NTPC LTD 3X660 MW NORTH KARANPURA

TECHNICAL SPECIFICATION FOR ELECTROMAGNETIC FLOWMETER

VOLUME II-B & III

SPECIFICATION No: PE-TS-405-145-I916

BHARAT HEAVY ELECTRICALS LIMITED
POWER SECTOR
PROJECT ENGINEERING MANAGEMENT DIVISION
NOIDA, INDIA

PREAMABLE

1.0 The tender document contains three (3) volumes. The bidder shall meet the requirements of all the three volumes.

1.1 Volume-I (CONDITIONS OF CONTRACT)

This consists of four parts as below:-

Volume-IA: This part contains instructions to bidders for making bids to BHEL.

Volume-IB : This part contains general commercial conditions of the tender & includes provision

that vendor is responsible for the quality of item supplied by their sub-vendors.

Volume-IC: This part contains special conditions of contract.

Volume-ID : This part contains commercial conditions for erection & commissioning site work,

as applicable.

1.2 Volume-II TECHNICAL SPECIFICATIONS

Technical requirements are stipulated in Volume-II which comprises of :-

Volume-IIA : General Technical Conditions

Volume-IIB : Technical Specification including Drawings, if any.

1.2.1 Volume-IIB

This volume is sub-divided into following sections:-

Section-A : This section outlines the scope of enquiry.
Section-B : This section provides "Project Information".

Section-C : This section indicates technical requirements specific to the contract, not

covered in Section-D.

Section-D : This section comprises of technical specifications of equipments complete with

data sheet A, B and C.

<u>Data Sheet - A</u> specifies data and other requirements pertaining to the Equipment.

<u>Data Sheet - B</u> Specifies data to be filled by the bidder (Data Sheet-B is contained

in Volume-III).

<u>Data Sheet - C</u> Indicates data/documents to be furnished after the award of contract as

per agreed schedule by the vendor (as applicable).

1.2.2 Volume-III TECHNICAL SCHEDULES

This volume contains technical schedules and Data Sheets-B, which are to be duly filled by the bidder and the same shall be furnished with the technical bid as per instructions given in Document No. PE-SS-999-100-Q-002 in Volume-III.

2.0 The requirements mentioned in Section-C / Data Sheets- A of section-D shall prevail and govern in case of conflict bet ween the same and the corr esponding re quirements mentioned in the descriptive portion in Section-D.

3X660MW NORTH KARAPURA

SPEC NO.: PE-TS-405-145-I916										
VOLUME	II B									
SECTION	Α									
REV. NO.	00	DATE 17/06/2015								
SHEET	1 OF 2									

SECTION	ON - A
SCOPE OF	ENOUIRY

3X660MW NORTH KARAPURA

SPEC NO.	: PE-TS-	405-145-1916
VOLUME	II B	
SECTION	Α	
REV. NO.	00	DATE: 17/06/2015
SHEET 2C	F 2	

SCOPE OF ENQUIRY

1.0 SCOPE

- 1.1 This specification covers the Design, Manufacture, Inspection and Testing at manufacturer's works, proper packing for transportation and delivery to site of the electromagnetic flow meter with accessories as mentioned in different sections of this specification for 3X660 MW North Karanpura Thermal Power Plant.
- 1.2 The quality plan enclosed, forms the minimum requirement but not limited to be adhered to by the bidder. Bidder to sign and stamp the same and submit along with the offer as an acceptance.
- 1.3 Scope of supply shall be electromagnetic flow meter along with accessories as indicated in specification
- 1.4 Following formats to be signed, stamped with company seal and submitted:
 - a) Complete offer including calculation sheets, catalogues, Compliance Certificate etc.
 - b) Quality Plan
 - c) Datasheets A & B, duly filled
 - d) Schedule of submission of drawings/documents, equipment manufacture inspection and dispatch.
 - e) Schedule of price, unit prices, inspection schedule.

2.0 GENERAL TECHNICAL INSTRUCTIONS

- 2.1 It is not the intent here to specify all the details of design and manufacture. However, the equipment shall conform in all respects to high standard of design, engineering and workmanship and shall be capable of performing the required duties in a manner acceptable to the customer / consultant, who will interpret the meaning of drawing and specification and shall be entitled to reject any component or material which in his judgment is not in full accordance herewith.
- 2.2 The omission of specific reference to any component / accessory necessary for the proper performance of the equipments shall not relieve the supplier of the responsibility of providing such facilities to complete the supply within the quoted prices.
- 2.3 BHEL's/Customer's representative shall be given access to the shop in which the equipments are being manufactured or tested and all test records shall be made available to him.
- 2.4 The equipment covered under this specification shall not be dispatched unless the same have been finally inspected, accepted and Material Dispatch Clearance Certificate (MDCC) is issued by BHEL.

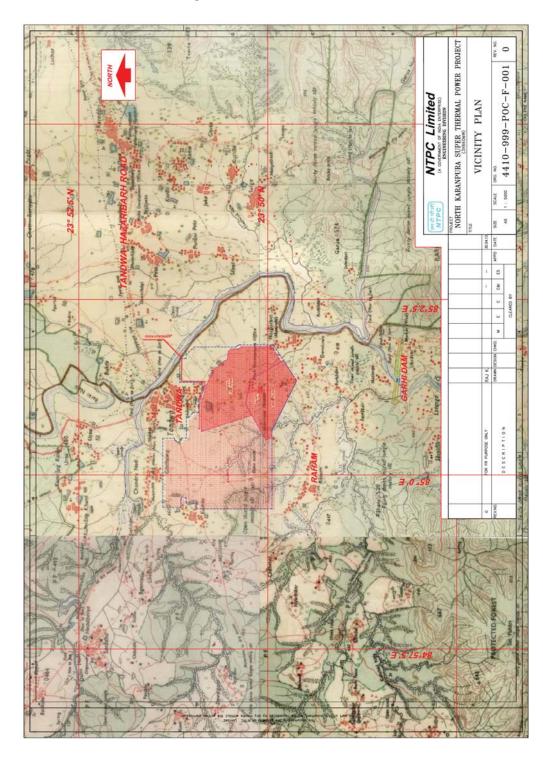
3X660 MW NORTH KARANPURA

SPEC N	SPEC NO.: PE-TS-405-145-I916										
VOLUME	II B										
SECTION	В										
REV. NO.	00	DATE: 17/06/2015									
SHEET	OF										

SECTION – B PROJECT INFORMATION

CLAUSE NO.		PROJECT	INFORMATION		एनहीपीसी NTPC
1.00.00	BACKGROUND				
	power project, is loca inputs i.e. coal, water	ted in Hazarik and land have	pagh and Chatra already been tied	MW), a pit head coal bas districts of Jharkhand S up. The project is propo Eastern Regions and t	State. Basic osed for the
	The capacity of the pro	ject is 1980 M	W comprising of th	rree (3) units of 660 MW	each.
1.01.00	Location and Approa	ch			
	state of Jharkhand on from Hazaribagh city.	Hazaribagh-C The nearest c nearest railhea about 40 kms	Chatra State highv ommercial airport ad Khalari Railway from project site.	ndwa town in Chatra dis vay at a distance of ab- is Ranchi at a distance Station on Ranchi-Garh der:	out 50 kms of 150 kms
	City		Distance Appro	<u>x. (kms)</u>	
	Ranchi	:	150		
	Khalari	:	4()	
	23º 52' N and 84 ⁰ 59' F Annexure-I.	E to 85º 2' E re	espectively. The Violation his sub-section, B	and longitude of about 2 cinity Plan of the project idders are also advised	is placed at
1.02.00	Land				
	under possession/lega used for plant, ash dy be acquired in plant Hazaribagh city for Tov	I possession a ke and initial e area. About wnship. a vide dated	and out of 1500 acr enabling township. 15 acres of land	roject. About 1500 acres res, about 890 acres of la No additional land is end is envisaged to be a 14.06.2000 has given	and is to be nvisaged to acquired in
1.03.00	Water				
	Make up water availab			it 22 cusec and will be a	arranged by
1.04.00	Fuel (Coal)				
1.04.01	considering a GCV of Consideri	the project is 3800 kcal/kg. No of 10.00 No (SLC (LT)), cage of 10.24	s estimated as 10 Ministry of Coal vid MTPA subject to of MOC. SLC (LT) MTPA for the proj	0.6 Million Tonne/Annu e letter dated 21.10.99 a ratification by Standir in its meeting held on ect. Subsequently, the co.10.08.	nccorded in- ng Linkage 15.12.2000
(KARANPURA STPP 3 X 660 MW) PC PACKAGE	SECTIO	SPECIFICATION N – VI, PART-A O.:CS-4410-001-2	SUB-SECTION-IB PROJECT INFORMATION	PAGE 1 OF 10

