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Abstract: The personal identification approaches using iris images are receiving 

increasing attention in the biometrics literature. Several methods have been presented 

in the literature and those based on the phase encoding of texture information are 

suggested to be the most promising. However, there has not been any attempt to 

combine these approaches to achieve further improvement in the performance. This 

paper presents a comparative study of the performance from the iris authentication 

using Log-Gabor, Haar wavelet, DCT and FFT based features. Our experimental 

results suggest that the performance from the Haar wavelet and Log-Gabor filter 

based phase encoding is the most promising among all the four approaches 

considered in this work. Therefore the combination of these two matchers is most 

promising, both in terms of performance and the computational complexity. Our 

experimental results from the all 411 users (CASIA v3) and 224 users (IITD v1) 

database illustrate significant improvement in the performance which is not possible 

with either of these approaches individually. 

 

1. Introduction 

The iris identification has emerged as a preferred modality for large-scale user 

authentication and has significantly higher user-acceptance as compared to the more 

reliable retinal identification. The iris patterns are highly stable and unique as the 

probability for the existence of two irises that are same has been theoretically 
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estimated to be very high, i.e. one in 1072 [8]. Although the performances from the iris 

patterns have been extensively evaluated in the literature, it is often inadequate to 

meet the rigorous requirement for very large scale applications. The personal 

identification approaches using multi-biometrics (multi-algorithm, multi-features, 

multi-classifiers, etc.) are more promising for such applications and are yet to be 

investigated for performance improvement using iris images.  

 Related Work and Motivation 

The iris identification using analysis of the iris texture has attracted lot of attention 

and researchers have presented variety of approaches in the literature [1]-[10]. 

Daugman [2], [22] has presented highly accurate 2D Gabor filter based approach for 

the iris identification system that employed 2048 bit iris-code. He has also presented 

[21] the most promising experimental results from large-scale private database. Boles 

[5] has detailed fine-to-coarse approximation at different resolution levels that are 

based on zero-crossing representation from the wavelet transform decomposition. 

Wildes et al. [7] have focused on efficient implementation of gradient-based iris 

segmentation using Laplacian pyramid. Proença and Alexandre [8] have suggested 

region-based feature extraction for the iris images acquired from large distances. 

Thornton et al. [1] have recently estimated the non-linear deformations from the iris 

patterns and proposed a Bayesian approach for reliable performance improvement. 
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Huang et al. [20] have demonstrated the usage of phase-based local correlations for 

matching iris patterns and achieved notable performance over the prior techniques. Li 

Ma et al. [4], [6] employed multi-scale bandpass decomposition and evaluated 

comparative performance from prior approaches. They also presented [24] an 

effective alternative for iris identification using Gaussian-Hermite moments extracted 

from 1-D iris intensity signals. The compact representation of iris features using 

moment invariants extracted from the Gabor wavelet features has shown to offer 

attractive performance and detailed in [22]. Sanchez-Avila et al. [30] have made 

promising improvement in the method suggested in [5]. Accurate segmentation of iris 

and eyelash regions is the key for the accurate iris recognition and has been the focus 

of study in [26] and [27]. Motivated by the success of minutiae representation 

commonly employed in fingerprint representation, Yu et al. [28] have attempted to 

extract key points from iris texture and illustrated promising results.   

 The summary of prior work on the iris identification suggests that there has not 

been any attempt to combine the promising approaches presented in the literature and 

investigate the performance improvement. It may be noted that such combination 

should have the merit of improved accuracy and requires relative performance 

analysis of the candidate approaches. It is generally believed that the acquisition of 

large number of images for user registration (or for the offline training of biometric 
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system) causes inconvenience to the users and therefore smaller number of training 

images is always desirable for the performance evaluation. Therefore the 

performances from the prior approaches, or from the proposed combination methods, 

need to be evaluated using minimum† training set to ascertain its effectiveness. 

