KINEMATICS

PREVIOUS EAMCET BITS

ENGINEERING PAPER

1. A body is projected vertically upwards at time $t=0$ and is seen at a height ' H ' at time t_{1} and t_{2} seconds during its flight. The maximum height attained is [$\mathrm{g}=$ acceleration one to gravity]
[EAMCET 2009E]
1) $\frac{g\left(t_{2}-t_{1}\right)^{2}}{8}$
2) $\frac{g\left(t_{1}+t_{2}\right)^{2}}{4}$
3) $\frac{g\left(t_{1}+t_{2}\right)^{2}}{8}$
4) $\frac{g\left(t_{2}-t_{1}\right)^{2}}{4}$

Ans: 2
Sol: When a body is projected vertically upwards it occupies the same position while going up and coming down after time of t_{1} and t_{2}
$\therefore \mathrm{H}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$

$$
\mathrm{gt}^{2}-2 \mathrm{ut}+2 \mathrm{H}=0
$$

Sum of roots $=t_{1}+t_{2}=\frac{2 u}{g} \Rightarrow u=\frac{g\left(t_{1}+t_{2}\right)}{2}$
$\therefore \mathrm{H}_{\text {max }}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{g}\left[\mathrm{t}_{1}+\mathrm{t}_{2}\right]^{2}}{8}$
2. A body thrown vertically up to reach its maximum height in ' t ' seconds. The total time from the time of projection to reach a point at half of its maximum height while returning (in seconds) is
[EAMCET 2008 E]

1) $\sqrt{21}$
2) $\left(1+\frac{1}{\sqrt{2}}\right) \mathrm{t}$
3) $\frac{3 t}{2}$
4) $\frac{t}{\sqrt{2}}$

Ans: 2
Sol: Time taken to reach the maximum height $=$ time of ascent $=t$
\therefore as $\mathrm{h} \propto \mathrm{t}^{2} \Rightarrow \frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}=\left(\frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}\right)^{2} \Rightarrow \frac{\mathrm{~h}}{\mathrm{~h} / 2}=\left(\frac{\mathrm{t}}{\mathrm{t}_{2}}\right)^{2}$
$\Rightarrow \mathrm{t}_{2}=\frac{\mathrm{t}}{\sqrt{2}}$
\therefore Time taken to reach half distance of its maximum height $=\frac{\mathrm{t}}{\sqrt{2}}$
\therefore Total time $\mathrm{t}+\frac{\mathrm{t}}{\sqrt{2}}=\left(1+\frac{1}{\sqrt{2}}\right) \mathrm{t}$
3. A body is projected from the earth at angle 30° with the horizontal with some velocity. If its range is 20 m , the maximum height reached by it is [in metres]
[EAMCET 2006 E]

1) $5 \sqrt{3}$
2) $\frac{5}{\sqrt{3}}$
3) $\frac{10}{\sqrt{3}}$
4) $10 \sqrt{3}$

Ans 2:

Sol: $\frac{\mathrm{h}_{\max }}{\mathrm{R}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g} \times \frac{2 \mathrm{u}^{2} \sin \theta \cos \theta}{\mathrm{~g}}}=\frac{\tan \theta}{4}$
$\frac{\mathrm{h}_{\text {max }}}{20}=\frac{\tan 30^{\circ}}{4} \Rightarrow \mathrm{~h}_{\max }=\frac{5}{\sqrt{3}} \mathrm{~m}$
4. A body is projected vertically upwards at time $t=0$ and is seen at a height ' H ' at time t_{1} and t_{2} seconds during its flight. The maximum height attained is [$\mathrm{g}=$ acceleration due to gravity]
[EAMCET 2005 E]

1) $\frac{g\left(t_{2}-t_{1}\right)^{2}}{8}$
2) $\frac{g\left(t_{1}+t_{2}\right)^{2}}{4}$
3) $\frac{g\left(t_{1}+t_{2}\right)^{2}}{8}$
4) $\frac{g\left(t_{2}-t_{1}\right)^{2}}{4}$

Ans: 3
Sol: When a body is projected vertically upwards it occupies the same position while going up and coming down after time of t_{1} and t_{2}
$\therefore \mathrm{H}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$

$$
\mathrm{gt}^{2}-2 \mathrm{ut}+2 \mathrm{H}=0
$$

Sum of roots $=t_{1}+t_{2}=\frac{2 u}{g} \Rightarrow u=\frac{g\left(t_{1}+t_{2}\right)}{2}$
$\therefore \mathrm{H}_{\text {max }}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{g}\left[\mathrm{t}_{1}+\mathrm{t}_{2}\right]^{2}}{8}$
5. The horizontal and vertical displacement x and y of a projectile at a give time ' t ' are given by $x=6 t$ metres and $y=8 t-5 t^{2}$ metres, The range of the projectile in metres is
[EAMCET 2004 E]