CLAUSE NO.		PROJECT INFORMATION		एनशैपीमी NTPC
	restore the original coastipulation that the coastipulation	Investment (GOI) in its meeting al linkage granted to NKSTPP (i.e al supply will commence during to restored the coal linkage with the 13 th five year plan.	. from Magadh Coal Block he 13th Five Year Plan. I	k) with the MOC vide
1.04.02	Coal Transportation			
		ck of North Karanpura Coalfields conveyor belt system. One exte plant are envisaged.		
1.05.00	Meteorological Data			
	Important meteorolog Annexure-II.	ical data from nearest observ	atory at Hazaribag is _I	placed at
1.06.00	Plant Water Scheme			
	The Plant water scheme	is described below.		
1.06.01	Condenser Cooling S	System		
	It is proposed to adopt	Air Cooled Condenser for the pro	oject.	
1.06.02	Equipment Cooling V	Vater (ECW) System (Unit Auxil	liaries)	
	primary circuit DM wa	all be cooled by De-mineralized ater shall be cooled through he secondary circuit cooling water spack to the system.	at exchangers by auxilia	ry cooling
1.06.03	Ash Water System			
		HCSD (High concentration Slurry lo recirculation of ash water from		
1.06.04	Other Miscellaneous	Water Systems		
	(a) Raw water s requirement e	hall be used for meeting the tc.	Fly ash and bottom as	h system
	Service water water separat treated water	ter shall be taken from clarified (wash water) collected from variors, tube settlers, coal settling from liquid effluent treatment paystem for re-use.	ous areas shall be treated pits etc. as per require	d using oil ment and
	(c) The drinking w plant.	vater requirement of the plant sha	all be provided from water	treatment
(KARANPURA STPP 3 X 660 MW) PC PACKAGE	TECHNICAL SPECIFICATION SECTION – VI, PART-A BID DOC. NO.:CS-4410-001-2	SUB-SECTION-IB PROJECT INFORMATION	PAGE 2 OF 10


CLAUSE NO.		PROJECT INFORMATION		एनहीपीसी NTPC
	auxiliaries) sys	make-up water, makeup to t stem, boiler fill water and makeu led from Demineralising plant.		
	(e) The quality of	Raw water is enclosed with this s	sub-section as Annexure-II	II.
1.07.00	Criteria for Earthqual	ke Resistant Design of Structur	res and Equipment	
		ctures and equipment, including signed for seismic forces as given		
1.08.00	Criteria for Wind Res	istant Design of Structures and	d Equipment	
	All structures and equestion equipment, shall be de	uipment of the power plant, inclues igned for wind forces as given a	uding plant auxiliary struc as given in Part B of this se	etures and ection.
(3	CARANPURA STPP 3 X 660 MW) C PACKAGE	TECHNICAL SPECIFICATION SECTION – VI, PART-A BID DOC. NO.:CS-4410-001-2	SUB-SECTION-IB PROJECT INFORMATION	PAGE 3 OF 10

PROJECT INFORMATION

Annexure-I

VICINITY PLAN

NORTH KARANPURA STPP (3 X 660 MW) EPC PACKAGE TECHNICAL SPECIFICATION SECTION – VI, PART-A BID DOC. NO.:CS-4410-001-2 SUB-SECTION-IB PROJECT INFORMATION

PAGE 4 OF 10

\sim 1	ΛІ	ICE	NO.
-	ML	JJE	INO.

PROJECT INFORMATION

Annexure-II

CLIMATOLOGICAL TABLE

	agt OT 1361			FF	Т		MEAN WIND SPRED	世立	Kmph 6.2	7.3	50,2	9.8	9.1	8.7	7.0		97	72	275	4,8	5.3	7.2		
	FROM		1	1000			DATE AND YEAR		90	23	20 20	9 61	27	1867	1191	1953	1888	1963	1982	1924	13			
	में मः आया /ATIONS			24 战事 明 明 明			HEAVIEST FAUL IN 24 HOURS	角角	68.1	63.5	244.2	60.5	84.1	249.2	221.7	150.1	1 000	107.4	149.4	95.0	39.4	249.2		
	日本 中 知 OBSER	900		新祖 四 明 明 明 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	1 102		TOTAL IN DRIEST MONTH WITH YEAR	fee.	0.0	0.0	0.0	0.0	0.0	0.5	1905	1911	1928	1966	0.0	0.0	0.0	739,6	900	1966
	1951 से 1980 तक के प्रेक्षणी पर अमारित BASED ON OBSERVATIONS FROM 1951		1	新出	BAINFALL		TOTAL IN WEITEST WITH YEAR	用用	113.0	117.3	164.3	81.6	187.2	774.5	1911	1930	1943	1893	1963	1924	81.3	2146,0	1803	
	195 B.A			10世界			NO. OF M RAINY DAYS		1.7	1.4	1.7	1.4	2.9	67	16.2	16.2				5.0	5.0	67.2 21		
				मिसक			MONTHLY	用用	23.5	16.2	18.4	17.0	43.4	177.1	310,0	320.1			0'00	เก	51 51	1277.9		
			की मात्रा	FF		PN T	LOW	आकाश के अमुसारा	200	4.00	0 00	0,0	0.3	1.8	3.8	3.8	3.5	191 0	12	0.5	0.2	5,7	.60	1
			程	開		CLOUD	ALL LOW	आकाश के	4.1	6 64	i ni a	1.8	10 c	1 10 1	6.5	6.4	5.4	2 2 2 2	2.9	n co	1.01	3.0	3.3	
	10		अपर्देता ।			1TY	VAPOUR PRESSURE (एस.मी.प्	10.4	10.3	10.8	13.3	18.1	25.0	28.2	28.3	26.8	27.2	21.3	4 4	22	18.2	17.7	-
	मीटर 811 METRES		The state of the s	田湖		HUMIDITY	RELATIVE HUMIDITY PI	अतिकात		252	39	36	42	19		88					52.5	2	100	
	0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	-	-	바바바	-		DATE AND P		07	08	04	01	22	02	181	520	29	12	972	-629	24		-	
	समुग्नी वस माप्य से कैबाई HEIGHT ABOVE M. S. L.			Ph-10H		SS UII	LOWEST Y	だり	6.0	1.7	6.7	10.6	15.6	18,3	19.3	20.02	17.8	7.8	19	-	19	0.5		1
	HEIGH		मस	frain 新 編		EXTREMES	DATE AND YEAR		31	1967	1892	22	18								1950			l
	3, E		-	1月1日	RE		HIGHEST	神らい	30.6	33,6	38.9	41.7	43.9	46.6	39,6	34.2	53.3	34.0	1,50	77	1 4/87	46.6		
	देशांतर Lang 85°22'	नायु तापमान		महमे	TEMPERATURE		LOWEST IN THE MONTH	がら	6,	6,8	11.4	16,4	19.3	21.0	21,4	21.3	20.4	14.3	9.0			3.8		
	23°59' N L	वादे		1 1 1			HIGHEST IN THE MONTH	程の	26.7	30.5	35,6	39.3	6.15	40.1	33.2	31.5	31.5	31.3	28.3	0 00	7.02	41.9		
	अधारा LAT 23		मध्य	대기 및	AIR	Z	DALLY	がら	6.9	12.0	16.6	21.3	24.0	24.1	23.0	22.7	22.2	18.9	13.3			18,1		1
			н	दैनिक आफि तम		MEA	DAILY	がら	22.6	25.7	30.8	35.7	37.8	34.1	29.5	29.1	29.0	28.5	52.08	23.1		29.3		-
				11 年			WET	世の	10.9	12.3	15.0	18.2	21.1	23.3	23.8	23.7	23.1	20.4	15.5	11.8	13.1	18.3	19.1	-
	-			200 mm			DRY BULB	世の世	18.9	17.9	23,4	32.4	34.3	30.4	25.6	25.2	25.1	23.9	20.2	15.7	18.7	23,3	25.9	
	स्टम्सः हमारीमा STATION : Hazaribagh			代刊到研究			STATION LEVEL PRESSURE	एक भी. ए. NPs.	947,8	945.7	944.0	941.0	937.0	933,4	933,1	934,5	938.2	943.6	947.0	943.9	945.1	941.1	938.0	1 00
100	स्टरमः हजर्यमा STATION : He				1				-=	-12	==		-=	- =	-=	-12	-=		-	= =				
	TATIC			10			MONTH		TVN THE	FEB .	HWH .	APRIL A	MAY	E-N	TE TO	PHHO NUG	HIPET I	SHEQUE.	1000	Report Report	oec offer 14	TOTAL DR	MEAN	March 11