2. Our Work 

The work detailed in this paper focuses on the comparative performance evaluation of 

the phase encoding of iris patterns using four approaches; Haar wavelet, Gabor filter, 

Discrete Cosine Transform (DCT), and Fast Fourier Transform (FFT) based feature 

extraction. The combination of the best performing approaches is used to investigate 

the further performance improvement. The experimental results detailed in this paper 

suggest that the performance from the Haar wavelet and Log-Gabor filter based phase 

encoding is the most promising among all the four approaches considered in this 

paper. Therefore simultaneously extracted matching scores from these two matchers 

are combined to achieve further performance improvement. The prior work in the 

literature of iris identification approaches illustrated promising performance but with 

the usage of several training images. Therefore another objective of this work is to 

evaluate the comparative performance of various approaches with only one training 

image. The performance from the developed system, using the combination of 

                                                 
† The minimum or one training image performance is of significant interest in the forensic analysis. 
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matchers, is extensively evaluated using one training image on publicly available 

CASIA [15] and IITD database [16]. 

Our implementation of the considered four approaches is largely based on their 

details presented in the literature. While evaluating these approaches, various 

combinations of parameters are attempted, separately for three different databases, to 

achieve the best possible performance. The performance from the developed online 

system is evaluated on newly acquired IITD iris image database, which is being made 

available freely for the researchers. The following sections 2.1-2.4 briefly describe 

these matchers and our implementation for the performance evaluation. The image 

normalization steps involving the segmentation of iris and eyelash regions are detailed 

in section 3. The rigorous experimental results from three different iris databases are 

detailed in section 4 which is followed by the discussion on the results and the 

contributions of this paper. Finally the section 6 summarizes the main conclusions 

from this paper. 

2.1 Discrete Cosine Transform 

The iris recognition using the phase information from the zero crossings of the one 

dimensional DCT has shown promising results in [3]. The DCT coefficients C(u) 

from the signal f(x) of length L are obtained as follows:  
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where ε(u) = 
L

2
 for u  0 and ε(u) = 

L

22  for u = 0. Our implementation of this 

approach was iteratively tuned to achieve the best performance (as illustrated from   

various results in figure 1). The skewing of successive rows by one pixel to the right 

was used to extract the blocks orientated at 45o. Then the weighted average under a 

1/4th Hanning window is performed on each block which reduces the horizontal 

resolution and the degrading effects of noise and generates a 1D vector. That vector is 

then windowed using a similar Hanning window in the vertical direction before the 

application of DCT. Now, difference of adjacent DCT output vectors are calculated 

and feature vector is formed from their zero crossings. The size of the feature vector 

depends on the amount of information (bits) retained after the application of DCT. For 

matching of two iris templates a modified version of hamming distance is used in 

which the product of sum of respective bits corresponding to each block: 
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where, M is the number of bits per block in vertical direction, N is the total number of 

blocks. This method of consolidating the hamming distance can improve the genuine 

matches by skewing the matching scores S towards zero and also improve the 

imposter matches by skewing the corresponding scores S towards 0.5 [3]. The figure 1 

illustrates the selection of block size and their orientation (skew) from the achieved 

performance when only one image was used for the training and rest six images are 
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used for evaluation. The receiver operating characteristics (ROC) in figure 1 shows 

the variation of genuine acceptance rate (GAR) with corresponding false acceptance 

rate (FAR). The evaluation results shown in figure 1 suggest that the block size of 8 × 

12, with overlapping of 4 pixels vertically and 6 pixels horizontally, achieves the best 

results. Similarly, these results also suggest that higher performance is achieved when 

the size of Hanning window is chosen to be equal to the width and height of the 

corresponding block, and the blocks are oriented at 45o (achieved by skewing of 

successive rows of the image by one pixel).  

 

 

 

 

 

 

 

 

      (a)                                  (b)                                 (c) 

Figure 1: Selection of block size from the resulting performance using one training in (a) and (b), and the  

corresponding performance from block orientation. 

