (C) the vent
- (D) a distance 20 times the diameter of the vent away from the vent Answer: (C)
- Exp. Diffusive flux is maximum at the vent and remains same throughout the vent line at steady state.
- 17. In order to produce fine solid particles between 5 and 10 µm, the appropriate size reducing equipment is
- (A) fluid energy mill (B) hammer mill (D) smooth roll crusher (C) jaw crusher

- 18. Slurries are most conveniently pumped by t jobs.com (A) syringe pump (B) diaphragm pump (C) vacuum pump (D) gear pump Answer: (B) 19. Assuming the mass transfer coefficients in the gas and the liquid phases are comparable, the absorption of CO₂ from reformer gas (CO₂+H₂) into an aqueous solution of diethanolamine is controlled by (A) gas phase resistance (B) liquid phase resistance (C) both gas and liquid phase resistances (D) composition of the reformer gas Answer: (A) Which ONE of the following statements is CORRECT for the surface renewal theory? 20. (A) Mass transfer takes place at steady state (B) Mass transfer takes place at unsteady state (C) Contact time is same for all the liquid elements
- (D) Mass transfer depends only on the film resistance Answer: (B)
- 21. Steam economy of a multiple effect evaporator system is defined as (A) kilogram of steam used per hour (B) kilogram of steam consumed in all the effects for each kilogram of steam fed (C) kilogram of steam used in all the effects for each kilogram of water vaporized per hour (D) kilogram of water vaporized from all the effects for each kilogram of steam fed to the first effect
- Answer: (D)
- Decomposition efficiency (no) of an electrolytic cell used for producing NaOH is defined as 22. (A) η_D = (grams of NaOH produced / grams of NaCl decomposed) x 100 (B) η_n = (grams of NaOH produced / grams of NaCl charged) x 100 (C) η_D = (gram equivalents of NaOH produced / gram equivalents of NaCl charged) x 100 (D) η_{r.} = (theoretical current to produce one gram equivalent / actual current to produce one gram equivalent) x 100

Answer: (C)

The vessel dispersion number for an ideal CSTR is 23. (D) ∞ (A)-1 (B) 0 (C) 1

Answer: (D)

Dispersion number = $\frac{D}{UL}$ For an ideal CSTR, $\frac{D}{111} \rightarrow \infty$

24. Catalytic cracking is (A) a hydrogen addition process (B) a carbon rejection process (C) an exothermic process (D) a coking process

- Which ONE of the following statements is CORRECT?" 25. (A) The major components of biodiesel are triglycerides
 - (B) Biodiesel is essentially a mixture of ethyl esters
 - (C) Biodiesel is highly aromatic (D) Biodiesel has a very low aniline point

Answer: (B)

O.No-26-55 Carry Two Marks Each

26. Consider the following differential equation

$$\frac{dy}{dx} = x + \ln(y); y = 2 \text{ at } x = 0$$

The solution of this equation at x = 0.4 using Euler method with a step size of h = 0.2 is

Exp.
$$\frac{dy}{dx} = x + \ell ny$$

$$\frac{dy}{dx} = f(x,y) \implies f(x,y) = x + \ell ny$$

given
$$x_0 = 0$$
, $y_0 = 2$

We have,
$$y_{n+1} = y_n + h_1(x_n, y_n) = 0.1.2.3...$$

for $x = 0$ $y_1 = y_n + h_2(x_0, y_0)$

for
$$x = 0$$
 $y_1 = y_0 + h_1(x_0, y_0)$
 $h = 0.2$, $y_1 = y(x_1) = y(x_0 + h) = y(0 + 0.2) = y(0.2)$

$$y(0.2) = y_1 = 2 + 0.2f(0.2) = 2 + 0.2(0 + fn_1) = 2 + 0.2(0.69315) = 2.13863$$

$$y_{+} = y(x_{+}) = y(x_{+}+h) = y(0.2+0.2) = y(0.4)$$

$$y_1 = y(x_1) - y(x_1+h) - y(0.2+0.2) = y(0.4)$$

 $y_1 = y_1 + h_1(x_1, y_1) = 2.13863 + 0.21(0.2, 2.13863)$

$$\therefore$$
 y(0.4) = y₂ = y₁ + h₁(x₁, y₁) = 2.138
= 2.13863 + 0.2[0.2 + 1h(2.13863)]

$$\frac{dy}{dx} - \frac{y}{1+x} = (1+x) \text{ is}$$

(A)
$$\frac{1}{1+x}$$
 (B) $(1+x)$ (C) $x(1+x)$ (D) $\frac{x}{1+x}$

Exp.