NORTH KARANPURA STPP (3 X 660 MW) EPC PACKAGE TECHNICAL SPECIFICATION SECTION – VI, PART-A BID DOC. NO.:CS-4410-001-2 SUB-SECTION-IB PROJECT INFORMATION

PAGE 5 OF 10

CLAUSE NO.	PROJECT INFORMATION										
					Anr	nexure-III					
	RAW WATER ANALYSIS										
	SI. No.	Constituent	a	S	mg per litre						
	1.	Calcium	C	aCO3	65						
	2.	Magnesium	C	aCO3	41						
	3.	Sodium	C	aCO3	98						
	4.	Potassium	C	aCO3	5						
	5.	Total Cations	C	aCO3	209						
	6.	Total Alkalinity	C	aCO3	150						
	7.	Chloride	C	aCO3	25						
	8.	Sulphate	C	aCO3	34						
	9.	Total Anions	C	aCO3	209						
	9.	Silica (Reactive)	S	iO2	9						
	11.	Iron	F	- e	1.2						
	12.	pH Value	-		7.6-8.2						
	13.	Turbidity	N	ITU	200						
	14.	Organics(As per KN	MnO4 method) Nu	mber	2						
(3	(ARANF 3 X 660 N C PACK		TECHNICAL SPECIFICA SECTION – VI, PART BID DOC. NO.:CS-4410	Г-А	SUB-SECTION-IB PROJECT INFORMATION	PAGE 6 OF 10					

CLAUSE NO.	PROJECT INFORMATION								
				ANN	EXURE-IV-1				
			TABLE-1						
		<u>LIGH</u>	T DIESEL OIL CHARACTE (AS PER IS 15770-2008)						
	Char	acteristics		LDO					
	1.	Pour Point (m.	ax)	21 ℃ & 12℃ for Summer and Winter re	espectively				
	2.	Kinematic visc centistokes at		2.5 to 15.0					
	3.	Sediment perd	cent by mass (max)	0.10					
	4.	Total sulphur p mass (max)	percent by	1.5					
	5.	Ash percentag	ge by mass (max)	0.02					
	6.	Carbon residu percent by pas	e (Rams bottom) ss (max.)	1.50					
	7.	Acidity inorgar	nic	Nil					
	8.	Flash point (M	lin.) - Pensky Martens	66 deg.C					
	9.	Copper strip c 3 hours at 100	orrosion for 0°C	Not worse than No. 2					
	10.	Water content	, % by volume (max)	0.25					
	11.	GCV(kcal/kg)		10,000					
(3	KARANP 3 X 660 N		TECHNICAL SPECIFICATION SECTION – VI, PART-A	PROJECT INFORMATION	PAGE 7 OF 10				

BID DOC. NO.:CS-4410-001-2

EPC PACKAGE

PROJECT INFORMATION

TABLE-2

ANNEXURE-IV-2

HIGH SPEED DIESEL OIL CHARACTERISTICS

[AS PER IS 1460-2005 (BS-II)]

S.	Particulars	Unit	Value
No.			
1.	PHYSICAL PROPERTIES		
	a. Distillation volume recovery @ 350 ⁰ C	% vol. (min)	85
	b. Distillation volume recovery @ 370 ⁰ C	% vol. (min)	95
	c. Kinematic Viscosity @ 40 Degree C	cSt	2.0 - 5.0
	d. Density @ 15 Degree C	kg/m ³	820 – 860
	e. Pour Point		
	- Summer	Degree C (max)	15
	- Winter	Degree C (max)	03
	f. Cold Filter Plugging Point		
	- Summer	Degree C (max)	18
	- Winter	Degree C (max)	06
	g. Flash Point (Abal)	Degree C (max)	35
	h. Lubricity WSD 1.4 @ 60 Degree C	Microns (max)	460
2.	HEATING VALUE		
	a. Higher Heating Value (HHV)	Kcal/Kg	11,000
	b. Lower Heating Value (LHV)	Kcal/Kg	10,300
3.	ACIDITY		
	a. Inorganic	mg KOH/g	Nil
	b. Total	mg KOH/g	0.2 (max.)
4.	Copper Strip Corrosion 3 hours @100°C	No.	1 (max)
5.	RCR on 10% residue	% wt.	0.3 (max)
6.	CONTAMINANTS		
	a. Ash	ppm (wt.)	100 (max)
	b. Sediments	% wt	0.05 (max)
	c. Total Sulphur	% wt	0.05 (max)
	d. Water Content	% volume	0.05 (max)
	e. Trace Metals		
	- Na + K	ppm (wt)	0.30 (max)
	- Vanadium	ppm (wt)	0.50 (max)
	- Lead	ppm (wt)	0.50 (max)
	- Calcium	ppm (wt)	2.0
	- Ni + Zn	ppm (wt)	Nil
7.	Nitrogen content (FBN)	% wt.	0.015

NORTH KARANPURA STPP
(3 X 660 MW)
EPC PACKAGE

CLAUSE NO.