2.2 Fast Fourier Transform 

The local frequency variations can also be employed for encoding the phase 

information from the iris texture. The enhanced iris images are firstly divided into 

block aligned at 45o. The blocks are then averaged in the horizontal direction and then 

multiplied by a Hanning window, which results in a 1-D signal corresponding to each 
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block. This signal f(x) is employed to extract the one dimensional FFT coefficients, 

F(k), as follows: 

F (k) = 
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The difference in the magnitude of adjacent blocks is computed and a binary feature 

vector is formed from the zero crossings of each difference. The size of the blocks 

was chosen to be 8 × 12 with an overlapping of 4 pixels in the vertical direction and 6 

pixels in the horizontal direction. The size of the resulting feature vector was 8160 

bits and Hamming distance was used to measure the difference between the feature 

vectors.  

2.3 Haar Wavelet     

The texture details in the iris region can be analyzed at different resolutions using its 

mulitiscale wavelet decomposition. The Haar wavelets can capture sharp 

discontinuities in the spatial gray-level texture by repeated application of following 

low-pass (g) and high-pass (h) filters [9]: 

 1],   1[
2

1
g   1]-   1[

2

1
h                                      (4) 

The above filters are separately applied to the rows and columns of the iris images 

resulting in four channel filter bank with channels LL, LH, HL, and HH 

corresponding to filters gt * g, gt * h, ht * g, and ht * h respectively. The recursive 

application of this decomposition is used to construct higher level decomposition. The 

feature extraction using the four-level Haar wavelet decomposition [10] of the 
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enhanced image was firstly investigated. The diagonal coefficients of the fourth level 

were employed to obtain 4 × 32 real values. In addition to these 128 values, the 

average of diagonal coefficients from the first, second and third level decomposition 

were also employed. Each of those 131 (3 + 128) values were quantized to binary 

values by simply converting the positive values to 1 and negative values to 0. 

Therefore, the feature vector for any iris constituted of only 131 bits. The Hamming 

distance was again employed to match two feature vectors. However, as shown in 

figure 2, the performance from these features was poor and therefore we also 

investigated performance using higher level wavelet coefficients as suggested in [11]. 

 

 

 

 

 

(a)                                         (b) 

Figure 2: The performance from the Haar wavelet based approach using 4 level decomposition as 

detailed in [10] and (a) and 5-level decomposition in (b). 

In this approach, the enhanced images are decomposed into 5 levels by the Haar 

wavelets. Next the vertical, horizontal and diagonal coefficients of 4th and 5th level 

were employed. The coefficients of 1st, 2nd, and 3rd level were almost the same as 

those of the 4th level and therefore the smallest of them (4th level coefficients) were 
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employed and rest were ignored. The 5th level decomposition offered the most 

discriminative information and therefore all the coefficients from this decomposition 

were employed. The phase encoding from the zero crossings of the coefficients 

formed the binary values of the feature vector. The size of this feature vector was 3 

times the size of features of 4th level (4 × 32) plus 3 times the features of 5th level (2 × 

16), therefore in total the size of feature vector was 480 bits. The Hamming distance 

was then employed to ascertain the matching distance between feature vectors. The 

feature vectors are shifted left and right bit-wise and the lowest from the number of 

hamming distances calculated from successive shifts is employed. The shifting of 

feature vectors to the left and right by 12 bits can account for the possible rotation of 

the extracted iris and significantly improved the performance as shown in figure 2 

(one training image and seven test images per user). 