1) 9.6
2) 10.6
3) 19.2
4) 38.4

Ans: 1
Sol: Comparing $\mathrm{x}=6 \mathrm{t}$ with $\mathrm{x}=(\mathrm{u} \cos \theta) \mathrm{t}, \mathrm{u} \cos \theta=6$
$y=8 t-5 t^{2}$ with $y=(u \sin \theta) t-\frac{1}{2} g t^{2}, u \sin \theta=8$
\therefore Range $=\frac{2[\mathrm{u} \cos \theta][\mathrm{u} \sin \theta]}{\mathrm{g}}=\frac{2 \times 6 \times 8}{10}=9.6 \mathrm{~m}$
6. The equations of motion of a projectile are given by $x=36 t$ metre and $2 y=96 t-9.8 t^{2}$ metre. The angle of projection is
[EAMCET 2003 E$]$

1) $\sin ^{-1}\left(\frac{4}{5}\right)$
2) $\sin ^{-1}\left(\frac{3}{5}\right)$
3) $\sin ^{-1}\left(\frac{4}{3}\right)$
4) $\sin ^{-1}\left(\frac{3}{4}\right)$

Ans: 1
Sol: Comparing $\mathrm{x}=36 \mathrm{t}$ with $\mathrm{x}=(\mathrm{u} \cos \theta) \mathrm{t}, \mathrm{u} \cos \theta=36 \ldots . .(1)$
$2 \mathrm{y}-96 \mathrm{t}-9.8 \mathrm{t}^{2} \Rightarrow \mathrm{y}=48 \mathrm{t}-4.9 \mathrm{t}^{2}$

Comparing the equation with $\mathrm{y}=(\mathrm{u} \sin \theta) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$u \sin \theta=48$.
$\therefore \frac{\mathrm{u} \sin \theta}{\mathrm{u} \cos \theta}=\frac{48}{36} \Rightarrow \tan \theta=\frac{4}{3}$ (or) $\sin \theta=\frac{4}{5}$ (or) $\theta=\sin ^{-1}\left(\frac{4}{5}\right)$
7. The horizontal and vertical displacement of a projectile at time ' t ' are $\mathrm{x}=36 \mathrm{t}$ and $\mathrm{y}=48 \mathrm{t}-4.9 \mathrm{t}^{2}$ respectively. Initial velocity of the projectile in m / s is
[EAMCET 2002 E$]$

1) 15
2) 30
3) 45
4) 60

Ans: 4
Sol: comparing the equation $\mathrm{x}=36 \mathrm{t}$ with $\mathrm{x}=(\mathrm{u} \cos \theta) \mathrm{t}$
$u \cos \theta=36$ \qquad
$y=48 t-4.9 t^{2}$ with $y=(u \sin \theta) t-\frac{1}{2} g t^{2}$
$\therefore \mathrm{u} \sin \theta=48$ \qquad
Squaring (1) and (2) and adding $u=60 \mathrm{~ms}^{-1}$
8. An object is projected with a velocity of $20 \mathrm{~m} / \mathrm{s}$ making an angle of 45° with horizontal. The equation for the trajectory is ' $\mathrm{h}=\mathrm{Ax}-\mathrm{Bx}^{2}$ ' where ' h ' is height, ' x ' is horizontal distance, A and B are constants. The ratio A : B is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
[EAMCET 2001 E]

1) $1: 5$
2) $5: 1$
3) $1: 40$
4) $40: 1$

Ans: 4
Sol: $\mathrm{h}=\mathrm{Ax}-\mathrm{Bx}^{2}$ compared with $\mathrm{h}=\mathrm{x} \tan \theta-\frac{g \mathrm{gx}^{2}}{2 \mathrm{u}^{2} \cos ^{2} \theta}$
$\tan \theta=\mathrm{A}, \mathrm{B}=\frac{\mathrm{g}}{2 \mathrm{u}^{2} \cos ^{2} \theta}$
$\therefore \frac{A}{B}=\frac{\tan \theta}{\frac{g}{2 u^{2} \cos ^{2} \theta}} \Rightarrow \frac{A}{B}=\frac{2 u^{2} \sin \theta \cos \theta}{g}=\frac{40}{1}$
9. Four bodies $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are projected with equal velocities having angles of projection 15°, $30^{\circ}, 45^{\circ}$ and 60° with the horizontal respectively. The body having shortest range is
[EAMCET 2000 E]