Given differential equation
$$\frac{dy}{dx} - \frac{y}{1+x} = 1+x$$

$$\frac{y}{x} - \frac{y}{1+x} = 1+x$$

 $\frac{dy}{dx} + Py = Q \Rightarrow P = \frac{-1}{1+x}$ LP = $e^{\int pdx} = e^{\int \frac{-1}{1+x}dx} = e^{-\log(1+x)} = \frac{1}{1+x}$

The differential equation $\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} + x^3y = e^x$ is a 28.

(A) non-linear differential equation of first degree

(B) linear differential equation of first degree (C) linear differential equation of second degree

(D) non-linear differential equation of second degree Answer: (B)

Exp. Given equation

$$\frac{d^2y}{dx^2} + x^3 \frac{dy}{dx} + x^3 y = e^x$$

This is clearly a linear differential equation

Order = 2

Degree = 1.

Consider the following two normal distributions 29.

$$f_1(x) = \exp(-\pi x^2)$$

 $f_2(x) = \frac{1}{2\pi} \exp\left\{-\frac{1}{4\pi}(x^2 + 2x + 1)\right\}$

If μ and σ denote the mean and standard deviation, respectively, then

(A)
$$\mu_1 < \mu_2$$
 and $\sigma_1^2 < \sigma_2^2$
(B) $\mu_1 < \mu_2$ and $\sigma_1^2 > \sigma_2^2$
(C) $\mu_1 > \mu_2$ and $\sigma_1^2 < \sigma_2^2$
(D) $\mu_2 > \mu_2$ and $\sigma_1^2 > \sigma_2^2$

(C)
$$\mu_1 > \mu_2$$
 and $\sigma_1^2 < \sigma_2^2$ (D) $\mu_1 > \mu_2$ and $\sigma_1^2 > \sigma$
Answer: (C)

Exp.
$$f_1(x) = e^{-\alpha x^2}$$

Comparing with,
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}} \left(\frac{x - \mu}{\sigma} \right)^2$$

$$\Rightarrow \mu_1 = 0 \& \sigma_1 = \frac{1}{\sqrt{2\pi}}$$

$$f_2(x) = \frac{1}{2\pi} e^{-\frac{1}{4\pi}(x^2 + 2\pi x t)} = \frac{1}{2\pi} e^{-\frac{1}{4\pi}(x + t)^2}$$

Comparing with ,
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x \cdot \mu}{u}\right)^2}$$

 $\Rightarrow \mu_2 = -1 \& \sigma_2 = \sqrt{2\pi}$

$$\Rightarrow \mu_1 > \mu_2 \& \sigma_1^2 < \sigma_2^2 \Rightarrow (C)$$

30. In rolling of two fair dice, the outcome of an experiment is considered to be the sum of the numbers appearing on the dice. The probability is highest for the outcome of

Answer: 6.99 to 7.01 Exp.

It may vary the original. here is only for reference.

400/100		1	MMM.	MILITIES	METOR	PS . UU4	1	4.1	7.5	- 2	1.2
P(x)	1	2	3	4	5	6	5	4	3	2	1
471.7	-	-	-	_	-	-	-		-	-	-
-	36	36	36	36	36	36	36	36	36	36	36

Where X is a random variable denotes the sum of the numbers appearing on the dice.

$$P(x) = corresponding probabilities$$

... The probability is highest for the outcome "7" i.e.,
$$\frac{6}{36}$$

- 31. A spherical ball of benzoic acid (diameter = 1.5 cm) is submerged in a pool of still water. The solubility and diffusivity of benzoic acid in water are 0.03 kmol/m² and 1.25 x 10° m²/s respectively. Sherwood number is given as Sh = 2.0 + 0.6 Re^{0.3} Sc^{0.33}. The initial rate of dissolution (in kmol/s) of benzoic acid approximately is
 - (A) 3.54×10⁻¹³ (B) 3.54×10⁻¹³
 - (C) 3.54×10⁻¹³ (D) 3.54×10⁻¹⁸

Answer: (B)

Exp.
$$Sh = 2 + 0.6 R_{*}^{0.5} Sc^{0.27}$$

Diameter = 1.5 cm

Given
$$Sh = 2 + 0.6(Re)^{0.3} (Sc)^{0.31}$$

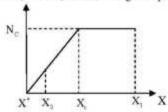
$$\frac{K_s d}{D_{so}} = 2$$
, $K_s = Mass transfer coefficient (m/s)$

$$\Rightarrow K_n = \frac{2 \times 1.25 \times 10^{-9}}{1.5 \times 10^{-2}} = 1.67 \times 10^{-9} \text{ m/sec}$$

Initial rate of dissolution = $K_aA(C_b-0) = K_aAC_b$

=
$$1.67 \times 10^{-7} \times \pi \times (1.5 \times 10^{-7})^{3} \times 0.03 = 3.54 \times 10^{-73}$$
 kmol/sec