PROJECT INFORMATION

TABLE-3

ANNEXURE-IV-3

PROPOSED COAL CHARACTERISTICS FOR NORTH KARANPI IRA

	Marine Committee of the	STPP (3 x 6						
S.No.	Characteristics	THE RESIDENCE OF THE PARTY OF T	nge of 95 % coal		Range of 5 %			
	(as received basis)	Column - 1	Column - 2	Column - 3	coal supplies			
1.0	PROXIMATE ANALYSIS	Design	Worst	Best	owing changes:-			
1.1	Total Moisture (%)	15	18	12	12-18			
1.2	Ash (%)	40	46	36	33-46			
1.3	Volatile Matter (%)	19	18	22	23-18			
1.4	Fixed Carbon (%)	26	18	30	31-18			
	Total (%)	100	100	100	a, sinas been cha			
2.0	ULTIMATE ANALYSIS							
2.1	Carbon (%)	29.73	23.08	37.32	40.62-23.08			
2.2	Hydrogen (%)	3.7	3.54	3.92	4.02-3.54			
2.3	Sulphur (%)	0.5	0.6	0.4	0.4-0.6			
	Nitrogen(%)	1.8	1.45	1.6	1.4-1.45			
2.5	Oxygen(%)(By difference)	8.66	6.7	8.32	8.12-6.7			
2.6	Carbonates (%)	0.58	0.6	0.4	0.4-0.6			
2.7	Phosphorous(%)	0.03	0.03	0.04	0.04-0.03			
2.8	Total Moisture (%)	15	18	12	12-18			
2.9	Ash (%)	40	46	36	33-46			
	Total	100	100	100				
2.10	GCV (Kcal/Kg)	3300	2800	4000	4300-2800			
	Hard Grove Index	55	50	60	50-65			
3.0	DIASH ANALYSIS							
3.1	Silica (%)	59.79	61.3	56.7	62-56			
3.2	Alumina(%)	25.36	28	23.5	28-23			
3.3	Iron Oxide (%)	7.2	6	10	6-10			
3.4	Titania	1.2	1	1.5	1-1.7			
3.5	Phophoric Anhydride (%)	2.6	1.5	3	1-3			
3.6	Lime (%)	0.88	0.5	1.5	0.5-1.7			
3.7	Magnesia (%)	0.55	0.4	1	0.4-1.1			
3.8	Sulphuric Anhydride (%)	1.2	0.5	1.4	0.5-1.7			
3.9	Alkalies (by difference)	1.22	0.8	1.4	0.6-1.8			
	Total	100	100	100				
4.0	ASH FUSION RANGE							
	REDUCING ATMOSPHERE							
4.1	Initial Deformation Temp.(oC	1100	1100	1100	1100-1150			
	Hemispherical Temp. (oC)	1300	1250	1350	1250-1400			
	Fusion Temperature (oC)	1400	1400	1400	1400-1450			

NORTH KARANPURA STPP			
(3 X 660 MW)			
EPC PACKAGE			

CLAUSE NO.	PROJECT INFORMATION				एनरीपीमी NTPC	
					ANNE	(URE-IV-4
			TABLE – 4			
		TY	PICAL IMPORTED COAL A	ND ASH CHARACTER	RISTICS	
	SI.No.		teristics	Imported Coal		
		(as rec	eived basis)	Worst	Best	
	1.0	Proxim	ate Analysis			
	1.1		oisture (%)	20	16	
	1.2	Ash (%		10	10	
	1.3	,	Matter (%)	30	45	
	1.4		, ,	40	29	
			arbon (%)			
	1.5	Total (%	•	100	100	
	2.0		e Analysis	_		
	2.1	Carbon		56.4	62.4	
	2.2	Hydroge		4.5	4.9	
	2.3	Sulphur	(%)	0.9	8.0	
	2.4	Nitroge	า (%)	0.9	0.5	
	2.5	Oxygen	(%) (By difference)	7.3	5.4	
	2.6	Carbon	ates (%)	0	0	
	2.7		orous (%)	0	0	
	2.8		oisture (%)	20	16	
	2.9	Ash (%)	, ,	10	10	
	2.0	Total		100	100	
	0.40		1/1/2			
	2.10	GCV (K	•	5800	6500	
	2.11		ove Index	45	60	
	2.12	YGP (m	:	100	70	
	3.0	Ash An	-			
	3.1	Silica (S	SiO2) (%)	32.74	34.94	
	3.2	Alumina	ı(Al2O3) (%)	30.5	28.43	
	3.3	Iron Oxi	des(Fe2O3) (%)	18.2	15.2	
	3.4	Titania	(TiO2)	1.56	1.76	
	3.5		oric Anhydride(P2O5) (%)	0.44	0.54	
	3.6	•	aO) (%)	6.12	7.62	
	3.7		ia (MgO) (%)	1.83	1.93	
	3.8	-	ic Anhydride (%)	6.95	7.65	
	3.9	-	Oxide (Na2O) (%)	0.3	0.4	
	3.10		alkalies (by difference)	1.36	1.56	
	3.10	Total	alkalles (by ullielelice)	100	1.50	
	4.0		sion Temperature			
			ng temperature			
	4.1	Initial de	eformation Temp (ºC)	1100	1250	
	4.2	Hemisp	herical Temp. (ºC)	1300	1350	
	4.3	Flow Te	mp. (ºC)	1400	1400	
(3 X 6	ANPURA STP 660 MW)	P	TECHNICAL SPECIFICATI SECTION – VI, PART-A BID DOC. NO.:CS-4410-00	PROJECT INFO		PAGE 10 OF 10

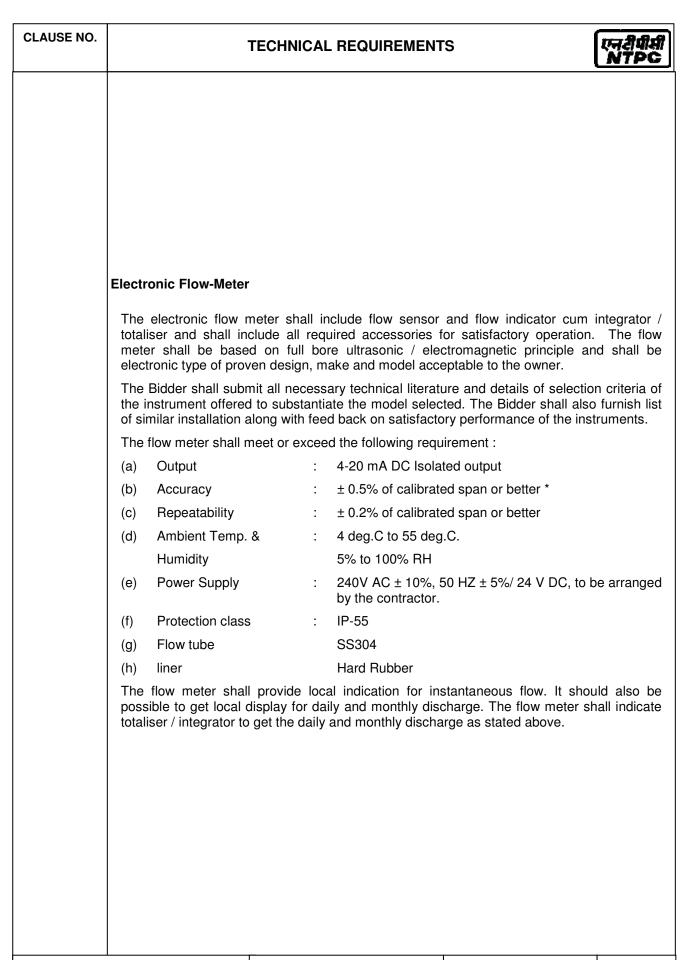
3X 660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-1916			
VOLUME II B			
SECTION C			
REV. NO. 00	DATE 17/06/2015		
SHEET 1 OF 2			

SECTION-C
SPECIAL TECHNICAL REQUIREMENT

3X660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-1916			
VOLUME	IIΒ		
SECTION	Α		
REV. NO.	00	DATE: 17/06/2015	
SHEET 2 C)F 2		


SPECIFIC TECHNICAL REQUIREMENTS

The technical requirements in this section are specific for this project and shall override the specification under Section-D in case of any contradiction.

- 1.0 Bidder to note that duly filled up Data sheet-B, Quality Plan, Format "Schedule of submission of Drawings / Documents, Equipment Manufacture, Inspection and Dispatch" enclosed in Section-D of Volume IIB, to be signed and stamped and submitted with the bid.
- 2.0 Bidder Presence is required for 2 days each time (4 times) for any site support requirement. All the expenses like boarding, lodging and travel, Air fare etc. shall be in bidder's scope.