1) P
2) Q
3) R
4) S

Ans: 1
Sol: As Range $=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \Rightarrow \mathrm{R} \propto \sin 2 \theta$
\therefore As θ increases $\sin 2 \theta$ also increases
\therefore Shortest range is for P .
10. A body is thrown horizontally from the top of a tower of 5 m height. It touches the ground at a distance of 10 m from the foot of the tower. The initial velocity of the body is : $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
[EAMCET 2000 E]

1) $2.5 \mathrm{~ms}^{-1}$
2) $5 \mathrm{~ms}^{-1}$
3) $10 \mathrm{~ms}^{-1}$
4) $20 \mathrm{~ms}^{-1}$

Ans: 3

Sol: $\quad x^{2}=\left(\frac{2 u^{2}}{g}\right) y$ given $x=10 m, y=5 m, g=10 \mathrm{~ms}^{-2}$
$\therefore \mathrm{u}=10 \mathrm{~ms}^{-1}$
11. A body is thrown vertically upwards with an initial velocity ' u ' reaches maximum height in 6 seconds. The ratio of distances travelled by the body in the first second and seventh second is
[EAMCET 2000 E]

1) $1: 1$
2) $11: 1$
3) $1: 2$
4) $1: 11$

Ans: 2
Sol: As time of ascent $=6 \mathrm{~s}$
$\therefore \mathrm{t}=\frac{\mathrm{u}}{\mathrm{g}} \Rightarrow \mathrm{u}=\mathrm{gt}=6 \mathrm{~g}$
$\therefore \mathrm{h}_{1}=$ distance travelled by the body in the first
Second ut $-\frac{1}{2} \mathrm{gt}^{2}=6 \mathrm{~g}(1)-\frac{1}{2} \mathrm{~g}(1)^{2}=\frac{11 \mathrm{~g}}{2}$
$\mathrm{h}_{2}=$ distance travelled in the seventh second is same as distance travelled in $1^{\text {st }}$ second in downward motion $=\mathrm{g} / 2$
$\therefore \frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=11: 1$

MEDICAL

12. A body of mass 2 kg is projected from the ground with a velocity $20 \mathrm{~ms}^{-1}$ at an angle $30^{\circ} \mathrm{C}$ with the vertical. If t_{1} is the time in seconds at which the body is projected and t_{2} is the time in seconds at which it reaches the ground, the change in momentum in $\mathrm{kg} \mathrm{ms}^{-1}$ during the time $\left(t_{2}-t_{1}\right)$ is
[EAMCET 2006 M]
1) 40
2) $40 \sqrt{3}$
3) $50 \sqrt{3}$
4) 60

Ans :2
Sol: Initial velocity $\overrightarrow{\mathrm{u}}=(\mathrm{u} \cos \theta) \hat{\mathrm{i}}+(\mathrm{u} \sin \theta) \hat{\mathrm{j}}$
Final velocity $\vec{v}=(u \cos \theta) \hat{i}+(u \sin \theta)(-\hat{j})$
\therefore Change in velocity $=\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}}=2 \mathrm{u} \sin \theta(-\hat{\mathrm{j}})$
Magnitude of change in momentum $=2$ musin θ
as $\theta=30^{\circ}$ with the vertical. \therefore with the horizontal $\theta=60^{\circ}$
$\Delta \mathrm{p}=2 \times 2 \times 20 \times \frac{\sqrt{3}}{2}=40 \sqrt{3}$
13. A body is projected vertically upwards with a velocity ' u '. It crosses a point in its journey at a height ' h ' twice, just after 1 and 7 seconds. The value of u in ms^{-1} is : $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
[EAMCET 2006 M]

1) 50
2) 40
3) 30
4) 20

Ans: 2
Sol: As the body is projected upwards we can write the equation as
$\mathrm{h}=\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$
$\Rightarrow \mathrm{gt}^{2}-2 \mathrm{ut}+2 \mathrm{~h}=0$
$\therefore \mathrm{t}_{1}+\mathrm{t}_{2}$ are the roots of the equation
$\therefore \mathrm{t}_{1}+\mathrm{t}_{2}=\left(\frac{2 \mathrm{u}}{\mathrm{g}}\right) \Rightarrow \mathrm{u}=\frac{\mathrm{g}}{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\therefore \mathrm{u}=40 \mathrm{~ms}^{-1}$
14. Two balls are projected simultaneously in the same vertical plane from the same point with velocities V_{1} and V_{2} with angles θ_{1} and θ_{2} respectively with the horizontal. If V_{1} $\cos \theta_{1}=\mathrm{V}_{2} \cos \theta_{2}$, the path of one ball as seen from the position of other ball is [EAMCET 2006 M]