32. A wet solid of 100 kg is dried from a moisture content of 40wt% to 10wt%. The critical moisture content is 15wt% and the equilibrium moisture content is negligible. All moisture contents are on dry basis. The falling rate is considered to be linear. It takes 5 hours to dry the material in the constant rate period. The duration (in hours) of the falling rate period is


Answer: 1.1 to 1.3 Exp. Given $X_1 = 0.4$

 $X_0 = 0.10$

$$X_{C} = 0.15$$

$$X^* = 0$$

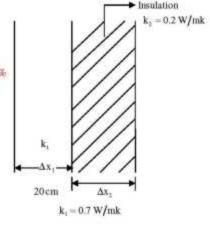
Constant rate period

$$\begin{split} 5 &= \frac{S}{AN_c}(X_1 - X_c) \Rightarrow \frac{S}{AN_c} = \frac{S}{0.25} = 20 \\ &\text{Falling rate period, } N = m(X - X^*) = \frac{N_c(X - X^*)}{(X_c - X^*)} \\ t_r &= -\int\limits_{X_c}^{X_c} \frac{S}{A\left(\frac{N_c}{X_c - X^*}\right)} (X - X^*)} = \frac{S(X_c - X^*)}{AN_c} \ln \frac{X_c - X^*}{X_c - X^*} \\ t_r &= 20 \times 0.15 \ln \frac{0.15}{0.10} = 1.216 \, \text{hr}. \end{split}$$

33. A brick wall of 20 cm thickness has thermal conductivity of 0.7 W m⁻¹ K⁻¹. An insulation of thermal conductivity 0.2 W m⁻¹ K⁻¹ is to be applied on one side of the wall, so that the heat transfer through the wall is reduced by 75%. The same temperature difference is maintained across the wall before and after applying the insulation. The required thickness (in cm) of the insulation is

Answer: 17.0 to 17.3

Exp. Before insulation heat flux


$$Q_1 = -k_1 A \frac{dT^2}{dx_1} = -k_1 A \frac{\Delta T}{0.2}$$

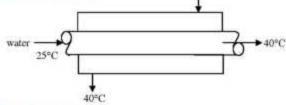
After applying insulation heat transfer decreases by 75%

$$Q_2 = -\frac{\Delta T}{\frac{\Delta x_1}{k_1 A} + \frac{\Delta x_2}{k_2 A}}$$

Taking A = 1m2

$$\begin{split} Q_2 &= 0.25 \, Q_1 = 0.25 \, \frac{\Delta T}{0.2} = \frac{\Delta T}{0.2 + \frac{\Delta x_2}{0.7}} \\ &\Rightarrow \frac{0.8}{0.7} = \frac{0.2}{0.7} + \frac{\Delta x_2}{0.2} \\ &\Rightarrow \Delta x_2 = \frac{0.6 \times 0.2}{0.7} = 0.1714 \text{m} = 17.14 \text{ cm}. \end{split}$$

34. An oil with a flow rate of 1000 kg/h is to be cooled using water in a double-pipe counter-flow heat exchanger from a temperature of 70°C to 40°C. Water enters the exchanger at 25°C and leaves at 40°C. The specific heats of oil and water are 2 kJ kg⁻¹ K⁻¹ and 4.2 kJ kg⁻¹ K⁻¹, respectively. The overall heat transfer coefficient is 0.2 kW m⁻² K⁻¹. The minimum heat exchanger area (in m⁻¹) required for this operation is


Answer: 3.75 to 3.95

Given
$$C_{po} = 2 \text{ kJ kg}^{-1} \text{K}^{-1}$$
 $C_{pw} = 4.2 \text{ kJ kg}^{-1} \text{ K}^{-1}$

$$U = 0.2 \text{ kW m}^{-2} \text{K}^{-1}$$

$$\Delta T_1 = 15^{\circ}C$$
, $\Delta T_2 = 30^{\circ}C$

LMTD =
$$\frac{30-15}{\ln\left(\frac{30}{15}\right)}$$
 = 21.64°C

oil (70°C)

Heat transfer
$$Q = \frac{1000}{3600} \times 2 \times (70^{\circ} - 40^{\circ}) = 16.67 \text{ kJ}$$

$$Q = UA(LMTD)$$

$$A = \frac{16.67}{0.2 \times 21.64} = 3.85 \,\mathrm{m}^3$$
.

Which ONE of the following is CORRECT for an ideal gas in a closed system? 35.