3.0 DOCUMENTATION:

- (A) **Along with the bids:** No separate documentation required at the time of bids except those specifically listed under Cl. No. 6.0 of Sec-D of Vol-II B.
- **(B)** After the award of contract: 10 sets of the following documents to be enclosed along with the contract documents for approval:
- a) Datasheet C completely filled-up.
- b) Quality plan duly signed and stamped.
- c) All Differential pressure vs Flow graphs.
- d) Calculation Sheet.
- e) Assembly dimensional drawings.
- f) GA Drawing.
- **(C)** Final documentation: The documentation as listed below shall be submitted as a part of final documentation.
- 1. Approved final drawings/data sheets, -10 sets with 2 CD-ROMS
- 2. All Test certificates 10 sets.
- 3. Operation & Maintenance Manuals for Ultrasonic flow meter -10 sets
- 4. Assembly drawings and QP for approval 10 sets.
- 5. "As built" drawings 10 sets.
- 4.0 In case during erection/commissioning of the Ultrasonic flow meter, any spares are required which have not been specified in the Start-up/commissioning spares list, the same will have to be supplied by the vendor free of cost.

3X660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916		
VOLUME II B		
SECTION B		
REV. NO. 00	DATE: 17/06/2015	
SHEET 1 OF 21		

SECTION - D

- EQUIPMENT SPECIFICATION
- DATA SHEETS A & B
- QUALITY PLAN
- BILL OF QUANTITY
- SPARES
- SCHEDULE OF SUBMISSION OF DRAWINGS/
- DOCUMENTS, EQPT. MANUFACTURE, INSPECTION
- AND DISPATCH

3X660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916			
VOLUME	IIΒ		
SECTION	D		
REV. NO.	00	DATE 17/06/2015	
CHEET	2 OE 21		

SECTION-D

EQUIPMENT SPECIFICATION

SPEC NO.: PE-SS-999-145-I027			
VOLUME II	В		
SECTION D			
REV. NO.	01	DATE: 30.08.2012	
SHEET	3	OF 21	

1.0 SCOPE

This s pecification cove rs the Design, Ma nufacture, Calib ration, Inspection and Testing at the manufacturer's works, proper packing for transportation and delivery to site of Electromagnetic Flow Meter for use in Utility/Captive Power Station/Combined Cycle Station.

2.0 CODES AND STANDARDS

- 2.1 All the e quipments spe cified he rein shall c omply with the requirements of the latest iss ue of the relevant National and International standards.
- 2.2 The Electromagnetic Flow Meters shall be of proven reliability, accuracy and repeatability requiring a minimum of maintenance. The Design and Materials used for the components shall also comply with the relevant National and International standards.

3.0 TECHNICAL REQUIREMENT

The Electromagnetic Flow Meters and the accessories shall be suitable for continuous operation under an ambient temperature of 0-55°C for Transmitter and (-) 20 to 100°C for Transducer and Relative Humidity of 5-100% unless specified otherwise in volume IIB Section-B or Section-C.

All accessories required for mounting/erection of these instruments shall be furnished as necessary for completeness of the system.

3.1 A ccessories:

All mounting ha rdware like cla mping fixtu res, m echanism to remove the sen sors on line, interconnecting screened cables between Transducer & Transmitter, Cable Glands etc. is required to be supplied. Weather canopy for protection from direct sunlight and direct rain shall also be offered as an option. Material of all fittings shall be SS-316.

4.0 GUARANTEE AND PERFORMANCE

The guarantee of flow measuring assembly shall be 18 months from the date of dispatch or 12 months from commissioning whichever is earlier.

5.0 TEST & INSPECTION

- 5.1 The bidder shall adopt suitable quality assurance plan to ensure that the equipments offered will meet the specification requirements in full.
- 5.2 The Quality Plan shall be discussed and finalized with the technically accepted bidders before opening the price bid. The stages where the purchaser would like to be associated for witnessing or verification would be indicated by the purchaser in the Quality Plan before approval.
- Inspection will be conducted by BHEL and/or their a uthorized representatives as per the agreed inspection schedule. The inspection schedule will be submitted by the bidder for BHEL's approval at contract stage. The cost of all tests and inspections will be deemed to have been included in the bid. For all the type tests "Type Test Certificates" as per a greed Quality Plan shall be furnished. In the

SPEC NO.: PE	-SS-999	-145-1027
VOLUME II	В	
SECTION D		
REV. NO.	01	DATE: 30.08.2012
SHEET	3	OF 21

absence of the same, such Type Tests shall be arranged at the Vendor's works in the presence of BHEL and/or their authorized representatives or in independent Test House/Laboratory approved by BHEL.

6.0 SPARES AND CONSUMABLES

6.1 Commissioning Spares and consumables

As p art of the m ain equipment supply, the b idders hall supply all commissioning spares and consumables required during Start-up,

6.2 R ecommended Spares

The bidder shall furnish a list of Recommended Spares along with the normal service expectancy period and frequency of replacement; quantities recommended for 3 years operation along with unit rate against each item to enable BHEL/BHEL's Customer to place a separate order later, if required.

6.3 Special Tools & Tackles

The bidder shall furnish a list of Special Tools & Tackles included in the bid.

7.0 DRAWINGS & DOCUMENTS

- 7.1 The offer shall include the following in 4 copies each.
 - i. Technical da ta she et for each flo w measuring d evice a ssembly in the Pro forma enclosed under Data Sheet-B.
 - ii. Catalogue/Tec hnical Literature.
 - iii. Assembly drawing with dimensional details.
- 7.2 4 c opy each of the following alon g w ith 2 CDs to be furnished a fter aw ard of contract for o wner approval.
 - i. Te chnical Data Sheet-C.
 - ii. Sizing Calculations.
 - iii. Assembly drawing with dimensions.
 - iv. Installat ion drawing.

8.0 FOR INFORMATION

- 8.1 Storage and Commissioning Instruction
- 8.2 O&M are to be supplied as specified.

9.0 PACKING & MARKING

- 9.1 Each ite m shall be properly packed with ad equate protection against friction, stresses, vibration & shock during transportation. Each packing box shall have marking as per Purchase Order.
- 9.2 Each assembly shall be identified with the following information.
 - T ag No.
 - Service.

SPEC NO.: PE-SS-999-145-I027				
VOLUME II	В			
SECTION D				
REV. NO.	01	DATE: 30.08.2012		
SHEET	3	OF 21		

- Line size & thickness.
- Direction of flow.

10.0 APPLICABLE DATA SHEETS

This document shall be read in conjunction with following data sheets.