2.4 Gabor Filter 

The features extracted from the phase encoding of iris texture has gained lot of 

attention since the fundamental work of Daugman [2]. The response from the bank of 

2D Gabor filters can reliably encode the phase information in the iris texture and has 

shown to offer promising performance. However, the Gabor filters over represent the 

low frequency components and under represent the high frequency components in any 

encoding, and an even-symmetric Gabor filter will have a DC component whenever 

the bandwidth is larger than one octave. Therefore the Log-Gabor filters have been 
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recently suggested [12]-[13] for phase encoding because the zero DC-component can 

be obtained for any bandwidth by using a Gabor filter which is Gaussian on a 

logarithmic scale. The Log-Gabor filters having extended tails at the high frequency 

end are expected to offer more efficient encoding of natural images [14]. Figure 3 

shows real and imaginary components of a typical 1-D Log-Gabor filter. 

 

 

 

 

 

 

                    (a)                                         (b) 

Figure 3: (a) Real and (b) Imaginary Log-Gabor filters in spatial domain having bandwidth 

of 2 octaves and a center frequency of 1/18. 

The Log-Gabor function has singularity in the log function at the origin, therefore 

the analytic expression for the shape of the Log-Gabor filter cannot be constructed in 

spatial domain. Therefore the filter is implemented in frequency domain. The 

frequency response of Log-Gabor filter in frequency domain is defined as follows: 

                                            (4) 

with f0 is the central frequency and f  is the scaling factor of the radial bandwidth B. 

The radial bandwidth in octaves is expressed as follows: 

0/ln(*2ln/22 fB f                                (5) 

The parameters for the Log-Gabor filter were empirically selected to achieve the 
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(b)(a)

Figure 4: (a) Variation of GAR at 0% FAR and (b) the decidability index as a function of center frequency and 

bandwidth of Log-Gabor filter for the CASIA I database 

(b) (a)

Figure 5: (a) Variation of GAR at 0.01% FAR and (b) the decidability index as a function of center frequency 

and bandwidth of Log-Gabor filter for the CASIA III database (only first 300 users) 

best performance. The decidability index (DI) represents average separation of 

genuine and imposter matching scores and is same as detailed in [22]. However, the 

optimization of the performance indices obtained from ROC for the most likely 

operating point of the system (e.g. GAR at 0% FAR) is highly desirable and therefore 

employed to select the parameters of Log-Gabor filter. The center wavelength of 18 

and the ratio 
0

/ ff  (sigmaOnf) of 0.55 achieves the best performance as shown in 

figure 4 and was therefore employed for CASIA I database. Similarly the center 

wavelength of 22 and 
0

/ ff equal to 0.55 can achieve best performance as shown in 
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figure 5 for CASIA III database and was therefore selected for the entire performance 

evaluation reported in this paper. 

3. Preprocessing and Normalization 

The entire steps for the extraction of normalized iris regions from acquired images 

were iteratively refined and were efficiently implemented for the online identification. 

The pupil in the acquired image usually contains reflection from the illumination 

source, which forms some bright spots in the pupil, so if the pixel value inside the 

pupil is over a particular threshold (200) then it is replaced by pixel value of some 

neighborhood pixel. This operation almost fills the circles but this still it is not good 

enough to apply a global threshold for the pupil circle estimation. Therefore, as shown 

in figure 6, resulting images are further subjected to a 7  7 median filter.  

 

 

 

 

 

 

 
 

Figure 6: The image normalization steps in our implementation for iris extraction. 

The pupil in the resulting images usually appears as a highly distinct black circle. 

The pupil center in our approach is estimated by scanning the image row-wise and the 

number of consecutive pixels, whose value is less than certain threshold (say 65 in our 

implementation), are counted for every row.  The row containing the highest number 
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                      (a)                                   (b) 

Figure 7: (a) Estimated pupil from the dominant row and (b) the estimated iris boundary from the 

candidates centers.   

of such consecutive pixels must correspond to the diameter of the pupil, half of that 

maximum value corresponds to the radius of the pupil, the y coordinate of the center 

of pupil is the row of the diameter and the x coordinate is calculated by adding radius 

of pupil to the column from where the consecutive pixels started (figure 7). The 

contrast from the image filtered from the median filter is higher and therefore it’s 

subjected to the Gaussian filtering to remove further noise due to iris texture, then the 

edge detection is performed using the canny edge detector.   