1) Parabola
2) Horizontal straight line
3) Vertical straight line
4) Straight line making 45° with the vertical

Ans:3
Sol: It is given that $v_{1} \cos \theta_{1}=v_{2} \cos \theta_{2}$. Hence the relative velocity between them is zero. The path of one ball as seen from the position of the other ball is vertical straight line.
15. The maximum height reached by a projectile is 4 metres. The horizontal range is 12 metres. Velocity of project in ms^{-1} is (g - acceleration due to gravity)
[EAMCET 2004 M]

1) $5 \sqrt{\frac{g}{2}}$
2) $3 \sqrt{\frac{g}{2}}$
3) $\frac{1}{3} \sqrt{\frac{g}{2}}$
4) $\frac{1}{5} \sqrt{\frac{g}{2}}$

Ans: 1
Sol: $\frac{\mathrm{h}_{\max }}{\mathrm{R}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g} \times \frac{2 \mathrm{u}^{2} \sin \theta \cos \theta}{\mathrm{~g}}}=\frac{\tan \theta}{4}$
$\frac{4}{12}=\frac{\tan \theta}{4} \Rightarrow \tan \theta=\frac{4}{3}$ (or) $\sin \theta=\frac{4}{5}$
$\therefore \mathrm{h}_{\text {max }}=4=\frac{\mathrm{u}^{2}\left[\frac{4}{5}\right]^{2}}{2 \mathrm{~g}} \Rightarrow \mathrm{u}=5 \sqrt{\frac{\mathrm{~g}}{2}}$
16. Two stones are projected with the same speed but making different angles with the Horizontal. Their horizontal ranges are equal. The angle of projection of one is $\pi / 3$ and the maximum height reached by it is 102 metres. Then the maximum height reached by the other in metre is
[EAMCET 2003 M]

1) 336
2) 224
3) 56
4) 34

Ans: 4
Sol: As ranges are equal, the angles of projection are θ and $90-\theta$
One angle is $60^{\circ} \therefore$ the other angle is 30°
$\frac{h_{1}}{h_{2}}=\frac{u^{2} \sin ^{2} 60^{\circ}}{2 g \times \frac{u^{2} \sin ^{2} 30^{\circ}}{2 g}}=\frac{\sin ^{2} 60}{\sin ^{2} 30}$
$\frac{10^{2}}{\mathrm{~h}_{2}}=\frac{3}{4} \times \frac{4}{1} \Rightarrow \mathrm{~h}_{2}=34 \mathrm{~m}$
17. A projectile has initially the same horizontal velocity as it would acquire if it had moved from rest with uniform acceleration of $3 \mathrm{~ms}^{-2}$ for 0.5 minutes. If the maximum height reached by it is 80 m then the angle of projection is : $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
[EAMCET 2002 M]

1) $\tan ^{-1} 3$
2) $\tan ^{-1}\left(\frac{3}{2}\right)$
3) $\tan ^{-1}\left(\frac{4}{9}\right)$
4) $\sin ^{-1}\left(\frac{4}{9}\right)$

Ans: 3
Sol: $\quad \mathrm{v}=\mathrm{u}+\mathrm{at}=0+3 \times 30=90 \mathrm{~ms}^{-1}$
$\mathrm{u} \cos \theta=90 \mathrm{~ms}^{-1}$ \qquad
$h_{\max }=80=\frac{u^{2} \sin ^{2} \theta}{2 \times 10} \Rightarrow u \sin \theta=40$
dividing (2) and (1)
$\frac{u \sin \theta}{u \cos \theta}=\tan \theta=\frac{4}{9}$
$\theta=\tan ^{-1}\left(\frac{4}{9}\right)$
18. It is possible to project particle with a given speed in two possible ways so that it has the same horizontal range ' R '. The product of the times taken by it in the two possible ways is ($\mathrm{g}=$ acceleration due to gravity)
[EAMCET 2001 M]