1. Data Sheet - A & B: Data sheet no. PES-145-27-DS1-0

3X660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916			
VOLUME	II B		
SECTION	D		
REV. NO.	00	DATE 17/06/2015	
SHEET	7 OF 21		

SECTION-D

DATA SHEETS - A&B

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

Tag No. 00GHD50CF011

Data Sheet No. PES-145-27-DS1-0

DATA SHEET - A & B

	DATA SHEET – A (TO BE FILLED BY PURCHASER)		
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE: MAKE: MODEL PROCESS END CONNECTION	3X660 MW NORTH KARANPURA Bidder to indicate 00GHD50CF011 ACW Make-Up Pump Discharge Bidder to indicate Full Bore	
	FLOW MEASUREMENT OUTPUT ACCURACY	Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with for volumetric flow and velocity $\pm 0.5\%$	
	SENSOR HOUSING MATERIAL REPEATABILITY RANGEABILITY	SS304 ±0.2% of calibrated span 10:1	
	RESPONSE TIME LOAD	USER PROGRAMMABLE 500 ohms(min)	
TECHNICAL	DISPLAY/INDICATION	LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display)	
	OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	■ YES [] NO SS (IP-65) Inline Flanged (with matching Flange) Hard Rubber	
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C) PIPE LOCATION	WATER NORMAL : 240 3.5 12 35 60 OVERGROUND	

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

	PIPE SIZE (OD x THK) mm PIPE MATERIAL	200 Nb	
	AVAILABLE PIPE STRAIGHT LENGTH	CARBON STEEL AS PER IS 2062 GR.B UPSTREAM : 10D	
PIPE LINE DATA		DOWNSTREAM: 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, Transducer cable (length 20m), All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

Tag No. 00GHD10CF011

Data Sheet No. PES-145-27-DS1-0

DATA SHEET - A & B

	DATA SHEET – A (TO BE FILLED BY PURCHASER)		
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE: MAKE: MODEL PROCESS END CONNECTION FLOW MEASUREMENT OUTPUT ACCURACY SENSOR HOUSING MATERIAL REPEATABILITY RANGEABILITY RESPONSE TIME	3X660 MW NORTH KARANPURA Bidder to indicate 00GHD10CF011 HVAC M/UP Pump Discharge Bidder to indicate Full Bore Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with for volumetric flow and velocity ± 0.5% SS304 ±0.2% of calibrated span 10:1	BY BIDDER)
	LOAD	USER PROGRAMMABLE 500 ohms(min)	
TECHNICAL	OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display) [
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C)	WATER NORMAL: 127 5.2 12 35 60	

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

	PIPE LOCATION	OVERGROUND	
	PIPE SIZE (OD x THK) mm PIPE MATERIAL	200 Nb CARBON STEEL AS PER IS 2062 GR.B	
PIPE LINE DATA	AVAILABLE PIPE STRAIGHT LENGTH	UPSTREAM : 10D DOWNSTREAM : 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

Tag No. 00GHD31CF011

Data Sheet No. PES-145-27-DS1-0

DATA SHEET - A & B

DATA SHEET – A (TO BE FILLED BY PURCHASER)			DATA SHEET – B (TO BE FILLED UP BY BIDDER)
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE: MAKE: MODEL PROCESS END CONNECTION	3X660 MW NORTH KARANPURA Bidder to indicate 00GHD31CF011 Service water Pump Discharge Bidder to indicate Full Bore	
	FLOW MEASUREMENT OUTPUT	Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with for volumetric flow and velocity	
	ACCURACY SENSOR HOUSING MATERIAL REPEATABILITY RANGEABILITY	$\pm 0.5\%$ SS304 $\pm 0.2\%$ of calibrated span 10:1	
TECHNICAL	RESPONSE TIME LOAD	USER PROGRAMMABLE 500 ohms(min)	
TECHNICAL	DISPLAY/INDICATION	LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display)	
	OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	[■] 240V AC [] 24 VDC [] 110 VAC ■ YES [] NO ■ YES [] NO ■ YES [] NO SS (IP-65) Inline Flanged (with matching Flange) HARD RUBBER	
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C) PIPE LOCATION	WATER NORMAL : 545 7.8 12 35 60 OVERGROUND	

SPEC NO.: PE-TS-405-145-I916		
VOLUME II	В	
SECTION D		
REV. NO.	00	DATE :17.06.15
SHEET	8	OF 21

	PIPE SIZE (OD x THK) mm PIPE MATERIAL	300 Nb	
	AVAILABLE PIPE STRAIGHT LENGTH	CARBON STEEL AS PER IS 2062 GR.B UPSTREAM : 10D	
PIPE LINE DATA		DOWNSTREAM: 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

SPEC NO.: PE-TS-405-145-I916				
VOLUME II	В			
SECTION D				
REV. NO.	00	DATE :17.06.15		
SHEET	8	OF 21		

DATA SHEET – A & B

	DATA SHEET – B (TO BE FILLED UP BY BIDDER)		
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE: MAKE: MODEL	Bidder to indicate 00GHD30CF011 APH/ESP Pump Discharge Bidder to indicate	
	PROCESS END CONNECTION FLOW MEASUREMENT OUTPUT ACCURACY SENSOR HOUSING MATERIAL REPEATABILITY RANGEABILITY RESPONSE TIME	Full Bore Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with for volumetric flow and velocity $\pm 0.5\%$ SS304 $\pm 0.2\%$ of calibrated span 10:1	
TECHNICAL	DISPLAY/INDICATION OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	USER PROGRAMMABLE 500 ohms(min) LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display) [
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C) PIPE LOCATION	WATER NORMAL: 840 8 12 35 60 OVERGROUND	

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

	PIPE MATERIAL	400 Nb	
		CARBON STEEL AS PER IS 2062 GR.B UPSTREAM : 10D	
PIPE LINE DATA	AVAILABLE PIPE STRAIGHT LENGTH	DOWNSTREAM: 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

Tag No. 00GHD70CF011

Data Sheet No. PES-145-27-DS1-0

DATA SHEET - A & B

DATA SHEET – A (TO BE FILLED BY PURCHASER)			DATA SHEET – B (TO BE FILLED UP BY BIDDER)
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE: MAKE: MODEL PROCESS END CONNECTION	3X660 MW NORTH KARANPURA Bidder to indicate 00GHD70CF011 Potable water Pump Discharge Bidder to indicate ■ PIPE MOUNTED [] WALL MOUNTED	
	FLOW MEASUREMENT OUTPUT ACCURACY	Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with $$ for volumetric flow and velocity $\pm0.5\%$	
	SENSOR HOUSING MATERIAL REPEATABILITY RANGEABILITY	SS304 $\pm 0.2\%$ of calibrated span 10:1	
TECHNICAL	RESPONSE TIME LOAD	USER PROGRAMMABLE 500 ohms(min)	
TECHNICAL	DISPLAY/INDICATION	LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display)	
	OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	[■] 240V AC [] 24 VDC [] 110 VAC ■ YES [] NO ■ YES [] NO ■ YES [] NO SS (IP-65) Inline Flanged (with matching Flange) Hard Rubber	
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C) PIPE LOCATION	WATER NORMAL : 20 6.5 12 35 60 OVERGROUND	

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

	PIPE SIZE (OD x THK) mm PIPE MATERIAL	80 Nb	
PIPE LINE DATA	AVAILABLE PIPE STRAIGHT LENGTH	CARBON STEEL AS PER IS 2062 GR.B UPSTREAM: 10D DOWNSTREAM: 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

DATA SHEET – A & B

	DATA SHEE (TO BE FILLED BY I		DATA SHEET – B (TO BE FILLED UP BY BIDDER)	
	PROJECT	3X660 MW NORTH KARANPURA		
	OFFER REFERENCE	Bidder to indicate		
GENERAL	TAG NO.	00GHD80CF011		
OBI (Bru IE	SERVICE:	Colony Potable water Pump Discharge		
	MAKE : MODEL	Bidder to indicate		
	PROCESS END CONNECTION	Full Bore		
	FLOW MEASUREMENT	Instantaneous flow rate as well as totalized flow		
	OUTPUT	Isolated 4-20 mA DC with for volumetric flow and		
		velocity		
	ACCURACY	± 0.5%		
	SENSOR HOUSING MATERIAL	SS304		
	REPEATABILITY	+ 0.2% of calibrated span		
	RANGEABILITY	10:1		
	NINGERBIETT	10.1		
	RESPONSE TIME	USER PROGRAMMABLE		
	LOAD	500 ohms(min)		
	Lord	500 Ollins(Hill)		
TECHNICAL	DISPLAY/INDICATION	LCD with Internal keypad (Flow rate of totalization).		
	DISTERN/INDICATION	Flow meter with LCD screen backlight based local		
		display and keypad. If required, Transmitter shall be		
		suitably located away from the sensor for better access		
	ODED A TINIC WOLTAGE	and visibility. (Daily & Monthly Display)		
	OPERATING VOLTAGE	[] 240V AC [] 24 VDC [] 110 VAC		
	TOTALIZING FACILITIES	■ YES [] NO		
	VELOCITY MEASUREMENT	■ YES [] NO		
	FLOW VELOCITY	■ YES [] NO		
	ENCLOSURE	SS (IP-65)		
	PROCESS END CONNECTION	Inline Flanged (with matching Flange)		
	LINER	Hard Rubber		
	FLUID	WATER		
	RATE OF FLOW (CuBM/HR)	NORMAL : 130		
	UPSTREAM WORKING PRESS (Kg/cm2g)	4.7		
PROCESS	DESIGN PRESS (Kg/cm2g)	12		
DATA	NORMAL TEMP (Deg C)	35		
	MAXIMUM TEMP (Deg C)	60		
	PIPE LOCATION	OVERGROUND		
		o . Zhokooniy		