(A)
$$\left(\frac{\partial U}{\partial V}\right)_{s} V = nR\left(\frac{\partial U}{\partial S}\right)$$

(A)
$$\left(\frac{\partial U}{\partial V}\right)_{g} V = nR \left(\frac{\partial U}{\partial S}\right)_{g}$$
 (B) $-\left(\frac{\partial H}{\partial P}\right)_{g} P = nR \left(\frac{\partial H}{\partial S}\right)_{g}$ (C) $\left(\frac{\partial U}{\partial V}\right)_{g} V = nR \left(\frac{\partial H}{\partial S}\right)_{g}$ (D) $\left(\frac{\partial H}{\partial P}\right)_{g} P = nR \left(\frac{\partial U}{\partial S}\right)_{g}$

(C)
$$\left(\frac{\partial U}{\partial V}\right)_{S} V = nR \left(\frac{\partial H}{\partial S}\right)_{S}$$

(D)
$$\left(\frac{\partial H}{\partial P}\right)_{s} P = nR\left(\frac{\partial U}{\partial S}\right)_{s}$$

Answer: (D)

Exp. (A)
$$\left(\frac{\partial u}{\partial v}\right) v = nR\left(\frac{\partial u}{\partial s}\right)$$

Fundamental property relation

dU = Tds - Pdv

$$\Rightarrow \left(\frac{\partial u}{\partial v}\right) = -P \text{ and } \left(\frac{\partial u}{\partial s}\right) = T$$

-PV = nRT -> Incorrect

(B)
$$-\left(\frac{\partial H}{\partial P}\right)P = nR\left(\frac{\partial H}{\partial S}\right)$$

Fundamental property relation

dH = Tds + Vdp

$$\left(\frac{\partial H}{\partial P}\right) = V \text{ and } \left(\frac{\partial H}{\partial S}\right) = T$$

(C)
$$-PV = nRT \Rightarrow incorrect$$

A binary distillation column is operating with massed feed containing 20 mol% vapour. If the feed quality is changed to 80 mol% vapour, the change in the slope of the q-line is

Answer: 3.6 to 3.9 Feed contains 20% vapour, so q = 0.8Exp.

Slope of q line =
$$\frac{q}{q-1} = \frac{0.8}{-0.2} = -4$$

Slope =
$$\frac{q}{a-1} = \frac{0.2}{-0.8} = \frac{-1}{4}$$

Change in slope =
$$-\frac{1}{4} + 4 = 3.75$$
.

37. A homogeneous reaction $(R \rightarrow P)$ occurs in a batch reactor. The conversion of the reactant R is 67% after 10 minutes and 80% after 20 minutes. The rate equation for this reaction is (B) $-r_n = kC_n^2$ (C) $-r_n = kC_n^2$ (D) $-r_n = kC_n^{0.5}$ $(A) - r_n = k$

Exp. For an ideal batch reactor
$$A = \int_{C_{An}}^{C_{A}} \frac{d C_{A}}{-\gamma} = \int_{C_{An}}^{C_{A}} \frac{d C_{A}}{k C_{A}^{n}}$$

$$\mathbf{C}_{\mathsf{A}} = \mathbf{C}_{\mathsf{AD}} \left(\mathbf{1} - \mathbf{X}_{\mathsf{A}} \right)$$

$$dC_A = -C_{A0}(I - X_A)$$

$$dC_A = -C_{AB}dX_A$$

$$dC_A = -C_{A0}dA_A$$

$$1 = -C_{A0} \int \frac{dX_A}{kC_{A0}^n (1 - X_A)^n} = -\frac{C_{A0}^{1-n}}{k} \int_0^{X_A} \frac{dX_A}{(1 - X_A)^n}$$

$$1 = \frac{C_{A0}^{1-\alpha}}{k} \left[\frac{(1-X_A)^{1-\alpha}}{1-\alpha} \right]^{X_A}$$

$$1 = \frac{C_{A0}^{1-\alpha}}{k} \left[\frac{(1-X_A)^{1-\alpha}-1}{1-\alpha} \right]$$

for reaction R
$$\rightarrow$$
 P: $X_A = 0.67$, $t = 10$ minutes

 $X_A = 0.80 t = 20 \text{ minutes}$

$$X_A = 0.801 = 20 \text{ minutes}$$

 $10 = C_{A0}^{6-n} \left[\frac{0.33^{1-n} - 1}{1-n} \right]$ (1)

$$20 = \frac{C_{A0}^{1-n}}{k} \left[\frac{0.2^{1-n}-1}{1-n} \right] (2)$$

Dividing equation (1) by equation (2)

$$\frac{1}{2} = \frac{0.33^{1-n} - 1}{0.2^{1-n} - 1}$$
Solving we get n = 2

A vapour phase catalytic reaction (Q+R-S) follows Rideal mechanism (R and S are not 38. adsorbed). Initially, the mixture contains only the reactants in equimolar ratio. The surface reaction step is rate controlling. With constants a and b, the initial rate of reaction $(-r_a)$ in terms of total pressure (PT) is given by

(A)
$$-r_0 = \frac{aP_T}{1+bP_T}$$
 (B) $-r_0 = \frac{aP_T}{1+bP_T^2}$ (C) $-r_0 = \frac{aP_T^2}{1+bP_T}$ (D) $-r_0 = \frac{aP_T^3}{(1+bP_T)^2}$