After the edge detection a 20  20 window is chosen in the edge detected image 

around the center of the pupil. Then every pixel in this window is assumed as the 

center (candidate centers) and the numbers of white pixels, that are encountered at the 

perimeter of circle, with radius varying from 80 to 120 pixels, are computed. The 

winner, i.e., the radius (among 80-120 pixel) and the center (among all 20  20 pixels) 

for which the maximum white pixels are encountered, is located. That radius R 

corresponds to  the  radius  of the iris and pixel which was chosen as the center P, 
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Figure 8: (a) Unwrapped image, (b) enhanced image, and (c) extracted mask 

 

 

 

 

 

 

 

 

 

Figure 9: (a) Acquired 320  240 pixel image from the JIRIS JPC1000 Iris camera in IITD 

database and (b) the corresponding 432 48 pixels unwrapped enhanced image.  

 

 

 

 

 

 

 

 

 
Figure 10: (a) The 640  480 pixel image from CASIA III database and (b) the corresponding 

512  64 pixel unwrapped enhanced image 

which gave that maximum count, is the center of the iris. Although, this method is 

computationally more expensive then the methods employed in the literature, but, it 
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has been experimentally shown to be far more robust. Therefore this method was 

employed for all the experimental results (from the CASIA I, CASIA III, and IITD 

database) reported in this paper. The response from the involuntary physiological 

mechanism, to the varying image acquisition conditions, influences the size of the iris 

images employed for the feature extraction. In our implementation, the stretching of 

iris texture due to changes in pupil size is compensated by employing the unwrapping 

model of iris that can remove the non-concentricity of iris and pupil. The figure 9 

shows the unwrapped (also enhanced) rectangular regions of 48 × 432 pixels from our 

acquired image sample in IITD database and figure 10 shows the corresponding 

image sample and its unwrapped region of 64 × 512 pixels from CASIA III database. 

3.1 Combination Strategies 

The performance improvement in the unimodal biometrics system can be achieved 

from the combination of multiple samples, multiple sensors and multiple matchers. 

The acquisition of multiple iris image samples or the acquisition from multiple 

sensors highly increases user inconvenience and is therefore not attractive. However, 

the combination of multiple iris matchers is most promising for online user 

identification and is therefore investigated in this work. This combination can be 

typically achieved from the feature-level, matching score-level or the decision-level 

fusion individual matchers. The phase encoding process employed for the feature 
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extraction, in all the four matchers considered in section 2, generates binary templates 

containing bits of information. Therefore feature-level concatenation of these bit-wise 

templates cannot exploit temporal information contained in the templates from 

individual matchers. On the other hand, the matching score-level combination usually 

achieves better performance than decision-level combination. This is due to the fact 

that score-level representation has higher information content than the abstract class 

or decisions. The score-level combination offers best trade-off in terms of information 

content and ease in fusion [32]. Therefore performance improvement using 

score-level combination of multiple iris matchers is highly promising and investigated 

in this work. 

 The combination of matching scores using density-based fusion can offer high 

accuracy but most complex to implement [31]. In this work, the score-level 

combination of different iris matchers using fixed fusion rules is employed as they are 

computationally simple. The combined matching score for every user i,  i = 1, 2, … 

C, using Sum, Product and Min rule is obtained as follows: 
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where sij is the individual matching score from ith user using jth matcher, ma(i), mp(i), 

and mn(i) represents the consolidated matching scores using Sum, Product and Min 

rule respectively. The Min rule is expected to perform better while consolidating 
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matching scores having ‘outlier’ type errors. The reference [17] suggests the usage of 

Product rule for the highly independent matchers and Sum rule for the correlated 

matchers in which case the errors from the individual matchers are independent. In 

addition to these rules, one can also generate the consolidated matching score mw(i) 

from the weighted combination of individual matching scores; 
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where wj = 1 and wj  0. The weights wj indicate the importance of individual 

matchers and are estimated during training stage using exhaustive search. The 

computational complexity of combining matching scores, for online user 

identification, using above considered fixed combination rules is O(Z*C). 