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

PIPE LINE DATA	PIPE SIZE (OD x THK) mm PIPE MATERIAL AVAILABLE PIPE STRAIGHT LENGTH	200 Nb	
		CARBON STEEL AS PER IS 2062 GR.B UPSTREAM : 10D	
		DOWNSTREAM: 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

DATA SHEET FOR ELECTRO-MAGNETIC FLOW METER

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

Tag No. 00GN10CF011

Data Sheet No. PES-145-27-DS1-0

DATA SHEET - A & B

	DATA SHEE (TO BE FILLED BY		DATA SHEET – B (TO BE FILLED UP BY BIDDER)
GENERAL	PROJECT OFFER REFERENCE TAG NO. SERVICE:	3X660 MW NORTH KARANPURA Bidder to indicate 00GN10CF011 Final Effluent Disposal Pumps Discharge Bidder to indicate	
	MAKE: MODEL PROCESS END CONNECTION FLOW MEASUREMENT OUTPUT ACCURACY SENSOR HOUSING MATERIAL	Full Bore Instantaneous flow rate as well as totalized flow Isolated 4-20 mA DC with for volumetric flow and velocity ± 0.5% SS304	
	REPEATABILITY RANGEABILITY	$\pm 0.2\%$ of calibrated span 10:1	
	RESPONSE TIME LOAD	USER PROGRAMMABLE 500 ohms(min)	
TECHNICAL	DISPLAY/INDICATION	LCD with Internal keypad (Flow rate of totalization). Flow meter with LCD screen backlight based local display and keypad. If required, Transmitter shall be suitably located away from the sensor for better access and visibility. (Daily & Monthly Display)	
	OPERATING VOLTAGE TOTALIZING FACILITIES VELOCITY MEASUREMENT FLOW VELOCITY ENCLOSURE PROCESS END CONNECTION LINER	■ 240V AC [] 24 VDC [] 110 VAC ■ YES [] NO ■ YES [] NO ■ YES [] NO SS (IP-65) Inline Flanged (with matching Flange) Hard Rubber	
PROCESS DATA	FLUID RATE OF FLOW (CuBM/HR) UPSTREAM WORKING PRESS (Kg/cm2g) DESIGN PRESS (Kg/cm2g) NORMAL TEMP (Deg C) MAXIMUM TEMP (Deg C) PIPE LOCATION	Effluent NORMAL: 100 8 15 40 60 OVERGROUND	

DATA SHEET FOR ELECTRO-MAGNETIC FLOW METER

SPEC NO.: PE-TS-405-145-I916			
VOLUME II	В		
SECTION D			
REV. NO.	00	DATE :17.06.15	
SHEET	8	OF 21	

	PIPE SIZE (OD x THK) mm PIPE MATERIAL	200 Nb	
		CARBON STEEL AS PER IS 2062 GR.B	
PIPE LINE DATA	AVAILABLE PIPE STRAIGHT LENGTH	UPSTREAM : 10D DOWNSTREAM : 5D	

- NOTE:- 1) Accessories like ½" NPT cable gland, 20 m Transducer cable, All PROCESS END CONNECTION hardware (SS-316), SS nameplate etc. shall be provided.
 - 2) Double compression type nickel plated brass cable gland.
 - 3) Transducer cable min length shall be mentioned as per GA of Pit and location of transmitter.
 - 4) Remote Transmitter:
 - i) Enclosure Material Die Cast Aluminium (incase PP offered, suitable metal enclosure/housing shall be provided. Since it is located in the field.

TECHNICAL SPECIFICATION FOR

ELECTROMAGNETIC FLOWMETER

3X 660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916		
VOLUME II B		
SECTION D		
REV. NO. 00	DATE: 17/06/2015	

16 OF 21

SHEET

SECTION-D

BILL OF QUANTITY

Technical specification for **ELECTROMAGNETIC FLOW METER**

3X660 MW NORTH KARANPURA

SPECIFICATION NO. PI	E-TS-405-145-I916
VOLUME II-B	
SECTION D	
REV. NO. 00	DATE 17/06/2015
SHEET 17 OF 21	

BILL OF QUANTITY

[A] E	[A] ELECTROMAGNETIC FLOWMETER WITH ALL ACCESSORIES				
S. No.	KKS	SERVICE/ ITEM DESCRIPTION	QTY/UNIT	TOTAL QTY FOR STN	
1	00GHD50CF011	ACW Make Up pump Discharge	1	1	
2	00GHD10CF011	HVAC M/UP Pump Discharg	1	1	
3	00GHD31CF011	Service water Pump Discharge	1	1	
4	00GHD30CF011	APH Pump Discharge	1	1	
5	00GHD70CF011	Potable water Pump Discharge	1	1	
6	00GHD80CF011	Colony Potable water Pump Discharge	1	1	
		Flow Transmitter At The Common	1	1	
7	00GN10CF011	Discharge Header Of Final Effluent			
		Disposal Pumps			

3 X 660MW NORTH KARANPURA

TECHNICAL SPECIFICATION FOR ELECTROMAGNETIC FLOW METERS

SPECIFICATION NO.	. PE-TS-4	105-145-I 916
VOLUME II-B		
SECTION D		
REV. NO. 00	DATE:	04.09.2015
SHEET		

[A] LIST OF MANDATORY SPARES

S.No.	ITEM DESCRIPTION	QUANTITY
1	Electronic Transmitters (Complete Assembly)	10% or 1 No., whichever is more, of each type and model.

NOTES:

Wherever % is indicated, the quantity shall be calculated for % of supply for total quantity of 3 units of 3 x660MW, unless otherwise specified. The quantity to be reckoned for % indicated shall be rounded off to the next higher whole number. For example if the % of total quantity arrived is 0.2, the quantity to be supplied shall be 1 and if the % of total quantity is 5.1, the quantity to be supplied shall be 6.