Answer (C)

Exp.
$$R_{\text{strat}}$$
 mechanism
 $A(g) + S \xrightarrow{E_1} A - S$

$$A-S+B\{g\}_{\overline{\leftarrow B_{rig}}} \xrightarrow{B_{rig}} AB-S \quad \text{(rate controlling)}$$

$$AB-S \longrightarrow AB$$

Here s = adsorption site on catalyst surface

$$k_1 = \frac{A - S}{(A)(S)} - \dots - (1)$$

and for rate controlling step

Also, total number of sites is S.

$$-\gamma = K_3(A-s)(B) - K_3(AB-S)_{(II)}$$

From (1), $K_1 = \frac{(A-S)}{(A)(S, -(A-S))}$

 $S_{+} = (S) + (A - S) + (AB - S)$ (III)

$$\Rightarrow K_1(A)S_7 - K_1(A-S)(A) = (A-S) \Rightarrow (A-S) = \frac{K_1(A)S_7}{1+K_1(A)}$$

Now, for rate controlling step,
$$-\gamma = K_2(A-S)(B) - K_{-2}(AB-S)$$

Initial rate mean concentration of (AB-S)→0

So,
$$-\gamma_0 = K_0(A-S)(B)$$

$$-\gamma_0 = \frac{K_1 K_1(A)(B)S_T}{1+K_1(A)}$$

 $-\gamma_0 = \frac{K_2 K_2 P_T P_T}{1 + K P} = \frac{a P_T^2}{1 + b P}$

For the given reaction Q+R→S with reactants in equimolar ratio

A incompressible fluid is flowing through a contraction section of length L and has a 1-D (x 39. direction) steady state velocity distribution, $u = u_0 \left(1 + \frac{2x}{r}\right)$. If $u_0 = 2m/s$ and L = 3m, the convective acceleration (in m/s2) of the fluid at L is_

Answer: 7.99 to 8.01

Exp.

Convective acceleration
$$\frac{d}{dt} = \frac{\partial u}{\partial t} + u \frac{dx}{dx} + \dots$$

$$= u_0 \left(1 + \frac{2x}{L} \right) \frac{2u_0}{L}$$
Particle $u_0 = 2 \cdot L = 3$

Putting
$$u_0 = 2, L = 3$$

at
$$x = L$$
, convective acceleration = $2\left(1 + \frac{2L}{L}\right)\left(\frac{2 \times 2}{3}\right) = 8 \text{ m/s}^3$.

40. Match the following:

Group 1	Group 2
(P) Tank in series model	(I) Non-isothermal reaction
(Q) Liquid-liquid extraction	(II) Mixer-settler
(R) Optimum temperature progression	(III) PFR with axial mixing
(S) Thiele modulus	(IV) Solid catalyzed reaction
(A) P-II, Q-IV, R-I, S-III	(B) P-I, Q-II, R-III, S-IV

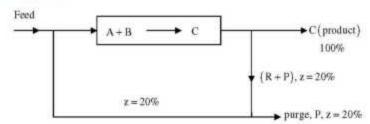
(D) P-III, Q-II, R-I, S-IV

(C) P-III, Q-I, R-II, S-IV

Answer: (D)

Exp. Tank in series model → PFR with axial mixing

Liquid-liquid extraction → Mixer settler


Optimum temperature progression -> Non-isothermal reaction

Thiele modulus → Solid catalyst reaction.

41. Two elemental gases (A and B) are reacting to form a liquid (C) in a steady state process as per the reaction. A+B \rightarrow C. The single-pass conversion of the reaction is only 20% and hence recycle is used. The product is separated completely in pure form. The fresh feed has 49 mol% of A and B each along with 2 mol% impurities. The maximum allowable impurities in the recycle stream is 20 mol%. The amount of purge stream (in moles) per 100 moles of the fresh feed is

Answer: 9.99 to10.01

Exp.

Basis = 100 moles of fresh feed www.wingovtjobs.com

A = 49 moles; B = 49 moles;

lnert, z = 2 moles

Overall balance on inert

$$2 = P \times 0.2 \implies P = 10$$

42. Carbon monoxide (CO) is burnt in presence of 200% excess pure oxygen and the flame temperature achieved is 2298 K. The inlet streams are at 25 °C. The standard heat of formation (at 25 °C) of CO and CO₂ are -110kJ mol⁻¹ and -390kJ mol⁻¹, respectively. The heat capacities (in J mol⁻¹ K⁻¹) of the components are

$$C_{p_{0j}} = 25 + 14 \times 10^{-0} \text{ T}$$

 $C_{p_{max}} = 25 + 42 \times 10^{-1} \text{ T}$

where, T is the temperature in K. The heat loss (in kJ) per mole of CO burnt

Answer: 32.0 to 38.0

Exp.
$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$

Basis: I mole of CO burnt

 O_2 supplied = $0.5 \times 3 = 1.5$ mole Unreacted O_2 in product = 1 mole

Street and host of street and 200 of 1100 200 billion

Standard heat of reaction = -390 - (-110) = -280 kJ/mol. Heat of reactants = 0 (at 298k)