4. Experiments and Results 

The rigorous experiments were performed to select the parameters that can achieve 

best possible results. We build-up a new IIT Delhi Iris Database from the developed 

online system which mainly consists of the iris images collected from the students and 

staff at IIT Delhi, India. This database has been acquired in Biometrics Research 

Laboratory during Jan - July 2007 using JIRIS, JPC1000, digital CMOS camera [19]. 

The acquired images were saved in bitmap format. The database of 1120 images is 

acquired from 224 different users and made available freely to the researchers [16]. 

All the subjects in the database are in the age group 14-55 years comprising of 176 

males and 48 females. The resolution of these images is 320  240 pixels and all these 
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images were acquired in the indoor environment. 

We firstly report the experimental results from the four matchers employed to 

ascertain the performance from the CASIA I and CASIA III database which is 

followed by results from the IITD database. The performance from the four 

considered matchers significantly varies with the increase in number of training 

images. Therefore the experiments were performed to ascertain the performance 

improvement with varying number of training images. 

 The figure 11(a) illustrates the ROC from the DCT based approach detailed in 

section 2.1. Similarly, figure 11(b) illustrates the ROC from the FFT based approach 

as detailed in section 2.2. Significant increase in the performance can be observed 

with the increase in number of training images while the DCT based approach 

achieves much better performance as compared to the approach using FFT features. 

The figure 12 illustrates individual performance from the Haar wavelet and 

Log-Gabor filter approach. 

 

  

 

 

 

 

 

 

 

Figure 11: The ROC from the test data using (a) DCT based and (b) FFT based approach. 
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The performance from the Log-Gabor filter shown in figure 12(b) is observed to 

be the best among all the four considered approaches, however its performance does 

not improve as the number of training images are increased from three to four. This is 

possibly due to the overtraining from the increase in number of training images. The 

performance from the FFT based approach (figure 11-b) has been the worst among the 

four considered approaches and therefore this approach was not considered for the 

score level fusion. 

We performed rigorous experiments for the score level combination of best 

performing three approaches using fixed combination rules. The experimental results 

from the score level combination using only one/first training image are illustrated in 

figure 13 and 14. The figure 13 suggests that the performance from the product and 

min rule has not been effective in improving the performance. However, the weighted 

Figure 12: The ROC from the test data using (a) Haar wavelet, and (b) log- Gabor filter based approach. 
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sum rule is quite effective in achieving the performance improvement as can be 

observed from results in figure 14. It can be observed from this figure that the 

performance improvement from the Haar wavelet and the Log-Gabor filter is 

significantly higher than those from the DCT and the Log-Gabor filter. Figure 14 (b) 

summarizes the performance from the combination of DCT scores with those from 

Log-Gabor using various fixed rules and suggest that even the best results from 

weighted sum rule does not achieve any appreciable improvement in the performance.   

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 13: The fusion of Haar and DCT with Log-Gabor scores using Product rule in (a), and Min rule in (b). 

(b) (a) 

Figure 14: The ROC using weighted sum rule combination from DCT, Haar and Log-Gabor scores in (a), and 

comparison of performance from DCT and Log-Gabor using different combination rules in (b). 
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Furthermore, the Haar wavelet approach requires least amount of computations 

among all approaches and can be implemented with simple integer processing. 

Therefore this combination is the most promising to achieve the performance 

improvement and was further investigated. The equal error rate (EER shown in %) 

and the decidability index (DI) were used to as the quantitative performance indices to 

ascertain the performance [22]. Table 1 presents the summary of these performance 

indices on the CASIA I database. The performance indices in this table suggests 

significant improvement in the performance while simultaneously combining the 

scores from the Log Gabor and Haar wavelet based matching. 