TECHNICAL SPECIFICATION FOR **ELECTROMAGNETIC FLOW METER**

3X660MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916

IIΒ VOLUME

SECTION D REV. NO. 00 DATE: 17/06/2015

SHEET

SECTION-D

QUALITY PLAN

एए ई एल	IHEI I	M :: C&I
		PEM

FOR ELECTRO-MAGNETIC FLOWMETER QUALITY PLAN

-145-1 011			DATE: 31.03.2014	ć
-QP-999-				2
N NO.: PE-	IIB	D	00	_
QUALITY PLAN NO.: PE-QP-999-145-I 011	VOLUME	SECTION	REV. NO.	CHEET

	OF	,v
2	1	Format
	SHEET	, E

7	
OF	Agency ^{\$}
1	Format
Ш	

\$ 1	^
Agency	M
A	Ь
Format of	Records

Remarks

,	۸
Agency	M
⋖	d
rormat	Records
Acceptance	Norms
Doforco	documents

Extent of Check

Type/Method of Check

Cat ego ry

Characteristics Checked

Component / operation

s. Š

1	Standard Certificates	Certificate of Compliance, Warranty Certificate,	Maj or	Visual	As applicable	Technical documents/Ap proved documents	Technical catalogue/App roved documents	Technical catalogue/ Approved documents	3		2,	
2	Visual Check	Mechanical	Maj or	Visual	100%	Technical catalogue/App roved documents	Technical catalogue/App roved documents	Technical catalogue/ Approved documents	3	1	1	
3	Functional test & power ON	Electrical	Maj or	Visual	100%	Functional test report for meter & transducer	Approved documents	Technical catalogue/ Approved documents	3	1	1	
4	HART Communication	Electrical	Maj or	-	100%	Technical catalogue/App roved documents	Technical catalogue/App roved documents	Technical catalogue/ Approved documents	1	1	1	

LEGEND:

P - Agency Performing the Test.
 W - Agency Witnessing the Test.
 V - Agency Verifying the Test.

1 - Custmer2 - Vendor3 - Sub-vendor

Page 27 of 38

TECHNICAL SPECIFICATION FOR ELECTROMAGNETIC FLOW METER

3X660 MW NORTH KARANPURA

SPEC NO.: PE-TS-405-145-I916	
------------------------------	--

VOLUME	II B	
SECTION	D	
REV. NO.	00	DATE: 17/06/2015
SHEET		

SCHEDULE OF SUBMISSION OF DRAWINGS/ DOCUMENTS, EQPT. MANUFACTURE, INSPECTION AND DISPATCH

Technical specification for **ELECTROMAGNETIC FLOW METER**

3X660MW NORTH KARANPURA

	-			
SPECIFICATION NO. PE-TS-405-145-I916				
VOLUME	II-B			
SECTION	D			
REV. NO.	00	DATE:	17/06/2015	
SHEET				

(Signature and Stamp of the Bidder)

SCHEDULE OF SUBMISSION OF DRAWINGS $\,$ / DOCUMENTS, EQUIPMENT $\,$ MANUFACTURE INSPECTION AND DESPATCH

ZERO DATE	DATE of LOI / FOI / TOI	
Submission of Data Sheets / documents / catalogues for approval.	2 Weeks from the Zero date.	
Technical finalisation, freezing of inputs of manufacture by way of vetting of documents and technical discussions and resubmissions of documents (if required)	6 Weeks from the Zero date.	
Inspection of Equipment as per Approved (Category-I) drawings / documents.	18 Weeks from the Zero date.	
Release of MDCC by BHEL	19 Weeks from the Zero date.	
Dispatch (Packaging & Dispatch)	20 Weeks from the Zero date.	
Final documents submission as per Contract	24 Weeks from the Zero date.	
Delays due to non-fulfillment of the requirements of approved Quality Plan and approved Data sheets, Drawings, Catalogues and Sizing Calculations observed during inspection shall be to the Vendor's account. Delays due to INCOMPLETE (Partly) submission of Data sheets, Drawings, Catalogues and Sizing Calculations also be considered as "DOCUMENTS NOT SUBMITTED"		
	Submission of Data Sheets / documents / catalogues for approval. Technical finalisation, freezing of inputs of manufacture by way of vetting of documents and technical discussions and resubmissions of documents (if required) Inspection of Equipment as per Approved (Category-I) drawings / documents. Release of MDCC by BHEL Dispatch (Packaging & Dispatch) Final documents submission as per Contract Delays due to non-fulfillment of the requirements of Data sheets, Drawings, Catalogues and Sizing Calshall be to the Vendor's account.	

NTPC LTD 3X660MW NORTH KARANPURA

TECHNICAL SPECIFICATION FOR ELECTROMAGNETIC FLOW METER

VOLUME III

SPECIFICATION No: PE-TS-405-145-I916

BHARAT HEAVY ELECTRICALS LIMITED
POWER SECTOR
PROJECT ENGINEERING MANAGEMENT DIVISION
NOIDA, INDIA

SPECIFICATION NO. PE-TS-405-145-I916			
VOLUME III			
SECTION			
REV. NO. 00	DATE: 17.06.2015		
SHEET			

VOLUME-III	

SPECIFICATION NO. PE-TS-405-145-1916			
VOLUME III			
SECTION			
REV. NO. 00	DATE: 17.06.2015		
SHEET			

CONTENTS

VOL-III

S. No.	DESCRIPTION		
1	COMPLIANCE CERTIFICATES		
2	SCHEDULE OF PRICES		
3	SCHEDULE OF UNIT PRICES		
4	INSPECTION SCHEDULE		

COMPLIANCE CERTIFICATE For

ELECTROMAGNETIC FLOWMETER

(To be Signed & Stamped by the Bidder)

Project: 3X660MW NORTH KARANPURA TPP

Specification no.: PE-TS-405-145-I916

We shall comply with the following:-

- 1. All the requirements as stated in Technical Specification / Specific Technical requirement / Data sheets / Drawings, BHEL quality plan etc as enclosed in the tender, shall be fully complied **without any deviation**.
- **2.** BHEL Quality Plan (enclosed with the specification) duly signed and stamped is submitted herewith **without any deviation.**

Signature with date	
Name	
Company seal	

SPECIFICATION NO. PE-TS-405-145-1916			
VOLUME III			
SECTION			
REV. NO. 00	DATE: 17.06.2015		
SHEET			

SCHEDULE OF PRICES

S.NO.	ITEM DESCR	IPTION	QTY FOR ONE UNIT	PRICE FOR ONE UNIT			
[A]	[A] ELECTROMAGNETIC FLOW METER						
S. No.	KKS NO.	SERVICE/ ITEM DESCRIPTION					
1	00GHD50CF011	ACW Make Up pump Discharge	1				
2	00GHD10CF011	HVAC M/UP Pump Discharg	1				
3	00GHD31CF011	Service water Pump Discharge					
4	00GHD30CF011	APH Pump Discharge	1				
5	00GHD70CF011	Potable water Pump Discharge	1				
6	00GHD80CF011 Colony Potable water Pump Discharge		1				
7	FLOW TRANSMITTER AT THE COMMON DISCAHRGE HEADER OF FINAL EFFLUENT DISPOSAL PUMPS		1				

PARTICULARS OF THE BIDDER / AUTHORISED REPRESENTATIVE				
NAME	DESIGNATION	SIGNATURE	DATE	COMPANY SEAL

SPECIFICATION NO. PE-TS-405-145-I916			
VOLUME III			
SECTION			
REV. NO. 00	DATE: 17.06.2015		
SHEET			

SCHEDULE OF UNIT PRICES

ULTRASONIC FLOW METER				
S. No.	ITEMS	UNIT PRICE		
1. SEN	SOR			
2. TRA	NSMITTER			
3.	CABLE BETWEEN SENSOR TO TRANSMITTER (PER METER)			

PERTICUL				
NAME	DESIGNATION	SIGNATURE	DATE	COMPANY SEAL

SPECIFICATION NO. PE-TS-405-145-1916			
VOLUME III			
SECTION			
REV. NO. 00	DATE: 17.06.2015		
SHEET			

 ccc	\sim TI	\sim	SCF		
~ DE				 :)	
 					.,

(PLACE & ADDRESS OF TESTING/ INSPECTION AND ITS SCHEDULE DATE & DURATION IN NUMBER OF DAYS ITEM/COMPONENTWISE TO BE LISTED)

PARTICULARS O				
NAME	DESIGNATION	SIGNATURE	DATE	COMPANY SEAL