Heat of product =
$$\int_{200}^{2290} \left\{ (25+14\times10^{-3} \text{T}) + (25+42\times10^{-0} \text{T}) \right\} dT$$
= 86.344+159.032 = 245.376 kJ/mole

43. A cash flow of Rs. 12,000 per year is received at the end of each year (uniform periodic payment) for 7 consecutive years. The rate of interest is 9% per year compounded annually. The present worth (in Rs.) of such cash flow at time zero is

Answer: 60000 to 61000

Exp. Present worth
$$P = R \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right]$$

$$P = 12000 \left[\frac{(1.09)^7 - 1}{0.09 \times (1.09)^7} \right] = 60395.43$$

44. A polymer plant with a production capacity of 10,000 tons per year has an overall yield of 70%, on mass basis (kg of product per kg of raw material). The raw material costs Rs. 50,000 per ton. A process modification is proposed to increase the overall yield to 75% with an investment of Rs. 12.5 crore, In how many years can the invested amount be recovered with

Exp. Let number of years = n

Total product = 10,000 n

Raw material used =
$$\frac{10,000 \text{ n}}{0.7}$$

Total cost of Raw material= $\frac{10,000 \text{ n}}{0.7} \times 50,000$

from question
$$\frac{50,000\times10,000 \text{ n}}{0.7} = \frac{50,000\times10,000 \text{ n}}{0.75} = 12.5\times10^7$$

Solving, n = 2.625 years.

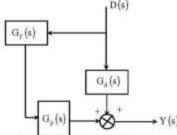
45. A step change of magnitude 2 is introduced into a system having the following transfer function:

$$G(s) = \frac{2}{s^2 + 2s + 4}$$

The percent overshoot is

Answer: 16.0 to 16.8

Exp.
$$G(s) = \frac{2}{s^2 + 2s + 4} = \frac{0.5}{0.25s^2 + 0.5s + 1}$$


Comparing with $G(s) = \frac{K_p}{\tau^3 s^3 + 2\rho \tau s + 1}$

$$t^2 = 0.25$$
 and $2\rho t = 0.5$

$$\tau = 0.5$$
 $\rho = 0.5$
overshoot = exp $\left(-\frac{\pi \rho}{\sqrt{1 - \rho^2}}\right)$ = exp $\left(\frac{-\pi \times 0.5}{\sqrt{1 - 0.25}}\right)$ = 0.1630

$$\sqrt{1-\rho^2}$$
 % overshoot = 16.3%.

46. Given below is a simplified block diagram of a feedforward control system.

The transfer function of the process is $G_p = \frac{5}{100}$ and the disturbance transfer function is

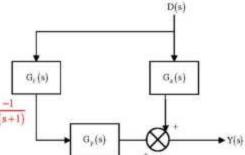
$$G_4 = \frac{1}{s^2 + 2s + 1}$$
. The transfer function of the PERFECT feed forward controller, $G_f(s)$ is

(A)
$$\frac{-5}{(s+1)^3}$$
 (B) $\frac{-5}{(s+1)}$ (C) $\frac{-1}{5(s+1)}$

(B)
$$\frac{-5}{(s+1)}$$

(C)
$$\frac{-1}{5(s+1)}$$

(D)
$$-5(s+1)$$


Answer (C)

Exp.
$$\frac{Y(s)}{D(s)} = G_t(s) \times G_p(s) + G_s(s)$$

For perfect feed forward controller, no effect of load disturbances.

$$\Rightarrow$$
 $G_r(s) \times G_r(s) + G_d(s) = 0$

$$\Rightarrow G_r(s) = \frac{-G_d(s)}{G_p(s)} = \frac{-1}{(s+1)^2 \cdot \frac{5}{s+1}} = \frac{-1}{5(s+1)}$$

47. The bottom face of a horizontal slab of thickness 6 mm is maintained at 300°C. The top face is exposed to a flowing gas at 30°C. The thermal conductivity of the slab is 1.5 W m1K1 and the convective heat transfer coefficient is 30 W m2 K1. At steady state, the temperature (in "C) of the top face is

T = 30°C

Answer: 268 to 274

Exp.