Table 1: Performance Indices from the experiments using CASIA I database. 

 One Training Two Training 

EER DI EER DI 

Log-Gabor Filter 1.62  5.4808 0.55 6.4463 

Haar Wavelet 4.43  4.6679 2.96 5.3318 

Fusion 0.94  5.6948 0.36 6.7175 

 

The proposed approach to achieve the performance improvement was also 

investigated on CASIA III (lamp) iris image database [14]. We employed 2877 left 

eye images from all the 411 users to ascertain the performance. Our experiments 

employed first seven images from all 411 users simply to limit the large computations 

involved in generating imposter scores. The experimental results from the CASIA III 

database are summarized in table 2 and also shown in figure 15. Each of the ROC’s 

shown in figure 14 employed 1,011,060 (411  410  6) imposter matching scores and   



 23

 

 

 

 

 

 

Table 2: Performance Indices from the experiments using CASIA III database. 

 EER DI 

Log Gabor Filter 3.72 4.7543

Haar Wavelet 13.16 2.8078

Fusion 2.40 4.6993

 

2466 (411  6) genuine matching scores. It can be ascertained from ROC in figure 15 

that the performance improvement, due to the simultaneous usage of Haar wavelet 

features, is significant. In addition, the IIT Delhi iris database [16] was also used to 

ascertain the performance improvement. The methods for the performance evaluation  

 

 

 

 

 

 

Figure 15: The performance from CASIA III database using one training image 

Figure 16: The performance from IITD database using first/one training image. 
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(b) (a) 

on IIT Delhi database were same as used for the CASIA I database. The performance 

from the IITD database using the one/first training image is presented in figure 16. 

The results illustrate the performance improvement due to the simultaneous usage of 

Log-Gabor and Haar wavelet features. In order to ascertain the performance 

improvement from minimum training image, independent of the training image, 

rigorous experiments were performed to ascertain the average performance. In these 

set of experiments average of results obtained when each of the eight (five for IITD 

database) images were employed for training and rest of the images as the test set. 

The average performance from the IITD database and CASIA I database is 

summarized in the table 3. The corresponding ROCs are illustrated in figure 17. The 

performance indices shown in table 3, from this set of experiments, suggest that the 

achieved performance improvement is quite independent of selected training image. 

The proposed system is implemented in Visual C++ 6.0 on Windows operating system 

 

 

 

 

 

 

Figure 17: The average performance from (a) CASIA I and (b) IITD database using one training image. 
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Table 3: Performance Indices from the average experiments IITD and CASIA I database. 

 IITD       CASIA I 

 EER DI EER DI 

Log Gabor Filter 2.81 5.7437 2.21 5.2884 

Haar Wavelet 3.40  6.1762 3.91 4.8016 

Fusion 2.59 6.4079 1.48 5.6640 

environment. 

5. Discussion 

One of the key challenges in the comparison of performance from the various feature 

extraction algorithms relates to the selection of the parameters. Therefore we 

iteratively selected the different set of parameters, as detailed in section 2, to achieve 

the best performance corresponding to the employed database. The CASIA I database 

is by far the most widely used iris database for the performance evaluation in the 

literature [7] and has often been cited as standard benchmark for iris algorithms [1].   

The recent comments [18] on CASIA I database suggests that images in this dataset 

have their pupil regions masked to suppress the specular reflections from the near IR 

illuminators. However, such reflections have been conveniently removed in the 

pre-processing stage by the inclusion of a median filter as shown in figure 6. These 

reflections are common in CASIA III and IIT Delhi database and thus our 

implementation does not have any problem in handling pupils with such specular 

reflections (sample results in figure 9 and 10). Therefore we also investigated the 

performance on CASIA I database, as this database has been extensively used in 
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several of prior publications, and achieved similar or better performance improvement. 