1) $\frac{R}{g}$
2) $\frac{2 R}{g}$
3) $\frac{3 R}{g}$
4) $\frac{4 R}{g}$

Ans: 2
Sol: For same range two angles of projection are θ and $90-\theta$
$\therefore \mathrm{t}_{1}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}, \mathrm{t}_{2}=\frac{2 \mathrm{u} \sin (90-\theta)}{\mathrm{g}}=\frac{2 \mathrm{u} \cos \theta}{\mathrm{g}}$
$\therefore \mathrm{t}_{1} \mathrm{t}_{2}=\frac{2}{\mathrm{~g}}\left[\frac{2 \mathrm{u}^{2} \sin \theta \cos \theta}{\mathrm{~g}}\right]=\frac{2 \mathrm{R}}{\mathrm{g}}$
19. The initial velocity of a particle, $\overline{\mathrm{u}}=4 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}$. It is moving with uniform acceleration, $\overline{\mathrm{a}}=0.4 \overline{\mathrm{i}}+0.3 \overline{\mathrm{j}}$. Its velocity after 10 seconds is
[EAMCET 2001 M]

1) 3 units
2) 4 units
3) 5 units
4) 10 units

Ans: 4
Sol: From $\vec{v}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{a}} \mathrm{t}=(4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})+(0.4 \hat{\mathrm{i}}+0.3 \hat{\mathrm{j}}) \times 10$

$$
=8 \hat{i}+6 \hat{j}
$$

$\therefore|\overrightarrow{\mathrm{v}}|=10$ units
20. A body of mass m_{1} projected vertically upwards with an initial velocity u reaches a maximum height h. Another body of mass m_{2} is projected along an inclined plane making an angle 30° with the horizontal and with speed u. The maximum distance travelled along the incline is
[EAMCET 2001 M]

1) 2 h
2) h
3) $h / 2$
4) $h / 4$

Ans: 1
Sol: $\mathrm{h}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}$.
From the equation $\mathrm{v}^{2}-\mathrm{u}^{2}=2$ as
$(0)^{2}-\mathrm{u}^{2}=-2(\mathrm{~g} \sin \theta) \cdot \mathrm{h}_{1}$
$\therefore \mathrm{h}_{1}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g} \sin \theta}=\frac{\mathrm{h}}{\sin 30^{\circ}}=2 \mathrm{~h}$ [from (1)]
21. A stone projected with a velocity u at an angle θ with the horizontal reaches maximum height H_{1}. When it is projected with velocity u at an angle $\left(\frac{\pi}{2}-\theta\right)$ with the horizontal reaches maximum height H_{2}. The relation between horizontal range, R of the projectile H_{1} and H_{2} is
[EAMCET 2000 M]

1) $\mathrm{R}=4 \sqrt{\mathrm{H}_{1} \mathrm{H}_{2}}$
2) $\mathrm{R}=4\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)$
3) $\mathrm{R}=4\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right)$
4) $\frac{\mathrm{H}_{1}^{2}}{\mathrm{H}_{2}^{2}}$

Ans: 1
Sol: $\quad H_{1}=\frac{u^{2} \sin ^{2} \theta}{2 g}, H_{2}=\frac{u^{2} \sin ^{2}(90-\theta)}{2 g}=\frac{u^{2} \cos ^{2} \theta}{2 g}$
but $\mathrm{R}=\frac{2 \mathrm{u}^{2} \sin \theta \cos \theta}{\mathrm{~g}}$
\therefore on solving $\mathrm{R}=4 \sqrt{\mathrm{H}_{1} \mathrm{H}_{2}}$
22. For a projectile the ratio of maximum height reached to the square of time of flight is [$\mathrm{g}=10 \mathrm{~ms}^{-2}$]
[EAMCET 2000 M]

1) $5: 4$
2) $5: 2$
3) $5: 1$
4) $10: 1$

Ans: 1
Sol: $\quad \frac{\mathrm{h}_{\text {max }}}{\mathrm{T}^{2}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \times \frac{\mathrm{g}^{2}}{4 \mathrm{u}^{2} \sin ^{2} \theta}=\frac{\mathrm{g}}{8}=\frac{10}{8}=\frac{5}{4}$
23. The average velocity of a body moving with uniform acceleration after traveling a distance of 3.06 m is $0.34 \mathrm{~ms}^{-1}$. If the change in velocity of the body is $0.18 \mathrm{~ms}^{-1}$ during this time its uniform acceleration is
[EAMCET 2000 M]

1) $0.01 \mathrm{~m} / \mathrm{s}^{2}$
2) $0.02 \mathrm{~ms}^{-2}$
3) $0.03 \mathrm{~ms}^{-2}$
4) $0.04 \mathrm{~ms}^{-2}$

Ans: 2
Sol: $\quad s=\left(\frac{u+v}{2}\right) t \Rightarrow 3.06=\left(\frac{u+v}{2}\right) . t$
$=3.06=(0.34) \times t \Rightarrow t=\frac{306}{34}=93$
but $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}=\frac{0.18}{9}=0.02 \mathrm{~ms}^{-2}$