$$h = 30 \text{ W m}^{-2} \text{K}^{-1}$$

At steady state

heat flux due to conduction = heat flux due to convection

⇒
$$-kA \frac{(573 - T_e)}{6 \times 10^{-3}} = hA(T_s - 303)$$

⇒ $1.5(573 - T_e) = 6 \times 10^{-3} \times 30(T_e - 303)$
 $859.5 - 1.5 T_e = 0.18 T_e - 54.54$
 $T_e = 544.07 K = 271.07 ^{\circ}C$.

www.wingovtjobs.com

48. In a steady incompressible flow, the velocity distribution is given by \(\overline{V} = 3x\hat{1} - Py\hat{3} + 5z\hat{k}\), where, \(V\) is in m/s and \(x, y\), and \(z\) are in m. In order to satisfy the mass conservation, the value of the constant \(P\) (in s¹) is

Answer: 7.99 to 8.01

Exp. Given
$$V = 3x\hat{i} - Py\hat{j} + 5z\hat{k}$$

For mass conservation at constant density

$$\Delta . \overline{V} = 0$$

$$\Rightarrow \frac{\partial v_{a}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{a}}{\partial z} = 0$$

$$\Rightarrow 3 - P + 5 = 0 \Rightarrow P = 8.$$

Match the following

Group I	Group II
(P) Turbulence	(I) Reciprocating pump
(Q) NPSH	(II) Packed bed
(R) Ergun equation	(III) Fluctuating velocity
(S) Rotameter	(IV) Impeller
(T) Power number	(V) Vena contracta
(A) P-III, R-II, T-IV	(B) O-V R-II S-III

(C) P-III, R-IV, T-II

(D) O-III, S-V, T-IV

Answer: (A)

Exp. Turbulence: Characterized by fluctuating velocity.

Ergun equation: for calculating pressure drop in packed bed.

Power number: For calculating power consumption in mixing tank.

 In a steady and incompressible flow of a fluid (density = 1.25 kg m³), the difference between stagnation and static pressures at the same location in the flow is 30 mm of mercury (density = 13600 kg m³). Considering gravitational acceleration as 10 m s², the fluid speed (in m s³) is

Answer: 79 to 82

Exp. Bernoulli's equation

$$\begin{split} \frac{P_*}{\rho_r g} + \frac{v^2}{2g} &= \frac{P}{\rho_r g} + 0 \Rightarrow v = \sqrt{\frac{2(P - P_r)}{\rho_r}} \\ \text{Given} &= \frac{P - P_s}{\rho_r} = \frac{pgh}{\rho_r} = \frac{13600 \times 10 \times 30 \times 10^{-3}}{1.25} = 3264 \\ v &= \sqrt{2 \times 3264} = 80.8 \text{ m/sec.} \end{split}$$

51. Consider a binary liquid mixture at equilibrium with its vapour at 25°C.

Antoine equation for this system is given as $log_{10} p_1^{rot} = A - \frac{B}{t+C}$ where t is in ${}^{\circ}C$ and p in Torr.

The Antoine constants (A, B, and C) for the system are given in the following table.

Component	A	В	С
1	7.0	1210	230
2	6.5	1206	223

The vapour phase is assumed to be ideal and the activity coefficients (γ_i) for the non-ideal liquid phase are given by

$$\ln(\gamma_1) = x_1^2 [2 - 0.6x_1]$$

$$\ln(\gamma_2) = x_1^2 [1.7 + 0.6x_2]$$

If the mole fraction of component 1 in liquid phase (x_1) is 0.11, then the mole fraction of component 1 in vapour phase (y_i) is

Answer: 0.65 to 0.75

Exp.
$$\log_{10} P_1^{\text{ne}} = A - \frac{B}{t+c}$$

For component 1,

$$\log_{10} P_1^{ex} = 7 - \frac{1210}{25 + 230} = 2.2549$$

$$P_{i}^{cut} = 179.846 \text{ Torr}$$

and
$$\ln(\gamma_1) = x_1^3 (2 - 0.6x_1)$$

put
$$x_1 = 0.11$$

$$\gamma_1 = \exp[0.89^2(2 - 0.6 \times 0.11)] \Rightarrow \gamma_1 = 4.627$$

For component 2,
$$\log_{10} P_2^{\text{sa}} = 6.5 - \frac{1206}{25 + 273} = 1.637$$

$$P_2^{ce} = 43.36 \text{ Torr and } \ln(\gamma_1) = x_1^2(1.7 + 0.6x_2)$$

$$\gamma_1 = \exp[0.11^3(1.7 \pm 0.6 \times 0.11)]$$

$$\Rightarrow \gamma_1 = 1.021598$$

From modified Raoult's law, $y_1P = x_1\gamma_1P_1^{int}$ and $y_2P = x_2\gamma_1P_1^{int}$

$$\Rightarrow y_1 = \frac{x_1 \gamma_1 P_1^{\text{ref}}}{x_1 \gamma_1 P_1^{\text{ref}} + x_2 \gamma_2 P_1^{\text{ref}}}$$

$$\Rightarrow y_1 = \frac{0.11 \times 4.627 \times 179.846}{0.11 \times 4.627 \times 179.846 + 0.89 \times 1.021598 \times 43.36}$$

$$\Rightarrow y_1 = 0.699.$$

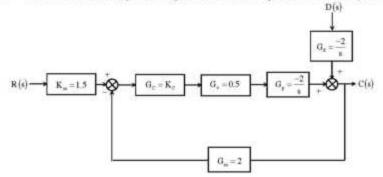
A process with transfer function, $G_{p} = \frac{\text{www.wingovbjobs.com}}{s-1}$ is to be controlled by a feedback proportional 52.