The experimental results from the CASIA I database using Gabor filters have also 

been presented in [5] [33]. The experimental results in [5] achieve EER of 0.09% 

while in [33] the author’s have not provided any estimate of EER. However, it is very 

difficult to compare our results with this work since only a portion of CASIA I 

database is publicly made available and all of which has been employed in our work 

(while [5] [33] utilize full version of this database). The experimental results shown in 

table 1-3 should be seen in the context of single training image and achieved 

performance can be significantly improved with the increase in number of training 

images (table 1). 

 Our experimental results in section 4 from the comparison of the four approaches 

illustrated that the Log-Gabor and Haar wavelet achieves the best performance among 

the four considered approaches. The performance from Log-Gabor features was best 

on CASIA I and CASIA III database. However, the achieved performance (figure 16 

and 17) on IITD database was superior from the Haar wavelet features as compared to 

those from Log-Gabor features. These observations suggest that the performance from 

the feature extraction algorithms also depend on the employed database (nature of 

images). Despite the variations in the absolute performance among three databases, 

the significant performance improvement is consistently observed while combining 
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the scores from the two approaches. The experimental results presented from the 

CASIA III database, from all 411 users, involved over 12 million (12  1,011,060) 

comparisons. In our work, we employed first seven images from each of the 411 users, 

to limit the complexity involved in significantly large number of matching. However, 

to the best of our knowledge, these results involve the largest number of matching 

operations yet presented from any publicly available iris database. 

 The observed performance from the IITD database (figure 16 and 17) is 

generally poor, as compared to those from CASIA I and CASIA III database. This 

could be possibly due to the fact that IITD database contains low-resolution and also 

poor quality images, as compared to CASIA database. This database employed a 

low-cost iris camera (370 US$) for imaging and the presence of poor quality iris 

images can significantly degrade the performance [23]. 

 

 

 

 

6. Conclusions 

This paper has investigated the comparative performance from four different 

approaches for the iris identification: DCT, FFT, Haar wavelet and Log-Gabor filter. 

Figure 18: Some low quality image samples from IITD iris database. 
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Our experimental results presented in previous section suggest that the performance 

from the performance from the Log-Gabor filter is the best which is followed by the 

Haar wavelet, DCT and FFT in order. This paper has also investigated the possible 

performance improvement using score-level combination. The experimental results 

suggest that the combination of Log-Gabor and Haar wavelet matching scores using 

weighted sum rule is the most promising. The Haar wavelet based approach is also the 

most attractive as it requires minimum computational time and can be easily 

implemented in fixed point environment. The extensive evaluation of the proposed 

combination on CASIA I (108 users), CASIA III (411 users) and IITD (224 users) 

database achieved significant improvement in the performance. The summary of prior 

work presented in section 1.2 has suggested that prior efforts have been employing 

several training images for the performance evaluation. However, the performance 

evaluation presented in this paper has been focused on usage of one training image. 

The motivation for considering only fixed combination rules in this paper was 

the fact that this approach does not require any training and is computationally 

simpler. However, the trainable fusion strategies may offer better performance 

improvement and is suggested for the investigation in the future efforts. The pupil 

detection algorithm developed in this works well for the three pubic databases used 

for performance evaluation and assumes that user eyes does not have large specular 
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reflections from the surface of glass that might be present. The presence of large 

specular reflection and thick black glass frame will limit the accuracy of the 

performance from the employed iris segmentation approach. Therefore further efforts 

are required to develop more accurate iris segmentation method that can be robust to 

handle such large specular reflection in presence of glasses. Also, this work has been 

focused on the user authentication and an extension of this work should evaluate the 

performance for recognition. Even though the speed of developed online system is 

fast (authenticates individuals in less than a second), we are working to further 

optimize by using better coding techniques (multithreaded implementation). 
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