controller with a gain K_c . If the transfer functions of all other elements in the control loop are unity, then which ONE of the following conditions produces a stable closed loop response?

(A) $K_c = 0.25$ (B) 0 < K_c < 0.25 (C) 0.25 < Ke < 0.5 (D) K > 0.5

Answer: (D)

Exp.
$$G(s) = \frac{k_s G_p}{1 + k_s G_p}$$


characteristic equation 1+k, G, = 0

$$1 + k_a, \frac{2}{s-1} = (s-1) + 2k_b = 0$$

 $s+(2k_{-1})=0$ for stable closed loop response

$$\Rightarrow k > 0.5 \Rightarrow (D)$$
.

53. Consider the following block diagram for a closed-loop feedback control system

A proportional controller is being used with $K_c = -4$. If a step change in disturbance of magnitude 2 affects the system, then the value of the offset is Answer: 0.49 to 0.51

Exp.
$$\frac{C(s)}{D(s)} = \frac{-2/s}{1 + 2k_z \cdot 0.5 \left(\frac{-2}{5}\right)} = \frac{-2/s}{1 - \frac{2k_z}{s}} = \frac{-2}{s - 2k_z}$$

$$D(s) = \frac{2}{s}$$

offset = 0 -
$$\lim_{s \to \infty} c(s) = -\lim_{s \to \infty} s \cdot \frac{2}{s} \left(\frac{-2}{s} \right) = \frac{4}{s} = 0.5$$

offset = $0 - \lim_{s \to 0} s C(s) = -\lim_{s \to 0} s \frac{2}{s} \left(\frac{-2}{s - 2k}\right) = \frac{4}{8} = 0.50$. Note: Information provided here is only for reference. It may vary the original.

www.wingovtjobs.com

54. Determine the correctness or otherwise of the following Assertion [a] and Reason [r].

Assertion: Significant combustion of coke takes place only if it is heated at higher

temperature in presence of air.

Reason: $C+O_2 \rightarrow CO_2$ is an exothermic reaction.

(A) Both [a] and [r] are true and [r] is the correct reason for [a]

(B) Both [a] and [r] are true but [r] is not the correct reason for [a]

(C) [a] is correct but [r] is false(D) Both [a] and [r] are false

Answer (B)

Exp. Both [a] and [r] are true but [r] is not the correct reason for [a].

55. Match the raw materials of Groups 1 and 2 with the final products of Group 3

Group 1	Group 2	Group 3
P ₁ : Ethylene	Q ₁ : Ammonia	R ₁ : Synthetic fibre
P ₂ : Propylene	Q ₂ : 1-Butene	R ₂ : Nylon 66
P ₃ : Adipic acid	Q ₃ : Ethylene glycol	R ₃ : LLDPE
Pa: Terephthalic acid	Q4: Hexamethylene diamine	R4: Acrylonitrile

(A)
$$P_1 + Q_2 \rightarrow R_1$$
; $P_2 + Q_1 \rightarrow R_4$; $P_3 + Q_4 \rightarrow R_2$; $P_4 + Q_5 \rightarrow R_1$

(B)
$$P_1 + Q_1 \rightarrow R_2$$
; $P_2 + Q_3 \rightarrow R_4$; $P_3 + Q_4 \rightarrow R_4$; $P_4 + Q_5 \rightarrow R_5$

(C)
$$P_1 + Q_2 \rightarrow R_2$$
; $P_2 + Q_3 \rightarrow R_1$; $P_3 + Q_4 \rightarrow R_3$; $P_4 + Q_1 \rightarrow R_3$

(D)
$$P_1 + Q_1 \rightarrow R_4$$
; $P_2 + Q_2 \rightarrow R_3$; $P_3 + Q_4 \rightarrow R_2$; $P_4 + Q_9 \rightarrow R_1$

Answer: (D)

Exp.

Raw material

Product

Ethylene+1-Butene

LLDPE (Linear low density PE)

Propylene + Ammonia

Aerylonetrile

Adipic Acid + Hexomethylene diamine

Nylon-66

Terephthalic acid + Ethylene glycol

Synthetic fibre